
Designing Energy-Efficient Approximate Adders
using Parallel Genetic Algorithms

Adnan Aquib Naseer, Rizwan A. Ashraf, Damian Dechev and Ronald F. DeMara
Department of Electrical Engineering and Computer Science

University of Central Florida
Orlando, Florida - 32826

demara@mail.ucf.edu

Abstract—Approximate computing involves selectively reduc-
ing the number of transistors in a circuit to improve energy
savings. Energy savings may be achieved at the cost of reduced
accuracy for signal processing applications whereby constituent
adder and multiplier circuits need not generate a precise output.
Since the performance versus energy savings landscape is com-
plex, we investigate the acceleration of the design of approximate
adders using parallelized Genetic Algorithms (GAs). The fitness
evaluation of each approximate adder is explored by the GA in a
non-sequential fashion to automatically generate novel approxi-
mate designs within specified performance thresholds. This paper
advances methods of parallelizing GAs and implements a new
parallel GA approach for approximate multi-bit adder design. A
speedup of approximately 1.6-fold is achieved using a quad-core
Intel processor and results indicate that the proposed GA is able
to find adders which consume 63.8% less energy than accurate
adders.

Index Terms—parallelism, genetic algorithms, parallel genetic
algorithm, inexact arithmetic units, approximate computing,
adder, variable accuracy, low power, adders, error distance,
power consumption, process variation, delay, power reduction

I. INTRODUCTION

Power consumption has become a significant concern in
computing architectures ranging from mobile applications to
high performance computing centers. The need for higher
energy efficiency in recent times has encouraged industry and
academia to explore various new avenues to decrease power
consumption. Some of the common methods of reducing
power consumption include Near Threshold Voltage operation
[1], Runtime Datapath Adaptation [2] [3], and Algorithmic
Truncation and Approximation [4]. Herein, we focus on ap-
proximate circuits to achieve energy-efficiency which can be
achieved by trading off accuracy. Approximation in current
scenarios could be developed using evolutionary methods such
as Evolutionary Algorithms. Evolutionary algorithm based
design approaches have proven to obtain creative design
solutions in a wide range of optimization problems [5]. One of
the advantages of an Evolutionary Algorithm as opposed to a
random search is its ability to obtain a global optimum solution
in shorter time for complex problems. In this paper, we look
at an approach to reduce the time required by a Genetic
Algorithm (GA) to determine a circuit design which occupies
less area as compared to accurate design by parallelizing the

algorithm used to evaluate the fitness of individuals in the
population.

II. GENETIC ALGORITHMS

A. Fundamentals of Genetic Algorithms

This section reviews some of the fundamental terms of the
Evolutionary-based Computing Approach known as Genetic
Algorithms.

A GA, at the genesis of the procedure contains a number of
random individuals generated by the system or pre-seeded by
the user, depending on the extent of automation desired. The
individuals together create a population. When this population
is manipulated over time, it defines a sequence of generations,
whereby the individuals of a population react with each other
using Genetic Operators to form new individuals, these newly-
created individual designs are referred to as offspring, and the
population of offspring is a generation. Usually the original
population is denoted as zeroth generation. Every individual
in the population can be represented as a binary string, which
is referred to as the chromosome of the individual. The
chromosome is an important data structure which determines
the design characteristics including device selection and in-
terconnection of the individual circuit being represented. The
performance of an individual can be evaluated by using a
fitness function. Fitness can be specified as a cost function
including mean error and resource usage according to a user-
defined value called the error criterion.

As the GA runs, it performs Genetic Operators such as a
crossover, which is a method by which interacting individuals
exchange binary data, replacing the original data, to exchange
subcircuits from high-performing parents to offspring. To
make sure that the GA does not converge to a local solution,
a mutation function is introduced, which randomly changes
a value in the chromosome. The probability of mutation is
kept to low levels in the range of 1 random modification for
every 1000000 bits. The mutation operator is kept to such low
levels to prevent the GA from performing a random search.
In certain GAs, the fittest individual of each generation is
always retained through successive generations without any
modification, this process of selection is referred to as elitism.
In cases where elitism is not used, individuals are selected
based on probability, which is a function of its fitness. If the



fitness level of an individual is high, then it has a higher chance
of being selected and vice-versa.

B. Parallelism in GAs

The power of Genetic Algorithms is given by Schema
Theorem [6], the schema theorem is a set of symbols used
in a string {1*00*1} where * can either be 1 or 0. The order
of the schema o(H) is defined as the number of fixed positions
in the schema, while δ(H) is the distance between the first and
the last specific positions. The order of the string 1*00*1 is 4
and the defining length is 5. The schema theorem states that
the fitness of a short schemata with higher fitness than the
average population will increase exponentially in successive
generations [7]. It is expressed by the equation:

E(m(H, t+ 1)) ≥ m(H, t)f(H)

at
[1− p] (1)

where, m(H, t) is the number of strings belonging to
schema H , f(H) is the average fitness of schema H , at is
the average fitness at generation t and p is the probability that
a mutation could destroy a schema. Here p is defined from the
following equation:

p =
δ(H)

l − 1
pc + o(H)pm (2)

where, o(H) is the order of the schema, l is the length
of the code, pm is the probability of mutation and pc is the
probability of crossover [7]. From equation (1) and (2) it can
be inferred that it is advantageous to keep the chromosomes
as short as possible. Also, from the schema theorem it can
be inferred that even in a sequential algorithm, it is possible
for the algorithm to handle o(N3) schema at a time for a
population of N individuals. Thus the GAs can handle large
number of schema at a time, which can be considered as
inherent parallelism [6].

Most GAs can be subdivided into four parts based on
amount of computation namely:

• Population Selection
• Crossover and Mutation
• Fitness Evaluation
• Offspring Generation

The list also illustrates where a GA could be parallelized with
greater efficiency overall. Apart from this a GA can also be
parallelized based on its detailed algorithmic flow [6]. Some
of the methods mentioned in [6] are

Parallelism of Individual’s fitness
The fitness evaluation of population consumes the
most amount of power and time, depending on
the algorithm and fitness dependencies, the fitness
calculation can be parallelized.

Parallelism of occurrence of offspring
Processes by which offspring are produced could be
parallelized, for example, when a crossover takes
place only two parents are used in a single crossover,
while the rest of the population lies idle, this can

be rectified in parallel computation by performing
crossover simultaneously over the entire population.

Parallelism based on population grouping
In certain cases, the population of individuals could
be subdivided into smaller sub-groups which could
be assigned to different threads.

Apart from the areas where there is potential to parallelize,
Parallel Genetic Algorithms, henceforth referred to as PGAs
can be subdivided into three groups based on the resolution at
which the PGA works, namely

Global PGA (GPGA)
A GPGA model uses the master slave method to di-
vide the workload among threads. The slave threads
calculate the fitness of an individual and perform
genetic operations in parallel, whereas the master
thread operates serially, assigning individuals to the
slave threads. It is one of the most simple and
effective PGAs to implement, but in GPGAs there
is a high change of uneven distribution of workload.
[6]

Coarse-grained PGA (CPGA)
In a coarse grained model the population is sub-
divided into groups and genetic operations are per-
formed independently within a sub-population [6].
This type of PGA introduces a new function Migra-
tion. Migration defines the rate at which individuals
from one group move from one sub-population to
another sub-population.

Fine-grained PGA (FGPGA)
FGPGA assigns each individual to a thread and this
individual interacts with another individual within a
hamming distance of 1. This type of PGA could
maintain diversity based on the neighborhood cho-
sen. [6]

III. RELATED WORK

Approximate computing offers a promising approach for
reduced energy operation for applications which can tolerate
some imprecision. There are many types of approximate
circuits, including those constructed by voltage over-scaling
and over clocking [8] and others as mentioned in [9]–[12].
However, this paper uses approximate adders which utilize
lesser number of transistors than original accurate design.
The Adders used in this paper are obtained from [13]. As
these adders are analyzed in a manner which is suited to the
application presented in this paper. In this section we discuss
and analyze the three different types of adders used and the
accurate adder. The Accurate adder is the reference adder from
which the other adders are derived.

A. Conventional Mirror Adder

A Conventional Mirror Adder (CMA) consists of a total
of 24 transistors [13], as shown in Figure 1. The other
approximate adders are obtained from the CMA.



Fig. 1. Conventional Mirror Adder [13]

B. Approximation 1

The first approximate mirror adder is obtained by reducing
the number of transistors in the schematic one by one until
the defined error constraints are breached. Once the error
constraints are breached the last modification is reverted to
obtain the Approximation [13], this method is applied to the
other approximate adders as well. AMA1 is shown in Figure
2.

Fig. 2. Approximate Mirror Adder 1 [14]

C. Approximation 2

Approximate Mirror Adder 2 (AMA2) introduces 2 errors
in Cout and 3 errors in Sum, as shown in Table I.

D. Approximation 3

Approximate Mirror Adder 3 (AMA3) Cout and Sum are
accurate for 4 out of 8 outputs, the schematic for AMA3 is
given in Figure 3.

The performance in terms of accuracy can be determined
using the truth table shown in Table I.

Fig. 3. Approximate Mirror Adder 3 [14]

Fig. 4. Approximate Mirror Adder 4 [14]

IV. FITNESS EVALUATION

In this section we explore the various Error Metrics avail-
able in the literature to devise an Error Measurement Tech-
nique which will be utilized in the objective function of GA.

A. Error Distance

The measurement technique developed [15] measures the
precision of approximate circuits. This method is termed
as Error Distance. Error Distance is the arithmetic distance
between two binary values i.e. the arithmetic distance between
the predicted/required value and the obtained/output value. For
example, let us consider a Full Adder, if the exact output of
the Sum is 100101, but the circuit gives an output of 100100,
then the error distance between the two values is said to be 1,
similar to Hamming distance. But if the output was 101111”
then the error distance would be 10. It can be seen that the
value of error distance (ED) increases or decreases depending
on the position of the incorrect bit. [15] defines ED with
equation(3)



TABLE I
TRUTH TABLE FOR CONVENTIONAL FULL ADDER AND APPROXIMATIONS 1, 2 AND 3 [13]

Inputs Accurate Outputs Approximate Outputs
A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3

0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1

ED(a, b) = |a− b| = |Σja[i] ∗ 2i − Σib[j] ∗ 2j | (3)

For a non-deterministic application, the output is probabilis-
tic and usually follows a set distribution for a given input ai. In
this case ED is defined as the weighted average of all possible
outputs to the nominal output. Assume that for a given input,
the output has a nominal value b, but it can take any value
given in a set of vectors bj (1<j<r) [15].The ED of the output,
in such cases, is given by equation(4) as shown in [15]

di = ΣjED(bj , b) ∗ pj (4)

Where, pj is the output probability of bj (1<j<r)

B. Mean Error Distance

Mean Error Distance is used in cases where the inputs are
probabilistic and thus each input occurs only at a particular
probability. The mean error distance (MED) of a circuit is
defined as the mean value of the EDs of all possible outputs
for each input [15] . Assume that the input is a set of vectors
ai and that each vector occurs with a probability of qi [15].
Then, the MED, dm of the circuit is given by

dm = Σdi ∗ qi (5)

Where, di is the ED of outputs for input ai which can be
computed by (3)

As an example assume a NOT gate, the probability of the
input to the NOT gate being 1 is 0.7 and if the output of the
NOT gate is 1 even if the input is 1. In this case the MED is
given by ED multiplied by the probability (0.7) which is equal
to 0.7 as the ED is 1 in this case. In case of multiple outputs,
the ED is individually calculated and then multiplied with
individual probabilities and after the values are calculated, all
the values are summed with each other to obtain the final
value.

C. Normalized Error Distance

MED increases with increase in the number of lower bits. It
is therefore biased to use MED to compare between two adders
with different lower bits as the maximum value of error that

can be effectively reached has also changed [15]. To overcome
this limitation normalized error distance (NED) is used. NED
is defined as

dn = dm/D (6)

Where, dm is the MED and D is the maximum value of the
error. The maximum value is usually 2n for n lower bits
[15]. We use the fitness function used in [16]. It requires
multiplication of the number of combinations possible in a
truth table multiplied by the number of outputs to get the
maximum fitness value. Hence, we can denote the formula as
given in equation (4).

V. ENERGY EVALUATION

In this paper, we define error based on the accuracy of the
output, we do not consider delay, although all the approximate
adders here perform much better in terms of delay and power
when compared to the fully exact adder. The Dynamic Power
Dissipation of the system is given by equation (7) and the
static power dissipation is given by equation (8)

PD = Cpd ∗ V 2
CC ∗ fI ∗NSW (7)

Where,
PD is the dynamic power consumption
VCC is the supply voltage
fI is the input signal frequency
NSW is the number of bits switching
Cpd = dynamic power-dissipation capacitance The total

static power consumption of this device can be given as:

PS = VCC ∗ Ileakage (8)

Where,
PS is the static power consumption
VCC is the supply voltage
Ileakage is the current into a device (sum of leakage cur-

rents)
From, equation 7 and 8, we can derive equation 9,

PT = Σ(PD + PS) (9)



1: procedure GENETIC ALGORITHM(a, b) . population
consisting of a and b

2: while a&b > error constraint do
3: population allocation
4: tbb evolve()
5: tbb postselect()
6: fitness()
7: elitism()
8: while maxfit<desired fitness do
9: migration() b/w populations

10: end while
11: end while
12: return c & d . c & d are the latest generation
13: end procedure

Fig. 5. Parallel Master Slave GA

The next factor we consider is the average propagation delay
of an adder which is given in equation 10. and for the last
factor we used MED as described in equation (5).

tp =
tPHL + tPLH

2
(10)

Where,
tPHL is the time delay from High to Low
tPHL is the time delay from Low to High

VI. IMPLEMENTATION

We implement a Genetic Algorithm with three different
modules: (1) Evolution of the circuit, (2) Selection of the
Offspring, and (3) Maximum Fitness Calculation as shown
in Figure 5. Each module consists of a for loop which loops
through Look up Tables (LUT) assigning different functional-
ities to each LUT based on a random number between zero to
four each corresponding to AMA 1-4. The three for loops were
parallelized using Intel TBB [17] parallel for loop, also
vectors were used wherever possible to give flexibility to the
program. We also used OpenMP in conjunction with the Intel
TBB library to test out how it affects performance relative to
only using TBB, the outcome of this is illustrated in the results
section. The main program was already designed by [16], we
modified it to change the operation of the Genetic Algorithm
extensively. The original Genetic Algorithm in [16] could
only design MUX decoders, we changed the functionality of
this Algorithm by modifying the LUTs used in the original
program to map the different Approximate Adders as single
LUTs. The LUTs considered in this program can handle 3
inputs and 2 outputs, analogous to a full adder. The LUTs are
lowest grain level the program could go. The Interconnection
Mutation was switched off for these Genetic Operations as this
resulted in the 2 outputs being mapped to the wrong adder
occasionally. The implemented algorithm produced designs
which outperform the other adders,for e.g. it obtains a fitness
value of up to 40 for a maximum fitness value of 48.

The program used a hierarchical approach; first the Individ-
uals containing CLBs were designed, each CLB has a vector
of LUTs. The individuals, CLBs and LUTs are initialized as
classes as shown [16]. The LUT class contains a function
called CalculateOutput which takes in the input vector to
calculate the output based on the functionality chosen, this
is done for each individual. The vector of individuals are
initialized based on the initial population given in the input
file.

VII. EXPERIMENTAL SETUP & RESULTS

Multi-bit approximate adder circuits are designed using
the proposed methodology. Other benchmarks can also be
designed if the multiple versions of approximate designs are
available. For the benchmark utilized, the maximum fitness
of the circuit is dependent on the number of inputs n and
is equal to 2n+1. The Genetic Algorithm was executed for a
maximum of 5000 generations with a population size of 20
circuits consisting of randomly instantiated individuals. The
GA selects a random set of individuals (parents) from the
population after which tbb evolve is invoked which evolves
the circuit in parallel, which is followed by tbb postselect and
maxfit which are the processes for selecting the offspring and
calculating the maximum fitness respectively.

Fig. 6. Performance without OpenMP

Fig. 7. Performance with OpenMP included



One of the important observations was that the GA took as
much time to evolve as to calculate the Fitness, sometimes
the time to evolve was greater than the time to calculate
the Fitness. This is a context-dependent observation as the
time to evolve or to calculate the fitness values depends on
the complexity of the calculation within each function. The
most-intriguing result obtained was for a 2-bit adder including
the carry with a fitness value of 40 out of the maximum
fitness value of 48, also the MSBs were the least affected
by the combination of approximate adders. Additionally, if a
redundant adder is added then the fitness could be improved
to 45, this is because the third adder could be better in certain
cases, this could be useful when the outputdoes not meet
desired application criteria. Even when a redundant adder is
used or swapped with the current adder component, the power
consumption would be less than that required for an accurate
adder. The power savings may extend up to 63.8 % when
compared to cases when an Accurate Adder is used in ideal
conditions. For example if we consider a 2 bit adder composed
entirely of Accurate Adders the total power consumption
would be 517.9 nW as shown in Table II. In the same scenario
if two approximate adders are to be used for example the
AMA3 adder, then the power consumption would be 187.552
nW and if we add another redundant AMA4 adder, then the
total power consumption would be 284.434 nW, which is still
much lesser than the combined power consumption of the 2-bit
Accurate Adders.

Execution times for the design of approximate adders
with and without OpenMP are shown in Figures 6 and 7
respectively. A speed-up of about 1.61-fold using 4 threads
is achieved on a quad-core processor, which is far less than
linear. A speedup of at least 2 on four threads would have been
promising. We believe this could be possible with the intro-
duction of larger Generation Gap in Delayed Elitism.When
mutation was introduced in interconnections between LUTs,
the developed circuit did not match the required configuration;
the interconnections are important, as in a multiple bit adder,
it is required for single bit adders to be in sequence so that the
carry is propagated appropriately. The power and performance
numbers for individual approximate adder designs are listed in
Table II. These numbers are obtained by HSPICE simulations.

TABLE II
PROPAGATION DELAY AND POWER CONSUMPTION FOR APPROXIMATE

ADDERS

Adder Sum Worst(pS) Carry Worst(pS) Power (nW)
CMA 58.09 148 258.9419
AMA1 37.54 49.04 242.408
AMA2 56.41 49.15 122.37
AMA3 59.39 51.09 93.776
AMA4 58.78 52.12 96.882

From Figure 6, we can see that the difference between
the GA run in a uniprocessor environment takes up to 700
seconds more than if it was run in a parallel environment.
The speed up in such an environment is up to 1.6, this is the
maximum we could achieve, the paper [16] achieves a speedup

Fig. 8. Fitness Evolved when Approximate Adders are used to implement a
4-bit Adder

Fig. 9. Fitness Evolved when on a subset of inputs restricted to maximum
fitness value of 220

Fig. 10. Fitness Evolved when the number of gates was restricted to 16 for
a 4 bit adder

of more than four for a 3:8 multiplexer, but this paper has
been implemented using an Adder in mind which consists of
larger sub-elements and the order in which connections take
place are important, hence parallelism cannot be implemented
as frequently. Additionally, the results obtained by including
OpenMP are shown in Figure 7. It can be observed that there
is only a minimal increase in performance by using OpenMP.

The fitness of evolved 4-bit Adder circuit is shown in Figure
8. It can be seen that the GA quickly converges to a fitness
value of 303 out of a maximum fitness value of 424. In this
case, the fitness evaluation takes up bulk of the execution time.
As approximate designs are targeted in this paper, the adders



are also evolved using a subset of the input space as shown in
Figure 9. In this case, the output is only calculated for 40% of
the input space. Another attempt to restrict the design space
of GA was made by restricting the total number of gates to
16. The results for this case are shown in Figure 10. It can be
observed that the highest fitness value is obtained in this case.
Thus, the solution space can be explored more extensively
using the proposed techniques.

VIII. CONCLUSION AND FUTURE WORK

This paper indicates benefit for parallelizing the GA ex-
ploration of creative cascaded circuits such as Adders where
the current stage is heavily-dependent on the previous stage.
Although we were able to achieve a modest speed-up of 1.61,
in most cases, when the population size is increased then the
effects of parallelization tends to be more pronounced.

Future work could include implementation of
DelayedElitism which could improve the avenues where
parallelism could be improved, in case of DelayedElitism
the parallel invoke method in TBB could be used to run
fitness evaluation function and Evolution in parallel, this
could improve the design-time significantly. Also, the GA
could be modified to design larger circuits than the ones
currently designed, these could then be implemented in chips
where manual intervention for hardware faults is not possible,
in such cases a GA could be remotely used to reconfigure the
circuits when the systems aren’t functioning appropriately.
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