Multifunction Content Addressabie Memory for Paralle! Speech Understanding

R. A. Cagle
212 W.16th Street
Sanford, Fl 32771

R. B. Holl
1216 S.Park Ave
Titusville, FL 32780

1.0 Introduction

Content Addressable Memories (CAMs)
allow considerably finer-grained paralielism than
conventional shared or distributed memory
multi-processors. This fine-grained "Processor-
In-Memory" concept can be employed to a large
degree during Semantic Network processing in
support of Artificial Intelligence (Al) with specific
applications in speech and natural language
processing. A special-purpose CAM
configuration is presented based on
requirements for a nominally-sized 64K node
semantic network with 8 bit-markers and 32
relationship types. Analysis for a target
application shows that the extensive use of
parallel Marker-Propagation and Set Theoretic
Operations yields approximately 30-fold
speedup over systems with standard Random
Access Memories.

1.1 Background

Real-time Semantic Network Processing
is an important area of Al research because of
the need to close the "Semantic Gap" between
natural language and digital computation. The
predominate approach is to construct a small to
medium-sized knowledge base which is a
subset of a larger domain to allow the
reasoning problem to become more tractable.
Nonetheless, even relatively simple domains
must contain tens of thousands of concepts,
along with the many relationships between
concepts, to be of practical value. This
immense amount of knowledge and the marker-
propagation operations which are performed on
the knowledge base require a large amount of
processing power. Clearly this application is
well-suited for general-purpose parallel
computers, but is best suited for array
processors.

R. F. DeMara
Univ. of Central Florida, ECE Dept.
Orlando, Fl 32816-2450

Specifically, a semantic network is a
knowledge representation scheme that utilizes a
series of nodes to represent concepts (each
node denoting a unique concept). A pair of
these conceptual nodes which are related to
each other are connected by a single link that
represents the particular type of relationship
between the nodes. Additional information can
be inferred through inheritance which allows
subordinate concepts to inherit general
properties from superior concepts, thus keeping
the knowledge model simpler and more
compact. However, there are further
complications with this representation. Links
need to be represented as directional, which
force the number of unique representations of
links to be increased. Another issue is that a
single node can have many links from/to it
to/from other nodes. A single search could very
quickly bifurcate into hundreds of intermediate
nodes, eventually reaching thousands of
termir.al nodes. Generally speaking, the search
operations required can be very complex
search. Also, the conceptual association that the
node belongs to needs to be represented. This
representation is commonly calied the node
color and will be referenced during various
reasoning activities which use the semantic
network.[8]

1.2 Computational Requirements

All of this information needs to be
represented within a formal model which can
efficiently handle the large amount of data to be
stored. Additional information that is utilized in
the search routines gives rise to the need for
associating marker bits with each node. This
marker information is used for the following
operations on the network:[4]

1) Association

320

2) Set Theoretic Operations

3) Marker-Propagation

4) Arithmetic Operations

For example, to perform a typical query
on the network to determine a desired
association between nodes, first the two nodes
in question are assigned different markers. Then
the association links are traversed to the
conceptually adjoining node which are
subsequently marked with the same marker
code that was assigned to the originating node.
This process is followed up through (or down
through) all levels of association in the network.
At the node that joins the two different marker
paths, both markers are set. At the completion
of the query, the node that has both markers set
is identified as the desired result. Certainly, this
is the most rudimentary example and the search
is typically plagued by multiple common nodes.
A solution to this problem is to encode even
more information into the
probability weights which carry the strength of
particular paths as floating-point numbers. This
is referred to as value passing.

For the efficient application of parallel
processing, the semantic domain can be
partitioned into smaller segments distributed
across each processor's local memory. This
would then allow a parallelized search by each
Processing Element (PE) with respect to the
others (intra-propagation parallelism) and along
the links between the partitions allotted between
processors (inter-propagation).

1.3 Previous Work

Massively Parallel Computers such as
Connection Machine's CM-2 can be extremely
well suited for this task for large Semantic
Domains or Paradigms. The association and
set intersection gathering operations are very
fast due to Single Instruction Multiple Data
(SIMD) level of parallelism available to the
domain.[1] The CM-2 allows a potential ratio of
one concept node per PE for most large
domains. This was an exireme benefit when
computational explosion is possible, but for
domains with a reduced level of parallelism the
CM-2 wastes a significant amount of processing
time on communication. Due to the design of an
overwhelming number of PEs (64K), the
problem of large marker fanout is handled well,
but marker propagation's are costly between the

links such as

many processing elements because of the serial
communication overheads.[5]

Another supercomputer that uses a
different architecture is that of the Cray type
Vector Computers. The Cray X-MP was tested
with the same semantic domain that the CM-2
was tested under, and the results indicate the
architectural difference. The Cray was forced to
develop arrays to index the concept nodes
which created a large vector to process. The
marker propagation routines caused additional
overhead of collection of the visited nodes and
developing a parsed array before the next
propagation. This method forces a slower
overall problem than the CM-2 when one
considers the many links that need to
traversed.[5]

While neither of these machines were
built specifically to process a semantic problem,
other machines have been. The Semantic
Network Array Processor (SNAP-1) was
constructed to specifically support marker
propagation.[2] The SNAP-1 machine utilized
144 PEs, clustered together into 32
multiprocessor groups. Multiport memory was
utilized as a storage medium for the semantic
domain to limit the amount of process memory
contention. For increased speed during domain
node traversing, there were 20 custom
instructions included to operate on the network.
These high-level instructions helped to bridge
the semantic gap and increase the
programmability for various cases of marker-
propagation. An interesting finding of the
research was that while marker-propagation
statements comprised approximately 17% of the
dynamic instruction count, nearly 65% of the
processing time was spent on them.
Additionally, for the tested domain of 32K
nodes, around 100 propagation's would be
performed in parallel implying the need for 100
parallel processors for quick problem resolution.
These processors, however, would be used for
short bursts of time.

Clearly, the more available parallelism
which exists among the nodes in the domain the
greater the potential performance improvement.
This gives rise to enhanced architecture using
CAMs. CAMs contain sufficient logic to allow
each individual memory cell to determine if it
matches a given query. These queries generally
contain a series of mask (or don't care) bits to

321

find similar data. CAM memories can perform in
parallel read, write, search, and /ogical
operations. This reflects a trend towards
distributing the processing power globally over
the semantic network by associating logic with
each individual CAM word. The evolution
further into VLSI logic allows this memory
structure to be partially feasible in size, but still
grossly under the volume of storage in DRAM
memory and even SRAM memories.[6]

Even with the size limitation, a distributed
semantic network can still be mapped into a
CAM Architecture. With the utilization of CAM,
the marker-propagation can be done very
quickly because it can be done in parallel rather
than sequentially. This parallelism allows the
processing elements to be designed more
economically but still with potential
improvements in the propagation algorithm. The
additional speedup of this is given by the brief
inclusion of multiple PEs (contained within each
CAM) to the network for specific operations.

A parallel associative processor was
custom built to study the speedup potential
using CAMs. Called the IXM2, this machine
each with a CAM bank that allowed a distributed
semantic network to be completely
contained.[5]1[6] This machine, gave consistent
performance times for both marker propagation
and fanout propagation, unlike the CM-2.
Another benefit was the global operations that
could be performed in a SIMD fashion similar to
the CM-2. The performance for the IXM2 was
placed between the CM-2 and Cray Super
computers because of the slower processing
speed, but a drawback of the CAM memories
slow access and operations times.[5] However,
for certain domains, the IXM2 performed better
than both the CM-2 and Cray computers.

2.0 Design

CAMs have the very desirable property of
being able to search all of their memory
contents for a specific value during one cycle.
This allows for consistently fast memory
searches that are needed to process a
semantic network. The output of a positive
search is the memory address where the
matching data is located.

2.1 Design Objectives

When designing a special purpose
processor that uses CAMs, two factors must be
considered. The first is the size of the semantic
domain. This will determine how many bits are
needed to uniquely address each node. The
second is how many bits wide each word is
within the CAM. This determines what other
information can be stored in the CAM. For our
design, we have selected a domain size of 64K
nodes and a CAM with 48 bits per word. With a
little study of the domain, we can see that a
domain size of 64K can represent different
concepts. With this in mind, we specify that the
64K domain will have:

1) A maximum of 64K nodes requiring a
16 bit address field.

2) A maximum of approximately 64K
relationships between nodes.

The number of relationships wili determine how
many CAM chips are used, where each
relationship equals one cam word.

After the domain size and CAM size have
been fixed then other design parameters can be
determined. These include:

1: Number of unique types of
relationships in the semantic
network.

2: Number of processors to be
addressed.

3: Number of bit-markers required.

4: Word length for weighting values.

5. Distribution of individual data items
between CAM and regular
memory.

6: Field assignments and bit positions
within the CAM for the above
values?

2.2 CAM Bit Allocation

The 48-bit word we have to work with
dwindies quickly. As shown in Figure 1, we
must assign 16 bits for the source node
("NODE 1") and 16 bits for the destination node
("NODE 2") which only leaves 16 bits for all
other information in each word of the CAM. Out
of this last 16 bits, two marker bits

Forward Relationship
NODE 1 { 7\{ NODE 2 I

Figure 1.

322

are needed for the ANDing operation to
determine the intersection node. This leaves 14
bits for the remaining information. Rather than
using one large CAM, the CAM hierarchy is
distributed over the different processors in the
system. This allows a semantic network to be
mapped in subsections to the different
processors. If a node along a related path is
mapped such that the relationship goes from a
source node in one processor to a destination
node in another processor, the processor
number for the destination node must be known.
This implies that for a p processor system, logzp
bits need to be allocated for the destination
processor number. The 3-bit field used below
supports up to 8 processors which is sufficient
for the 7 processor system we are designing for.
This leaves a total of 13 bits remaining.

in a domain with 64K relationships, we
must assign each relationship a unique binary
number, requiring 16 bits. Since only 13 bits are
available, we assign relationships on the basis
of type. If we assign 5 bits to relationship types
then we can have up to 32 types in the domain.
This leaves the last 8 bits for markers. The
mapping of a CAM word is shown in Figure 2.

Words 1 & 2

[47]46[a5]44[a3]a2[41]40[30| 38[37] 36| 35 34 33| 32|

I'— NODE 1 g
(16 bits)
Words 3 & 4

[31[3d 29 28[27] 26] 28] 24] 23 22] 21] 2] 19| 1] 17] 1]

’———— NODE 2 }

(16 bits)
Words 5 &6

[16/14/131211]1d0d od 0706050403 02 01]00]
I-—— Markers 1-8 ——1

Forward
Relationship ﬂ
Type
Node 2
Boundary Crossing
Processor Number
Figure 2.

Another field that is needed for the
domain is the weight of the relationship. This

weight is a floating-point number which
consumes more bits than can be allowed for in
the CAM. Therefore the weight must be stored
in RAM. To do this, a special mapping must be
developed to ensure that a certain weight
corresponds to the correct relationship in the
cam.

With the bits selected to represent the
different functions they must be mapped into a
CAM word. The CAM we selected as a
reference uses 16 bits for data /O so that the
placement of the fields in CAM must
accommodate the 16 bit borders. Since there
are 16 bits each for the nodes then these can be
positioned for two of the three 16-bit sub-
words. In the last 16 bits the remaining
information can be mapped in any order. As
shown in Figure 2, the CAM word is mapped out
where node 1 is the upper 16 bits, node 2 is the
middle 16 bits, and the remaining information is
contained in the last 16 bits. The following
calculations were performed to determine the
number of CAM memories needed for a
workable system:

NUMBER OF CAMS REQUIRED
Given: 7 PROCESSORS
256 WORDS / CAM
64K WORDS = 65535 WORDS / DOMAIN

CALCULATIONS

65536 WORDS / DOMAIN
=256 CAMS / DOMAIN

256 WORDS / CAM

NUMBER OF CAMS PER PROCESSOR

256 CAMS/DOMAIN
= 36.6 CAMS/PROCESSORS

7 PROCESSORS/DOMAIN

NEED EVEN NUMBER OF CAMS PER
PROCESSOR

= 37 CAMS / PROCESSOR
WORDS OF DOMAIN PER PROCESSOR

37 CAMS/DOMAIN e 256 WORDS/CAM
= 6912 WORDS/PROCESSOR

323

ACTUAL TOTAL DOMAIN

37 CAMS/PROCESSOR ¢ 7 PROCESSORS/DOMAIN
=259 CAMS/DOMAIN

and

37 CAMS/PROCESSOR ¢ 7 PROCESSORS/DOMAIN
« 256 WORDS/CAM
= 66304 WORDS/DOMAIN

3.0 Performance Analysis

A question arises about the validity of
using a CAM network versus a RAM network to
contain the domain data. The reason for this is
because of the speeds of the chips available.
For example, the speed of AM99C10 Advanced
Micro Devices CAM is 100ns and their
AM99C1341/AM99C1441 dual-port RAM is
35ns.

3.1 Access Schemes

In comparing the two types of memory, a
basic guidelines and a target application must
be used. To obtain meaningful results, one of
the most time consuming operations in using a
semantic domain was selected: the ANDing of
the markers to find the intersecting node. This
node will have two or more markers set by the
propagation through the domain in response to
a query. In the worst case application of this
search, all addresses must be searched in
memory.

In making a comparison between the two
types of memory, some constraints must be
assumed. The C99 is 256 words by 48 bits and
the C1341/C1441 is 4096 words by 8 bits. To
match a RAM bit pattern to the CAM bit pattern,
6 RAMs must be used in parallel to equal a 48
bit word. The comparison of the RAM is only
done on the first 256 words. This is because
one cam module is 256 words long. Since the
loading of the CAM must be done 16 bits at a
time, the ram data path must be considered to
be 16 bits wide also. With a 16-bit data path we
will be able to select a 2-module 16-bit bank of
RAM for data while a CAM operated in 16-bit
mode we can select the bit positions in the word
to read from.

The searching routine under
consideration will obtain the same result but

differ vastly in approach. In the CAM this
consists of:
1) 1 cycle to load the bit pattem.
2) 1 cycle to perform matching operation.
3) 2 cycle wait period for status
completion.
4) 1 cycle to retrieve match address.
5) 1 cycle to retrieve target information.

Thus, the number of cycles needed = 6 cycles
since tcam = 100ns
then total CAM time = Tc =6 tcam.

The RAM search varies in the number of cycles
required, as given by the following procedure:

1) 1 cycle to select bank of memory.

2) 1 cycle to retrieve word.

3) 1 cycle to compare word.

4) At maximum, steps 2 and 3 will be

done 256 times.
5) 1 cycle to select bank of memory.
6) 1 cycle to get target information.

Thus, the number of cycles = 1 + 2*256 + 1 + 1
=515 cycles

since trgm = 35ns
then total RAM time = T/MaX = 515 ty,.

3.2 Upper Bound Speedup

With this information, relative
performance increase of CAM over RAM usage
can be developed:

Trmax / TC = 515tram / GtCam

=85.8 tram /tcam

Using the timing data for the selected memories,
an approximate value for maximum speedup is
obtained:

speedupMaX = 858 * (35 ns / 100 ns) = 30.03

Thus when doing an exhaustive search, the
CAM application is approximately 30 times
faster than the RAM approach for the same
data.

3.3 Lower Bound Speedup

A lower bound on speedup is obtained when
only 1 word of the RAM must be searched so
that steps 2) and 3) are performed only once. In
this case,

324

TMin = 5ty thus,
speedup™n = (5/6) * (35 ns / 100 ns)
= 833*.35=0.292

Since speedupMIN js fractional, a performance
degradation will occur. Fortunately, even a
small knowledge base typically has several
hundred or more activation's in parallei so that
this degradation is not encountered in practice.
We are cuirently applying data gathered from
different applications to determine average or
typical values of speedup that can be expected
between the two extremes.

4.0 Conclusion

The need for fast marker traffic and
propagation is evident in Natural Language
Processing application which activate
approximately 100 nodes per propagation step
for a vocabulary of a few thousand words. The
serial node evaluation process is very costly in
terms of machine cycles with standard memory,
but a CAM appears well-suited for this. With
global searches and marker analysis, all
semantic nodes can be processed
simultaneously to yield speedups which justify
the additional cost of the CAMs for real-time
processing and large knowledge bases.

An implementation drawback of the CAM
approach is that the logic replicated at each
word occupies a portion of the available area on
the chip, thus resulting in a lower density
storage per chip. Additional requirements of
large word lengths to represent the semantic
domain are constrained to small number of
memory addresses which exist on a single chip.
An extensive vendor search revealed that the
largest chip available was 256 words by 48 bits.
For a realistic semantic domain, a network of at
least 64K nodes must exist to be practical.

A lower chip count could be obtained
using 96 bits/word and 1k to 4k words per chip.
To increase the parallelism of the system, this
CAM would also be enhanced with several
embedded ALU operations. This allows the
CAM to perform mundane operations while
allowing the coarse-grained PE to handle more
complex operations.

References

[1 S.H. Chung and D. |. Moldovan,
"Modeling Semantic Networks on the
Connection Machine," Journal of Parallel and
Distributed Computing, Feb. 1993.

[2] R. F. DeMara and D. I. Moldovan, "The
SNAP-1 Parallel Al Prototype," IEEE
Transactions on Parallel and Distributed
Systems, September 1993.

[3] M. Evett, J. Hendler, L. Spector, "PARKA:
Parallel Knowledge Representation on the
Connection Machine," Univ.of Maryland Tech.
Rep. UMIACS-TR-90-22, February 1990.

[4] Tatsumi Furuya, Tetsuya Higuchi,
Hirohiko Kusumoto, Ken'ichi Handa, Akio
Kokubu, "Architectural Evaluation of a Semantic

Network Machine," in Database Machines and
Knowledge Base Machines, pp. 544 - 556

[6] Testuya Higuchi, Kenichi Handa, Tatsumi
Furuya, Naoto Takahashi, Akio Kokubu, "IXMZ2:
A Parallel Associative Processor," CMU Tech.
Rep., January 1991

[6] Testuya Higuchi, Kenichi Handa, Tatsumi
Furuya, Hiroyuki Kusumoto, Akio Kokubu, "The
Prototype of a Semantic Network Machine IXM,"
in Proceedings of 1989 International Conference
on Parallel Processing, Vol. |, pg. 217 - 224

[7] Kai Hwang, Faye' A. Briggs, Computer
Architecture and Parallel Processing, McGraw-
Hill Publishing Company, 1984

[8] Dan I. Moldovan, Parallel Processing

from Applications to Systems, Morgan
Kaufmann Publishers, 1993

325

This document is an author-formatted work. The definitive version for citation appears as:

R. A. Cagle, R. B. Holl, and R. F. DeMara, “Multifunction Content Addressable Memory for Parallel
Speech Understanding,” in Proceedings of the 1994 IEEE Southcon Conference (Southcon’94), pp. 320 —
325, Orlando, Florida, U.S.A., March 29 — 31, 1994. Inspec Accession Number: 5296490

Link:
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=498125 &isnumber=10626&punumber=3537&

k2dockey=498125@jieeecnfs&query=%28demara+r.%3CIN%3Eau+%29&pos=8&arSt=320&ared=325&a
rAuthor=Cagle%2C+R.A.%3B+Holl%2C+R.B.%3B+DeMara%2C+R.F.%3B

