Manuscript to Appear in the 2005 International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA’05), June 2005, Las Vegas, Nevada.

Copyright and all rights therein are retained by authors or by other copyright holders.

Self-Checking Fault Detection using Discrepancy Mirrors

R. F. DeMara and C. A. Sharma
Department of Electrical and Computer Engineering
University of Central Florida
Orlando, FL 32816-2450

Abstract

A method for robust detection of faults is developed based on pairwise parallel evaluation
using Discrepancy Mirror logic. Discrepancy Mirrors provide coverage for the fault detector
elements within the same mechanism used for the functional logic under test. The detector logic
is self-testing and propagates functional outputs with adherence to a single fault-secure property
so that erroneous outputs from any single fault are not propagated. Within the detector, bitwise
equality comparisons are employed directly without additional data encoding/decoding schemes
to determine the validity of the output. Fault handling is performed using the underlying data
throughput so that additional test vectors are mot required. The circuit was implemented for a
Xilinx Virtex II Pro FPGA platform and fault-secure operation was verified using ModelSim-II
for exhaustive stuck-at scenarios. Results indicate fault isolation in a pool of 100,000 resources
using an expected value of 17.6 to 64.1 pairings when as little as one half of the inputs applied
articulate the fault.

Keywords: fault-handling, concurrent error detection, self-checking fault detection, fault-
secure circuit, Xilinx Virtex FPGA

1 Introduction

Robust fault detection is central to the problem of enhancing the fault-handling capabilities of
digital circuits. A common limitation facing many fault detection schemes is that the failure
detector itself may fail. A fault involving the checker may be undetectable or result in the corruption
of otherwise valid outputs. Traditional approaches to fault-detection typically rely on coding-based
schemes or redundancy using a single voter, comparator or error detector. Those fault checkers
possess a single point-of-failure exposure involving the detector elements, or must rely upon special
test-vectors or data encodings to isolate them. Detector components in the reliability path have
been referred to as golden elements [1] because the fault-handling strategy relies on them to be
fault-free. This paper develops an alternative approach to self-checking fault detection based on
random pairings and temporal voting to reduce such exposures.

Table 1 lists characteristics of selected fault-handling strategies. Specialized encoding schemes
are often required by Concurrent Error Detection (CED) approaches as opposed to Triple Modular

Redundancy (TMR) and the Discrepancy Mirror methods which do not. The number of functional
logic elements required by TMR is greater than that of the other schemes. Discrepancy Mirrors
provide inherent transient fault coverage with minimal detection latency. They also support fine-
grained resolution of the fault location, without interruption to the data throughput flow when a
fault occurs. Thus, Discrepancy Mirrors offer improved detection of permanent and transient faults,
with reduced time and space overheads. A detailed comparison of existing techniques is provided
in Section 1.1 and Section 1.2. Section 1.2 provides the design of the discrepancy mirror approach.
Results of simulations and fault location experiments are given in Section 3.1 and Section 3.2
respectively.

. Number | Transient . Special Fault Interrupt-
Special Detection .
Encoding of Fault Latency Test Isolation Free
Elements | Detection Inputs | Resolution Testing
Temporal . .
. Algorithm Sub-circuit
CED Yes 1 Optional Dependent Yes Under Test No
Schemes
Spatial . .
Algorith -
CED Yes >2 No BOTTLAL Yes Sub-Circuit No
Dependent Under Test
Schemes
TMR No 3 No Minimal | No Voter No
Elements
Discrepanc Individual
repancy No 2 Yes Minimal No Logic Yes
Mirrors
Resources

Table 1: Comparison of Fault-Detection Techniques

1.1 Concurrent Error Detection Schemes

CED schemes include a wide array of coding-based [2] [3] and redundancy-based mechanisms [4].
Coding-based mechanisms typically employ mathematically robust encoding and decoding schemes.
Redundancy-based mechanisms generate concurrent output values using multiple instances of the
functional logic which are then checked for equality. CED schemes utilize the functional throughput
that realizes the output f(7) in response to input i to evaluate a diagnostic characteristic computed
by an alternate yet predictable function, fy4(7). The diagnostic characteristic used could be the
parity of the output, conformance to specified encodings such as Berger codes [5], equality between
f(i) and f4(i), or a specific m-out-of-n code. They can be generated using dedicated logic to
implement fy(i) directly or parallel evaluation with a comparator realizing a bitwise XNOR equiv-
alence logic function. The redundancy within CED schemes can be spatial, where the hardware
circuit-under-test is duplicated, or temporal, where the outputs are computed in succession for later
comparison.

Consider the hardware comparators capable of bitwise output comparison, such as the equality
checker [6] and the two-rail checker [7]. Equality checkers compare two input words to determine

bitwise equivalence. These circuits require complemented inputs and a multi-rail representation
to be verifiable as a self-testing system. A two-rail checker checks that each pair of inputs has
complementary values which are used to convert n pairs of signals into one pair of signals that are
complementary if and only if all of the n input pairs are complementary. It can be made testable
with the addition of a test signal and two XOR gates [6]. Coding-based checkers detect invalid code
words at the output of the circuit-under-test for at least one valid code word input to the checker.

1.2 Triple Modular Redundancy Systems

TMR approaches rely on three parallel instances of the functional logic to compute the output in
triplicate and a majority voting element to determine consensus. TMR also supports correction
of single faults by disregarding the incongruent output. This works satisfactorily in the case of a
single-fault assumption, unless the fault induces a Common Mode Failure whereby two incorrect
outputs agree using bitwise [8] or word-width voters [9]. If the logic elements within the voter fail
then the fault handling system can fail. The use of redundant voters is suboptimal as it does not
guarantee that their consensus is computed correctly.

2 Discrepancy Mirror Approach

The Discrepancy Mirror approach is a duplex redundancy technique that utilizes alternate physical
configurations from a population of candidate designs that are functionally equivalent. As shown
in Figure 1, the technique is composed of three phases, namely Selection, Detection, and Preference
Adjustment. The Selection phase selects two candidates, each of which utilize mutually exclusive
subsets of the resources under test. The Detection process uses the Discrepancy Mirror logic shown
in Figure 2 to check for bit-wise equivalence between outputs of the candidates as described below.
The Preference Adjustment phase utilizes the results of successive comparisons to update the pairing
strategy during subsequent selections. These steps will be explained below in the context of a Field
Programmable Gate Array (FPGA) based realization whereby two configurations of the functional
logic are loaded in tandem.

2.1 Selection Phase

Candidate designs are selected from a population developed at design time, either manually or via a
CAD tool. Random pairings or an adaptive scheme based on the results of Preference Adjustment
can be employed. This process is identified as Step 1 in Figure 1. The selected designs are then
loaded as the active configurations during Step 2 and Step 3. Identical input operands are applied
in parallel to each configuration and the outputs are redundantly computed for comparison in the
next phase.

2.2 Detection Phase

As shown in Step 4 in Figure 1, the discrepancy mirror circuit is used to identify whether the
outputs of the two configurations under test agree. A complete instance of the discrepancy mirror
is obtained whenever two configurations are loaded, since the discrepancy detector consists of two
identical sections as shown in Figure 2. Assertion of MATCH output from the discrepancy mirror
indicates the absence of a single-fault in the configurations under test, as well as the logic in the

Select Two
1 Configurations [« T e
and Load

Function Output A

——
l:jooo .

Selection v

Phase

2 Config:ration 3 ConfigBuration

Detection
Phase

rmm——t - ——fr— e e ———

Enam Wﬁnlz
Enable
5 outputs L~ E_a Eg\\J
"} 7]

—_ —- = 4 = = _t — - 4 - —|= — Buffer, %l:% %Ii;uurrerﬂ

Preference 6 7 Update =: J =k

Adjustment No Test YESY o Paiing | Tremmmsswsesmeesateemely || 0 EEOEEETITEEETTTEEE

Phase Others? 7 Preferences,
Selection Strategy Match Outpul

Figure 1: Discrepancy Mirror-based Scheme Figure 2: Discrepancy Detection Circuit

discrepancy mirror. The data output is enabled if and only if no faults are detected as shown in
Step 5 in Figure 1.

The inputs to the Discrepancy Mirror shown in Figure 2 as “Function Output A” and “Function
Output B” are generated independently. If there is a fault in a resource utilized by either of these
configurations, then a discrepancy is observed at the output. The truth table shown in Table 2
describes the operation of the circuit shown in Figure 2. Outputs from the function configurations
A and B are applied as inputs to both the XNOR gates. The output from each XNOR gate acts as
the ENABLE signal for the tristate buffer in the same half, as well as the input to the tristate buffer
in the other half of the discrepancy mirror. The tristate buffer outputs are tied together to form
a Wired-OR connection which provides the MATCH output signal. The pull-down transistors hold
the signal to a logic ‘0’ level when the tristate buffer output is in a high-impedance state. In an
active-high non-inverting tristate buffer, the input is buffered at the output only when the ENABLE
signal is high. When the ENABLE signal is low, the output of the buffer is in a high-impedance state.

As listed in Table 3, the response of the circuit is robust to several possible fault scenarios. If
either of the XNOR gates fail, then one of the two tristate buffers will be disabled and the other
will have an input of zero, thus MATCH will be a ‘0’, signifying discrepancy. If the tristate buffers
fail, producing a high impedance output, the pull down resistors in the circuit will hold the signal
to ‘0’. The wired-OR connection reduces single points of failure to a stuck-at fault exposure for
the MATCH output.

Table 2: Discrepancy Mirror Truth Table

A| B | XNORs | XNORp | ENBy | ENBp | TRI4 | TRIp | Match
010 1 1 1 1 1 1 1
0|1 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0
111 1 1 1 1 1 1 1

2.3 The Preference Adjustment Process

Step 6 and Step 7 comprise the Preference Adjustment process. When the Discrepancy Mirror
returns a MATCH output, alternate configurations can be loaded for testing or the resident fault-free
configurations can be used. The output from the discrepancy mirror over a period of time indicates
the relative fitness of the different configurations. This information can isolate the fault location
and aid in regeneration of lost functionality through the identification of alternate resources. The
cumulative discrepancy information from diverse pairings over time can be used in Step 7 to modify
the selection preferences for the configurations in the population.

3 Results

3.1 Hardware Simulation and Verification

The operation of the discrepancy mirror circuit was verified on a Xilinx Virtex-II Pro FPGA
platform using ModelSim-II. The pull-down resistors were emulated using digital components as
shown in the Xilinx data sheet [10]. The waveform for the MATCH output was asserted whenever the
inputs to the discrepancy mirror were in agreement. The simulation waveform showed a LOW signal
whenever the MATCH output was a ‘0’. In the Xilinx Virtex-II Pro FPGA, when pull-down resistors
are emulated, a LOW signal is the equivalent of a logic-0 output. The circuit was also simulated
using Cadence SPICE. The entire circuit was also realized using a total of 44 p and m-channel
MOS transistors using a 1.5 micron minimum width technology with a length of 600 nm. A total
of 44 CMOS transistors were utilized to realize the circuit. The widths of the pMOS transistors
in the XNOR circuit were selected to be thrice the widths of the nMOS transistors to shape the
waveform rise and fall times, to develop the required timing characteristics. The simulation results
and waveforms obtained indicated behavior conforming to Table 2 and Table 3.

3.2 Fault Location Experiments

Two sets of experiments were performed to analyze the fault isolation latency. Both experiments
sought identify the number of iterations required to identify the faulty resource in the case of single
fault. A monte carlo simulator was constructed using a C-language program for simulating the
Selection, Detection, and Preference Adjustment phases. The inputs to the simulated mirror were
obtained using random number generators. Random input values were applied to two configurations
chosen at random from the pool of competing configurations. More formally, let U denote the set
consisting of all the logic resources in the FPGA, S denote the pool of resources suspected of being

Table 3: Discrepancy Mirror Fault Coverage and Response

Component Fault Scenarios Fault-Free
Function Output A Fault Correct Correct Correct Correct
Function Output B Correct Fault Correct Correct Correct

XNORp Disagree(0) | Disagree(0) | Fault :Disagree(0) Agree (1) Agree (1)
XNORp Disagree(0) | Disagree(0) Agree (1) Fault: Disagree(0) | Agree (1)
Buffer 5 0 0 High-7Z 0 1
Bufferg 0 0 0 High-7 1

Match Output 0 0 0 0 1

faulty, and C; C U denote the set of resources used by the i'* configuration. Initially, |S| = |U].
A process of m successive intersections among the subsets C; [Cr.;(1 < j, k < m) are performed.
Each successive intersection reduces |S| until after the m!® intersection at time ¢t = m eventually
|S| = 1, completing the fault-location process. Each experiment was conducted with |U| = 1,000,
10,000, and 100,000. The expected number of iterations to isolate the fault are reported for the
mean values observed over 100 trials of the simulator. An individual logic resource is the equivalent
of a Configurable Logic Block (CLB) in an FPGA so the range of resource pool sizes reflect a
realistic device scenario.

3.2.1 Analysis with Perpetually Articulating Inputs

In this experiment, the inputs applied consistently articulate any fault in the logic resources used by
the configurations under test. Thus, a match output indicates that the logic resources used by the
configurations being compared are completely fault-free. A discrepancy between the configurations’
functional outputs indicates the presence of at least one resource fault. Assertion of the MATCH
output exonerates all logic resources currently being used, and a de-assertion of the MATCH output
implicates the subset of logic resources currently being used as suspect. The faulty resource is
isolated after m pairings through a process of successive intersection. Figure 3 shows the faulty
resource can be identified using an expected value of 11.1 pairings when |U| = 1,000 and half of
the resources are utilized by each configuration. When |U| = 100,000, the mean number of pairings
required to locate the fault increases by much less than a factor of ten to a value of 17.6. Under
more demanding parameters, when |U| =100,000, and when only 5% of the resources are being
used by each configuration, a mean value of 63.7 pairings are required to isolate the faulty resource.

70 500
1000 resources 1000 resources

23 . 10000 resources ------- 23 450 - 10000 resources -------
£ 60 . 100000 resources -------- £ 400 | 100000 resources -~
= =
& 50 e 350 F
. ° 300 |
2 2
g 40 g 250
Z z 200
g Mr 2 150 |
g 3 \
g 20}t g 100 -
ni ni 50 |

10 1 J 0 1 1 1 1 1 1 1 1 1 J

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Utilized Capacity (%) Utilized Capacity (%)

Figure 3: Fault Isolation with Perpetually Ar- Figure 4: Fault Isolation with Intermittently Ar-
ticulating Inputs ticulating Inputs

3.2.2 Analysis with Intermittently Articulating Inputs

Depending on the inputs applied, the fault in the functional logic under test may remain dormant
and thus some inputs would not articulate a visible discrepancy. In this case, a match output
from the discrepancy mirror cannot evaluate whether all the resources under test are fault-free. A

discrepant output is a definitive indicator of the existence of a single-fault. With such Intermittently
Articulating Inputs, the discrepancy mirror based scheme requires additional random pairings to
isolate the single-fault. When |U| = 1,000, with resource utilization at 45%, an expected 42
random pairings are required to uniquely identify the faulty resource. When |U| = 100, 000, the
best performance is observed for a utilization of near 50%, where the expected value of random
pairings is 64.1.

4 Conclusion

The discrepancy mirror is capable of handling faults in either the functional logic or the detector.
If there is a failure in either, then the output of the mirror remains de-asserted indicating the
presence of at least one resource fault.It is able to isolate the faulty resources with a expected
number of random pairings that is sub-linear in the number of resources under test. It does not
depend upon a specific coding scheme or a pre-defined set of inputs. Random pairings of config-
urations perform successive intersection of the resources under test to isolate the faulty resource.
Figure 3 and Figure 4 show that more pairings are required to identify the faulty resource when the
utilization of available resources is below 20% or above 80%. In these situations, each successive
pairing implicates (or exonerates) a smaller sub-set of resources than when half of the resources are
utilized. Finally, using a discrepancy mirror based approach, the number of pairings required for
fault location increases sub-linearly with an increase in |U|. For example, at 50% utilization, the
expected number of pairings to locate a fault within pools of 1,000, 10,000, and 100,000 resources
are 11.1, 14.9, and 17.6, respectively, demonstrating the viability of the technique.

References

[1] M. Garvie and A. Thompson, “Scrubbing away transients and jiggling around the permanent: Long
survival of fpga systems through evolutionary self-repair,” in Proc. 10th IEEE Intl. On-Line Testing
Symposium (C. Metra, R. Leveugle, M. Nicolaidis, and J. Teixeira, eds.), pp. 155-160, IEEE Computer
Society, 2004.

[2] N. A. Touba and E. J. McCluskey, “Logic synthesis of multilevel circuits with concurrent error de-
tection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
pp. 783-789, July 1997.

[3] K. Mohanram, E. S. Sogomonyan, M. Gossel, and N. A. Touba, “Synthesis of low-cost parity-based
partially self-checking circuits,” in On-Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE, pp. 35—
40, July 2003.

[4] S. Mitra and E. J. McCluskey, “Which concurrent error detection scheme to choose?,” in Proceedings
International Test Conference 2000, p. 985, IEEE, October 2000.

[5] D.L. Tao, R. P. Hartmann, and P. K. Lala, “An efficient class of unidirectional error detecting/correcting
codes,” IEEE Trans. Comput., vol. 37, no. 7, pp. 879-882, 1988.

[6] E.J. McCluskey, “Design techniques for testable embedded error checkers,” IEEE COMPUTER, vol. 23,
pp- 84-88, July 1990.

[7] J. L. A. Hughes, E. J. McCluskey, and D. J. Lu, “Design of totally self-checking comparators with an
arbitrary number of inputs,” IEEE Trans. Computers, vol. C-33, pp. 546550, June 1984.

[8] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems:Design and Evaluation. Digital Press,
1992.

[9] S. Mitra and E. J. McCluskey, “Word voter: A new voter design for triple modular redundant systems,”
in 18th IEEE VLSI Test Symposium, p. 465, April 2000.
10] Xilinx Inc., Virtex-II Pro and Virtex-II Pro X Platform FPGAs : Complete Data Sheet, November
[
2004.

