
Speedup of Delay-Insensitive Digital Systems Using NULL Cycle Reduction

 S. C. Smith, R. F. DeMara, J. S. Yuan M. Hagedorn and D. Ferguson
 School of Electrical Engineering and Computer Science Theseus Logic, Inc.
 Box 162450, University of Central Florida 3501 Quadrangle Blvd., Suite 100
 Orlando, FL 32816-2450 Orlando, FL 32817
 Tel: 407-823-5916 / Fax: 407-823-5385 Tel: 407-380-9008 / Fax: 407-380-9509
 E-mail: demara@mail.ucf.edu E-mail: dferguson@theseus.com

Abstract

 A NULL Cycle Reduction (NCR) technique is developed
to increase the throughput of delay-insensitive digital systems.
NCR reduces the time required to flush complete DATA
wavefronts, commonly referred to as the NULL or Empty
cycle. The NCR technique exploits parallelism by partitioning
input wavefronts such that one circuit processes a DATA
wavefront, while its duplicate processes a NULL wavefront.
To illustrate the technique, NCR is applied to a case study of a
dual-rail non-pipelined 4-bit by 4-bit unsigned multiplier,
yielding a speedup of 1.61 over the standalone version, while
maintaining delay-insensitivity. NCR is also applied to a
single slow stage of a pipeline to boost the pipeline’s overall
throughput by 21%.

Introduction

 Most multi-rail delay-insensitive logic paradigms employ
both a DATA wavefront and a NULL wavefront in order to
maintain delay-insensitivity [1, 2, 3, 4, 5]. The DATA
wavefront realizes circuit functionality, while the NULL
wavefront flushes the previous DATA wavefront. The NULL
cycle accounts for approximately half of the total cycle time,
thus decreasing attainable throughput by a factor of two. The
objective of this paper is to develop and illustrate a technique
for reducing the NULL cycle time such that throughput does
not depend as heavily on the DATA flush time, yet still
maintains delay-insensitivity.
 Many architectures and algorithms employ the well-
known divide and conquer strategy. This technique partitions
a problem into smaller sub-problems that can be solved
simultaneously, then merges their outputs to construct the
solution to the original problem, thus reducing computation
time. In asynchronous circuits this technique has been used by
Molnar et. al. to increase the throughput of a micropipelined
First-In-First-Out (FIFO) data buffer [6] and by Ebergen to
decrease the latency of a GasP FIFO by Squaring it [7].
However, neither of these applications are delay-insensitive,
since both micropipelines and GasP circuits rely heavily on
delay analysis.
 The NCR technique described herein employs the divide
and conquer strategy to increase the throughput of delay-
insensitive systems by decreasing a circuit’s NULL cycle time
without affecting its DATA cycle time. Successive input
wavefronts are partitioned such that one circuit processes a
DATA wavefront, while its duplicate processes a NULL
wavefront. The first DATA/NULL cycle flows through the
original circuit, while the next DATA/NULL cycle flows
through the duplicate circuit. The outputs of the two circuits
are then multiplexed to form a single output stream. The

delay-insensitive methodology used is NULL Convention
Logic (NCL) [1].

Overview of NCL

 NCL offers a delay-insensitive logic paradigm where
control is inherent with each datum. It follows the so-called
“weak conditions” of Seitz’s delay-insensitive signaling
scheme [3]. As with other delay-insensitive logic methods, the
NCL paradigm assumes that forks in wires are isochronic.

A. Delay-Insensitivity

 NCL uses symbolic completeness of expression [1] to
achieve delay-insensitive behavior. A symbolically complete
expression is defined as an expression that only depends on
the relationships of the symbols present in the expression
without a reference to the time of evaluation. In particular,
dual-rail signals with three logic states (NULL, DATA0, and
DATA1) can be used to rid NCL of the implicit time
reference of Boolean circuits and achieve symbolic
completeness of expression. A dual-rail signal named Z has
two rails denoted Z0 and Z1. The DATA0 state of NCL
(Z0 = 1, Z1 = 0) corresponds to a Boolean logic 0, the DATA1
state of NCL (Z0 = 0, Z1 = 1) corresponds to a Boolean
logic 1, and the NULL state of NCL (Z0 = 0, Z1 = 0)
corresponds to the empty set, meaning that the result is not yet
available. The two rails of a dual-rail NCL signal are mutually
exclusive, so both rails can never be asserted simultaneously;
this state is defined as an illegal state.
 All NCL systems have at least two register stages, one at
both the input and output. These two register stages interact
through their Ki and Ko lines to prevent DATA seti from
overwriting DATA seti-1 by ensuring that the two DATA sets
are always separated by a NULL set.

B. Logic Gates

 NCL uses threshold gates for its basic logic gates. The
primary type of threshold gate is the THmn gate, where
1 ≤ m ≤ n, as depicted in Figure 1. THmn gates have n inputs.
At least m of the n inputs must be asserted before the output
will become asserted. Because NCL threshold gates are
designed with hysteresis, all asserted inputs must be de-
asserted before the output will be de-asserted. Hysteresis
ensures a complete transition of inputs back to NULL before
asserting the output associated with the next wavefront of
input data. In a THmn gate, each of the n inputs is connected
to the rounded portion of the gate; the output emanates from
the pointed end of the gate; and the gate’s threshold value, m,
is written inside of the gate. NCL threshold gates may also
include a reset to initialize the output. Resetable gates are

mailto:demara@mail.ucf.edu
mailto:dferguson@theseus.com

denoted by either a D or an N appearing inside the gate, along
with the gate’s threshold, referring to the gate being reset to
logic 1 or logic 0, respectively.

Figure 1. THmn threshold gate.

 By employing threshold gates for each logic rail, NCL is
able to determine the output status without referencing time.
Inputs are partitioned into two separate wavefronts, the NULL
wavefront and the DATA wavefront. The NULL wavefront
consists of all inputs to a circuit being NULL, while the
DATA wavefront refers to all inputs being DATA, some
combination of DATA0 and DATA1. Initially all circuit
elements are reset to the NULL state. First, a DATA
wavefront is presented to the circuit. Once all of the outputs of
the circuit transition to DATA, the NULL wavefront is
presented to the circuit. Once all of the outputs of the circuit
transition to NULL, the next DATA wavefront is presented to
the circuit. This DATA/NULL cycle continues repeatedly. As
soon as all outputs of the circuit are DATA, the circuit’s result
is valid. The NULL wavefront then transitions all of these
DATA outputs back to NULL. When they transition back to
DATA again, the next output is available. This period is
referred to as the DATA-to-DATA cycle time, denoted as
TDD, and has an analogous role to the clock period in a
synchronous system.

C. Completeness of Input

 The completeness of input criterion [1], which NCL
combinational circuits must maintain in order to be delay-
insensitive, requires that:

1. all the outputs of a combinational circuit may not
transition from NULL to DATA until all inputs have
transitioned from NULL to DATA, and

2. all the outputs of a combinational circuit may not
transition from DATA to NULL until all inputs have
transitioned from DATA to NULL.

In circuits with multiple outputs, it is acceptable for some of
the outputs to transition without having a complete input set
present, as long as all outputs cannot transition before all
inputs arrive.

D. Observability

 There is one more condition that must be met in order for
NCL to retain delay-insensitivity. No orphans may propagate
through a gate. An orphan is defined as a wire that transitions
during the current DATA wavefront, but is not used in the
determination of the output. Orphans are caused by wire forks
and can be neglected through the isochronic fork assumption,
as long as they are not allowed to cross a gate boundary. This
observability condition ensures that every gate transition is
observable at the output, which means that every gate that
transitions is necessary to transition at least one of the outputs.

NULL Cycle Reduction Technique

 The technique for reducing the NULL cycle, thus
increasing throughput for any NCL system is shown in
Figure 2. NCL Circuit #1 and NCL Circuit #2 have identical
functionality and are both initialized to output NULL and
request DATA upon reset. Both have an asynchronous NCL
register at the input and output. The combinational
functionality can be designed using the TCR method
described in [8]. These circuits may also be pipelined as
described in [9], to further increase throughput. The
Demultiplexer partitions the input, D, into two outputs, A and
B, such that A receives the first DATA/NULL cycle and B
receives the second DATA/NULL cycle. The input
continuously alternates between A and B. The Completion

Input 1
Input 2

Input n

Outputm

Input

NCL Circuit #2

Ko

Ko

Output

DATA

NULL

rfd

DATA

NULL

Ko

Ki

Ki

Ki

Demultiplexer

Sequencer #1

S1 S2

S1 S2

Ki

Completion
Detection

Sequencer #2

S2 S1

Ki

Multiplexer

D

A

B

Ki1

Ki2

Ko

Reset to NULL

Reset to NULL

Reset

ResetReset

Reset

DATA DATA

1000 0010 0010 1000

A

B

D

NCL Circuit #1

Reset to NULL

rfn
rfd rfn

rfd

rfd rfn

rfn

rfd

Figure 2. NCR architecture.

Detection circuitry detects when either a complete DATA or
NULL wavefront has propagated through the Demultiplexer,
and requests the next NULL or DATA wavefront,
respectively. Sequencer #1 is controlled by the output of the
Completion Detection circuitry and is used to select either
output A or B of the Demultiplexer. Output A of the
Demultiplexer is input to NCL Circuit #1 when requested by
Ki1; and output B of the Demultiplexer is input to NCL
Circuit #2 when requested by Ki2. The outputs of NCL
Circuit #1 and NCL Circuit #2 are allowed to pass through
their respective output registers, as determined by
Sequencer #2, which is controlled by the external request, Ki.
The Multiplexer rejoins the partitioned datapath by passing a
DATA input on either A or B to the output, or asserting NULL
on the output when both A and B are NULL. Figure 2 shows
the state of the system when a DATA wavefront is being
input, before its acknowledge flows through the Completion
Detection circuitry, and when a DATA wavefront is being
output, before it is acknowledged by the receiver.

A. Demultiplexer

 A logic diagram for one bit of the Demultiplexer is shown
in Figure 3. Upon reset both A and B are initialized to NULL.
When S1 is asserted and Ki1 is rfd (request for DATA), a
DATA input on D will be passed to output A. Likewise, when
S2 is asserted and Ki2 is rfd, a DATA input on D will be
passed to output B. Ko becomes rfd when both A and B are
NULL, and becomes rfn (request for NULL) when either A or
B is DATA. When A becomes DATA, it will return to NULL
only after S1 is de-asserted, Ki1 becomes rfn, and the input,
D, becomes NULL. Likewise, when B becomes DATA, it will
return to NULL only after S2 is de-asserted, Ki2 becomes rfn,
and the input, D, becomes NULL. Therefore, A and B can
never both be DATA since S1 and S2 can never be
simultaneously asserted and both A and B must be NULL
before the next DATA wavefront is requested. Each bit of the
Demultiplexer is the same, and the number of bits is
determined by the width of the input datapath.

B. Completion Detection Circuitry

 The Completion Detection circuitry shown in Figure 4
uses the N Ko lines from the Demultiplexer to detect complete
DATA or NULL sets, and then request the next NULL or
DATA set, respectively. Since the maximum input threshold
gate currently supported is the TH44 gate, the number of logic
levels in the Completion Detection circuitry for N Ko lines is
given by Log4 N . The number of Ko lines from the
Demultiplexer is also determined by the width of the input
datapath.

C. Sequencer #1

 Sequencer #1 is controlled by the output of the
Completion Detection circuitry and is used to select either
output A or B of the Demultiplexer. Upon reset it selects
output A to receive the first DATA/NULL cycle, after Ki
becomes rfd. It then selects output B to receive the second
DATA/NULL cycle. Sequencer #1 continuously alternates the
DATA/NULL cycles between outputs A and B. A logic

Figure 3. 1-Bit Demultiplexer.

Figure 4. Completion Detection circuitry.

diagram of Sequencer #1 is shown in Figure 5. This is a
4-stage single-rail ring structure with one token, where a
token is defined as a DATA wavefront with corresponding
NULL wavefront, and two bubbles, where a bubble is defined
as either a DATA or NULL wavefront occupying more than
one neighboring stage [10]. When Ki becomes rfd, the DATA
wavefront moves through the two NULL bubbles ahead of it,
creating two DATA bubbles in its wake. Likewise, when Ki

3N

3N

3N

3N

1

D0

D1

B1

B0

A1

A0

Ki1

Ki2

Reset
S2
S1

Ko

Ko(1)
Ko(2)
Ko(3)
Ko(4)

Ko(N-3)
Ko(N-2)
Ko(N-1)

Ko(N)

4

4

4 4
Ko(N-7)
Ko(N-6)
Ko(N-5)
Ko(N-4)

4

4

Ko(5)
Ko(6)
Ko(7)
Ko(8)

4 Ko

becomes rfn, the NULL wavefront moves through the two
DATA bubbles ahead of it, creating two NULL bubbles in its
wake. The DATA/NULL wavefront restricts the forward
propagation of the NULL/DATA wavefront, respectively, for
each change of Ki, limiting the forward propagation to only
the two bubbles. A complete cycle of the Sequencer is shown
in boldface and italics in Table I. The cycle for S1 is 1000,
while the cycle for S2 is 0010.

Figure 5. Sequence generator.

Table I. Sequencer output.
Cycle # Initial State 1 2 3 4 5 6 7 8
Reset 1 0 0 0 0 0 0 0 0

Ki X 1 0 1 0 1 0 1 0
S1 0 1 0 0 0 1 0 0 0
S2 0 0 0 1 0 0 0 1 0

D. Multiplexer

 A logic diagram for one bit of the Multiplexer is shown in
Figure 6. It simply consists of two OR gates that pass a
DATA input on either A or B to the output, D, or assert NULL
on the output when both A and B are NULL. The Multiplexer
does not require any select signals, since A and B can never
simultaneously be DATA. This mutual exclusion is ensured
by Sequencer #2, which controls the outputs of NCL
Circuit #1 and NCL Circuit #2. Each bit of the Multiplexer is
the same, and the number of bits is determined by the width of
the output datapath.

Figure 6. 1-Bit Multiplexer.

E. Sequencer #2

 Sequencer #2 is controlled by the external request, Ki,
and is used to allow DATA and NULL wavefronts to flow
through the output register of NCL Circuit #1 and NCL
Circuit #2. Upon reset it selects NCL Circuit #1 to output the
first DATA/NULL cycle, after Ki becomes rfd. It then selects
NCL Circuit #2 to receive the second DATA/NULL cycle.
Sequencer #2 continuously alternates the DATA/NULL
cycles between NCL Circuit #1 and NCL Circuit #2. When S1
is asserted, DATA will be output from NCL Circuit #1.
Likewise, when S2 is asserted, DATA will be output from

NCL Circuit #2. When the output of NCL Circuit #1 becomes
DATA, it will return to NULL only after S1 is de-asserted.
Likewise, when the output of NCL Circuit #2 becomes
DATA, it will return to NULL only after S2 is de-asserted.
Therefore, NCL Circuit #1 and NCL Circuit #2 can never
both output DATA since S1 and S2 can never be
simultaneously asserted and the outputs of both circuits must
be NULL before the next DATA wavefront is requested by
asserting either S1 or S2. The structure of Sequencer #2 is the
same as that of Sequencer #1 shown in Figure 5.

Simulation Results

 A case study of a dual-rail non-pipelined 4-bit by 4-bit
multiplier, shown in Figure 7, has been evaluated to assess the
impact of the NCR technique on throughput. The
specifications for this multiplier were simply to perform an
unsigned multiply of the two 4-bit input vectors, X and Y, and
then output their 8-bit product, S. A full NCL interface with
request and acknowledge signals labeled Ki and Ko,
respectively, is provided for requesting and acknowledging
complete DATA and NULL wavefronts. The technology used
is a 0.25µm CMOS process operating at 3.3V. From Synopsys
simulation it was determined that the standalone version of
the dual-rail non-pipelined 4-bit by 4-bit multiplier had an
average DATA-to-DATA cycle time of 8.75 ns with
approximately equal DATA and NULL cycles. When the
NCR technique was applied to this design, the NULL cycle
was reduced to approximately ¼ of the DATA cycle. This
resulted in an overall average DATA-to-DATA cycle time of
only 5.43 ns, which corresponds to a 61% increase in
throughput. Values for average throughput were obtained
from the arithmetic mean of throughputs corresponding to all
256 possible pairs of input operands.

Figure 7. 4×4 multiplier block diagram.

 The previous example duplicated the entire circuit;
however, it is not necessary to duplicate the entire circuit
when applying the NCR technique. Rather, its benefits can be
obtained without doubling area and power requirements by
applying it to selective portions of a circuit, which cannot be
pipelined more finely due to the completeness of input
criterion. If NCR was applied to stagei to boost throughput,
both stagei-1 and stagei+1 may have to be non-functional stages
to realize the full increase due to the adjacent DATA
propagation delays in determining throughput, as explained in
[9]. A non-functional stage can be easily added by inserting
an additional asynchronous register. Thus, throughput of a
pipelined design with a small number of slow stages can be
readily boosted with relatively little cost by using NCR.
 To illustrate this point, NCR was applied to only a single
stage of the pipeline shown in Figure 8. Multiplier #1 and
Multiplier #3 are both 2-stage unsigned multipliers with a
worse-case stage delay of 5 gate delays, and have the same

3N 3N3N3D

S2 S1

Reset

Ki

1

1

D0

D1

A0

B0

A1

B1

4x4Multiplier

S(7:0)

Ki

X(3:0)

Y(3:0)

Ko

Reset

interface as depicted in Figure 7. Multiplier #2 is the non-
pipelined unsigned multiplier used in the first case study, and
consists of 10 gate delays. Therefore, the 10 gate delays of
Multiplier #2 is much longer than the 5 gate delays per stage
of the other multipliers, making Multiplier #2 a good
candidate for NULL Cycle Reduction. Without NCR, the
pipeline of Figure 8 operates with TDD = 8.42 ns; however,
with NCR only applied to Multiplier #2, TDD is decreased to
6.96 ns, a speedup of 1.21. Henceforth, applying NCR to only
slow stages in a pipeline can boost throughput for the pipeline
as a whole. Note that additional registration was not needed to
form non-functional stages around the NCR stage, since these
non-functional stages already existed when the multipliers
were connected to form the pipeline of Figure 8, since each
multiplier contains both an input and output register.

Conclusion

 The NCR method of partitioning delay-insensitive
systems into two concurrent paths such that one circuit
processes a DATA wavefront, while its duplicate processes a
NULL wavefront can significantly increase throughput. A
4-bit by 4-bit multiplier case study indicates a speedup of 1.61
over the standalone design, while a case study where NCR
was applied to only a slow stage of a pipeline resulted in a
speedup of 1.21. Therefore, the benefits of NCR can be
obtained without doubling area and power requirements by
applying it to selective portions of the circuit, which cannot be
pipelined more finely due to the completeness of input
criterion. Thus, throughput of a pipelined design with a small
number of slow stages can be readily boosted with relatively
little cost by using NCR. However, NCR will not increase
throughput of a feedback loop with only one token, since this
structure eliminates the ability to simultaneously process two
consecutive DATA wavefronts, because wavefronti+1 at least
partially consists of the output from wavefronti.
 In this paper NCR was applied to a dual-rail NCL design
utilizing full-word completion. However, it can also be
applied to a quad-rail NCL design, by modifying the
Demultiplexer and the Multiplexer to handle quad-rail signals,
or to a design utilizing bit-wise completion by modifying the
Demultiplexer and the Completion Detection circuitry.

Furthermore, this technique could also be applied to other
delay-insensitive methodologies [2, 3, 4, 5] as well.

References

[1] Karl M. Fant and Scott A. Brandt, “NULL Convention

Logic: A Complete and Consistent Logic for
Asynchronous Digital Circuit Synthesis,” International
Conference on Application Specific Systems,
Architectures, and Processors, pp. 261-273, 1996.

[2] T. S. Anantharaman, “A Delay Insensitive Regular
Expression Recognizer,” IEEE VLSI Technology Bulletin,
Sept. 1986.

[3] C. L. Seitz, “System Timing,” in Introduction to VLSI
Systems, Addison-Wesley, pp. 218-262, 1980.

[4] N. P. Singh, A Design Methodology for Self-Timed
Systems, Master’s Thesis, MIT/LCS/TR-258, Laboratory
for Computer Science, MIT, 1981.

[5] Ilana David, Ran Ginosar, and Michael Yoeli, “An
Efficient Implementation of Boolean Functions as Self-
Timed Circuits,” IEEE Transactions on Computers,
Vol. 41, No. 1, pp. 2-10, 1992.

[6] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau,
S. M. Fairbanks, and I. E. Sutherland, “Two FIFO Ring
Performance Experiments,” Proceedings of the IEEE,
Vol. 87, No. 2, pp. 297-307, 1999.

[7] J. Ebergen, “Squaring the FIFO in GasP,” Seventh
International Symposium on Asynchronous Circuits and
Systems, pp. 194-205, 2001.

[8] S. C. Smith, R. F. DeMara, D. Ferguson, and D. Lamb,
“Optimization of NULL Convention Self-Timed
Circuits,” submitted to IEEE Transactions on Computers,
July 2000 (revision submitted February 2001).

[9] S. C. Smith, R. F. DeMara, M. Hagedorn, and
D. Ferguson, “Delay-Insensitive Gate-Level Pipelining,”
submitted to Integration, the VLSI Journal,
November 2000.

[10] Jens Sparso and Jorgen Staunstrup, “Design and
Performance Analysis of Delay Insensitive Multi-Ring
Structures,” Proceeding of the Twenty-Sixth Hawaii
International Conference on System Sciences, Vol. 1,
pp. 349-358, 1993.

Figure 8. NCL pipeline with one slow stage.

10 gate
delays

5 gate
delays

5 gate
delays

NCL
Register

NCL
Register

NCL
Register

5 gate
delays

5 gate
delays

NCL
Register

NCL
Register

NCL
Register

Multiplier #1 Multiplier #3Multiplier #2

NCL
Register

NCL
Register

This document is an author-formatted work. The definitive version for citation appears as:

S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “Speedup of Delay-Insensitive
Digital Systems Using NULL Cycle Reduction,” in Proceedings of the 2001 International Workshop on
Logic and Synthesis (IWLS’01), Granlibakken, California, U.S.A., pp. 185 – 189, June 12 – 15, 2001.

