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Abstract 
 
      A NULL Cycle Reduction (NCR) technique is developed 
to increase the throughput of delay-insensitive digital systems.  
NCR reduces the time required to flush complete DATA 
wavefronts, commonly referred to as the NULL or Empty 
cycle. The NCR technique exploits parallelism by partitioning 
input wavefronts such that one circuit processes a DATA 
wavefront, while its duplicate processes a NULL wavefront. 
To illustrate the technique, NCR is applied to a case study of a 
dual-rail non-pipelined 4-bit by 4-bit unsigned multiplier, 
yielding a speedup of 1.61 over the standalone version, while 
maintaining delay-insensitivity. NCR is also applied to a 
single slow stage of a pipeline to boost the pipeline’s overall 
throughput by 21%. 
 

Introduction 
 

 Most multi-rail delay-insensitive logic paradigms employ 
both a DATA wavefront and a NULL wavefront in order to 
maintain delay-insensitivity [1, 2, 3, 4, 5]. The DATA 
wavefront realizes circuit functionality, while the NULL 
wavefront flushes the previous DATA wavefront. The NULL 
cycle accounts for approximately half of the total cycle time, 
thus decreasing attainable throughput by a factor of two. The 
objective of this paper is to develop and illustrate a technique 
for reducing the NULL cycle time such that throughput does 
not depend as heavily on the DATA flush time, yet still 
maintains delay-insensitivity.  
 Many architectures and algorithms employ the well-
known divide and conquer strategy. This technique partitions 
a problem into smaller sub-problems that can be solved 
simultaneously, then merges their outputs to construct the 
solution to the original problem, thus reducing computation 
time. In asynchronous circuits this technique has been used by 
Molnar et. al. to increase the throughput of a micropipelined 
First-In-First-Out (FIFO) data buffer [6] and by Ebergen to 
decrease the latency of a GasP FIFO by Squaring it [7]. 
However, neither of these applications are delay-insensitive, 
since both micropipelines and GasP circuits rely heavily on 
delay analysis.  
 The NCR technique described herein employs the divide 
and conquer strategy to increase the throughput of delay-
insensitive systems by decreasing a circuit’s NULL cycle time 
without affecting its DATA cycle time. Successive input 
wavefronts are partitioned such that one circuit processes a 
DATA wavefront, while its duplicate processes a NULL 
wavefront. The first DATA/NULL cycle flows through the 
original circuit, while the next DATA/NULL cycle flows 
through the duplicate circuit. The outputs of the two circuits 
are then multiplexed to form a single output stream. The 

delay-insensitive methodology used is NULL Convention 
Logic (NCL) [1]. 
 

Overview of NCL 
 

 NCL offers a delay-insensitive logic paradigm where 
control is inherent with each datum. It follows the so-called 
“weak conditions” of Seitz’s delay-insensitive signaling 
scheme [3]. As with other delay-insensitive logic methods, the 
NCL paradigm assumes that forks in wires are isochronic.  
 
A. Delay-Insensitivity 
 
 NCL uses symbolic completeness of expression [1] to 
achieve delay-insensitive behavior. A symbolically complete 
expression is defined as an expression that only depends on 
the relationships of the symbols present in the expression 
without a reference to the time of evaluation. In particular, 
dual-rail signals with three logic states (NULL, DATA0, and 
DATA1) can be used to rid NCL of the implicit time 
reference of Boolean circuits and achieve symbolic 
completeness of expression. A dual-rail signal named Z has 
two rails denoted Z0 and Z1. The DATA0 state of NCL  
(Z0 = 1, Z1 = 0) corresponds to a Boolean logic 0, the DATA1 
state of NCL (Z0 = 0, Z1 = 1) corresponds to a Boolean  
logic 1, and the NULL state of NCL (Z0 = 0, Z1 = 0) 
corresponds to the empty set, meaning that the result is not yet 
available. The two rails of a dual-rail NCL signal are mutually 
exclusive, so both rails can never be asserted simultaneously; 
this state is defined as an illegal state.  
 All NCL systems have at least two register stages, one at 
both the input and output. These two register stages interact 
through their Ki and Ko lines to prevent DATA seti from 
overwriting DATA seti-1 by ensuring that the two DATA sets 
are always separated by a NULL set. 
 
B. Logic Gates 
 
 NCL uses threshold gates for its basic logic gates. The 
primary type of threshold gate is the THmn gate, where  
1 ≤ m ≤ n, as depicted in Figure 1. THmn gates have n inputs. 
At least m of the n inputs must be asserted before the output 
will become asserted. Because NCL threshold gates are 
designed with hysteresis, all asserted inputs must be de-
asserted before the output will be de-asserted. Hysteresis 
ensures a complete transition of inputs back to NULL before 
asserting the output associated with the next wavefront of 
input data. In a THmn gate, each of the n inputs is connected 
to the rounded portion of the gate; the output emanates from 
the pointed end of the gate; and the gate’s threshold value, m, 
is written inside of the gate. NCL threshold gates may also 
include a reset to initialize the output. Resetable gates are 
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denoted by either a D or an N appearing inside the gate, along 
with the gate’s threshold, referring to the gate being reset to 
logic 1 or logic 0, respectively. 

Figure 1. THmn threshold gate. 
 
 By employing threshold gates for each logic rail, NCL is 
able to determine the output status without referencing time. 
Inputs are partitioned into two separate wavefronts, the NULL 
wavefront and the DATA wavefront. The NULL wavefront 
consists of all inputs to a circuit being NULL, while the 
DATA wavefront refers to all inputs being DATA, some 
combination of DATA0 and DATA1. Initially all circuit 
elements are reset to the NULL state. First, a DATA 
wavefront is presented to the circuit. Once all of the outputs of 
the circuit transition to DATA, the NULL wavefront is 
presented to the circuit. Once all of the outputs of the circuit 
transition to NULL, the next DATA wavefront is presented to 
the circuit. This DATA/NULL cycle continues repeatedly. As 
soon as all outputs of the circuit are DATA, the circuit’s result 
is valid. The NULL wavefront then transitions all of these 
DATA outputs back to NULL. When they transition back to 
DATA again, the next output is available. This period is 
referred to as the DATA-to-DATA cycle time, denoted as 
TDD, and has an analogous role to the clock period in a 
synchronous system. 
 
C. Completeness of Input 
 
 The completeness of input criterion [1], which NCL 
combinational circuits must maintain in order to be delay-
insensitive, requires that: 

1. all the outputs of a combinational circuit may not 
transition from NULL to DATA until all inputs have 
transitioned from NULL to DATA, and 

2. all the outputs of a combinational circuit may not 
transition from DATA to NULL until all inputs have 
transitioned from DATA to NULL.  

In circuits with multiple outputs, it is acceptable for some of 
the outputs to transition without having a complete input set 
present, as long as all outputs cannot transition before all 
inputs arrive. 
 
D. Observability 
 
 There is one more condition that must be met in order for 
NCL to retain delay-insensitivity. No orphans may propagate 
through a gate. An orphan is defined as a wire that transitions 
during the current DATA wavefront, but is not used in the 
determination of the output. Orphans are caused by wire forks 
and can be neglected through the isochronic fork assumption, 
as long as they are not allowed to cross a gate boundary. This 
observability condition ensures that every gate transition is 
observable at the output, which means that every gate that 
transitions is necessary to transition at least one of the outputs. 
 

NULL Cycle Reduction Technique 
 
 The technique for reducing the NULL cycle, thus 
increasing throughput for any NCL system is shown in  
Figure 2. NCL Circuit #1 and NCL Circuit #2 have identical 
functionality and are both initialized to output NULL and 
request DATA upon reset. Both have an asynchronous NCL 
register at the input and output. The combinational 
functionality can be designed using the TCR method 
described in [8]. These circuits may also be pipelined as 
described in [9], to further increase throughput. The 
Demultiplexer partitions the input, D, into two outputs, A and 
B, such that A receives the first DATA/NULL cycle and B 
receives the second DATA/NULL cycle. The input 
continuously alternates between A and B. The Completion  
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Detection circuitry detects when either a complete DATA or 
NULL wavefront has propagated through the Demultiplexer, 
and requests the next NULL or DATA wavefront, 
respectively. Sequencer #1 is controlled by the output of the 
Completion Detection circuitry and is used to select either 
output A or B of the Demultiplexer. Output A of the 
Demultiplexer is input to NCL Circuit #1 when requested by 
Ki1; and output B of the Demultiplexer is input to NCL 
Circuit #2 when requested by Ki2. The outputs of NCL 
Circuit #1 and NCL Circuit #2 are allowed to pass through 
their respective output registers, as determined by  
Sequencer #2, which is controlled by the external request, Ki. 
The Multiplexer rejoins the partitioned datapath by passing a 
DATA input on either A or B to the output, or asserting NULL 
on the output when both A and B are NULL. Figure 2 shows 
the state of the system when a DATA wavefront is being 
input, before its acknowledge flows through the Completion 
Detection circuitry, and when a DATA wavefront is being 
output, before it is acknowledged by the receiver. 
 
A. Demultiplexer 
 
 A logic diagram for one bit of the Demultiplexer is shown 
in Figure 3. Upon reset both A and B are initialized to NULL. 
When  S1  is  asserted  and  Ki1  is  rfd  (request for DATA), a 
DATA input on D will be passed to output A. Likewise, when 
S2 is asserted and Ki2 is rfd, a DATA input on D will be 
passed to output B. Ko becomes rfd when both A and B are 
NULL, and becomes rfn (request for NULL) when either A or 
B is DATA. When A becomes DATA, it will return to NULL 
only after S1 is de-asserted, Ki1 becomes rfn, and the input, 
D, becomes NULL. Likewise, when B becomes DATA, it will 
return to NULL only after S2 is de-asserted, Ki2 becomes rfn, 
and the input, D, becomes NULL. Therefore, A and B can 
never both be DATA since S1 and S2 can never be 
simultaneously asserted and both A and B must be NULL 
before the next DATA wavefront is requested. Each bit of the 
Demultiplexer is the same, and the number of bits is 
determined by the width of the input datapath. 
 
B. Completion Detection Circuitry 

 
 The Completion Detection circuitry shown in Figure 4 
uses the N Ko lines from the Demultiplexer to detect complete 
DATA or NULL sets, and then request the next NULL or 
DATA set, respectively. Since the maximum input threshold 
gate currently supported is the TH44 gate, the number of logic 
levels in the Completion Detection circuitry for N Ko lines is 
given by  Log4 N .  The number of Ko lines from the 
Demultiplexer is also determined by the width of the input 
datapath. 
 
C. Sequencer #1 
 
 Sequencer #1 is controlled by the output of the 
Completion Detection circuitry and is used to select either 
output A or B of the Demultiplexer. Upon reset it selects 
output  A  to  receive  the  first  DATA/NULL  cycle,  after  Ki 
becomes rfd. It then selects output B to receive the second 
DATA/NULL cycle. Sequencer #1 continuously alternates the 
DATA/NULL   cycles  between  outputs   A  and  B.   A  logic  

Figure 3. 1-Bit Demultiplexer. 

Figure 4. Completion Detection circuitry. 
 
diagram of Sequencer #1 is shown in Figure 5. This is a  
4-stage single-rail ring structure with one token, where a 
token is defined as a DATA wavefront with corresponding 
NULL wavefront, and two bubbles, where a bubble is defined 
as either a DATA or NULL wavefront occupying more than 
one neighboring stage [10]. When Ki becomes rfd, the DATA 
wavefront moves through the two NULL bubbles ahead of it, 
creating two DATA bubbles in its wake. Likewise, when Ki 
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becomes rfn, the NULL wavefront moves through the two 
DATA bubbles ahead of it, creating two NULL bubbles in its 
wake. The DATA/NULL wavefront restricts the forward 
propagation of the NULL/DATA wavefront, respectively, for 
each change of Ki, limiting the forward propagation to only 
the two bubbles. A complete cycle of the Sequencer is shown 
in boldface and italics in Table I. The cycle for S1 is 1000, 
while the cycle for S2 is 0010. 

Figure 5. Sequence generator. 
 

Table I. Sequencer output. 
Cycle # Initial State 1 2 3 4 5 6 7 8 
Reset 1 0 0 0 0 0 0 0 0 

Ki X 1 0 1 0 1 0 1 0 
S1 0 1 0 0 0 1 0 0 0 
S2 0 0 0 1 0 0 0 1 0 

 
D. Multiplexer 
 
 A logic diagram for one bit of the Multiplexer is shown in 
Figure 6. It simply consists of two OR gates that pass a 
DATA input on either A or B to the output, D, or assert NULL 
on the output when both A and B are NULL. The Multiplexer 
does not require any select signals, since A and B can never 
simultaneously be DATA. This mutual exclusion is ensured 
by Sequencer #2, which controls the outputs of NCL  
Circuit #1 and NCL Circuit #2. Each bit of the Multiplexer is 
the same, and the number of bits is determined by the width of 
the output datapath. 

Figure 6. 1-Bit Multiplexer. 
 
E. Sequencer #2 
 
 Sequencer #2 is controlled by the external request, Ki, 
and is used to allow DATA and NULL wavefronts to flow 
through the output register of NCL Circuit #1 and NCL 
Circuit #2. Upon reset it selects NCL Circuit #1 to output the 
first DATA/NULL cycle, after Ki becomes rfd. It then selects 
NCL Circuit #2 to receive the second DATA/NULL cycle. 
Sequencer #2 continuously alternates the DATA/NULL 
cycles between NCL Circuit #1 and NCL Circuit #2. When S1 
is asserted, DATA will be output from NCL Circuit #1. 
Likewise, when S2 is asserted, DATA will be output from 

NCL Circuit #2. When the output of NCL Circuit #1 becomes 
DATA, it will return to NULL only after S1 is de-asserted. 
Likewise, when the output of NCL Circuit #2 becomes 
DATA, it will return to NULL only after S2 is de-asserted. 
Therefore, NCL Circuit #1 and NCL Circuit #2 can never 
both output DATA since S1 and S2 can never be 
simultaneously asserted and the outputs of both circuits must 
be NULL before the next DATA wavefront is requested by 
asserting either S1 or S2. The structure of Sequencer #2 is the 
same as that of Sequencer #1 shown in Figure 5. 
 

Simulation Results 
 
 A case study of a dual-rail non-pipelined 4-bit by 4-bit 
multiplier, shown in Figure 7, has been evaluated to assess the 
impact of the NCR technique on throughput. The 
specifications for this multiplier were simply to perform an 
unsigned multiply of the two 4-bit input vectors, X and Y, and 
then output their 8-bit product, S. A full NCL interface with 
request and acknowledge signals labeled Ki and Ko, 
respectively, is provided for requesting and acknowledging 
complete DATA and NULL wavefronts. The technology used 
is a 0.25µm CMOS process operating at 3.3V. From Synopsys 
simulation it was determined that the standalone version of 
the dual-rail non-pipelined 4-bit by 4-bit multiplier had an 
average DATA-to-DATA cycle time of 8.75 ns with 
approximately equal DATA and NULL cycles. When the 
NCR technique was applied to this design, the NULL cycle 
was reduced to approximately ¼ of the DATA cycle.  This 
resulted in an overall average DATA-to-DATA cycle time of 
only 5.43 ns, which corresponds to a 61% increase in 
throughput. Values for average throughput were obtained 
from the arithmetic mean of throughputs corresponding to all 
256 possible pairs of input operands. 

Figure 7. 4×4 multiplier block diagram. 
 
 The previous example duplicated the entire circuit; 
however, it is not necessary to duplicate the entire circuit 
when applying the NCR technique. Rather, its benefits can be 
obtained without doubling area and power requirements by 
applying it to selective portions of a circuit, which cannot be 
pipelined more finely due to the completeness of input 
criterion. If NCR was applied to stagei to boost throughput, 
both stagei-1 and stagei+1 may have to be non-functional stages 
to realize the full increase due to the adjacent DATA 
propagation delays in determining throughput, as explained in 
[9]. A non-functional stage can be easily added by inserting 
an additional asynchronous register. Thus, throughput of a 
pipelined design with a small number of slow stages can be 
readily boosted with relatively little cost by using NCR. 
 To illustrate this point, NCR was applied to only a single 
stage of the pipeline shown in Figure 8. Multiplier #1 and 
Multiplier #3 are both 2-stage unsigned multipliers with a 
worse-case stage delay of 5 gate delays, and have the same 

3N 3N3N3D

S2 S1

Reset

Ki

1

1

D0

D1

A0

B0

A1

B1

4x4Multiplier

S(7:0)

Ki

X(3:0)

Y(3:0)

Ko

Reset



interface as depicted in Figure 7. Multiplier #2 is the non-
pipelined unsigned multiplier used in the first case study, and 
consists of 10 gate delays. Therefore, the 10 gate delays of 
Multiplier #2 is much longer than the 5 gate delays per stage 
of the other multipliers, making Multiplier #2 a good 
candidate for NULL Cycle Reduction. Without NCR, the 
pipeline of Figure 8 operates with TDD = 8.42 ns; however, 
with NCR only applied to Multiplier #2, TDD is decreased to 
6.96 ns, a speedup of 1.21. Henceforth, applying NCR to only 
slow stages in a pipeline can boost throughput for the pipeline 
as a whole. Note that additional registration was not needed to 
form non-functional stages around the NCR stage, since these 
non-functional stages already existed when the multipliers 
were connected to form the pipeline of Figure 8, since each 
multiplier contains both an input and output register. 
 

Conclusion 
 
 The NCR method of partitioning delay-insensitive 
systems into two concurrent paths such that one circuit 
processes a DATA wavefront, while its duplicate processes a 
NULL wavefront can significantly increase throughput. A  
4-bit by 4-bit multiplier case study indicates a speedup of 1.61 
over the standalone design, while a case study where NCR 
was applied to only a slow stage of a pipeline resulted in a 
speedup of 1.21. Therefore, the benefits of NCR can be 
obtained without doubling area and power requirements by 
applying it to selective portions of the circuit, which cannot be 
pipelined more finely due to the completeness of input 
criterion. Thus, throughput of a pipelined design with a small 
number of slow stages can be readily boosted with relatively 
little cost by using NCR. However, NCR will not increase 
throughput of a feedback loop with only one token, since this 
structure eliminates the ability to simultaneously process two 
consecutive DATA wavefronts, because wavefronti+1 at least 
partially consists of the output from wavefronti. 
 In this paper NCR was applied to a dual-rail NCL design 
utilizing full-word completion. However, it can also be 
applied to a quad-rail NCL design, by modifying the 
Demultiplexer and the Multiplexer to handle quad-rail signals, 
or to a design utilizing bit-wise completion by modifying the 
Demultiplexer and the Completion Detection circuitry.  
 

Furthermore, this technique could also be applied to other 
delay-insensitive methodologies [2, 3, 4, 5] as well.  
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Figure 8. NCL pipeline with one slow stage. 
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