
 1

Abstract—Triple Modular Redundancy (TMR) is the most well

known technique for fault tolerance in Field Programmable Gate

Arrays. This paper will discuss some different novel approaches

for the application of redundancy to FPGAs. Architectural and

high-level approaches are investigated that reduce power and

area overhead for both Triple and Dual Modular Redundancy.

All techniques are compared to show both advantages and

disadvantages of their respective approaches.

Index Terms—FPGA, fault tolerance, fault handling, partial

reconfiguration, triple modular redundancy (TMR)

I. INTRODUCTION

SRAM-based Field Programmable Gate Arrays (FPGA)

allow for the ability to program any function into a device. The

purpose of the device may change over time and require new

functions to be incorporated into it. In FPGAs all logic and

routing elements can be reconfigured to meet the system’s

needs. The FPGA allows for different configurations to be

loaded into it. This is done by loading different bitstreams that

program these elements to their desired need.

FPGAs then inherently have the ability to handle faults

because they can load configurations that do not use the faulty

component and work around the fault. This is an important

feature for space applications where human intervention is

infeasible [1]. However, such devices employed in space also

have to consider the effect of higher radiation and extreme

environmental conditions. Single Event Upsets (SEUs) are

therefore a main source of concern. An SEU happens when a

charged particle strikes the FPGA and flips a bit in a memory

cell or permanent damage is caused to the silicon due to

depleting oxide layers or other environmental effects. These

SEUs can be either transient or permanent. Transient faults

will eventually go away over time when that memory cell gets

rewritten. Permanent faults, on the other hand, will remain in

the device for the remainder of the mission and action must be

taken in order to avoid mission failure. Such permanent faults

are stuck-at faults where a bit or line will remain a 0 or a 1 for

the rest of the device’s lifecycle. These SEUs can affect any

portion of the FPGA. If they affect the LUTs of the FPGA they

can change the logic function of that cell. This change will

remain in the system until the LUT’s contents are either

reloaded to realize the same function or changed. They can

also cause transient pulses in the combinatorial logic path that

disrupts the data and must be run through again to get the

correct output.

Several techniques have been proposed and researched to

mitigate the affect of these faults when they happen on an

FPGA. They can be classified as either architectural or high-

level techniques [10]. Architectural techniques include

hardening the memory cells of the FPGA to make them less

prone to faults caused by the environment. This can be seen in

such commercial products as the Xilinx QPro FPGA family of

devices [2]. Other architectural techniques may include the

way the logic cells are placed on the FPGA fabric or altering

the components of these cells to provide additional fault

tolerance support. Most techniques however are high-level and

implemented by the user. High-level techniques do not require

any modification of the physical FPGA architecture and as

such are more attractive to the user because they can be

implemented on any device. However, a simple change in the

architecture could provide more efficient high-level

techniques.

Most all high-level techniques use some form of

redundancy. This redundancy can either be in the form of

multiple instances of a function running in parallel where one

output is then chosen to be reciprocated, or a spare part, either

hot or cold, is waiting to be enabled and carry out its function.

One of the most well known high-level techniques is Triple

Modular Redundancy (TMR) as seen in Figure 1.

Figure 1: Basic Triple Modular Redundancy

TMR provides several benefits as well as drawbacks over

other fault handling methods. Some of the benefits include

extremely low detection latency, and assuming a single fault

condition, it can mask the fault from propagating to the rest of

the system. TMR does however come with 3x the area and

power overhead. TMR can either be applied on a very fine

granularity where each LUT is triplicated, or on a very coarse

grain where there might be three modules doing the same

function as in Figure 1. A voter is implemented to pick one of

Discussion of nMR-based Approaches for Fault-

handing in SRAM-based FPGA Devices

Francis Luna

 2

the three outputs that are non-faulty. If one output does not

match the other two, then that module is faulty and one of the

other two outputs is chosen to be passed along. Further action

can then be taken to correct the faulty module.

Dual Module Redundancy (DMR) or Concurrent Error

Detection (CED) is similar to TMR but only duplicates the

module to detect when a fault has occurred. The power and

area overhead of such a method is 2x. However, unlike TMR

this method only detects whether or not a fault has occurred

and further action must be taken in order to recover from the

fault since it cannot mask it.

In this paper both architectural and high-level nMR

approaches will be discussed that provide a suitable level of

fault tolerance for many applications. Vigander’s work with

FPGA evolution and voting [3], DeMara’s work with

Competitive Runtime Reconfiguration (CRR) [4], Abramovici

et al.’s work with roving Self-Testing Areas (STARs) [5], Al-

Haddad et al.’s work with the Reconfigurable Adaptive

Redundancy System (RARS) [6], Kyriakoulakos et al.’s work

with a new architecture for efficient TMR fault tolerance

support [10], and Lahrach et al.’s Master-Slave TMR inspired

technique [11] are the multiple works discussed in detail in

this paper.

II. VIGANDER’S APPROACH

A. Introduction

Vigander established very interesting results in [3]. He

created his own genetic algorithm (GA) and simulator to base

his experiments off of. His simulator was of an FPGA that had

different constraints than that of a real FPGA. More

specifically, routing restrictions were put in place to create a

strictly feed-forward network. This was done in order to

greatly simplify the simulator.

A 4-bit multiplier was the application he realized on his

simulator for his experiments. Each multiplier configuration

was tested exhaustively. All possible input combinations were

compared with the output they produced. There are a total of

256 (2
(4+4)

 = 256) different input combinations. This was done

in order to produce a fitness value. The higher the fitness

value, the more functional the configuration is; it outputs more

correct values given an input. The fitness value therefore is the

total number of correct outputs out of 256.

Three different genetic operators were used in his genetic

algorithm: crossover, mutation, and cell swapping. Crossover,

he states, is when cells are inherited from one parent and then

modified to create a new individual. Mutation is when a cell is

randomly changed in each configuration. Cell swapping is

when two cells in the configuration are swapped. This

exchanges both the function and inputs of these cells but

invalidates the feed-forward property when the later cell is

swapped to a place earlier than it was previously. To overcome

this he picks new random inputs for these cells. Elitism is also

used in all his experiments in order to keep forward progress

in the evolutionary process by guaranteeing that the fitness of

the most fit individual is monotonically increasing.

B. Experiments

Three different groups of experiments were performed. The

first group of experiments attempted to repair a single random

stuck-at fault using his GA. The result was that it proved

difficult for the GA to come up with a perfect repair (256

fitness value) with the faulty cell after many generations. This

was further extended by providing the GA more cells to

increase the search space and provide more space for the GA

to avoid the faulty cell in the configuration. The result was that

it had no effect for the GA finding a higher fitness individual

after many generations. He also let the GA run for a long

period of time to see if the fitness would improve. The result

of this experiment was that no high fitness was achieved, but

improvement in the fitness was shown very late in the run.

The second group of experiments consisted of accepting

individuals that are not perfectly repaired. Vigander found that

after many generations, different configurations fail differently

from one another given the same input. He used this result to

extend his experiment and created a system of three imperfect

FPGAs that would then vote on each output. Important to note

here that each FPGA used had a different fault so that no two

fail the same way. He observed that even with individuals that

do not have 100% fitness, when these individuals vote they

can achieve a completely correct result. This can be seen in

Figure 2, the dotted lines are the fitness of the imperfect

FPGAs and the solid line is the fitness after all three have

voted. This was also in the case that all three FPGAs were

rendered faulty at the same time, an extremely unlikely event.

Figure 2: Results of a triplex voting arrangement of three

faulty FPGAs

For the third and final group of experiments, Vigander

repeated the GA several times for the same fault induced in the

configuration. He found out that the same inputs cause the

same outputs to fail over time. The GA was unable to fix these

configurations differently every run.

 3

C. Insights

Vigander’s experiments brings forth many interesting results

and conclusions. Interesting to note, Vigander assumes that

there is some known “golden” oracle that has the correct

outputs for any given input. Such an assumption cannot be

realized in a real system because this oracle may obtain faults

and then the system will be comparing itself to something that

is wrong when it might have had the correct result to begin

with.

The first experiment showed that individual configurations

that already had a high fitness were very difficult to get more

fit, but configurations that had a low fitness to begin with find

high fitness fairly quickly. In the long run experiment,

marginal improvement in fitness was achieved after tens of

thousands of generations but no perfect solution was reached.

This shows that the GA is continuously trying to find a new

higher fitness configuration but a better fit individual may not

be worth the time required to come across. The function has

become asymptotic and the GA has converged to that fitness.

Vigander however did not use the concept of design diversity

in his experiments. The design diversity concept is one that

there are many different ways for something to do the same

thing. Configurations can be functionally identical, but

physically distinct. He seeded the population with identical

configurations. It would be interesting to see if had he used

design diversity, would he have reached the same conclusion

in this experiment.

In Vigander’s second experiment, he uses a triplex voting

arrangement similar to that of TMR. Even though all the

FPGAs he used were faulty even after evolution, they still

produced a correct result. Perhaps the time required to evolve

these three configurations to produce a correct result could be

decreased by having more than three modules vote on the

correct output. For example, if five FPGAs were configured in

a 5-plex voting scheme, overall perfect functionality may be

reached much faster than the time required to exhaustively

evaluate every configuration that is evolved. However, using a

5-plex scheme means that power and area footprints are further

increased than just having a triplex voting scheme.

Nonetheless, the time saved in terms of generations and

evaluations is interesting to note.

 Vigander’s third and final experiment also reveals some

interesting results. Even though the GA has randomness

incorporated in it, it does not allow recovery of certain

input/output pairs. After several generations, the same parts of

the circuit fail. This goes to show that certain stuck-at faults

cannot be worked around and in order to realize a perfect

configuration, the faulty cell should not be used.

III. COMPETITIVE RUNTIME RECONFIGURATION APPROACH

A. Overview

A novel approach that uses DMR is brought forth by

DeMara et al. in [4] called Competitive Runtime

Reconfiguration (CRR). CRR fully exploits the ability for

FPGAs to reconfigure themselves. By allowing the hardware

to evolve, the amount of redundancy needed is reduced. The

benefits of such an approach include recovery without

increased size, weight, and power. CRR features an approach

that adapts to the conditions throughout the device’s lifecycle.

Unlike other approaches, it does not need any test vectors for

device refurbishment. Fitness is evaluated by comparing two

configurations with one another. A correct “golden”

configuration is not needed to make these comparisons. The

basic layout of this approach is seen in Figure 3.

Figure 3: Tandem CRR arrangement

CRR is a very interesting approach that incorporates both

competition and evolution, something that is inherent in

nature, into hardware. It also allows for graceful degradation

when multiple faults are encountered in the system.

This approach uses temporal voting which occurs when an

alternate configuration is paired with another to vote on their

outputs. This occurs at some defined rate in order to grade the

fitness of this alternate configuration. Any discrepancy in

either individual reduces the fitness of both individuals, and if

both outputs match the fitness is raised for both individuals.

Since CRR compares configurations as a whole, it does not

need a fault isolation granularity. Also, fault detection happens

within the FPGA and therefore has negligible detection

latency.

CRR employs design diversity in its population. These

functionally identical, yet physically distinct individuals are

created at design time and populate the initial pool of

configurations. These individuals are considered Pristine and

are the highest fit individuals throughout the device’s lifecycle.

The CRR voting technique works as follows. When both

configuration outputs match they remain Pristine. If they are

not Pristine then the fitness of both individuals is raised. When

 4

there is a discrepancy, both of the individual’s fitnesses are

reduced. These individuals are now considered Suspect and

will never be Pristine again. When the fitness drops below a

given repair threshold, these Suspect or Refurbished

individuals become Under Repair. Under Repair individuals

undergo evolution for only one generation. When the fitness

rises above a given operational threshold, the individual enters

the Refurbished pool. This flow between states can be seen in

Figure 4. A reintroduction rate is employed that allows the

Under Repair individual to be reintroduced into the pool of

available candidates by pairing it with another so that a fitness

measurement can be taken. This reintroduction rate can be

adapted to fit the required throughput of the system.

Figure 4: CRR configuration states

The genetic operators used in this CRR approach are two-

point crossover, mutation, and cell swap. Two-point crossover

replaces functional units with those of other good individuals.

Mutation reconfigures suspect CLBs with random alternatives.

Cell swap moves CLBs around within the same configuration.

Overall, CRR provides a complete fault tolerant and fault

handling approach. Since the entire configuration is being

compared, it addresses faults in all parts of the FPGA,

including the memory, routing, and fabric itself. As seen in

Figure 3, the discrepancy checking units are part of the

individual configurations so that any fault in the checker is

detected by the other competing configuration. This allows for

one to “check the checker”. Transient faults are attenuated

automatically. When a transient fault occurs, its fitness will be

decreased, but since it was a transient fault, and not a

permanent one, when this configuration is paired up against

another non-faulty one, its fitness will rise because the fault

will not be present. CRR allows for the system to detect,

isolate, and resolve faults without the need of any exhaustive

testing while keeping the system partially online.

B. Insights

Competitive Runtime Reconfiguration is a novel approach

that leverages the principle of “survival of the fittest” from

evolution. CRR uses a duplex arrangement which is called the

tandem arrangement. This is done in order to save space and

power over a triplicate arrangement. CRR also supports a

bounding arrangement in which only one configuration is run

at a time. It is then compared with the next configuration

loaded. By reducing the space complexity of the system, the

time complexity rises. In the tandem arrangement, the system

will observe a performance hit when the Under Repair

individual needs to have its fitness reevaluated (caused by the

reintroduction rate). Since it is unlikely that the GA will have

found a solution in the first generation, both configurations

will be brought down in fitness and the current inputs will have

to be re evaluated again. This decreases the throughput of the

system. In the bounding arrangement, the system throughput

will be even lower, approximately half, because after some

time a different configuration will be loaded to compare the

output of the same data. This decrease in throughput can be

overcome by overclocking the system enough so that even

with evolved configurations being reintroduced into the pool

of available candidates, the throughput can remain at 100%.

This method, however, depends on the application the device

is performing. The reintroduction rate, which is an upper

bound of performance hit, can be modified to fit the system’s

needs at the time. If the system is at a mission-critical state and

no degradation in performance is desired, the reintroduction

rate can be set to zero. Doing so will not allow Under Repair

individuals to be reevaluated and enter the pool of candidates,

lowering throughput. The reintroduction rate can also be set

higher during periods of the mission where the system is not

doing anything critical. This allows for Under Repair

individuals to get reevaluated and enter the pool of available

candidates much quicker than normal. This allows for

modulation of the repair rate to keep the system sustainable

during its lifecycle.

Unlike TMR, this system does not provide fault masking for

uninterrupted system execution. It does however extend DMR

to provide an approach that allows the system to be

autonomous with one-third the space savings over TMR. Also,

unlike other approaches, since it leverages DMR, faults are

detected instantaneously. It provides a suitable amount of fault

coverage that even detects faults in the discrepancy checker. In

typical nMR approaches, the voters are usually left unchecked

and are therefore a vulnerable part of the system.

There are certain parts of the system left unchecked

however. These are assumed “golden” and any fault in these

parts may cause a fault in the entire system which any level of

fault handling will be unable to overcome. As seen in Figure 3,

these include any fault in the EEPROM which holds the

population of individuals, and the reconfiguration algorithm.

Any stuck-at fault in the EEPROM would have catastrophic

behavior to the system because the configurations would be

loaded and stored incorrectly. This will make it impossible for

two configurations to accurately check one another. Any fault

in the reconfiguration algorithm could have disastrous effects

 5

in the system. The algorithm could be altered enough where

evolution is no longer progressing but instead deteriorating.

CRR however allows for graceful degradation, and such an

event would not alter the current state of the system (the two

configurations that are loaded). It would only be a problem

once a reconfiguration happens. So if a fault in the

reconfiguration logic were caught, one could just disable

reconfiguration and have the system perform as is until a fault

is encountered in the two competing configurations.

IV. ROVING SELF-TESTING AREAS APPROACH

A. Overview

The roving self-testing areas (STARs) approach put forth by

Abramovici et al. in [5] allows for very fine granularity testing

of a reconfigurable system. It is an adaptive computing system

approach that exploits reconfigurable hardware in order to

adapt to changes in the environment and its operation. This

allows for new functions to be deployed on the device as well

as reduced power consumption from reducing the number of

parts in the system. STARs requires the use of Run-time

Reconfiguration (RTR) in order to allow the system to

continue functioning normally while parts of it are being

reconfigured and tested.

The authors point out that traditional fault tolerant designs

rely on redundant modules and voting but STARs has much

smaller overhead than other such approaches. Most

approaches replace faulty components with spare ones, but this

method only allows for a limited number of faults to be

handled before the spare resources run out. They classify fault

tolerant approaches into two categories: static and dynamic.

Static approaches are methods where spare resources are

allocated at design-time. Having too many spares increases the

area overhead, but having too little spares decreases the

devices ability to handle multiple faults. Dynamic approaches

allocate interconnect resources after a fault has occurred.

However, spare cells are still statically allocated.

Since STARs has a high detection latency that is bounded

by the physical size of the FPGA, the authors make use of

CED to detect transient faults. When such a fault is detected

the system rolls back to a previous checkpoint before a fault

was present and runs again. If no fault is detected then it was a

transient fault that has been overcome by using rollback.

STARs can be applied to any FPGA that supports RTR and

does not require modification of the FPGA architecture. It is a

type of Built-in Self Test (BIST) that offers exhaustive testing

of all resources, both logic and interconnect. This allows it to

detect dormant faults, stuck-at faults, and increase reliability. It

can handle single or multiple faults in a cell and single or

multiple faults in the interconnect network. This approach

allows the reuse of faulty resources whenever possible by

using the faulty cells for their residual capabilities. Such

resources are labeled Partially Usable Blocks (PUBs) and this

allows the spare capacity to increase, graceful degradation, and

overall longer mission life. STARs also employs an adaptable

system clock that can deal with altering the critical paths of the

circuit and stopping the system clock in order to move a

STAR.

The cornerstone of the STARs method is the Test and

Reconfiguration Controller (TREC). This unit is an external

microcontroller that controls the test, diagnosis, fault tolerance

functions, configurations, and system clock. It also keeps track

of which FPGA resources were declared faulty. The TREC

determines when to relocate the STAR and if a fault is

detected, what to do. If the detected fault is in a spare resource,

it has no affect in the operational part of the system and moves

the STAR to the next location. If the fault is in a resource that

is used under normal operation, the TREC determines the

configuration changes that are needed in order to bypass the

faulty resource.

STARs works by roving a test area around the FPGA using

a V-STAR and H-STAR as seen in Figure 5. This test area is

independent of the working area and therefore do not have

severe real-time constraints.

Figure 5: STARs

The basic unit of the STAR itself is the basic BIST structure

(BISTER). As seen in Figure 6, it is composed of a Test

Pattern Generator (TPG) that applies test patterns, two block

under test or wire under test (BUT/WUT), and an output

response analyzer (ORA) which reports mismatches as test

failures. A STAR can contain several BISTERs. Each part of

the BISTER is loaded into a different PLB such that each PLB

in the tile is exhaustively tested twice. The time required to

move the STAR is therefore dominated by the time required

for each individual reconfiguration.

Figure 6: BISTER structure

 6

The authors state that the faults detected are always in the

STAR area and therefore do not affect the working area of the

logic. They also state that fault diagnosis and fault

reconfiguration do not have real-time constraints since they are

not part of the working area. Overall, STARs is a novel

approach that provides fine grain fault detection and handling,

but relies heavily on run-time reconfiguration.

B. Insights

STARs is a BIST approach and as such handles every type

of fault, even if the fault will never articulate regardless of the

inputs applied. It may not be necessary to exhaustively test

every portion of the FPGA if not all of it will be in use. STARs

has the ability to check for dormant faults while the system is

under normal operation but it may not be necessary to be

checking for such a fault if that portion is never used. If this

resource is selected to be used for some sort of reconfiguration

then check it at that time before using it for this configuration.

The authors admit to the large detection latency and in order

to overcome this disadvantage, they suggest the use of CED in

order to detect a whether or not a fault is transient. This is a

valid method to handle such faults. However, if CED is

employed, why not only run STARs when a checkpoint

rollback was executed and the fault still remains. For example,

if the fault was indeed transient, it should not trigger

discrepant behavior in this repeated run. If it does indeed still

cause a fault, the STAR needs to proceed and find the faulty

resource which may take a long period of time, especially in

the worst case scenario that the fault occurred in a location the

STAR recently deemed fault-free. The system would

continuously be rolling back to this earlier point until the fault

is detected and repaired. In the time it takes for this fault to be

repaired, the system, while in an online mode, is not producing

any valid output.

The authors claim that faults are always detected in the

STAR area, but if the CED method is employed, the CED

module will be what detects the fault. The STAR then attempts

to locate the fault at a very fine granularity.

STARs consistently reconfigures the device, even in the

absence of a fault, in order to detect a fault. But by doing this

it may actually introduce new mechanisms for failures to

occur. Nothing is checking whether the configurations are

being loaded and/or stored correctly. The TREC is in control

of everything dealing with this STARs method. Any failure in

this device could result in catastrophic failure in the system.

For example, a fault in the adaptive system clock component

of the TREC means that the system will no longer function as

intended. The TREC in this case must be considered “golden”

and fault free. Having an entire fault handling method rely on

one integral component may not be suitable. The TREC could

be moved onto the FPGA by using a softcore thereby allowing

some testing of itself, however the reconfiguration portion

cannot be tested and must still be assumed “golden”.

STARs is heavily reliant on reconfiguration and as such, is

its main weakness. The time complexity of roving the STAR

area is largely dominated by how quickly it takes for an area of

the FPGA to be reconfigured. This is the cause for the large

detection latency.

It is also interesting to note that STARs uses CED at the

finest level as seen in Figure 6. Two blocks are required in

order for a discrepancy to be detected. Which of the two

blocks is faulty is detected by moving the elements of the

BISTER around until a conclusion can be made.

V. RECONFIGURABLE ADAPTIVE REDUNDANCY SYSTEM

APPROACH

A. Overview

Al-Haddad et al. design and implement a two-layered

organic system called the Reconfigurable Adaptive

Redundancy System (RARS) in [6]. Organic computing is a

form of biologically-inspired computing that contains “self-x

properties” such as self-configuration, self-reorganization, and

self-healing [7, 8]. RARS does not have a predetermined level

of redundancy. It can dynamically switch between different

levels of redundancy to fit the mission requirements which

may include power requirements. The two layers of this

approach consist of a hardware layer and a software layer as

seen in Figure 7. The hardware layer is implemented on a

Virtex-4 FPGA while the software layer is on a host PC and

consists of software that monitors the performance and status

of the system, changes the level of redundancy needed, and

performs recovery techniques on faulty modules.

RARS’s main focus is on self-repair and self-optimization

of power consumption and provides a complete software and

hardware solution to handle faults. RARS allows the

conservation of power by running in a low power mode and

only switching on more redundant parts when needed in order

to mask a fault. The power savings cause insignificant

degradation in the fault tolerance of this system. However, like

most fault tolerant approaches, RARS is still limited to the

area left over on the device to provide additional routing and

logic when it encounters a fault. This is overcome by an

additional layer that observes the status of the hardware and

provides active repair. There are two forms of repair employed

in RARS: scrubbing [9] and evolution. Scrubbing rewrites the

configuration in order to fix a simple bit-flip that may have

occurred. Evolution happens when a resource encounters a

more permanent fault that scrubbing will not fix.

Dynamic partial reconfiguration is also employed in this

RARS approach. This allows the configuration time to be

significantly reduced since the bitstream is much smaller than

the original, and it allows for the system to remain online while

it is being reconfigured. This method is used both when the

system is performing scrubbing and when evolved individuals

are being reconfigured to have their fitness evaluated.

 7

Figure 7: RARS System Architecture

RARS contains two parts: the Autonomic Element (AE),

and the Functional Elements (FEs). The AE monitors the status

of the redundant parts, the FEs, which are the user application.

More specifically, a RARS is the smallest unit in the system

and actually consists of one AE and three FEs in order to

provide the adequate level of redundancy needed. The AE

contains the logic to change the level of redundancy in the

system and consists of five modules shown in Figure 8: the

Discrepancy Sensor (DS), voter, Output Actuator (OA),

Performance Monitor (PM), and Redundancy Controller (RC).

The FEs are the modules that can be changed in the system.

There are three FEs in order to employ a TMR arrangement.

Figure 8: Reconfigurable Adaptive Redundancy System

(RARS)

RARS can work in four different modes: Simplex, Duplex,

TMR, and Hybrid mode. In Simplex mode, only one FE is

used. The DS, voter and other two FEs are disabled. The OA

is set to propagate this one output to the rest of the system. In

Duplex mode, two FEs are used as well as the DS. The voter

and one FE are disabled. The DS detects whether there is

discrepant output between the two FEs and notifies the RC to

take further action. The OA picks one of the FEs’ outputs to

propagate. In TMR mode, all three FEs are enabled as well as

the voter. Only the DS is disabled. The OA propagates the

output selected by the voter. Hybrid mode allows the RARS to

switch between the other three modes as it sees fit.

When RARS detects a fault it must decide if the fault is in

the data path or if it affects configurable logic. To do so, it

enables a watchdog timer to see whether it is a transient fault

in the data path that will fade away after an amount of time. If

there is still a fault present after the watchdog timer expires, it

proceeds to scrubbing. This rewrites the LUT contents in order

to overcome a bit-flip that may have occurred in the logic

configuration. If scrubbing does not fix the fault (it is a stuck-

at fault), the system moves on to loading functionally identical,

yet physically distinct configurations that may bypass the

stuck-at fault. If the fault still remains the system finally

invokes evolutionary repair to come up with a new

configuration that does not use this faulty LUT. If the system

is in TMR mode, the other two FEs will mask the fault while

the faulty FE is being repaired.

The evolutionary process makes use of a genetic algorithm,

and an application-independent fitness function. Since this

self-healing process uses intrinsic evaluation to rate the fitness

of the evolved individual, it must load the configuration onto

the physical FPGA to grade its fitness.

Overall, RARS, due to its adaptive nature, is able to save

 8

one-third of the power used by a static TMR approach while

still providing adequate fault coverage, and keeping the system

online while being repaired.

B. Insights

RARS is an interesting approach that allows for the level of

redundancy to be altered during runtime to fit the fault

handling needs of the system and to save power. For example,

the system can start off running in CED mode until a fault is

detected. The system will now change its configuration to

TMR in order to isolate which FE is faulty. When the faulty

module is detected, additional steps will be taken to recover

from the fault, leaving the other two modules intact to allow

the system to run uninterrupted. If evolution takes place, the

new individual can be compared with the other two non-faulty

FEs to get its fitness evaluated. This is similar to the previous

CRR approach but only requires the fitness evaluation of the

under repair individual to be altered accordingly. This

comparison does not lower the throughput of the system

because there is already two working non-faulty FEs providing

uninterrupted behavior. This evolution and fitness evaluation

can continue until an individual matches the other two FEs

outputs and is considered refurbished. The system can now

enter back into duplex mode once the FE has been repaired in

order to save power.

While the system is in duplex mode, one FE is disabled and

is sitting there as a cold spare. No action is taken to ensure that

it does not develop a dormant fault. In the worst case scenario,

if this cold spare develops a stuck-at fault that is irrecoverable

by using alternate configurations and an active FE also

develops a stuck-at fault that requires evolution, when the

system switches to TMR mode it will have to evolve two

different configurations while the system has no valid output

because all three FE outputs are discrepant. Although this

scenario is highly unlikely, it is something that was not

covered and must not be overlooked.

While RARS uses less power than TMR while it is running

in duplex mode, it has a larger area overhead than TMR. Three

Functional Elements must be present in the system regardless

of the mode it is functioning in. Also, the Autonomic Element

and rest of the system takes up a significant portion of the

FPGA area as can be seen in Figure 9. The three FE units are

relatively small compared to the logic needed to provide the

AE, clock signals, bus macros, BUFGs, and DCM. This is

significantly more area than is needed to implement a voter in

a simple TMR approach given the application and granularity

that it is applied to. If the user application (FE) were larger,

the RARS system might not be able to fit on the FPGA given

its limited size.

Figure 9: Area of FE1, FE2, FE3, and complete RARS system

VI. FPGA ARCHITECTURE SUPPORTING EFFICIENT TMR

FAULT TOLERANCE SUPPORT

A. Overview

Kyriakoulakos et al. proposes a slight modification to the

existing Virtex-5 family of FPGAs in order for it to support

fine grain redundancy with a reduced area overhead in [10].

This approach is not a high-level approach like the earlier ones

discussed, but an architectural level one. As such, it requires a

change in the physical fabric on the FPGA itself. The authors

state that the basis of high-level approaches is redundancy and

they aim to reduce the area overhead required to implement

TMR. They propose a change to the LUT and CLB of a

Virtex-5 to support fine grain TMR in order to better mitigate

SEUs. The disadvantages of TMR they wish to address are

that of area overhead of triplicating modules and adding a

voter, and the latency that is added by the inclusion of the

voter element.

Applying TMR at such a fine granularity allows the system

to tolerate more faults than if it were applied at the module

level but its area overhead is much greater because of all the

voting elements required on the LUTs outputs. The authors

state that using such fine granularity allows the vulnerable area

to be much smaller which also reduces the upset rate. This has

the effect of reducing the time between reconfigurations and

therefore reduces power.

The Virtex-5 LUT structure is illustrated in Figure 10. The

6-input LUT actually consists of two 5-input LUTs that can be

selected by a multiplexor (A6). The inputs of both LUTs must

be the same and may output different results on O5 and O6.

The authors noted this redundant nature in the LUT structure

and will exploit it be reserving the other 5-LUT to be

redundant and forcing the design to only use 5-input LUTs.

Fine grain redundancy can therefore be applied with a

significantly lower area cost.

 9

Figure 10: Virtex-5 6-LUT structure

The authors suggest two architectures: DMR and TMR.

Both architectures restrict the mapping of functions to 5-input

LUTs. If the application needs to use a 6-LUT as opposed to a

5-LUT, it will have to use additional LUTs to realize the

function. The DMR architecture requires very little change and

only calls for the addition of an XOR gate between the outputs

of the 5-LUTs and the multiplexor as seen in Figure 11. The

same LUT configuration will be loaded into both LUTs. The

XOR gate will activate when the outputs are discrepant and

notify that a fault has occurred in the column.

Figure 11: Dual Modular Redundancy LUT architecture

The TMR architecture proposed requires more additional logic

to be fully realized. It uses the same principle as the DMR

approach; however for the third redundant module it will split

a 6-LUT between two different TMR configurations as

outlined in Figure 12. The voting logic will be included in two

of the three LUT structures and will pick the correct output to

propagate. The multiplexor that was already in the LUT is

being used for selecting the correct LUT output. The LUT that

is shared between two functions must be able to accept two

sets of signals instead of just one like the traditional 6-LUT.

TMR mode can be enabled or disabled by setting the FT

signal. Like with the DMR architecture, this TMR architecture

also supports notifying whether or not a fault has occurred in

the column. This group of three LUTs can either function as

three 6-input functions like in the original architecture, or two

5-input functions with TMR.

Figure 12: Triple Modular Redundancy LUT architecture

To compute the area overhead of such a design, the authors

synthesized the ITC’99 circuits on a Virtex-5 FPGA with both

no TMR and with TMR applied using 6-LUTs. They observed

that the smallest circuits (b01, b02, and b06) had the largest

overhead when TMR was applied as seen in Table 1.

Table 1: LUT overhead for ITC’99 circuits

 10

Since there is no family of FPGAs with 5-LUTs the authors

synthesized these benchmarks for a Virtex-4 which uses 4-

LUTs. They then used Xilinx tools to implement the same

netlist onto a Virtex-5 using an option that can limit the

number of inputs to each LUT for a 4-input, 5-input, and 6-

input LUT. The outcome can be seen in Table 2. Moving to

higher input LUTs decreases the amount of LUTs needed.

Table 2: 4-input, 5-input, and 6-input LUT count

 Using this new architecture, DMR can be added to a circuit

with only 17.5% area overhead, and TMR can be added with

only 76.25% area overhead (1.5 x 1.175 = 1.7625) with

respect to using 5-LUTs over 6-LUTs. This overhead is greatly

reduced compared to the 100% and 242% overhead needed to

use DMR and TMR on a circuit, respectively. This new

architecture however only applies to handling faults in the

LUTs and not with the interconnection between them.

B. Insights

This architectural approach exploits the LUT structure of

the Virtex-5 family of FPGAs to make it more efficient to use

redundancy. The DMR architectural change is an extremely

simple one that Xilinx could easily implement in their

products. Adding the XOR gate into the 6-LUT eliminates the

need of using another block just to compare the outputs of two

LUTs. This has the effect of decreasing the latency and area

required to implement DMR. Also, this architecture not only

allows for the detection of any discrepancy, it also is able to

isolate the location of the fault to a column. This can greatly

benefit many online fault detection and handling methods that

use redundancy by notifying where the fault has occurred on

the column granularity.

Partial reconfiguration can take place on the faulty column

instead of a larger area such as a module. Allowing the

isolation of a fault to a column will also speed up the partial

reconfiguration because the bitstream only has to be as large as

that column. This results in saved power as the reconfiguration

time will now be much less.

Scrubbing [9] can be more efficient as it only will need to

scrub a column that has a LUT that shows discrepant behavior.

CRR [4] can also benefit from this architecture as a

discrepancy checker will not be necessary but can still be used

as an extra line of defense. STARs [5] can greatly benefit from

this by only running a STAR on the column that a fault was

detected in. This will greatly improve the detection latency of

this method. It can also employ the DMR architecture in the

BISTER to simplify it. RARS [6] can also exploit this

architectural change and further reduce power by not needing

to have a discrepancy sensor while it is running in duplex

mode.

The TMR architecture is more complicated to implement as

it requires a lot more logic and control. The shared LUT will

have to be changed to allow two sets of inputs and the other

two will have to be altered to include the voting circuitry. One

way to implement the shared 6-LUT is by allowing each 5-

LUT to have their own inputs. This has the effect of increasing

the amount of wires on the fabric and interconnect, but the

complexity of implementation is simple. The other method is

by using multiplexors to select which 5-inputs to use as seen in

Figure 13. This leaves the interconnect unchanged but

complicates the slice (the set of 3 6-LUTs) by increasing its

area and adding latency to that LUT. If these obstacles can be

easily overcome, then the TMR architecture may be viable as

it will reduce the area cost of implementing TMR while being

able to mask faults.

Figure 13: TMR “slice” using multiplexors

Overall, the architectural change to allow DMR, while

minimal, will facilitate many different fault handling methods

and should be straightforward to port existing 4-LUT based

approaches to use this method. Furthermore, if the TMR

architecture is realized, Xilinx’s TMRTool [12] could use it

facilitate the implementation for the user.

 11

VII. MASTER-SLAVE TMR INSPIRED TECHNIQUE FOR FAULT

TOLERANCE

A. Overview

Lahrach et al. propose a novel technique that can tolerate

multiple faults in [11]. Both single and double faults are

covered with low overhead. This architecture consists of two

types of CLBs: CLB-M and CLB-S. A Master-Slave Unit

(MSU) consists of these two types of CLBs. When a fault

occurs on a CLB-S, partial reconfiguration takes place to

reconfigure one of the CLBs in the CLB-M to contain this

function.

This technique does not detect or diagnose faults and it

requires that some other method take these steps before the

Master-Slave Technique (MST) takes place. A MSU is

composed of a CLB-M surrounded by two, three, or four CLB-

Ss. A CLB-M contains three CLBs, a voting element, and two

switch blocks. This is essentially a block that is initially set up

to work in a TMR configuration but will later sacrifice its

redundancy to deal with faults. A CLB-S is a single CLB that

when is deemed faulty, can be partially reconfigured on the

CLB-M. In their approach, the routing between MSUs is fixed,

but the routing within the MSUs can be altered to handle

faults. Figure 14 outlines the layout of the CLB-Ms and CLB-

Ss on an FPGA. Each CLB-M is surrounded by either three or

four CLB-Ss. Figure 15 shows the organization of an MSU.

When a fault is located in a CLB-S, a new configuration is

loaded that does not use that CLB-S. Instead, it will use one of

the redundant CLBs in the CLB-M.

Figure 14: CLB-M (M) and CLB-S (S) organization

Figure 15: Master-Slave Unit

The authors state that there are three main benefits of using

this approach: low overhead, runtime management, and

complete availability. For a 104 x 80 FPGA they claim that the

system reaches maximum reliability much sooner than other

redundant methods. These results can be seen in Figure 16.

Figure 16: Reliability of different methods for a 104 x 80

FPGA

B. Insights

This approach, while preliminary and lacking fault detection

and isolation, is a novel one that can be extended upon. One

can use this technique to harden critical points in the circuit

that may require TMR while others do not. In a sense, this is a

form of partial TMR [13] that can adapt and sacrifice

redundancy for faults detected in other blocks. Like other

methods, it also relies heavily on partial reconfiguration to

only program the portion of the MSU that is needed. It also

requires the ability to program the switch blocks (SBs)

effectively so that when a CLB-S is moved onto a CLB-M, the

right routing is implemented.

This method can also benefit from the proposed architecture

overviewed in Section VI. The CLB-M can use the TMR

approach while the CLB-S can use the DMR approach. When

 12

a CLB-S is detected as faulty and gets partially reconfigured to

the CLB-M then it no longer can use the TMR approach and it

will leave one CLB unprotected by any form of fault detection.

VIII. CONCLUSION

Several architectural and high-level approaches were

discussed that leverage nMR for fault tolerance, handling, and

isolation. Vigander used a triplex voting scheme with

imperfect individuals. DeMara et al. extended CED to have

two individuals compete with one another in his Competative

Runtime Reconfiguration approach. Abramovici et al. used

CED within the BISTERs in his STARs approach to detect

which pair of blocks were faulty. Al-Haddad et al. allowed for

a dynamic change in the level of redundancy in his

Reconfigurable Adaptive Redundancy System (RARS).

Kyriakoulakos et al. proposed a new architecture for both fine

grain DMR and TMR that significantly reduces the area of

both methods. Lahrach et al. introduced a Master-Slave TMR

technique that allows for a master CLB to sacrifice redundancy

in order to maintain system reliability. Table 3 summarizes the

overhead all these approaches. Table 4 summarizes the

sustainability of all these approaches. These tables are based

on the metrics outlined in [2].

Table 3: Overhead of discussed approaches

Approach Fault Exploitation Recovery Granularity Fault Capacity

Basic TMR No Variable Three configurations

Vigander Yes FPGA Three configurations

CRR Yes Variable Two configurations

STARs Yes LUT One H-STAR & One V-STAR

RARS Yes Variable Variable

DMR Architecture No LUT One LUT

TMR Architecture No LUT Three LUTs

Master-Slave No CLB Five CLBs

Table 4: Sustainability of discussed approaches

REFERENCES

[1] F. Lima, L. Carro, and R. Reis, “Designing fault tolerant systems into

SRAM-based FPGAs,” DAC '03: Proceedings of the 40th annual

Design Automation Conference 2003, pp. 650-655.

[2] M. Parris, C. Sharma, and R. Demara, “Progress in Autonomous Fault

Recovery of Field Programmable Gate Arrays,” accepted to ACM

Computing Surveys December, 2009.

[3] S. Vigander, “Evolutionary Fault Repair of Electronics in Space

Applications,” University of Sussex, February 2001.

[4] R. F. DeMara, K. Zhang, “Autonomous FPGA Fault Handling through

Competitive Runtime Reconfiguration,” Proceeding of NASA/DoD

Conference on Evolvable Hardware (EH’05), Washington D.C.,

U.S.A.. June 29 – July 1, 2005.

[5] M. Abramovici, J. M. Emmert, C. E. Stroud, "Roving Stars: An

Integrated Approach To On-Line Testing, Diagnosis, And Fault

Tolerance For Fpgas In Adaptive Computing Systems," Evolvable

Hardware, NASA/DoD Conference on, pp. 0073, The Third NASA/DoD

Workshop on Evolvable Hardware, 2001.

[6] R. Al-Haddad, R. DeMara, “A Sustainable Organic Architecture

Emphasizing Partial Reconfiguration for Reduced Power

Consumption,” University of Central Florida, 2010.

[7] C. Müller-Schloer, “Organic computing: on the feasibility of controlled

emergence,” Proc. 2nd IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, ACM, 2004, pp. 2-

5.

[8] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and W.

Stechele, “Towards a framework and a design methodology for

autonomic SoC,”, pp. 391-392.

[9] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial

reconfiguration via configuration scrubbing,” August 2009.

Approach Area

Overhead

Power

Overhead

Throughput

Reduction

Detection

Latency

Basic TMR 200% of application 200% of application Indeterminate Negligible

Vigander 200% of application Not Addressed Not Addressed Negligible

CRR 100% of application 100% of application Variable

(0-15%)

Negligible

STARs 4-11% of FPGA Not Addressed 0-16% 0-17 seconds

RARS >200% of application Variable

(0-200% of application)

Indeterminate Negligible

DMR Architecture 17.5% of application 17.5% of application Negligible Negligible

TMR Architecture 76.5% of application 76.5% of application Negligible Negligible

Master-Slave 25% of FPGA Not Addressed Indeterminate Not Addressed

 13

[10] K. Kyriakoulakos, D. Pnevmatikatos, “A Novel SRAM-Based FPGA

Architecture for Efficient TMR Fault Tolerance Support,” International

Conference on Field Programmable Logic and Applications, 2009.

[11] F. Lahrach, A. Doumar, E. Châtelet, A. Abdaoui, “Master-Slave TMR

Inspired Technique for Fault Tolerance of SRAM-based FPGA,” IEEE

Annual Symposium on VLSI, 2010.

[12] Xilinx, “Xilinx TMRTool,”

http://www.xilinx.com/ise/optional_prod/tmrtool.htm

[13] B. Pratt, M. Caffrey, P. Graham, K. Morgan, M. Wirthlin, “Improving

FPGA Design Robustness with Partial TMR,” 44th Annual International

Reliability Physics Symposium, 2006.

