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Abstract—Triple Modular Redundancy (TMR) is the most well 

known technique for fault tolerance in Field Programmable Gate 

Arrays. This paper will discuss some different novel approaches 

for the application of redundancy to FPGAs. Architectural and 

high-level approaches are investigated that reduce power and 

area overhead for both Triple and Dual Modular Redundancy. 

All techniques are compared to show both advantages and 

disadvantages of their respective approaches. 

 
Index Terms—FPGA, fault tolerance, fault handling, partial 

reconfiguration, triple modular redundancy (TMR) 

 

I. INTRODUCTION 

SRAM-based Field Programmable Gate Arrays (FPGA) 

allow for the ability to program any function into a device. The 

purpose of the device may change over time and require new 

functions to be incorporated into it. In FPGAs all logic and 

routing elements can be reconfigured to meet the system’s 

needs. The FPGA allows for different configurations to be 

loaded into it. This is done by loading different bitstreams that 

program these elements to their desired need. 

FPGAs then inherently have the ability to handle faults 

because they can load configurations that do not use the faulty 

component and work around the fault. This is an important 

feature for space applications where human intervention is 

infeasible [1]. However, such devices employed in space also 

have to consider the effect of higher radiation and extreme 

environmental conditions. Single Event Upsets (SEUs) are 

therefore a main source of concern. An SEU happens when a 

charged particle strikes the FPGA and flips a bit in a memory 

cell or permanent damage is caused to the silicon due to 

depleting oxide layers or other environmental effects. These 

SEUs can be either transient or permanent. Transient faults 

will eventually go away over time when that memory cell gets 

rewritten. Permanent faults, on the other hand, will remain in 

the device for the remainder of the mission and action must be 

taken in order to avoid mission failure. Such permanent faults 

are stuck-at faults where a bit or line will remain a 0 or a 1 for 

the rest of the device’s lifecycle. These SEUs can affect any 

portion of the FPGA. If they affect the LUTs of the FPGA they 

can change the logic function of that cell. This change will 

remain in the system until the LUT’s contents are either 

reloaded to realize the same function or changed. They can 

also cause transient pulses in the combinatorial logic path that 

disrupts the data and must be run through again to get the 

correct output. 

Several techniques have been proposed and researched to 

mitigate the affect of these faults when they happen on an 

FPGA. They can be classified as either architectural or high-

level techniques [10]. Architectural techniques include 

hardening the memory cells of the FPGA to make them less 

prone to faults caused by the environment. This can be seen in 

such commercial products as the Xilinx QPro FPGA family of 

devices [2]. Other architectural techniques may include the 

way the logic cells are placed on the FPGA fabric or altering 

the components of these cells to provide additional fault 

tolerance support. Most techniques however are high-level and 

implemented by the user. High-level techniques do not require 

any modification of the physical FPGA architecture and as 

such are more attractive to the user because they can be 

implemented on any device. However, a simple change in the 

architecture could provide more efficient high-level 

techniques. 

Most all high-level techniques use some form of 

redundancy. This redundancy can either be in the form of 

multiple instances of a function running in parallel where one 

output is then chosen to be reciprocated, or a spare part, either 

hot or cold, is waiting to be enabled and carry out its function. 

One of the most well known high-level techniques is Triple 

Modular Redundancy (TMR) as seen in Figure 1.  

 

 
Figure 1: Basic Triple Modular Redundancy 

 

TMR provides several benefits as well as drawbacks over 

other fault handling methods. Some of the benefits include 

extremely low detection latency, and assuming a single fault 

condition, it can mask the fault from propagating to the rest of 

the system. TMR does however come with 3x the area and 

power overhead. TMR can either be applied on a very fine 

granularity where each LUT is triplicated, or on a very coarse 

grain where there might be three modules doing the same 

function as in Figure 1. A voter is implemented to pick one of 
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the three outputs that are non-faulty. If one output does not 

match the other two, then that module is faulty and one of the 

other two outputs is chosen to be passed along. Further action 

can then be taken to correct the faulty module. 

Dual Module Redundancy (DMR) or Concurrent Error 

Detection (CED) is similar to TMR but only duplicates the 

module to detect when a fault has occurred. The power and 

area overhead of such a method is 2x. However, unlike TMR 

this method only detects whether or not a fault has occurred 

and further action must be taken in order to recover from the 

fault since it cannot mask it. 

In this paper both architectural and high-level nMR 

approaches will be discussed that provide a suitable level of 

fault tolerance for many applications. Vigander’s work with 

FPGA evolution and voting [3], DeMara’s work with 

Competitive Runtime Reconfiguration (CRR) [4], Abramovici 

et al.’s work with roving Self-Testing Areas (STARs) [5], Al-

Haddad et al.’s work with the Reconfigurable Adaptive 

Redundancy System (RARS) [6], Kyriakoulakos et al.’s work 

with a new architecture for efficient TMR fault tolerance 

support [10], and Lahrach et al.’s Master-Slave TMR inspired 

technique [11] are the multiple works discussed in detail in 

this paper. 

 

II. VIGANDER’S APPROACH 

A. Introduction 

Vigander established very interesting results in [3]. He 

created his own genetic algorithm (GA) and simulator to base 

his experiments off of. His simulator was of an FPGA that had 

different constraints than that of a real FPGA. More 

specifically, routing restrictions were put in place to create a 

strictly feed-forward network. This was done in order to 

greatly simplify the simulator. 

A 4-bit multiplier was the application he realized on his 

simulator for his experiments. Each multiplier configuration 

was tested exhaustively. All possible input combinations were 

compared with the output they produced. There are a total of 

256 (2
(4+4)

 = 256) different input combinations. This was done 

in order to produce a fitness value. The higher the fitness 

value, the more functional the configuration is; it outputs more 

correct values given an input. The fitness value therefore is the 

total number of correct outputs out of 256. 

Three different genetic operators were used in his genetic 

algorithm: crossover, mutation, and cell swapping. Crossover, 

he states, is when cells are inherited from one parent and then 

modified to create a new individual. Mutation is when a cell is 

randomly changed in each configuration. Cell swapping is 

when two cells in the configuration are swapped. This 

exchanges both the function and inputs of these cells but 

invalidates the feed-forward property when the later cell is 

swapped to a place earlier than it was previously. To overcome 

this he picks new random inputs for these cells. Elitism is also 

used in all his experiments in order to keep forward progress 

in the evolutionary process by guaranteeing that the fitness of 

the most fit individual is monotonically increasing. 

 

B. Experiments 

Three different groups of experiments were performed. The 

first group of experiments attempted to repair a single random 

stuck-at fault using his GA. The result was that it proved 

difficult for the GA to come up with a perfect repair (256 

fitness value) with the faulty cell after many generations. This 

was further extended by providing the GA more cells to 

increase the search space and provide more space for the GA 

to avoid the faulty cell in the configuration. The result was that 

it had no effect for the GA finding a higher fitness individual 

after many generations. He also let the GA run for a long 

period of time to see if the fitness would improve. The result 

of this experiment was that no high fitness was achieved, but 

improvement in the fitness was shown very late in the run.  

The second group of experiments consisted of accepting 

individuals that are not perfectly repaired. Vigander found that 

after many generations, different configurations fail differently 

from one another given the same input. He used this result to 

extend his experiment and created a system of three imperfect 

FPGAs that would then vote on each output. Important to note 

here that each FPGA used had a different fault so that no two 

fail the same way. He observed that even with individuals that 

do not have 100% fitness, when these individuals vote they 

can achieve a completely correct result. This can be seen in 

Figure 2, the dotted lines are the fitness of the imperfect 

FPGAs and the solid line is the fitness after all three have 

voted. This was also in the case that all three FPGAs were 

rendered faulty at the same time, an extremely unlikely event. 

 

 
Figure 2: Results of a triplex voting arrangement of three 

faulty FPGAs 

 

For the third and final group of experiments, Vigander 

repeated the GA several times for the same fault induced in the 

configuration. He found out that the same inputs cause the 

same outputs to fail over time. The GA was unable to fix these 

configurations differently every run. 
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C. Insights 

Vigander’s experiments brings forth many interesting results 

and conclusions. Interesting to note, Vigander assumes that 

there is some known “golden” oracle that has the correct 

outputs for any given input. Such an assumption cannot be 

realized in a real system because this oracle may obtain faults 

and then the system will be comparing itself to something that 

is wrong when it might have had the correct result to begin 

with. 

The first experiment showed that individual configurations 

that already had a high fitness were very difficult to get more 

fit, but configurations that had a low fitness to begin with find 

high fitness fairly quickly. In the long run experiment, 

marginal improvement in fitness was achieved after tens of 

thousands of generations but no perfect solution was reached. 

This shows that the GA is continuously trying to find a new 

higher fitness configuration but a better fit individual may not 

be worth the time required to come across. The function has 

become asymptotic and the GA has converged to that fitness. 

Vigander however did not use the concept of design diversity 

in his experiments. The design diversity concept is one that 

there are many different ways for something to do the same 

thing. Configurations can be functionally identical, but 

physically distinct. He seeded the population with identical 

configurations. It would be interesting to see if had he used 

design diversity, would he have reached the same conclusion 

in this experiment. 

In Vigander’s second experiment, he uses a triplex voting 

arrangement similar to that of TMR. Even though all the 

FPGAs he used were faulty even after evolution, they still 

produced a correct result. Perhaps the time required to evolve 

these three configurations to produce a correct result could be 

decreased by having more than three modules vote on the 

correct output. For example, if five FPGAs were configured in 

a 5-plex voting scheme, overall perfect functionality may be 

reached much faster than the time required to exhaustively 

evaluate every configuration that is evolved. However, using a 

5-plex scheme means that power and area footprints are further 

increased than just having a triplex voting scheme. 

Nonetheless, the time saved in terms of generations and 

evaluations is interesting to note. 

 Vigander’s third and final experiment also reveals some 

interesting results. Even though the GA has randomness 

incorporated in it, it does not allow recovery of certain 

input/output pairs. After several generations, the same parts of 

the circuit fail. This goes to show that certain stuck-at faults 

cannot be worked around and in order to realize a perfect 

configuration, the faulty cell should not be used. 

 

III. COMPETITIVE RUNTIME RECONFIGURATION APPROACH 

A. Overview 

A novel approach that uses DMR is brought forth by 

DeMara et al. in [4] called Competitive Runtime 

Reconfiguration (CRR). CRR fully exploits the ability for 

FPGAs to reconfigure themselves. By allowing the hardware 

to evolve, the amount of redundancy needed is reduced. The 

benefits of such an approach include recovery without 

increased size, weight, and power. CRR features an approach 

that adapts to the conditions throughout the device’s lifecycle. 

Unlike other approaches, it does not need any test vectors for 

device refurbishment. Fitness is evaluated by comparing two 

configurations with one another. A correct “golden” 

configuration is not needed to make these comparisons. The 

basic layout of this approach is seen in Figure 3.  

 

 
Figure 3: Tandem CRR arrangement 

 

CRR is a very interesting approach that incorporates both 

competition and evolution, something that is inherent in 

nature, into hardware. It also allows for graceful degradation 

when multiple faults are encountered in the system. 

This approach uses temporal voting which occurs when an 

alternate configuration is paired with another to vote on their 

outputs. This occurs at some defined rate in order to grade the 

fitness of this alternate configuration. Any discrepancy in 

either individual reduces the fitness of both individuals, and if 

both outputs match the fitness is raised for both individuals. 

Since CRR compares configurations as a whole, it does not 

need a fault isolation granularity. Also, fault detection happens 

within the FPGA and therefore has negligible detection 

latency. 

CRR employs design diversity in its population. These 

functionally identical, yet physically distinct individuals are 

created at design time and populate the initial pool of 

configurations. These individuals are considered Pristine and 

are the highest fit individuals throughout the device’s lifecycle. 

The CRR voting technique works as follows. When both 

configuration outputs match they remain Pristine. If they are 

not Pristine then the fitness of both individuals is raised. When 
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there is a discrepancy, both of the individual’s fitnesses are 

reduced. These individuals are now considered Suspect and 

will never be Pristine again. When the fitness drops below a 

given repair threshold, these Suspect or Refurbished 

individuals become Under Repair. Under Repair individuals 

undergo evolution for only one generation. When the fitness 

rises above a given operational threshold, the individual enters 

the Refurbished pool. This flow between states can be seen in 

Figure 4. A reintroduction rate is employed that allows the 

Under Repair individual to be reintroduced into the pool of 

available candidates by pairing it with another so that a fitness 

measurement can be taken. This reintroduction rate can be 

adapted to fit the required throughput of the system. 

 

 
Figure 4: CRR configuration states 

 

The genetic operators used in this CRR approach are two-

point crossover, mutation, and cell swap. Two-point crossover 

replaces functional units with those of other good individuals. 

Mutation reconfigures suspect CLBs with random alternatives. 

Cell swap moves CLBs around within the same configuration. 

Overall, CRR provides a complete fault tolerant and fault 

handling approach. Since the entire configuration is being 

compared, it addresses faults in all parts of the FPGA, 

including the memory, routing, and fabric itself. As seen in 

Figure 3, the discrepancy checking units are part of the 

individual configurations so that any fault in the checker is 

detected by the other competing configuration. This allows for 

one to “check the checker”. Transient faults are attenuated 

automatically. When a transient fault occurs, its fitness will be 

decreased, but since it was a transient fault, and not a 

permanent one, when this configuration is paired up against 

another non-faulty one, its fitness will rise because the fault 

will not be present. CRR allows for the system to detect, 

isolate, and resolve faults without the need of any exhaustive 

testing while keeping the system partially online. 

 

B. Insights 

Competitive Runtime Reconfiguration is a novel approach 

that leverages the principle of “survival of the fittest” from 

evolution. CRR uses a duplex arrangement which is called the 

tandem arrangement. This is done in order to save space and 

power over a triplicate arrangement. CRR also supports a 

bounding arrangement in which only one configuration is run 

at a time. It is then compared with the next configuration 

loaded. By reducing the space complexity of the system, the 

time complexity rises. In the tandem arrangement, the system 

will observe a performance hit when the Under Repair 

individual needs to have its fitness reevaluated (caused by the 

reintroduction rate). Since it is unlikely that the GA will have 

found a solution in the first generation, both configurations 

will be brought down in fitness and the current inputs will have 

to be re evaluated again. This decreases the throughput of the 

system. In the bounding arrangement, the system throughput 

will be even lower, approximately half, because after some 

time a different configuration will be loaded to compare the 

output of the same data. This decrease in throughput can be 

overcome by overclocking the system enough so that even 

with evolved configurations being reintroduced into the pool 

of available candidates, the throughput can remain at 100%. 

This method, however, depends on the application the device 

is performing. The reintroduction rate, which is an upper 

bound of performance hit, can be modified to fit the system’s 

needs at the time. If the system is at a mission-critical state and 

no degradation in performance is desired, the reintroduction 

rate can be set to zero. Doing so will not allow Under Repair 

individuals to be reevaluated and enter the pool of candidates, 

lowering throughput. The reintroduction rate can also be set 

higher during periods of the mission where the system is not 

doing anything critical. This allows for Under Repair 

individuals to get reevaluated and enter the pool of available 

candidates much quicker than normal. This allows for 

modulation of the repair rate to keep the system sustainable 

during its lifecycle. 

Unlike TMR, this system does not provide fault masking for 

uninterrupted system execution. It does however extend DMR 

to provide an approach that allows the system to be 

autonomous with one-third the space savings over TMR. Also, 

unlike other approaches, since it leverages DMR, faults are 

detected instantaneously. It provides a suitable amount of fault 

coverage that even detects faults in the discrepancy checker. In 

typical nMR approaches, the voters are usually left unchecked 

and are therefore a vulnerable part of the system. 

There are certain parts of the system left unchecked 

however. These are assumed “golden” and any fault in these 

parts may cause a fault in the entire system which any level of 

fault handling will be unable to overcome. As seen in Figure 3, 

these include any fault in the EEPROM which holds the 

population of individuals, and the reconfiguration algorithm. 

Any stuck-at fault in the EEPROM would have catastrophic 

behavior to the system because the configurations would be 

loaded and stored incorrectly. This will make it impossible for 

two configurations to accurately check one another. Any fault 

in the reconfiguration algorithm could have disastrous effects 
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in the system. The algorithm could be altered enough where 

evolution is no longer progressing but instead deteriorating. 

CRR however allows for graceful degradation, and such an 

event would not alter the current state of the system (the two 

configurations that are loaded). It would only be a problem 

once a reconfiguration happens. So if a fault in the 

reconfiguration logic were caught, one could just disable 

reconfiguration and have the system perform as is until a fault 

is encountered in the two competing configurations. 

 

IV. ROVING SELF-TESTING AREAS APPROACH 

A. Overview 

The roving self-testing areas (STARs) approach put forth by 

Abramovici et al. in [5] allows for very fine granularity testing 

of a reconfigurable system. It is an adaptive computing system 

approach that exploits reconfigurable hardware in order to 

adapt to changes in the environment and its operation. This 

allows for new functions to be deployed on the device as well 

as reduced power consumption from reducing the number of 

parts in the system. STARs requires the use of Run-time 

Reconfiguration (RTR) in order to allow the system to 

continue functioning normally while parts of it are being 

reconfigured and tested. 

The authors point out that traditional fault tolerant designs 

rely on redundant modules and voting but STARs has much 

smaller overhead than other such approaches. Most 

approaches replace faulty components with spare ones, but this 

method only allows for a limited number of faults to be 

handled before the spare resources run out. They classify fault 

tolerant approaches into two categories: static and dynamic. 

Static approaches are methods where spare resources are 

allocated at design-time. Having too many spares increases the 

area overhead, but having too little spares decreases the 

devices ability to handle multiple faults. Dynamic approaches 

allocate interconnect resources after a fault has occurred. 

However, spare cells are still statically allocated. 

Since STARs has a high detection latency that is bounded 

by the physical size of the FPGA, the authors make use of 

CED to detect transient faults. When such a fault is detected 

the system rolls back to a previous checkpoint before a fault 

was present and runs again. If no fault is detected then it was a 

transient fault that has been overcome by using rollback.  

STARs can be applied to any FPGA that supports RTR and 

does not require modification of the FPGA architecture. It is a 

type of Built-in Self Test (BIST) that offers exhaustive testing 

of all resources, both logic and interconnect. This allows it to 

detect dormant faults, stuck-at faults, and increase reliability. It 

can handle single or multiple faults in a cell and single or 

multiple faults in the interconnect network. This approach 

allows the reuse of faulty resources whenever possible by 

using the faulty cells for their residual capabilities. Such 

resources are labeled Partially Usable Blocks (PUBs) and this 

allows the spare capacity to increase, graceful degradation, and 

overall longer mission life. STARs also employs an adaptable 

system clock that can deal with altering the critical paths of the 

circuit and stopping the system clock in order to move a 

STAR. 

The cornerstone of the STARs method is the Test and 

Reconfiguration Controller (TREC). This unit is an external 

microcontroller that controls the test, diagnosis, fault tolerance 

functions, configurations, and system clock. It also keeps track 

of which FPGA resources were declared faulty. The TREC 

determines when to relocate the STAR and if a fault is 

detected, what to do. If the detected fault is in a spare resource, 

it has no affect in the operational part of the system and moves 

the STAR to the next location. If the fault is in a resource that 

is used under normal operation, the TREC determines the 

configuration changes that are needed in order to bypass the 

faulty resource. 

STARs works by roving a test area around the FPGA using 

a V-STAR and H-STAR as seen in Figure 5. This test area is 

independent of the working area and therefore do not have 

severe real-time constraints.  

 

 
Figure 5: STARs 

 

The basic unit of the STAR itself is the basic BIST structure 

(BISTER). As seen in Figure 6, it is composed of a Test 

Pattern Generator (TPG) that applies test patterns, two block 

under test or wire under test (BUT/WUT), and an output 

response analyzer (ORA) which reports mismatches as test 

failures. A STAR can contain several BISTERs. Each part of 

the BISTER is loaded into a different PLB such that each PLB 

in the tile is exhaustively tested twice. The time required to 

move the STAR is therefore dominated by the time required 

for each individual reconfiguration. 

 

 
Figure 6: BISTER structure 
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The authors state that the faults detected are always in the 

STAR area and therefore do not affect the working area of the 

logic. They also state that fault diagnosis and fault 

reconfiguration do not have real-time constraints since they are 

not part of the working area. Overall, STARs is a novel 

approach that provides fine grain fault detection and handling, 

but relies heavily on run-time reconfiguration. 

 

B. Insights 

STARs is a BIST approach and as such handles every type 

of fault, even if the fault will never articulate regardless of the 

inputs applied. It may not be necessary to exhaustively test 

every portion of the FPGA if not all of it will be in use. STARs 

has the ability to check for dormant faults while the system is 

under normal operation but it may not be necessary to be 

checking for such a fault if that portion is never used. If this 

resource is selected to be used for some sort of reconfiguration 

then check it at that time before using it for this configuration. 

The authors admit to the large detection latency and in order 

to overcome this disadvantage, they suggest the use of CED in 

order to detect a whether or not a fault is transient. This is a 

valid method to handle such faults. However, if CED is 

employed, why not only run STARs when a checkpoint 

rollback was executed and the fault still remains. For example, 

if the fault was indeed transient, it should not trigger 

discrepant behavior in this repeated run. If it does indeed still 

cause a fault, the STAR needs to proceed and find the faulty 

resource which may take a long period of time, especially in 

the worst case scenario that the fault occurred in a location the 

STAR recently deemed fault-free. The system would 

continuously be rolling back to this earlier point until the fault 

is detected and repaired. In the time it takes for this fault to be 

repaired, the system, while in an online mode, is not producing 

any valid output. 

The authors claim that faults are always detected in the 

STAR area, but if the CED method is employed, the CED 

module will be what detects the fault. The STAR then attempts 

to locate the fault at a very fine granularity. 

STARs consistently reconfigures the device, even in the 

absence of a fault, in order to detect a fault. But by doing this 

it may actually introduce new mechanisms for failures to 

occur. Nothing is checking whether the configurations are 

being loaded and/or stored correctly. The TREC is in control 

of everything dealing with this STARs method. Any failure in 

this device could result in catastrophic failure in the system. 

For example, a fault in the adaptive system clock component 

of the TREC means that the system will no longer function as 

intended. The TREC in this case must be considered “golden” 

and fault free. Having an entire fault handling method rely on 

one integral component may not be suitable. The TREC could 

be moved onto the FPGA by using a softcore thereby allowing 

some testing of itself, however the reconfiguration portion 

cannot be tested and must still be assumed “golden”. 

STARs is heavily reliant on reconfiguration and as such, is 

its main weakness. The time complexity of roving the STAR 

area is largely dominated by how quickly it takes for an area of 

the FPGA to be reconfigured. This is the cause for the large 

detection latency. 

It is also interesting to note that STARs uses CED at the 

finest level as seen in Figure 6. Two blocks are required in 

order for a discrepancy to be detected. Which of the two 

blocks is faulty is detected by moving the elements of the 

BISTER around until a conclusion can be made. 

 

V. RECONFIGURABLE ADAPTIVE REDUNDANCY SYSTEM 

APPROACH 

A. Overview 

Al-Haddad et al. design and implement a two-layered 

organic system called the Reconfigurable Adaptive 

Redundancy System (RARS) in [6]. Organic computing is a 

form of biologically-inspired computing that contains “self-x 

properties” such as self-configuration, self-reorganization, and 

self-healing [7, 8]. RARS does not have a predetermined level 

of redundancy. It can dynamically switch between different 

levels of redundancy to fit the mission requirements which 

may include power requirements. The two layers of this 

approach consist of a hardware layer and a software layer as 

seen in Figure 7. The hardware layer is implemented on a 

Virtex-4 FPGA while the software layer is on a host PC and 

consists of software that monitors the performance and status 

of the system, changes the level of redundancy needed, and 

performs recovery techniques on faulty modules.  

RARS’s main focus is on self-repair and self-optimization 

of power consumption and provides a complete software and 

hardware solution to handle faults. RARS allows the 

conservation of power by running in a low power mode and 

only switching on more redundant parts when needed in order 

to mask a fault. The power savings cause insignificant 

degradation in the fault tolerance of this system. However, like 

most fault tolerant approaches, RARS is still limited to the 

area left over on the device to provide additional routing and 

logic when it encounters a fault. This is overcome by an 

additional layer that observes the status of the hardware and 

provides active repair. There are two forms of repair employed 

in RARS: scrubbing [9] and evolution. Scrubbing rewrites the 

configuration in order to fix a simple bit-flip that may have 

occurred. Evolution happens when a resource encounters a 

more permanent fault that scrubbing will not fix. 

Dynamic partial reconfiguration is also employed in this 

RARS approach. This allows the configuration time to be 

significantly reduced since the bitstream is much smaller than 

the original, and it allows for the system to remain online while 

it is being reconfigured. This method is used both when the 

system is performing scrubbing and when evolved individuals 

are being reconfigured to have their fitness evaluated. 
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Figure 7: RARS System Architecture 

 

RARS contains two parts: the Autonomic Element (AE), 

and the Functional Elements (FEs). The AE monitors the status 

of the redundant parts, the FEs, which are the user application. 

More specifically, a RARS is the smallest unit in the system 

and actually consists of one AE and three FEs in order to 

provide the adequate level of redundancy needed. The AE 

contains the logic to change the level of redundancy in the 

system and consists of five modules shown in Figure 8: the 

Discrepancy Sensor (DS), voter, Output Actuator (OA), 

Performance Monitor (PM), and Redundancy Controller (RC). 

The FEs are the modules that can be changed in the system. 

There are three FEs in order to employ a TMR arrangement. 

 

 
Figure 8: Reconfigurable Adaptive Redundancy System 

(RARS) 

 

RARS can work in four different modes: Simplex, Duplex, 

TMR, and Hybrid mode. In Simplex mode, only one FE is 

used. The DS, voter and other two FEs are disabled. The OA 

is set to propagate this one output to the rest of the system. In 

Duplex mode, two FEs are used as well as the DS. The voter 

and one FE are disabled. The DS detects whether there is 

discrepant output between the two FEs and notifies the RC to 

take further action. The OA picks one of the FEs’ outputs to 

propagate. In TMR mode, all three FEs are enabled as well as 

the voter. Only the DS is disabled. The OA propagates the 

output selected by the voter. Hybrid mode allows the RARS to 

switch between the other three modes as it sees fit. 

When RARS detects a fault it must decide if the fault is in 

the data path or if it affects configurable logic. To do so, it 

enables a watchdog timer to see whether it is a transient fault 

in the data path that will fade away after an amount of time. If 

there is still a fault present after the watchdog timer expires, it 

proceeds to scrubbing. This rewrites the LUT contents in order 

to overcome a bit-flip that may have occurred in the logic 

configuration. If scrubbing does not fix the fault (it is a stuck-

at fault), the system moves on to loading functionally identical, 

yet physically distinct configurations that may bypass the 

stuck-at fault. If the fault still remains the system finally 

invokes evolutionary repair to come up with a new 

configuration that does not use this faulty LUT. If the system 

is in TMR mode, the other two FEs will mask the fault while 

the faulty FE is being repaired. 

The evolutionary process makes use of a genetic algorithm, 

and an application-independent fitness function. Since this 

self-healing process uses intrinsic evaluation to rate the fitness 

of the evolved individual, it must load the configuration onto 

the physical FPGA to grade its fitness. 

Overall, RARS, due to its adaptive nature, is able to save 
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one-third of the power used by a static TMR approach while 

still providing adequate fault coverage, and keeping the system 

online while being repaired. 

 

B. Insights 

RARS is an interesting approach that allows for the level of 

redundancy to be altered during runtime to fit the fault 

handling needs of the system and to save power. For example, 

the system can start off running in CED mode until a fault is 

detected. The system will now change its configuration to 

TMR in order to isolate which FE is faulty. When the faulty 

module is detected, additional steps will be taken to recover 

from the fault, leaving the other two modules intact to allow 

the system to run uninterrupted. If evolution takes place, the 

new individual can be compared with the other two non-faulty 

FEs to get its fitness evaluated. This is similar to the previous 

CRR approach but only requires the fitness evaluation of the 

under repair individual to be altered accordingly. This 

comparison does not lower the throughput of the system 

because there is already two working non-faulty FEs providing 

uninterrupted behavior. This evolution and fitness evaluation 

can continue until an individual matches the other two FEs 

outputs and is considered refurbished. The system can now 

enter back into duplex mode once the FE has been repaired in 

order to save power. 

While the system is in duplex mode, one FE is disabled and 

is sitting there as a cold spare. No action is taken to ensure that 

it does not develop a dormant fault. In the worst case scenario, 

if this cold spare develops a stuck-at fault that is irrecoverable 

by using alternate configurations and an active FE also 

develops a stuck-at fault that requires evolution, when the 

system switches to TMR mode it will have to evolve two 

different configurations while the system has no valid output 

because all three FE outputs are discrepant. Although this 

scenario is highly unlikely, it is something that was not 

covered and must not be overlooked. 

While RARS uses less power than TMR while it is running 

in duplex mode, it has a larger area overhead than TMR. Three 

Functional Elements must be present in the system regardless 

of the mode it is functioning in. Also, the Autonomic Element 

and rest of the system takes up a significant portion of the 

FPGA area as can be seen in Figure 9. The three FE units are 

relatively small compared to the logic needed to provide the 

AE, clock signals, bus macros, BUFGs, and DCM. This is 

significantly more area than is needed to implement a voter in 

a simple TMR approach given the application and granularity 

that it is applied to. If the user application (FE) were larger, 

the RARS system might not be able to fit on the FPGA given 

its limited size. 

 

 
Figure 9: Area of FE1, FE2, FE3, and complete RARS system 

 

VI. FPGA ARCHITECTURE SUPPORTING EFFICIENT TMR 

FAULT TOLERANCE SUPPORT  

A. Overview 

Kyriakoulakos et al. proposes a slight modification to the 

existing Virtex-5 family of FPGAs in order for it to support 

fine grain redundancy with a reduced area overhead in [10]. 

This approach is not a high-level approach like the earlier ones 

discussed, but an architectural level one. As such, it requires a 

change in the physical fabric on the FPGA itself. The authors 

state that the basis of high-level approaches is redundancy and 

they aim to reduce the area overhead required to implement 

TMR. They propose a change to the LUT and CLB of a 

Virtex-5 to support fine grain TMR in order to better mitigate 

SEUs. The disadvantages of TMR they wish to address are 

that of area overhead of triplicating modules and adding a 

voter, and the latency that is added by the inclusion of the 

voter element. 

Applying TMR at such a fine granularity allows the system 

to tolerate more faults than if it were applied at the module 

level but its area overhead is much greater because of all the 

voting elements required on the LUTs outputs. The authors 

state that using such fine granularity allows the vulnerable area 

to be much smaller which also reduces the upset rate. This has 

the effect of reducing the time between reconfigurations and 

therefore reduces power. 

The Virtex-5 LUT structure is illustrated in Figure 10. The 

6-input LUT actually consists of two 5-input LUTs that can be 

selected by a multiplexor (A6). The inputs of both LUTs must 

be the same and may output different results on O5 and O6. 

The authors noted this redundant nature in the LUT structure 

and will exploit it be reserving the other 5-LUT to be 

redundant and forcing the design to only use 5-input LUTs. 

Fine grain redundancy can therefore be applied with a 

significantly lower area cost. 
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Figure 10: Virtex-5 6-LUT structure 

 

The authors suggest two architectures: DMR and TMR. 

Both architectures restrict the mapping of functions to 5-input 

LUTs. If the application needs to use a 6-LUT as opposed to a 

5-LUT, it will have to use additional LUTs to realize the 

function. The DMR architecture requires very little change and 

only calls for the addition of an XOR gate between the outputs 

of the 5-LUTs and the multiplexor as seen in Figure 11. The 

same LUT configuration will be loaded into both LUTs. The 

XOR gate will activate when the outputs are discrepant and 

notify that a fault has occurred in the column.  

 

 
Figure 11: Dual Modular Redundancy LUT architecture 

 

The TMR architecture proposed requires more additional logic 

to be fully realized. It uses the same principle as the DMR 

approach; however for the third redundant module it will split 

a 6-LUT between two different TMR configurations as 

outlined in Figure 12. The voting logic will be included in two 

of the three LUT structures and will pick the correct output to 

propagate. The multiplexor that was already in the LUT is 

being used for selecting the correct LUT output. The LUT that 

is shared between two functions must be able to accept two 

sets of signals instead of just one like the traditional 6-LUT. 

TMR mode can be enabled or disabled by setting the FT 

signal. Like with the DMR architecture, this TMR architecture 

also supports notifying whether or not a fault has occurred in 

the column. This group of three LUTs can either function as 

three 6-input functions like in the original architecture, or two 

5-input functions with TMR.  

 
Figure 12: Triple Modular Redundancy LUT architecture 

 

To compute the area overhead of such a design, the authors 

synthesized the ITC’99 circuits on a Virtex-5 FPGA with both 

no TMR and with TMR applied using 6-LUTs. They observed 

that the smallest circuits (b01, b02, and b06) had the largest 

overhead when TMR was applied as seen in Table 1. 

 

 
Table 1: LUT overhead for ITC’99 circuits 
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Since there is no family of FPGAs with 5-LUTs the authors 

synthesized these benchmarks for a Virtex-4 which uses 4-

LUTs. They then used Xilinx tools to implement the same 

netlist onto a Virtex-5 using an option that can limit the 

number of inputs to each LUT for a 4-input, 5-input, and 6-

input LUT. The outcome can be seen in Table 2. Moving to 

higher input LUTs decreases the amount of LUTs needed. 

 

 
Table 2: 4-input, 5-input, and 6-input LUT count 

 

 Using this new architecture, DMR can be added to a circuit 

with only 17.5% area overhead, and TMR can be added with 

only 76.25% area overhead (1.5 x 1.175 = 1.7625) with 

respect to using 5-LUTs over 6-LUTs. This overhead is greatly 

reduced compared to the 100% and 242% overhead needed to 

use DMR and TMR on a circuit, respectively. This new 

architecture however only applies to handling faults in the 

LUTs and not with the interconnection between them. 

 

B. Insights 

This architectural approach exploits the LUT structure of 

the Virtex-5 family of FPGAs to make it more efficient to use 

redundancy. The DMR architectural change is an extremely 

simple one that Xilinx could easily implement in their 

products. Adding the XOR gate into the 6-LUT eliminates the 

need of using another block just to compare the outputs of two 

LUTs. This has the effect of decreasing the latency and area 

required to implement DMR. Also, this architecture not only 

allows for the detection of any discrepancy, it also is able to 

isolate the location of the fault to a column. This can greatly 

benefit many online fault detection and handling methods that 

use redundancy by notifying where the fault has occurred on 

the column granularity.  

Partial reconfiguration can take place on the faulty column 

instead of a larger area such as a module. Allowing the 

isolation of a fault to a column will also speed up the partial 

reconfiguration because the bitstream only has to be as large as 

that column. This results in saved power as the reconfiguration 

time will now be much less.  

Scrubbing [9] can be more efficient as it only will need to 

scrub a column that has a LUT that shows discrepant behavior. 

CRR [4] can also benefit from this architecture as a 

discrepancy checker will not be necessary but can still be used 

as an extra line of defense. STARs [5] can greatly benefit from 

this by only running a STAR on the column that a fault was 

detected in. This will greatly improve the detection latency of 

this method. It can also employ the DMR architecture in the 

BISTER to simplify it. RARS [6] can also exploit this 

architectural change and further reduce power by not needing 

to have a discrepancy sensor while it is running in duplex 

mode. 

The TMR architecture is more complicated to implement as 

it requires a lot more logic and control. The shared LUT will 

have to be changed to allow two sets of inputs and the other 

two will have to be altered to include the voting circuitry. One 

way to implement the shared 6-LUT is by allowing each 5-

LUT to have their own inputs. This has the effect of increasing 

the amount of wires on the fabric and interconnect, but the 

complexity of implementation is simple. The other method is 

by using multiplexors to select which 5-inputs to use as seen in 

Figure 13. This leaves the interconnect unchanged but 

complicates the slice (the set of 3 6-LUTs) by increasing its 

area and adding latency to that LUT. If these obstacles can be 

easily overcome, then the TMR architecture may be viable as 

it will reduce the area cost of implementing TMR while being 

able to mask faults. 

 

 
Figure 13: TMR “slice” using multiplexors 

 

Overall, the architectural change to allow DMR, while 

minimal, will facilitate many different fault handling methods 

and should be straightforward to port existing 4-LUT based 

approaches to use this method. Furthermore, if the TMR 

architecture is realized, Xilinx’s TMRTool [12] could use it 

facilitate the implementation for the user. 
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VII. MASTER-SLAVE TMR INSPIRED TECHNIQUE FOR FAULT 

TOLERANCE 

A. Overview 

Lahrach et al. propose a novel technique that can tolerate 

multiple faults in [11]. Both single and double faults are 

covered with low overhead. This architecture consists of two 

types of CLBs: CLB-M and CLB-S. A Master-Slave Unit 

(MSU) consists of these two types of CLBs. When a fault 

occurs on a CLB-S, partial reconfiguration takes place to 

reconfigure one of the CLBs in the CLB-M to contain this 

function. 

This technique does not detect or diagnose faults and it 

requires that some other method take these steps before the 

Master-Slave Technique (MST) takes place. A MSU is 

composed of a CLB-M surrounded by two, three, or four CLB-

Ss. A CLB-M contains three CLBs, a voting element, and two 

switch blocks. This is essentially a block that is initially set up 

to work in a TMR configuration but will later sacrifice its 

redundancy to deal with faults. A CLB-S is a single CLB that 

when is deemed faulty, can be partially reconfigured on the 

CLB-M. In their approach, the routing between MSUs is fixed, 

but the routing within the MSUs can be altered to handle 

faults. Figure 14 outlines the layout of the CLB-Ms and CLB-

Ss on an FPGA. Each CLB-M is surrounded by either three or 

four CLB-Ss. Figure 15 shows the organization of an MSU. 

When a fault is located in a CLB-S, a new configuration is 

loaded that does not use that CLB-S. Instead, it will use one of 

the redundant CLBs in the CLB-M. 

 

 
Figure 14: CLB-M (M) and CLB-S (S) organization 

 

 
Figure 15: Master-Slave Unit 

 

The authors state that there are three main benefits of using 

this approach: low overhead, runtime management, and 

complete availability. For a 104 x 80 FPGA they claim that the 

system reaches maximum reliability much sooner than other 

redundant methods. These results can be seen in Figure 16. 

 

 
Figure 16: Reliability of different methods for a 104 x 80 

FPGA 

 

B. Insights 

This approach, while preliminary and lacking fault detection 

and isolation, is a novel one that can be extended upon. One 

can use this technique to harden critical points in the circuit 

that may require TMR while others do not. In a sense, this is a 

form of partial TMR [13] that can adapt and sacrifice 

redundancy for faults detected in other blocks. Like other 

methods, it also relies heavily on partial reconfiguration to 

only program the portion of the MSU that is needed. It also 

requires the ability to program the switch blocks (SBs) 

effectively so that when a CLB-S is moved onto a CLB-M, the 

right routing is implemented.  

This method can also benefit from the proposed architecture 

overviewed in Section VI. The CLB-M can use the TMR 

approach while the CLB-S can use the DMR approach. When 
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a CLB-S is detected as faulty and gets partially reconfigured to 

the CLB-M then it no longer can use the TMR approach and it 

will leave one CLB unprotected by any form of fault detection.  

 

VIII. CONCLUSION 

Several architectural and high-level approaches were 

discussed that leverage nMR for fault tolerance, handling, and 

isolation. Vigander used a triplex voting scheme with 

imperfect individuals. DeMara et al. extended CED to have 

two individuals compete with one another in his Competative 

Runtime Reconfiguration approach. Abramovici et al. used 

CED within the BISTERs in his STARs approach to detect 

which pair of blocks were faulty. Al-Haddad et al. allowed for 

a dynamic change in the level of redundancy in his 

Reconfigurable Adaptive Redundancy System (RARS). 

Kyriakoulakos et al. proposed a new architecture for both fine 

grain DMR and TMR that significantly reduces the area of 

both methods. Lahrach et al. introduced a Master-Slave TMR 

technique that allows for a master CLB to sacrifice redundancy 

in order to maintain system reliability. Table 3 summarizes the 

overhead all these approaches. Table 4 summarizes the 

sustainability of all these approaches. These tables are based 

on the metrics outlined in [2]. 

 

Table 3: Overhead of discussed approaches 

 

Approach Fault Exploitation Recovery Granularity Fault Capacity 

Basic TMR No Variable Three configurations 

Vigander Yes FPGA Three configurations 

CRR Yes Variable Two configurations 

STARs Yes LUT One H-STAR & One V-STAR 

RARS Yes Variable Variable 

DMR Architecture No LUT One LUT 

TMR Architecture No LUT Three LUTs 

Master-Slave No CLB Five CLBs 

Table 4: Sustainability of discussed approaches 
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