
Pipelining of Fuzzy ARTMAP without
Matchtracking: Correctness, Performance

Bound, and Beowulf Evaluation
José Castro

Dep. of Computer Engineering
Technological Institute of Costa Rica

Cartago, Costa Rica
jcastro@itcr.ac.cr

Jimmy Secretan
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816

jsecreta@pegasus.cc.ucf.edu

Michael Georgiopoulos
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816

michaelg@mail.ucf.edu

Ronald DeMara
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816

demara@mail.cc.ucf.edu

Georgios Anagnostopoulos
Dep. of Electrical and
Computer Engineering

Florida Institute of Technology
Melbourne, FL 32901

georgio@fit.edu

Avelino Gonzalez
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816–2786

gonzalez@pegasus.cc.ucf.edu

Reprint requests to: Michael Georgiopoulos, Electrical and Computer Engineering Department,
University of Central Florida, 4000 Central Florida Blvd. Engineering Building 1, Office 407, Orlando,
Florida, 32816

Running title: Pipelining of FS-FAM without Matchtracking

ACKNOWLEDGMENT

The authors would like to thank the Computer Research Center of the Technological Institute of Costa
Rica, the Institute of Simulation and Training (IST) and the Link Foundation Fellowship program for
partially funding this project. This work was also supported in part by the National Science Foundation
under grants # CRCD:0203446 and # CCLI:0341601.

1

Abstract

Fuzzy ARTMAP neural networks have been proven to be good classifiers on a variety of classification

problems. However, the time that it takes Fuzzy ARTMAP to converge to a solution increases rapidly as

the number of patterns used for training increases. In this paper we examine the time that it takes Fuzzy

ARTMAP to converge to a solution and we propose a coarse grain parallelization technique, based on a

pipeline approach, to speed-up the training process. In particular, we have parallelized Fuzzy ARTMAP,

without the match-tracking mechanism. We provide a series of theorems and associated proofs that show

the characteristics of Fuzzy ARTMAP’s, without matchtracking, parallel implementation. Results run on

a BEOWULF cluster with three large databases show linear speedup in the number of processors used

in the pipeline. The databases used for our experiments are the Forrest Covertype database from the UCI

Machine Learning repository and two artificial databases, where the data generated were 16-dimensional

Gaussianly distributed data belonging to two distinct classes, with different amounts of overlap (5 % and

15 %).

keywords: Fuzzy ARTMAP, Data Mining, BEOWULF cluster, Pipelining, Network Partitioning.

2

I. INTRODUCTION

Neural Networks have been used extensively and successfully to tackle a wide variety of problems. As

computing capacity and electronic databases grow, there is an increasing need to process considerably

larger databases. In this context, the algorithms of choice tend to be ad–hoc algorithms (Agrawal &

Srikant, 1994) or tree based algorithms such as CART (King, Feng, & Shutherland, 1995) and C4.5

(Quinlan, 1993). Variations of these tree learning algorithms, such as SPRINT (Shafer, et al., (Shafer,

Agrawal, & Mehta, 1996)) and SLIQ (Mehta, et al., (Mehta, Agrawal, & Rissanen, 1996)) have been

successfully adapted to handle very large data sets.

Neural network algorithms can have a prohibitively slow convergence to a solution, especially when

they are trained on large databases. Even one of the fastest (in terms of training speed) neural network

algorithms, the Fuzzy ARTMAP algorithm ((Carpenter, Grossberg, & Reynolds, 1991) and (Carpenter,

Grossberg, Markuzon, Reynolds, & Rosen, 1992)), and its faster variations ((Kasuba, 1993), (Taghi,

Baghmisheh, & Pavesic, 2003)) tend to converge slowly to a solution as the size of the network increases.

One obvious way to address the problem of slow convergence to a solution is by the use of paralleliza-

tion. Extensive research has been done on the properties of parallelization of feed–forward multi–layer

perceptrons (Mangasarian & Solodov, 1994) (Torresen & Tomita, 1998) (Torresen, Nakashima, Tomita,

& Landsverk, 1995). This is probably due to the popularity of this neural network architecture, and also

because the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), used to train these type

of networks, can be characterized mathematically by matrix and vector multiplications, mathematical

structures that have been parallelized with extensive success.

Regarding the parallelization of ART neural networks it is worth mentioning the work by Manolakos

3

(Manolakos, 1998) who has implemented the ART1 neural network (Carpenter et al., 1991) on a ring

of processors. To accomplish this Manolakos divides the communication in two bidirectional rings, one

for the F1 layer of ART1 and another for the F2 layer of ART1. Learning examples are pipelined

through the ring to optimize network utilization. Experimental results of Manolakos’ work indicate close

to linear speed-up as a function of the number of processors. This approach is efficient for ring networks

and it is an open question of whether it can be extended for Fuzzy ARTMAP. Another parallelization

approach that has been used with ART and other types of neural networks is the systems integration

approach where the neural network is not implemented on a network of computers but on parallel

hardware. Zhang (Zhang, 1998) shows how a fuzzy competitive neural network similar to ARTMAP can

be implemented using a systolic array. Asanović (Asanović et al., 1998) uses a special purpose parallel

vector processor SPERT-II to implement back-propagation and Kohonen neural networks. In (Malkani

& Vassiliadis, 1995), a parallel implementation of the Fuzzy-ARTMAP algorithm, similar to the one

investigated here, is presented. However, in this paper, a hypercube topology is utilized for transferring

data to all of the nodes involved in the computations. While it is trivial to map the hypercube to the

more flexible star architecture, as found in a Beowulf, this would likely come with a performance hit.

Each of the processors maintains a subset of the architecture’s templates, and finds the template with

the maximum match in its local collection. Finally, in its d-dimensional hypercube, it finds the global

maximum through d different synchronization operations. This can limit the scalability of this approach.

Mining of large databases is an issue that has been addressed by many researchers, such as Metha

(Mehta et al., 1996), where SLIQ, a decision-tree based algorithm that combines techniques of tree-

pruning and sorting to efficiently manage large datasets, is proposed. Furthermore, Shafer (Shafer et

4

al., 1996), proposed SPRINT, another decision-tree based algorithm, that removed memory restrictions

imposed by SLIQ and is amenable to parallelization. The Fuzzy ARTMAP neural network has many

desirable characteristics, such as the ability to solve any classification problem, the capability to learn

from data in an on-line mode, the advantage of providing interpretations for the answers that it produces,

the capacity to expand its size as the problem requires it, the ability to recognize novel inputs, among

others. Due to all of its above properties it is worth investigating Fuzzy ARTMAP’s parallelization in an

effort to improve its convergence speed to a solution when it is trained with large datasets.

In particular, in this paper our focus is to improve the convergence speed of ART-like neural networks

through a parallelization strategy applicable for a pipeline structure (Beowulf cluster of workstations). In

order to connect our work with previous work on Fuzzy ARTMAP it is worth emphasizing again the work

by Kasuba (Kasuba, 1993), where a simplified Fuzzy ARTMAP structure (simplified Fuzzy ARTMAP)

is introduced that is simpler and faster than the original Fuzzy ARTMAP structure, and functionally

equivalent with Fuzzy ARTMAP for classification problems. Furthermore, Taghi, et al., in (Taghi et al.,

2003), describe variants of simplified Fuzzy ARTMAP, called Fast Simplified Fuzzy ARTMAP, that reduce

some of the redundancies of Simplified Fuzzy ARTMAP and speed up its convergence to a solution, even

further. One of the Fuzzy ARTMAP fast algorithmic variants presented in (Taghi et al., 2003) is called,

SFAM2.0 and it has the same functionality as Fuzzy ARTMAP (Carpenter et al., 1992) for classification

problems. From now we will refer to this variant of Fuzzy ARTMAP as FS-FAM (Fast Simplified Fuzzy

ARTMAP). The focus of our paper is FS-FAM. Note that FS-FAM is faster than Fuzzy ARTMAP

because it eliminated some of the redundancies of the original Fuzzy ARTMAP that are not necessary

when classification problems are considered. Since the functionality of Fuzzy ARTMAP (Carpenter et al.,

5

1992) and FS-FAM (Taghi et al., 2003) are the same for classification problems we will occasionally refer

to FS-FAM as Fuzzy ARTMAP. We chose to demonstrate the effectiveness of our proposed parallelization

strategy on FS-FAM since, if we demonstrate its effectiveness for Fuzzy ARTMAP, its extension to other

ART structures can be accomplished without a lot of effort. This is due to the fact that the other ART

structures share a lot of similarities with Fuzzy ARTMAP, and as a result, the advantages of the proposed

parallelization approach can be readily extended to other ART variants (for instance Gaussian ARTMAP

(Williamson, 1996), Ellipsoidal ARTMAP (Anagnostopoulos & Georgiopoulos, 2001), among others). It

is also worth noting that this paper addresses the parallelization of a variant of Fuzzy ARTMAP, called

no-match tracking Fuzzy ARTMAP, that was introduced by Anagnostopoulos, et al., (Anagnostopoulos,

2000). In (Anagnostopoulos, 2000) the match tracking mechanism of Fuzzy ARTMAP is disabled. This

variant of Fuzzy ARTMAP was referred to as null matchtracking by Anagnostopoulos (Anagnostopoulos

& Georgiopoulos, 2001), but in this paper we are referring to it as no-matchtracking Fuzzy ARTMAP.

The reason that we focus on the no match-tracking Fuzzy ARTMAP is because it gives us the opportunity

to first parallelize the competitive aspect of Fuzzy ARTMAP, while ignoring the complications of the

feedback mechanism that matchtracking introduces. The extension of our work to Fuzzy ARTMAP is a

topic of further research. Throughout the paper we will be referring to the Fuzzy ARTMAP network that

we are focusing on as no-matchtracking FS-FAM, no-match tracking Fuzzy ARTMAP, and occasionally,

simply FS-FAM or Fuzzy ARTMAP.

This paper is organized as follows: Section II presents the FS-FAM architecture. Section III continues

with the pseudo-code of the FS-FAM algorithm that is the starting point of FS-FAM’s parallelization.

Sections II and III, in this paper, are background information on Fuzzy ARTMAP and can be omitted by

6

the reader who is familiar with the Fuzzy ARTMAP architecture and its training. Section IV focuses on

the computational complexity of FS-FAM, and serves as a necessary motivation for the parallelization

approach introduced in this paper. Section V is a very brief reference to the no-match tracking FS-FAM,

introduced by Anagnostopoulos (see (Anagnostopoulos, 2000)), which is the specific FS-FAM variant

that we have parallelized. Section VI proceeds with a discussion of the Beowulf cluster as our platform

of choice. Section VII continues with the pseudocode of the parallel no-match tracking FS-FAM and

associated discussion to understand the important aspects of this implementation. Section VIII focuses

on theoretical results related to the proposed parallelization approach. In particular, we prove there that

the parallel no-matchtracking FS-FAM is equivalent to the sequential no-matchtracking FS-FAM, and

that the processors in the parallel implementation will be reasonably balanced by considering a worst

case scenario. Furthermore, section IX proceeds with experiments and results comparing the performance

and speedup of the parallel no-match tracking FS-FAM on three databases (one of them real and two

artificial). The article concludes with section X, where a summarization of our experiences, from the

conducted work, and future research are delineated.

II. THE FS-FAM NEURAL NETWORK ARCHITECTURE

The Fuzzy ARTMAP neural network and its associated architecture was introduced by Carpenter and

Grossberg in their seminal paper (Carpenter et al., 1992). Since its introduction, a number of Fuzzy

ARTMAP variations and associated successful applications of this ART family of neural networks have

appeared in the literature (for instance, ARTEMAP (Carpenter & Ross, 1995), ARTMAP-IC (Carpenter &

Markuzon, 1998), Ellipsoid-ART/ARTMAP (Anagnostopoulos & Georgiopoulos, 2001), Fuzzy Min-Max

7

(Simpson, 1992), LAPART2 (Caudell & Healy, 1999), and σ-FLNMAP (Petridis, Kaburlasos, Fragkou, &

Kehagais, 2001), to mention only a few. For the purposes of the discussion that follows in this section it is

worth mentioning again the work by Kasuba (Kasuba, 1993) and Taghi, Baghmisheh, and Pavesic (Taghi

et al., 2003). In his paper, Kasuba introduces a simpler Fuzzy ARTMAP architecture, called Simplified

Fuzzy ARTMAP. Kasuba’s simpler Fuzzy ARTMAP architecture is valid only for classification problems.

Taghi, et al., (Taghi et al., 2003) have eliminated some of the unnecessary computations involved in

Kasuba’s Simplified Fuzzy ARTMAP, and introduced two faster variants of Simplified Fuzzy ARTMAP,

called SFAM2.0 and SFAM2.1. Kasuba’s simpler Fuzzy ARTMAP variants were denoted as SFAM 1.0

and 1.1 in Taghi’s paper. In order to connect the version of Fuzzy ARTMAP, implemented in this paper,

with Carpenter’s and Grossberg’s Fuzzy ARTMAP, Kasuba’s simplified Fuzzy ARTMAP (SFAM1.0) and

Taghi’s simplified Fuzzy ARTMAP versions, such as SFAM 1.1, SFAM2.0 and SFAM2.1, it is worth

mentioning that in our paper we have implemented the Fuzzy ARTMAP version, called SFAM2.0 in

Taghi’s paper. As, we have mentioned in the introduction, we refer to this Fuzzy ARTMAP variant

as FS-FAM. Once more, FS-FAM is algorithmically equivalent with Fuzzy ARTMAP for classification

problems. Classification problems are the only focus in our paper.

The block diagram of FS-FAM is shown in figure 1. Notice that this block diagram is different than

the block diagram of Fuzzy ARTMAP mentioned in (Carpenter et al., 1991), but very similar to the block

diagram depicted in Kasuba’s work (see (Kasuba, 1993)). The Fuzzy ARTMAP architecture of the block

diagram of Figure 1 has three major layers. The input layer (F a
1) where the input patterns (designated

by I) are presented, the category representation layer (F a
2), where compressed representations of these

input patterns are formed (designated as w
a
j , and called templates), and the output layer (F b

2) that holds

8

the labels of the categories formed in the category representation layer. Another layer, shown in Figure 1

and designated by F a
0 is a pre-processing layer and its functionality is to pre-process the input patterns,

prior to their presentation to FS-FAM. This pre-processing operation (called complementary coding is

described in more detail below).

Fuzzy ARTMAP can operate in two distinct phases: the training phase and the performance phase.

The training phase of Fuzzy ARTMAP can be described as follows: Given a set of PT inputs and

associated labels pairs,
{
(I1, label(I1)), . . . , (Ir, label(Ir)), . . . , (IPT , label(IPT))

}
, we want to train

Fuzzy ARTMAP to map every input pattern of the training set to its corresponding label. To achieve the

aforementioned goal we present the training set to the Fuzzy ARTMAP architecture repeatedly. That is,

we present I
1 to F a

1 , label(I1) to F b
2 , I

2 to F a
1 , label(I2) to F b

2 , and finally I
PT to F a

1 , and label(IPT) to

F b
2 . We present the training set to Fuzzy ARTMAP as many times as it is necessary for Fuzzy ARTMAP

to correctly classify all these input patterns. The task is considered accomplished (i.e., the learning is

complete) when the weights do not change during a training set presentation. The aforementioned training

scenario is called off-line learning. There is another training scenario, the one considered in this paper,

that is called on-line training, where each one of the input/label pairs are presented to Fuzzy ARTMAP

only once. The performance phase of Fuzzy ARTMAP works as follows: Given a set of PS input patterns,

such as Ĩ
1, Ĩ2, . . . , ĨPS , we want to find the Fuzzy ARTMAP output (label) produced when each one of

the aforementioned test patterns is presented at its F a
1 layer. In order to achieve the aforementioned goal

we present the test set to the trained Fuzzy ARTMAP architecture and we observe the network’s output.

The training process in FS-FAM is succinctly described in Taghi’s et al., paper (Taghi et al., 2003).

We repeat it here to give the reader a good, well-explained overview of the operations involved in its

9

training phase.

1) Find the nearest category in the category representation layer of Fuzzy ARTMAP that ”resonates”

with the input pattern.

2) If the labels of the chosen category and the input pattern match, update the chosen category to be

closer to the input pattern.

3) Otherwise, reset the winner, temporarily increase the resonance threshold (called vigilance param-

eter), and try the next winner.

4) If the winner is uncommitted, create a new category (assign the representative of the category to

be equal to the input pattern, and designate the label of the new category to be equal to the label

of the input pattern).

The nearest category to an input pattern I
r presented to FS-FAM is determined by finding the category

that maximizes the function:

T a
j (Ir,wa

j , α) =
|Ir ∧w

a
j |

α + |wa
j |

(1)

The above function is called the bottom-up input (or choice function) pertaining to the F a
2 node j

with category representation (template) equal to the vector w
a
j , due to the presentation of input pattern

I
r. This function obviously depends on an FS-FAM network parameter α, called choice parameter, that

assumes values in the interval (0,∞). In most simulations of Fuzzy ARTMAP the useful range of α is

the interval (0, 10]. Larger values of α create more category nodes in the category representation layer

of FS-FAM.

10

The resonance of a category is determined by examining if the function, called vigilance ratio, and

defined below

ρ(Ir,wa
j) =

|Ir ∧w
a
j |

|Ir| (2)

satisfies the following condition:

ρ(Ir,wa
j) ≥ ρa (3)

If the above equation is satisfied we say that resonance is achieved. The parameter ρa appearing in the

above equation is called vigilance parameter and assumes values in the interval [0, 1]. As the vigilance

parameter increases, more category nodes are created in the category representation layer (F a
2) of Fuzzy

ARTMAP. If the label of the input pattern (Ir) is the same as the label of the resonating category, then

the category’s template (wa
j) is updated to incorporate the features of this new input pattern (Ir). The

update of a category’s template (wa
j) is performed as depicted below:

w
a
j = w

a
j ∧ I

r (4)

The update of templates, illustrated by the above equation, has been called fast-learning in Fuzzy

ARTMAP. Our paper is concerned only with the fast learning Fuzzy ARTMAP.

If the category j is chosen as the winner and it resonates, but the label of this category w
a
j is different

than the label of the input pattern I
r, then this category is reset and the vigilance parameter ρa is increased

11

to the level:

|Ir ∧w
a
j |

|Ir| + ε (5)

In the above equation ε takes small values. The parameter ε assumes very small values. Increasing the

value of vigilance barely above the level of vigilance ratio of the category that is reset guarantees that

after this input/label-of-input pair is learned by FS-FAM, immediate presentation of this input to FS-FAM

will result in correct recognition of its label by Fuzzy ARTMAP. It is difficult to correctly set the value

of ε so that you can guarantee that after category resets no legitimate categories are missed by FS-FAM.

Nevertheless, in practice, typical values of the parameter ε are taken from the interval [0.00001, 0.001].

In our experiments we took ε = 0.0001. After the reset of category j, other categories are searched that

maximize the bottom-up input and they satisfy the vigilance (resonate). This process continues until a

category is found that maximizes the bottom-up input, satisfies the vigilance and has the same label as the

input pattern presented to FS-FAM. Once this happens, update of the category’s template as indicated by

equation (4) ensues. If through this search process an uncommitted category (an uncommitted category

is a category that has not encoded any input pattern before) is chosen, it will pass the vigilance, its

label will be set to be equal to the label of the presented input pattern, and the update of the category’s

template will create a template that is equal to the presented input pattern.

In all of the above equations (equations (1)-(5)) there is specific operand involved, called fuzzy min

operand, and designated by the symbol ∧. Actually, the fuzzy min operation of two vectors x, and y,

designated as x ∧ y, is a vector whose components are equal to the minimum of components of x and

12

y. Another specific operand involved in these equations is designated by the symbol | · |. In particular,

|x| is the size of a vector x and is defined to be the sum of its components.

It is worth mentioning that an input pattern I presented at the input layer (F a
1) of FS-FAM has the

following form:

I = (a,ac) = (a1, a2, . . . , aMa
, ac

1, a
c
2, . . . , a

c
Ma

) (6)

where,

ac
i = 1− ai; ∀i ∈ {1, 2, . . . , Ma} (7)

The assumption here is that the input vector a is such that each one of its components lies in the interval

[0, 1]. Any input pattern can be, through appropriate normalization, be represented by the input vector

a, where Ma stands for the dimensionality of this input pattern. The above operation that creates I from

a is called complementary coding and it is required for the successful operation of Fuzzy ARTMAP.

The number of nodes (templates) created in the F a
2 layer of FS-FAM (category representation layer)

is designated by Na, and it is not a parameter that needs to be defined by the user before training

commences; Na is a parameter, whose value is dictated by the needs of the problem that FS-FAM

is trained with and the setting of the choice parameter (α) and baseline vigilance parameter ρ̄a. The

baseline vigilance parameter is a parameter set by the user as a value in the interval [0, 1]. The vigilance

parameter ρa, mentioned earlier (see equation (3)), is related with the baseline vigilance ρ̄a since at the

beginning of training with a new input/label pattern pair, the vigilance parameter is set equal to the

13

baseline vigilance parameter; during training with this input/label pattern pair the vigilance parameter

could be raised above the baseline vigilance parameter (see equation (5)), only to be reset back to the

baseline vigilance parameter value once a new input/label pattern pair appears.

Prior to initiating the training phase of FS-FAM the user has to set the values for the choice parameter

α (chosen as a value in the interval [0, 10]), baseline vigilance parameter value ρ̄a (chosen as a value in

the interval [0, 1]).

In the performance phase of FS-FAM, a test input is presented to FS-FAM and the category node in

F a
2 of FS-FAM that has the maximum bottom-up input is chosen. The label of the chosen F a

2 category is

the label that FS-FAM predicts for this test input. By knowing the correct labels of test inputs belonging

to a test set allows us, in this manner, to calculate the classification error of FS-FAM for this test set.

III. THE FS-FAM PSEUDO-CODE

The FS-FAM algorithm (off-line training phase) is shown in figure 2. The FS-FAM algorithm (on-line

training phase) is shown in figure 3. Notice that in the off-line training phase of the network the learning

process (lines 4 through 30) of the algorithm are performed until no more network weight changes are

made or until the number of iterations reached a maximum number (designated as epochs). In the on-line

training phase of the network the learning process (lines 3-24) passes through the data once. In this

paper we are primarily concerned with the on-line training phase of FS-FAM. Notice though that by

parallelizing the “on-line training” FS-FAM, in essence we are also parallelizing its “off-line training”

FS-FAM. This is because the “off-line training FS-FAM”, is an “on-line training FS-FAM”, where after an

on-line training cycle is completed, another cycle starts with the same set of training input patterns/label

14

pairs; these on-line training FS-FAM cycles are repeated for as long as it is necessary for the FS-FAM

network to learn the required mapping.

It is worth noting that in figures 2, 3 we enter the match-tracking operation if the label of the input

pattern I
r is different than the label of the template of the node jmax (i.e., template w

a
jmax

). In this paper

we are concerned only with FS-FAM where the match-tracking mechanism is disengaged (no-match

tracking FS-FAM).

The performance phase of the algorithm is much simpler. In the performance phase we return the label

associated with the template that wins the competition for the input pattern. It is common in this phase to

set the parameter ρ̄a equal to 0 to assure that the network will produce a predicted label (classification)

for every input pattern (albeit sometimes erroneous). The FS-FAM performance phase is shown in figure

4.

IV. FS-FAM COMPLEXITY ANALYSIS

To analyze the time complexity of the FS-FAM algorithm we will only concentrate on the online

version of the algorithm, since this is our major focus in this paper. Our approach requires making a few

assumptions about FS-FAM’s size and match-tracking cycles. The time-complexity analysis of FS-FAM

will motivate the pipelined implementation of FS-FAM.

We can see from the pseudocode (2, 3) that the FS-FAM algorithm tests every input pattern I in the

training set against each template w
a
j at least once. Let us call Γ the average number of times that the

inner repeat loop (lines 5 to 19 of the online training phase algorithm of figure 3) is executed for each

input pattern, and christen it the matchtracking factor. Then the number of times that a given input pattern

15

I passes through the code will be:

Time(I) = O(Γ× |templates|) (8)

Also, under the unrealistic condition that the number of templates does not change during training it

is easy to see that the time complexity of the algorithm is:

Time(FS–FAM) = O(Γ× PT× |templates|) (9)

Usually for a specific database the FS-FAM algorithm achieves a certain compression ratio. This means

that the number of templates created is actually a fraction of the number of patterns PT in the training

set. Let us call this compression ratio κ so that:

|templates| = κPT (10)

and

O(FS–FAM) = O (ΓPTκPT) = O(κΓPT2) (11)

Thus, the on-line complexity of FS-FAM is proportional to the square of the number of input patterns

in the training set. Or, viewed differently, it is proportional to the product of the number of input patterns

patterns in the training set and the number of templates created during the training phase of FS-FAM.

16

V. ”NO MATCHTRACKING” FS-FAM

A simplification that can be applied to the FS-FAM algorithm is the elimination of the matchtracking

process. This modification was originally proposed by Anagnostopoulos (Anagnostopoulos, 2003) and it

was found there that it actually improves the classification performance of FS-FAM on some databases.

Our interest in using this FS-FAM variant lies in the fact that it simplifies the FS-FAM algorithm and

allows one to concentrate on the parallelization of the competition loop in Fuzzy ARTMAP. The pseudo-

code of Anagnostopoulos’ no-matchtracking, on-line training FS-FAM phase is shown in figure 5.

VI. THE BEOWULF PARALLEL PLATFORM

The Beowulf cluster of workstations is a network of computers where processes exchange information

through the network’s communications hardware. In our case, it consisted of 96 AMD nodes, each with

dual AthlonMP 1500+ processors and 512MB of RAM. The nodes are connected through a Fast Ethernet

network.

In general, the Beowulf cluster configuration is a parallel platform that has a high latency. This implies

that to achieve optimum performance communication packets must be of large size and of small number.

Parallelization techniques in this platform are radically different from shared memory or vector machines.

Also communication between nodes in the cluster is done by consent from all the parties involved; that

is all communicating entities must agree to send/receive information in compatible formats. This has an

impact on the design of the algorithm because receiving entities must know before-hand that they are

going to receive information in order to be prepared to accept it. There is no central coordinating entity

and protocols must be based on listening/polling schemes and must dispense of any interrupt driven

17

communication.

We have two choices for parallelization design. We can request from each node in the network to

process a different input pattern. Or we can request that each node processes the same input patterns

at the same time. If we want the parallel implementation to work equivalently to the sequential one the

first design will lead to a pipelined approach where each node computes a stage in the pipeline. The

second approach will lead to a star master/slave topology where all nodes communicate to a gathering

master node. We chose to follow the pipelined approach because in this scenario we are only doing point

to point communication, which is a constant time operation in a Fast Ethernet switched network. The

star approach tends to degrade communication performance as the size of the gather operation increases.

Our design is based on fixed packet size communication through the network. No network bandwidth

would be gained by using variable sized packets since packets are more efficient when they are large.

Furthermore, to find out the size of a packet a receiving process would have to incur an extra (and

expensive) communication.

To find an appropriate packet size for our experiments, we ran our system on 512,000 patterns of

both the Covertype database and the Gaussian 5% database. Packet performance for the Gaussian 15%

database was not evaluated, because classification overlap does not affect packet transmission time, and

the 15% Gaussian database is on all other respects identical to the Gaussian 5% database. Figures 6 and

7 illustrate the results. For the Covertype database, any packet size 64 and above performed acceptably.

For the Gaussian database, any packet size of 128 and above was sufficient. We translate this into bytes

to give a guideline for the packet size of future database runs.

For the Covertype database:

18

64× 55× 4 = (14080)Bytes (12)

For the Gaussian 5% database:

128× 17× 4 = (8704)Bytes (13)

These numbers will likely be dependent on characteristics of the Beowulf cluster, such as CPU power,

network bandwidth and network latency. However, a good rule of thumb for similar clusters will be a

packet size greater than or equal to 10Kbytes.

VII. PARALLEL, NO MATCHTRACKING, FS-FAM IMPLEMENTATION

Anagnostopoulos’ FS-FAM variant is particularly amenable to a production–line style pipeline parallel

implementation since patterns can be evenly distributed amongst the nodes in the pipeline. A depiction

of the pipeline is shown in figure 8. The elimination of matchtracking makes the learning of a pattern

a one–pass over the pipeline procedure and different patterns can be processed on the different pipeline

steps to achieve optimum parallelization. For the understanding of the parallel implementation of the

no-matchtracking FS-FAM we need the following definitions:

• n: number of processors in the pipeline.

• k: index of the current processor in the pipeline, k ∈ {0, 1, . . . , n− 1}.

• p: packet size, number of patterns sent downstream; 2p = number of templates sent upstream.

• I
i: input pattern i of current packet in the pipeline. i ∈ {1, 2, . . . , p}.

19

• w
i: current best candidate template for input pattern I

i.

• T i: current maximum activation for input pattern I
i.

• myTemplates: set of templates that belong to the current processor.

• nodes: variable local to the current processor that holds the total number of templates the processor

is aware of (its own plus the templates of the other processors).

• myShare: amount of templates that the current processor should have.

• w
i
k−1: template i coming from the previous processor in the pipeline.

• w
i
k+1: template i coming from the next processor in the pipeline.

• w
i: template i going to the next processor in the pipeline.

• w
i
to(k−1): template i going to previous processor in the pipeline.

• I.class: class label associated with a given input pattern.

• w.class: class label associated with a given template.

• index(w): sequential index assigned to a template.

• newNodesk+1: number of new nodes that were created that processor k +1 communicates upstream

in the pipeline.

• newNodesk: number of new nodes that were created that processor k communicates upstream in the

pipeline.

The exchange of packets between processors is pictorially illustrated in figure 9. In this figure, the

focus is on processor k and the exchange of packets between processor k and its neighboring processors

(i.e., processors k − 1 and k + 1). The parallel implementation of no-match tracking FS-FAM is shown

in Figure 11 and the initialization procedure is shown in figure 10. The pseudocode of PROCESS is the

20

main heart of the parallel algorithm, shown in Figure 11. Each element of the pipeline will execute this

procedure for as long as there are input patterns to be processed. The input parameter k tells the process

which stage of the pipeline it is, where the value k varies from 0 to n − 1. After initializing most of

the values as empty (figure 10) we enter the loop of lines 2 through 35 (Figure 11). This loop continues

execution until there are no more input patterns to process. The first activity of each process is to create

a packet of excess templates to send back (line 12 to 14). Lines 7 to 10 correspond to the information

exchange between contiguous nodes in the pipeline. The functions SEND-NEXT and RECV-NEXT on

lines 7 and 8, respectively, don’t do anything if the process is the last in the pipeline (k = n− 1). The

same is true for the function SEND-PREV when the process is the first in the pipeline (k = 0). On the

other hand, the function RECV-PREV reads input patterns from the input stream if the process is the first

in the pipeline. These fresh patterns will be paired with an uncommitted node (1, 1, · · · , 1) with index∞

as their best representative so far. On all other cases these functions do the obvious information exchange

between contiguous processes in the pipeline. We assume that all communication happens at the same

time and is synchronized. We can achieve this in an MPI environment by doing non–blocking sends and

using an MPI-Waitall to synchronize the receive of information.

On line 30 of Figure 11 we add 2 templates to the template set myTemplates. This is because a new

template was created and the current candidate winner w is not of the correct category and has to be

inserted back into the pool of templates.

The function FIND-WINNER (see figure 12) is also important. This function searches through a set

of templates S to find if there exists a template w
i that is a better choice (using FS-FAM’s criteria) for

representing I than the current best representative w. If it finds one it swaps it with w, leaving w in S

21

and extracting w
i from it. By sending the input patterns downstream in the pipeline coupled with their

current best representative template we guarantee that the templates are not duplicated amongst different

processors and that we do not have multiple–instance consistency issues.

Also when exchanging templates between nodes in the pipeline we have to be careful that patterns that

are sent downstream do not miss the comparison with templates that are being sent upstream. This is the

purpose of lines 12 to 15 (communication with the next one in the pipeline) and lines 18-21 of PROCESS

(see Figure 11). On line 12 we set S to represent the set of templates that have been sent upstream to

node k by node k + 1. We loop through each pattern, template pair (I,w) (lines 13–15) to see if one

of the templates, sent upstream, has a higher activation (bottom-up input) than the ones that were sent

downstream; if this is true then the template will be extracted from S . The net result of this is that S

ends up containing the templates that lost the competition, and therefore the ones that process k should

keep (line 15). The converse process is done on lines 18 to 21. On line 18 we set S to represent the set of

templates that are sent back to the previous node k−1 in the pipeline. On lines 19 to 20 we compare the

pattern, template pairs (Ii
k−1,w

i
k−1) that k− 1 sent upstream in the pipeline with the templates in S that

process k sent downstream in the pipeline. On line 21 we set our current pattern, template pairs to the

winners of this competition. The set S is discarded since it contains the losing templates and therefore

the templates that process k − 1 keeps.

Finally, on line 30 of figure11 we add both the input pattern I
i and the template w

i to the set of

templates. This does the obvious myTemplates update except when the template w
i happens to be the

uncommitted node in which the addition is ignored.

22

Once more, we reiterate that the main loop of the process starts with line 2 and ends with line 35. The

main loop is executed for as long as there are input patterns to process. The first processor that becomes

aware that there are no more input patterns to process is processor 0 (first processor in the pipeline). It

communicates this information to the other processors by sending a (wi, Ii, T i) = (none, none, 0) to the

next processor (see line 36 of figure 11). Lines 37 and 38 of process make sure that the templates that

are sent upstream in the pipeline are not lost after the pool of training input patterns that are processed

is exhausted.

VIII. PROPERTIES OF THE PARALLEL, NO MATCHTRACKING, FS-FAM ALGORITHM

In the sequel we present and prove a series of fourteen (14) theorems. These theorems are distinguished

in two groups. The group of theorems associated with the correctness of the parallel no-matchtracking

FS-FAM, and the group of theorems associated with the performance of the no-match tracking FS-FAM.

For ease of reference Table I lists the theorems and their names dealing with the correctness of the

algorithm, while Table II lists the theorems dealing with the performance of the algorithm.

The major purpose of these theorems is to prove that the parallel no-match tracking FS-FAM (a)

is equivalent to the sequential version of the no-matchtraking FAM, (b) it does not suffer from any

inconsistencies, and (c) it exhibits good performance. Examples of inconsistencies are: a template exists

in more than one places in the pipeline (not possible as theorem 8.1 (non-duplication) proves), or the first

processor in the pipeline is required to send templates upstream (not possible as theorem 8.11 (overflow

impossibility) proves). It is worth mentioning that theorems 8.2 through 8.9 facilitate the demonstration of

the overflow impossibility theorem. The equivalence of the parallel and sequential version of the algorithm

23

Theorem Name
8.1 Non–duplication
8.5 Bundle size sufficiency

8.11 Overflow impossibility
8.13 Partial evaluation correctness

TABLE I
NO–MATCHTRACKING FS-FAM CORRECTNESS THEOREMS

Theorem Name
8.2 Template awareness delay
8.3 Weak upstream migration precondition
8.4 Upstream packet size sufficiency
8.6 Strong upstream migration precondition
8.7 Strong upstream migration postcondition
8.8 Template ownership delay
8.9 Network size lower bound
8.10 Template ownership bound
8.12 Pipeline depth invariance
8.14 Workload balance variance bound

TABLE II
NO–MATCHTRACKING FS-FAM PERFORMANCE THEOREMS

is demonstrated through the partial evaluation correctness theorem (theorem 8.13). Good performance is

dependent on the distribution of templates amongst the processors in the pipeline (workload balance).

An upper bound on the difference between the number of templates that two processors in the pipeline

could own has been established through the pipeline length invariance theorem (theorem 8.12) and it is

equal to p + 1, where p is the packet size. Furthermore, this upper bound is independent of the pipeline

depth n. For instance, if 100,000 templates are present in the pipeline and p = 64, the templates that

any two processors possess cannot differ by more than 65 (where p + 1 = 65).

24

Definition 8.1: A template w
a
j is in transit if the template has been received by the current processor

from the previous processor in the pipeline, and the current processor has not made the decision yet of

whether to send this template to the next processor, previous processor, or keep it. Templates in transit

are stored in the w
i’s array.

Definition 8.2: A template w
a
j is owned by a processor i in the pipeline if it is stored in the myTemplates

array of processor i.

Theorem 8.1: Non–duplication

A template w will either be owned by a single processor, or it will be in transit on a single processor

(i.e. only one copy of the template exists in the system).

Proof: First let us note that templates start their existence in process n− 1 on line 30 of PROCESS.

Here they are immediately added to the templates of process n − 1, so they start belonging to a single

processor.

Also, templates only change location when

1) They are compared with a given input pattern Ir and selected to represent it, in which case they

are deleted from the template list owned by the processor and added to the templates in transit.

2) They are in transit and lose competition to another template, in which case they are removed from

the templates in transit and added to the templates owned by the processor.

3) They are sent upstream or sent downstream as in-transit templates.

The only possible situation where the templates may be in two places at once is in situation 3 when they

are exchanged between processors in the pipeline. This is the only scenario where 2 processors hold a

copy of the same template.

25

So the only possible problem will arise when 2 consecutive processors exchange templates. Now a

template that is sent downstream on line 7 of PROCESS by a process k − 1 is received by process k on

line 10 of PROCESS. Every template w that is sent downstream is tagged along with an input pattern I.

Process k will keep the template in transit if it is the best candidate for input pattern I. To verify this,

process k will compare template w against the templates that process k sent upstream. If a template w
′

that was sent upstream is a better candidate than w for the input pattern I (lines 19–21) then process k

will discard template w and keep template w
′.

Concurrently, process k − 1 will check the pair of template w and input pattern I it sent to process

k and compare them against the templates that it receives from process k. If a template w
′ that was

received from process k is a better candidate than w for input pattern I (lines 12–15) then process k− 1

will keep template w and discard template w
′.

As we can see, these concurrent operations guarantee that a template that was sent downstream or

upstream will not reside in 2 places at the same time. Furthermore, it is guaranteed that this template

will be compared against all the input patterns that flow through the pipeline.

Theorem 8.2: Template awareness delay

The total number of templates that a process k = 0, 1, . . . , n − 1 in the pipeline is aware of is equal

to the number of templates that existed in the system n− k − 1 iterations ago.

Proof: Consider the last process in the pipeline (n − 1). This process knows immediately when a

template is created, and as a result it knows how many templates exist n− 1− k = n− 1− (n− 1) = 0

iterations ago.

The number of templates created per iteration is sent upstream to the previous process in the variable

26

newNodes. This variable is received by process n−2 one iteration after the templates have been created,

by process n − 3 two iterations after the templates have been created, and in general, by process i,

n − 1 − i iterations after the templates have been created. This means that a process k always receives

on the current iteration the value of the variable newNodes that was created n−k− 1 iterations ago, and

this implies that process k is aware of the amount of templates that existed n− k − 1 iterations ago.

Theorem 8.3: Weak upstream migration precondition

A process k in the pipeline sends templates upstream only if on the current iteration:

|myTemplates| > myShare (14)

Proof: It will suffice to say that PROCESS creates the packet of templates to be sent upstream in

lines 4 through 6 of the Process pseudo-code. Looking at line 4 of the Process pseudocode we can see

that templates are packed to be sent upstream only when condition 14 is met.

Theorem 8.4: Upstream packet size sufficiency

No process in the pipeline, except the first one, can have, at any point in time, an excess of templates

greater than 2p.

Proof: By an excess of templates we mean the number of templates over its known fair share.

What we need to prove then, is that it is impossible for a processor in the pipeline to reach a situation

where

|myTemplates| > myShare + 2p (15)

Let us notice that at the beginning of execution there are no templates in transit and that all the processes

have their fair share of templates. In other words they comply with the condition 16

27

|myTemplates| ≤ myShare (16)

Now lets consider the process n−1, the last in the pipeline. If this process complies with the equation

16 and receives p templates from the previous process, it would have a total of at most p + myShare

templates. In the worst case scenario all of the p templates that have been sent are not of the correct

category and will force the creation of another p templates giving a maximum total of 2p + myShare

of templates, where 2p are in transit. At the beginning of the next iteration, the process will pack 2p

templates to be sent upstream to the previous process in the pipeline (assuming its variable myShare does

not increase) and will receive p templates from the previous process. Notice that the p templates extra

that it ended up with are not part of it’s fair share because they are templates in transit. Consequently,

processor’s n− 1 number of templates |myTemplates| did not exceed myShare.

Now consider any other process that is not the last or the first in the pipeline and assume (as it does

when it starts) that it complies with equation 16. This process can receive in the worst case scenario a

total of p templates from the previous process in the pipeline and 2p templates from the next process in

the pipeline. Now the p templates brought from the previous process in the pipeline will continue their

journey to the next process (maybe not the same ones but at least that quantity), so they will not increase

the total number of templates that the process owns. The excess of the 2p templates coming from the

next process over myShare will be packed and sent to the previous process.

Theorem 8.5: Bundle size sufficiency

The excess templates for a process k 6= 0, at any given time, always fits in the packet size 2p to be

28

sent upstream.

Proof: See theorem 8.4.

Theorem 8.6: Strong upstream migration precondition

If a process k ∈ {0, 1, . . . , n− 1} in the pipeline sends templates back, then it is true that:

• 1 iteration ago process k + 1 complied with condition 14 and sent templates back.

• 2 iterations ago process k + 2 complied with condition 14 and sent templates back.

...

• n− 1− k iterations ago process n− 1 complied with condition 14 and sent templates back.

Proof: If process k sends back templates then by theorem 8.3 it complies with condition 14. But

by the reasoning in theorem 8.4 all excess templates fit in the packet size so they are sent upstream on

the next iteration that they are received. This means that the excess templates were received from process

k +1 one iteration ago. Similarly, if process k +1 sent templates back one iteration ago then by theorem

8.3 process k + 1 must have complied with condition 14 two iterations ago, and this can only happen

if 2 iterations ago process k + 2 sent templates back. By repeating this argument we can state that, in

general, process k + i complied with condition 14 and sent templates back i iterations ago.

Theorem 8.7: Strong upstream migration postcondition

If a process k ∈ {0, 1, . . . , n− 1} in the pipeline sends templates back, then it is true that:

1) • at this iteration process k keeps myShare templates.

• 1 iteration ago process k + 1 kept myShare templates.

29

• 2 iterations ago process k + 2 kept myShare templates.

...

• n− 1− k iterations ago process n− 1 kept myShare templates.

2) All of the values of myShare are the same for all the processes.

3) The templates that each processor keeps are distinct.

Proof: First let us notice that by theorem 8.2

• on the current iteration process k is aware of the templates that existed in the system n − k − 1

iterations ago.

• 1 iteration ago process k+1 was aware of the templates that existed in the system n−k−1 iterations

ago.

• 2 iterations ago process k + 2 was aware of the templates that existed in the system n − k − 1

iterations ago.

...

• n−k−1 iterations ago process n−1 was aware of the templates that existed in the system n−k−1

iterations ago.

This means that all the processes were aware of the same amount of templates and therefore their

values for myShare are all the same. It is evident by looking at lines 12 to 14 of PROCESS that the

process keeps myShare templates when it sends templates back. We also know by theorem 8.6 that they

all sent templates back on the corresponding iterations. Now for any pair of processes k + i and k + j

30

where i < j, the templates that process k + i kept i iterations ago cannot be the ones that process k + j

kept j iterations ago. This is true because it takes at least (j − i) iterations to transmit templates from j

to i and process k + j kept them j iterations ago, and consequently, they cannot reach process k + i by

j − (j − i) = i iterations ago.

Theorem 8.8: Template ownership delay

The templates that a process k has, at the current iteration, were created at least n− k − 1 iterations

ago

Proof: This is obvious since templates are created in process n − 1 on line 30 of the code of

PROCESS. These templates maybe sent back in the pipeline one step of the pipeline per iteration. The

distance from k to process n−1 is equal to n−k−1, so the templates that k has must have been created

at least n− k − 1 iterations ago.

Theorem 8.9: Network size lower bound

If a process k sends templates back on a given iteration, then the number of templates N that existed

in the system n− 1− k iterations ago complies with the condition:

N > (n− k)myShare (17)

Proof: Notice that if process k sends templates back then it complies with condition 14 and by

Theorem 8.7 all processes from k on-wards kept myShare templates and these templates are all distinct.

Also by theorem 8.8 all these templates where created at least n− k − 1 iterations ago. So the number

of templates that existed in the system n− k − 1 iterations ago is at least:

N ≥ |myTemplates|+ (n− 1− k)myShare

31

> myShare + (n− 1− k)myShare = (n− k)myShare (18)

Theorem 8.10: Template ownership bound

A process k in the pipeline cannot have more than myShare templates, and it cannot own less than

max(0, myShare− p(2(n− 1− k)− 1)) templates.

Proof: The fact that a process k can not exceed myShare of templates has already been shown

by theorem 8.4. Furthermore, the fact that it owns less that 0 templates is also obvious. What needs to

be proven then is that if myShare > p(2(n − k − 1) − 1) Then the number of templates will never be

less than myShare− p(2(n− k − 1)− 1) templates.

To prove this let us assume a steady state in the pipeline where node k has myShare templates, and

the worst case possible scenario. In this scenario process k would receive from process k− 1 packets of

p pattern/template (Ii,wi) pairs where the w
i could be the uncommitted node, and would send to the

next process packets of p pattern/template pairs where the w
i no longer is the uncommitted node. This

means that on each iteration process k would be losing p patterns to the neighboring processes in the

pipeline.

Patterns lost to the neighboring processes in the pipeline will travel, in a worst case scenario, all

the way to the last process in the pipeline and afterwords find their way back to process k. If this is

the situation then process k will have to wait n − 1 − k units of time, for the patterns sent, to reach

process n − 1 and then wait another n − 1 − k iterations for the patterns to come back. This is a total

of 2(n− 1− k) iterations before a packet of p templates sent downstream by process k is seen again by

32

process k. If during these 2(n− 1− k)− 1 iterations process k has the bad luck of sending p templates

of it’s own templates downstream at each iteration, then during that time process k would have lost

p(2(n− 1− k)− 1) templates and would possess a total of myShare− p(2(n− 1− k)− 1) templates.

Theorem 8.11: Overflow impossibility

The first process in the pipeline will always be able to absorb the templates that have been sent to it

from the next process downstream.

Proof: Let us assume by contradiction that it cannot absorb the templates it has received from the

next process downstream. This means that process 0 complies with condition 14 and that is has to send

templates back. By theorem 8.9 the number of templates N that existed in the system n − 1 iterations

ago complies with equation 17. But by line 35 of PROCESS we have:

N > n×myShare = n

⌈
nodes

n

⌉

≥ n

(
nodes

n

)

= nodes (19)

This means that the number N of templates that existed in the system n− 1 iterations ago is greater

than nodes, which is a contradiction of theorem 8.2

Theorem 8.12: Pipeline depth invariance

The difference in the number of myShare that 2 arbitrary processes in the pipeline have cannot exceed

p + 1 where p is the packet size. Note that the difference in number of templates is independent of the

pipeline size n.

Proof: First, by theorem 8.2 we know that a process k is aware of the number of templates that

existed n− 1− k iterations ago. Also, the largest difference in the number of templates that two process

33

are aware of is found in the difference between process 0 and process n − 1. Now, let us assume that

process 0 is aware of nodes0 templates. Since this amount of templates existed n − 1 iterations ago

and we can create a maximum of p templates per iteration then the maximum number of templates that

process n− 1 can be aware of is nodes0 + (n− 1)p. This means that the value of myShare for process

0 is

myShare0 =

⌈
nodes0

n

⌉

≥ nodes0

n
(20)

and the value of myShare for process n− 1 is at the most

mySharen−1 =

⌈
nodes0 + (n− 1)p

n

⌉

≤ nodes0 + (n− 1)p

n
+ 1 (21)

We also know that the number of templates that each processor k owns is less than or equal to mySharek.

Hence, the maximum amount of difference in templates between 2 processors in the pipeline is less than

or equal to

mySharen−1 − myShare0 =

⌈
nodes0 + (n− 1)p

n

⌉

−
⌈

nodes0

n

⌉

≤

nodes0 + (n− 1)p

n
+ 1− nodes0

n
=

(n− 1)p

n
+ 1 ≤ p + 1

Theorem 8.13: Partial evaluation correctness

If we make the packet size p of PROCESS equal to the size of the training set and set the number

of processes to n = 1, then the parallel algorithm presented here is equivalent to the no Matchtracking

FS-FAM.

34

Proof: Let us start by noting that if the number of process is n = 1 then the functions RECV-NEXT

and SEND-PREV do not perform any computation, and can be omitted. This implies that the variables

exchanged in these processes also do not hold any information and can be eliminated too. These variables

are the set of templates {wi
k+1} coming from the next process in the pipeline and the set of variables

{wi
to(k−1)} going to the previous process in the pipeline. By eliminating these lines of code and doing

partial evaluation and eliminating unnecessary variables we end up with the code of figure 13

Notice that the only differences with the no matchtracking FS-FAM are that

1) the set of patterns doesn’t come as a parameter.

2) We are using the function FIND-WINNER to find the winner node and

3) Templates are being extracted and reinserted in the template set.

To guarantee that the first templates created receive priority over newer templates we number the templates

when created with a sequential index and use this index to determine who wins competition in case of

a tie between templates.

Theorem 8.14: Workload balance variance bound

In a pipeline with an arbitrary number of processors and a downstream packet size p, the standard

deviation of the number of templates that each processor owns cannot exceed

p

2
√

3
(22)

Proof: Given that in the parallel FS-FAM algorithm there are many templates in transit we cannot

know exactly how many templates each process possesses. We can though, approximate a worst case

workload balance scenario if we assume, as will usually be the case, that the number of comparisons

35

that a given process performs on each iteration will be proportional to the number of templates that it is

allowed to possess or myShare. In a worst case scenario, on every iteration the network will be creating

p new templates so process k will have a value of

nodesk = nodes0 + kp

The expected value of myShare for this worst case scenario will be

Avg(myShare) =

∑n−1
k=0

nodes0+kp
n

n
=

nodes0 + p
n

∑n−1
k=0 k

n
=

nodes0 + p
2(n− 1)

n
=

nodes0

n
+

p

2n
(n− 1)

and the variance will be

1

n

n−1∑

k=0

(
nodes0 + kp

n
− nodes0

n
− p

2n
(n− 1)

)2

=

After some algebraic calculations we can show that the variance is equal to

p2 n2 − 1

12n2

36

and finally this gives us a standard deviation of

√

p2
n2 − 1

12n2
=

p

2
√

3

√

1− n−2 <
p

2
√

3
(23)

If, for example, we use a packet size of 64 patterns, then the worst possible standard deviation in the

value of myShare would not exceed

64

2
√

3
=

32√
3

= 18.4752

regardless of the pipeline size n.

IX. EXPERIMENTS

Experiments were conducted on 3 databases: 1 real–world database and 2 artificially–generated

databases (Gaussian distributed data). Training set sizes of 1000× 2i, i ∈ {5, 6, . . . , 9}, that is 32,000 to

512,000 patterns were used for the training of no-matchtracking FS-FAM and pipelined no matchtracking

FS-FAM. The test set size was fixed at 20,000 patterns. The number of processors in the pipeline varied

from p = 1 to p = 32. Pipeline sizes were also increased in powers of 2. The packet sizes used were 64

and 128 for the Covertype and the Gaussian databases, respectively.

To avoid additional computational complexities in the the experiments (beyond the one that the size

of the training set brings along) the values of the ART network parameters ρ̄a, and α were fixed (i.e.,

the values chosen were ones that gave reasonable results for the database of focus). For each database

and for every combination of (p, PT) = (partition, training set size) values we conducted 12 independent

37

experiments (training and performance phases), corresponding to different orders of pattern presentations

within the training set. As a reminder FS-FAM performance depends on the values of the network

parameters ρ̄a, and α, as well as the order of pattern presentation within the training set.

All the tests where conducted on the OPCODE Beowulf cluster of workstations of the Institute for

Simulation and Training. This cluster consists of 96 nodes, with dual Athlon 1500+ processors and

512MB of RAM. The runs were done in such as way as to utilize half as many nodes as p. Thus, there

were two MPI processes per node, one per processor.

The metrics used to measure the performance of the pipelined approach were:

1) Classification performance of pipelined no matchtracking FS-FAM (Higher classification perfor-

mance is better).

2) Size of the trained, pipelined, no matchtracking FS-FAM.

3) Speedup of pipelined no-matchtracking FS-FAM compared to the no-matchtracking FS-FAM.

To calculate the speedup, we simply measured the CPU time for each run.

IX.-A. Forest CoverType Database

The first database used for testing was the Forest CoverType database provided by Blackard (Blackard,

1999), and donated to the UCI Machine Learning Repository (University of California, Irvine, 2003).

The database consists of a total of 581,012 patterns each one associated with 1 of 7 different forest tree

cover types. The number of attributes of each pattern is 54, but this number is misleading since attributes

11 to 14 are actually a binary tabulation of the attribute Wilderness-Area, and attributes 15 to 54

(40 of them) are a binary tabulation of the attribute Soil-Type. The original database values are not

38

normalized to fit in the unit hypercube. Thus, we transformed the data to achieve this. There are no

omitted values in the data.

Patterns 1 through 512,000 were used for training. The test set for all trials were patterns 561,001 to

581,000. A visualization of the first 3 dimensions of the Forest Covertype database can be seen in figure

14. Different tones correspond to different classes. As it can be seen from the figure the class boundaries

are quite complex. Classification performance of different machine learning algorithms for this database

has been reported in the range of 75%.

IX.-B. Gaussian Databases

The Gaussian data was artificially generated using the polar form of the Box–Muller transform with

the R250 random number generator by Kirkpatrick and Scholl (Kirkpatrick & Stoll, 1981). We generated

2-class, 16 dimensional data. All the dimensions are identically distributed with the same mean µ and

variance σ2 except one. The discriminating dimension has offset means so that the overlap between the

Gaussian curves is set at 5% for one database and at 15% for the other. 532,000 patterns where generated

for each Gaussian database. 512,000 patterns were used for training; the remaining 20,000 patterns were

used for testing.

The speed-up performance of the Covertype, and the Gaussian 5% overlap, and the Gaussian 15%

overlap are reported in Figures 15, 16 and 17, respectively. One important conclusion from these results

is that the speed-up achieved using the pipeline no-matchtracking FS-FAM grows linearly with the number

of processors used in the pipeline. Also, we notice that the slope of increase varies depending on the

number of patterns used in the training phase of Fuzzy ARTMAP. Furthermore, for 32,000 training

39

patterns and 64,000 training patterns the speed-up curve exhibits a knee (saturation phenomenon). This

is likely due to the fact that for the smaller training sets, the overhead for pattern transfer becomes more

pronounced. This saturation is more obvious for the 32,000 training patterns than for the 64,000 patterns.

This phenomenon is not observed for training patterns 128,000, 256,000 or 512,000.

Tables IV and V exhibit the generalization performance and the size of the architectures created

by the no-match tracking FS-FAM. For the Gaussian 5% overlap database the best generalization

performance observed is around 93%, while the observed compression ratio (i.e., ratio of number of

patterns used in training versus number of templates) is equal to 5. For the 15% Gaussian dataset these

numbers are 80% (maximum generalization performance) and 3 (compression ratio). Note that the best

generalization performance expected with the 5% Gaussian and the 15% Gaussian databases are 5%

and 15%, respectively. Also, note that the compression achieved with the no-match tracking FS-FAM is

relatively small, but the objective of this paper was not to produce a high compression for the training

data but to demonstrate the correct, sensible pipelined implementation of the competitive loop in FS-FAM

(that can be easily extended to other ART architectures).

X. SUMMARY - CONCLUSIONS

We have produced a pipelined implementation of the no-matchtracking FS-FAM algorithm. This

implementation can be extended to other ART neural network architectures that have similar competitive

structure as FS-FAM. It can also be extended to other neural networks that are designated as “competitive”

neural networks, such as PNN, RBFs, as well as other “competitive” classifiers. We have introduced and

proven a number of theorems pertaining to our pipeline implementation. The major purpose of these

40

theorems was to show that the parallel no-match tracking FS-FAM (a) is equivalent with the sequential

version of the no-match-tracking FS-FAM , (b) it does not suffer from inconsistencies, and (c) it exhibits

good performance. In particular, the good performance of the parallel no-match tracking FS-FAM was

exhibited by observing the linear speed-up achieved as the number of processors increased from 1 to

32. In the process, we produced other performance results related to the generalization performance and

the size of the architectures that no-match tracking FS-FAM created. We believe that our objective of

appropriately implementing no-match tracking FS-FAM on a Beowulf cluster has been accomplished and

a clear evidence of this assertion are the speed-up results exhibited by the pipelined no-match tracking FS-

FAM and illustrated in Figures 15-17. Extension of our implementation approach to other ”competitive”

classifiers is obvious. Extension of our implementation to the match-tracking FS-FAM algorithm is more

involved and it is the topic of our future research.

REFERENCES

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In

J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the Twentieth International Conference

on Very Large Databases (pp. 487–499). Santiago, Chile: Morgan Kaufmann.

Anagnostopoulos, G. (2000). Novel approaches in Adaptive Resonance Theory for machine learning.

Unpublished doctoral dissertation, Computer Engineering, UCF.

Anagnostopoulos, G. C. (2003). Putting the utility of match tracking in fuzzy ARTMAP to the test. In

Proceedings of the Seventh International Conference on Knowledge–Based Intelligent Information

Engineering (Vol. 2, pp. 1–6). KES’03.

41

Anagnostopoulos, G. C., & Georgiopoulos, M. (2001). Ellipsoid ART and ARTMAP for incremental

unsupervised and supervised learning. In Proceedings of the IEEE–INNS–ENNS (Vol. 2, pp. 1221–

1226). Washington DC: IEEE–INNS–ENNS.

Asanović, K., Beck, J., Kingsbury, B., Morgan, N., Johnson, D., & Wawrzynek, J. (1998). Parallel

architectures for artificial neural networks: Paradigms and implementations. In P. S. Editors

N. Sundararajan (Ed.), (chap. Training Neural Networks with SPERT-II). IEEE Computer Society

Press and John Wiley & Sons.

Blackard, J. A. (1999). Comparison of neural networks and discriminant analysis in predicting forest

cover types. Unpublished doctoral dissertation, Department of Forest Sciences, Colorado State

University.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B. (1992, September). Fuzzy

ARTMAP: A neural network architecture for incremental learning of analog multidimensional maps.

IEEE Transactions on Neural Networks, 3(5), 698–713.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). Fuzzy ART: An adaptive resonance algorithm

for rapid, stable classification of analog patterns. In International Joint Conference on Neural

Networks, IJCNN’91 (Vol. II, pp. 411–416). Seattle, Washington: IEEE–INNS–ENNS.

Carpenter, G. A., & Markuzon, N. (1998). ARTMAP–IC and medical diagnosys: Instance counting and

inconsistent cases. Neural Networks, 11, 793–813.

Carpenter, G. A., & Ross, W. D. (1995). ART–EMAP: A neural network architecture for object recognition

by evidence accumulation. IEEE Transactions on Neural Networks, 6(5), 805–818.

Caudell, T. P., & Healy, M. J. (1999). Studies of generalization for the LAPART–2 architecture. In

42

International Joint Conference on Neural Networks (Vol. 3, pp. 1979–1982). Washington D.C.:

IEEE–INNS–ENNS.

Kasuba, T. (1993, November). Simplified Fuzzy ARTMAP. AI Expert, 18–25.

King, R., Feng, C., & Shutherland, A. (1995, May/June). STATLOG: Comparison of classification

algorithms on large real-world problems. Applied Artificial Intelligence, 9(3), 259-287.

Kirkpatrick, S., & Stoll, E. (1981). A very fast shift–register sequence random number generator. Journal

of Computational Physics, 40, 517–526.

Malkani, A., & Vassiliadis, C. A. (1995). Parallel implementation of the Fuzzy ARTMAP neural network

paradigm on a hypercube. Expert Systems, 12(1), 39–53.

Mangasarian, O., & Solodov, M. (1994). Serial and parallel backpropagation convergence via

nonmonotone perturbed minimization. Optimization Methods and Software, 4(2), 103-116.

Manolakos, E. S. (1998). Parallel architectures for neural networks: Paradigms and implementations.

In N. Sundararajan & P. Saratchandran (Eds.), (chap. Parallel Implementation of ART1 Neural

Networks on Processor Ring Architectures). IEEE Computer Society Press and John Wiley &

Sons.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. In

Extending Database Technology (p. 18-32). Avignon, France: Springer.

Petridis, V., Kaburlasos, V. G., Fragkou, V. G., & Kehagais, A. (2001). Text classification using the

σ–FLNMAP neural network. In Proceedings of the International Joint Conference on Neural

Networks (Vol. 2, pp. 1362–1367). Washington D.C.: IEEE–INNS–ENNS.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, California: Morgan Kaufmann.

43

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error

propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.

1: Foundations, 318–362.

Shafer, J. C., Agrawal, R., & Mehta, M. (1996, September). SPRINT: A scalable parallel classifier for

data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, & N. L. Sarda (Eds.), Proc. 22nd

Int. Conf. Very Large Databases, VLDB (pp. 544–555). Bombay, India: Morgan Kaufmann.

Simpson, P. K. (1992, September). Fuzzy Min-Max neural networks–Part 1: Classification. IEEE

Transactions on Neural Networks, 3(5), 776–786.

Taghi, M., Baghmisheh, V., & Pavesic, N. (2003). A fast simplified Fuzzy ARTMAP network. Neural

Processing Letters, 17, 273–316.

Torresen, J., Nakashima, H., Tomita, S., & Landsverk, O. (1995, November 27th – December 1st).

General mapping of feed-forward neural networks onto an MIMD computer. In Proceedings of the

IEEE International Conference on Neural Networks. Perth, Western Australia.

Torresen, J., & Tomita, S. (1998, November). Parallel architectures for artificial neural networks:

Paradigms and implementations. In N. Sundararajan & P. Saratchandran (Eds.), (pp. 41–118).

IEEE Computer Society Press and John Wiley & Sons.

University of California, Irvine. (2003). UCI Machine Learning Repository.

http://www.icf.uci.edu/mlearn/MLRepository.html.

Williamson, J. R. (1996). Gaussian ARTMAP: A neural network for fast incremental learning of noisy

multidimensional maps. Neural Networks, 9(5), 881–897.

Zhang, D. (1998). Parallel VLSI neural systems design. Springer.

a

6

Field F a
0

-

6

ÁÀ
Â¿

ρa

6
I = (a,ac)

Field F a
1

- ~ reset
node

@
@

@
@

@
@

@
@

@@I

W
a
j

z
w

a
j

z
Field F a

2

W
ab
j

z
Field F b

2

Attentional Subsystem Orienting
Subsystem

Fig. 1. Block Diagram of the FS-FAM Architecture.

FS-FAM-LEARNING-PHASE(
{
I
1, I2, . . . , IPT

}
, ρ̄a, α, epochs, ε)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 iterations← 0
4 repeat
5 modified← FALSE

6 for each I
r in

{
I
1, I2, . . . , IPT

}

7 do ρ← ρ̄a

8 repeat
9 Tmax ← 0

10 status← none

11 for each w
a
j in templates

12 do if ρ(Ir,wa
j) ≥ ρ and T (Ir,wa

j , α) > Tmax

13 then
14 Tmax ← T (Ir,wa

j , α)
15 jmax ← j

16
17 if w

a
jmax

6= w0

18 then if label(Ir) = label(wa
jmax

)
19 then status← Allocated

20 else status← Matchtracking

21 ρ← ρ(Ir,wa
jmax

) + ε

22 until status 6= Matchtracking

23 if status = Allocated

24 then if w
a
jmax

6= (wa
jmax

∧ I
r)

25 then w
a
jmax

← w
a
jmax

∧ I
r

26 modified← TRUE

27 else templates← templates ∪ {Ir}
28 modified← TRUE

29 iterations← iterations + 1
30 until (iterations = epochs) or (modified = FALSE)
31 return templates

Fig. 2. FS-FAM off-line training phase algorithm

FS-FAM-ON-LINE-LEARNING(
{
I
1, I2, . . . , IPT

}
, ρ̄a, α, ε)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each I

r in
{
I
1, I2, . . . , IPT

}

4 do ρ← ρ̄a

5 repeat
6 Tmax ← 0
7 status← NoneFound

8 for each w
a
j in templates

9 do if
[

ρ(Ir,wa
j) ≥ ρ

]

and
[

T (Ir,wa
j , α) > Tmax

]

10 then
11 Tmax ← T (Ir,wa

j , α)
12 jmax ← j

13
14 if w

a
jmax

6= uncommitted
15 then if label(Ir) = label(wa

jmax

)
16 then status← Allocated

17 else status← Matchtracking

18 ρ← ρ(Ir,wa
jmax

) + ε

19 until status 6= Matchtracking

20 if status = Allocated

21 then
22 w

a
jmax

← w
a
jmax

∧ I

23 else
24 templates← templates ∪ {Ir}
25 return templates

Fig. 3. FS-FAM on-line training phase algorithm

FS-FAM PERFORMANCE PHASE(Ir, templates, ρ̄a, β)
1 Tmax ← 0
2 jmax ← NIL

3 for each w
a
j in templates

4 do
5 if ρ(Ir,wa

j) ≥ ρ̄a and T (Ir,wa
j , β) > Tmax

6 then
7 Tmax ← T (Ir,wa

j , β)
8 jmax ← j

9
10 if w

a
jmax

6= w0

11 then return label(wa
jmax

)
12 else return NIL

Fig. 4. FS-FAM performance phase algorithm

FS-FAM-NO-MATCHTRACKING-LEARNING(
{
I
1, I2, . . . , IPT

}
, ρ, α)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each I

r in
{
I
1, I2, . . . , IPT

}

4 do
5 repeat
6 Tmax ← 0
7 status← NoneFound

8 for each w
a
j in templates

9 do if
[

ρ(Ir,wa
j) ≥ ρ

]

and
[

T (Ir,wa
j , α) > Tmax

]

10 then
11 Tmax ← T (Ir,wa

j , α)
12 jmax ← j

13
14 if w

a
jmax

6= w0 and label(Ir) = label(wa
jmax

)
15 then w

a
jmax

← w
a
jmax

∧ I
r

16 else templates← templates ∪ {Ir}
17 until
18 return templates

Fig. 5. Anagnostopoulos’ No–matchtracking on-line training FS-FAM algorithm

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

R
un

tim
e

(M
in

ut
es

)

Packet Size

2 processors
4 processors
8 processors

16 processors
32 processors

Fig. 6. Runtime versus packet size for the Covertype database.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

R
un

tim
e

(M
in

ut
es

)

Packet Size

2 processors
4 processors
8 processors

16 processors
32 processors

Fig. 7. Runtime versus packet size for the Gaussian 5% database.

0 1 n-1
First Last

.....

Fig. 8. Pipeline Structure

Fig. 9. Exchange of packets between processors. Note, packets are listed for processor k only.

INIT(p)
1 nodes← 0
2 myTemplates← {}
3 ∀2p

i=1

(

w
i
to(k−1) ← none

)

4 ∀p
i=1

(
w

i ← none
)

5 ∀p
i=1I

i ← none

6 myShare← 0
7 newNodes← 0
8 newNodesk+1 ← 0
9 continue← TRUE

Fig. 10. Initialization procedure for pipelined parallel no-matchtracking FS-FAM implementation

PROCESS(k, n, ρa, α, p)
1 INIT(p)
2 while continue
3 do
4 while |myTemplates| > myShare
5 do
6 EXTRACT-TEMPLATE

(

myTemplates,
{

w
i
to(k−1)

})

7 SEND-NEXT
(
k, n,

{(
w

i, Ii, T i
)

: i = 1, 2, . . . , p
})

8 RECV-NEXT
(
k, n,

{
w

i
k+1 : i = 1, 2, . . . , 2p

}
, newNodesk+1

)

9 SEND-PREV
(

k,
{

w
i
to(k−1) : i = 1, 2, . . . , 2p

}

, newNodes
)

10 RECV-PREV
(
k,
{(

w
i
k−1, I

i
k−1, T

i
k−1

)
: i = 1, 2, . . . , p

})

11 newNodes← newNodesk+1

12 S ←
{
w

i
k+1

}

13 for each i in {1, 2, . . . , p}
14 do FIND-WINNER(Ii,wi, T i, ρa, α,S)
15 myTemplates← myTemplates ∪ S
16 if I

i
k−1 = EOF

17 then continue← FALSE

18 else S ←
{

w
i
to(k−1)

}

19 for each i in {1, 2, . . . , p}
20 do FIND-WINNER(Ii

k−1,w
i
k−1, T

i
k−1, ρa, α,S)

21
(
I
i,wi, T i

)
←

(
I
i
k−1,w

i
k−1, T

i
k−1

)

22 for each i in {1, 2, . . . , p}
23 do FIND-WINNER(Ii,wi, T i, ρa, α, myTemplates)
24 if k = n− 1
25 then if class(Ii) = class(wi)
26 then
27 myTemplates← myTemplates ∪ {Ii ∧w

i}
28 else newTemplate← I

i

29 index(newTemplate)← newNodes + nodes
30 myTemplates← myTemplates ∪ {Ii,wi}
31 newNodes← newNodes + 1
32 if newNodes > 0
33 then
34 nodes← nodes + newNodes
35 myShare←

⌈ nodes
n

⌉

36 SEND-NEXT (k, n, {(none, none, 0)})
37 RECV-NEXT

(
k, n,

{
w

i
k+1 : i = 1, 2, . . . , 2p

}
, newNodek+1

)

38 myTemplates← myTemplates ∪
{
w

i
k+1 : i = 1, 2, . . . , 2p

}

Fig. 11. Pipelined FS-FAM ring implementation for parallel processing

FIND-WINNER(I,w, T, ρa, α,S =
{
w

i
}
)

1 idx← −1
2 for each w

i in S
3 do if

[
ρ(I,wi) ≥ ρa

]

4 then
5 if

[
T (I,wi, α) > T

]

6 then
7 T ← T (I,wi, α)
8 idx← i

9 else if
[
T (I,wi, α) = T

]
and index(wi) < index(w)

10 then T ← T (I,wi, α)
11 idx← i

12 if idx 6= −1
13 then
14 EXTRACT(widx,S)
15 ADD(w,S)
16 w← w

idx

17 return TRUE

18 else
19 return FALSE

Fig. 12. Utility function to find best candidate template in a template list. Needed by parallel no-matchtracking FS-FAM ring
implementation

PROCESS(ρa, α)
1 myTemplates← {}
2 ∀p

i=1I
i ← none

3 newNodes← 0
4 continue← TRUE

5 RECV-PREV
(
k,
{(

w
i
k−1, I

i
k−1, T

i
k−1

)
: i = 1, 2, . . . , p

})

6 newNodes← 0
7 for each i in {1, 2, . . . , p}
8 do FIND-WINNER(Ii,wi, T i, ρa, α, myTemplates)
9 if class(Ii) = class(wi)

10 then
11 myTemplates.ADD({Ii ∧w

i})
12
13 else
14 newTemplate← I

i

15 index(newTemplate)← newNodes
16 myTemplates.ADD({Ii,wi})
17 newNodes← newNodes + 1
18

Fig. 13. Partial evaluation of parallel no matchtracking FS-FAM using number of processors p = 1

Fig. 14. A random sample of 5,000 Forest Covertype data-points out of the available 581,012 data-points is shown. The data-points are projected to
the first 3 dimensions of the database. Different Colors for the data-points represent different class labels.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Fig. 15. Parallel speedup versus number of processors for Covertype database.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Fig. 16. Parallel speedup versus number of processors for Gaussian 5% database.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Fig. 17. Parallel speedup versus number of processors for Gaussian 15% database.

Examples (Thousands) Classification Performance Average Templates Created
32 70.29 5148.83
64 74.62 11096.66
128 75.05 22831
256 77.28 49359.33
512 79.28 100720.75

TABLE III
COVERTYPE RUN STATISTICS

Examples (Thousands) Classification Performance Average Templates Created
32 92.50 7032.83
64 92.74 13513.41
128 92.91 25740.5
256 93.11 48854.5
512 93.21 92365.66

TABLE IV
GAUSSIAN 5% RUN STATISTICS

Examples (Thousands) Classification Performance Average Templates Created
32 79.25 10608.83
64 79.82 20695.83
128 80.10 40319
256 80.32 78540.58
512 80.54 152827.91

TABLE V
GAUSSIAN 15% RUN STATISTICS

This document is an author-formatted work. The definitive version for citation appears as:

J. Castro, J. Secretan, M. Georgiopoulos, R. F. DeMara, G. Anagnostopoulos, and A. J. Gonzalez,
“Pipelining of Fuzzy-ARTMAP without Match-Tracking: Correctness, Performance Bound, and Beowulf
Evaluation,” submitted to Neural Networks on December 27, 2004.

This work has been submitted to the Neural Networks for possible publication. Copyright may be
transferred without notice, after which this version may no longer be accessible

