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Abstract⎯The Tiered Algorithm is presented for time-efficient and message-efficient detection of process termination.  It employs a 
global invariant of equality between process production and consumption at each level of process nesting to detect termination 
regardless of execution interleaving order and network transit time.  Correctness is validated for arbitrary process launching hierarchies, 
including launch-in-transit hazards where processes are created dynamically based on run-time conditions for remote execution.  The 
performance of the Tiered Algorithm is compared to three existing schemes with comparable capabilities, namely the CV, LTD, and 
Credit termination detection algorithms.  For synchronization of T tasks terminating in E epochs of idle processing, the Tiered Algorithm 
is shown to incur O(E) message count complexity and O(T lg T) message bit complexity while incurring detection latency corresponding 
to only integer addition and comparison.  The synchronization performance in terms of messaging overhead, detection operations, and 
storage requirements are evaluated and compared across numerous task creation and termination hierarchies. 
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1 INTRODUCTION 

Efficient detection of process termination [1] is 
essential for optimizing throughput in distributed 
computer architectures and networks.  An ensemble 
of Processing Elements (PEs) is said to be 
synchronized, or to have reached a quiescent state [2], 
upon termination of each interval of concurrent 
activity.  Points at which synchronization occur are 
referred to as barriers [3] and their detection can 
significantly influence throughput since idle PEs 
cannot proceed to subsequent operations in the 
current thread until the barrier’s completion has been 
signaled.  In addition to execution overhead, the 
interchange of synchronization messages during 
barrier detection degrades the message transmission 
capacity available to the underlying computations [4].  

Many existing termination detection algorithms 
require a-priori knowledge of process creation or 

depend on various attributes of the network topology 
for correct operation [3, 5-8].  However, the Tiered 
Algorithm developed herein belongs to a class of more 
capable termination detection schemes [2, 4, 9-11] that 
support more general diffusing models of distributed 
computation which allow dynamic process creation [12, 
13].  Applications in which processes are created and 
destroyed based on run-time conditions, such as 
distributed garbage collection [14, 15], network 
multicasting [16], parallel marker-passing [17], and 
parallel polygon rendering in real time scientific 
visualization [18], explicitly require such capabilities.  
Detection of termination is complicated by 
persistence of child processes after the completion of 
their parents, as is the case with orphan processes 
encountered in these applications and others such as 
distributed databases [19, 20].  Rudimentary 
approaches to this problem which maintain the 
parent process until all of its children have 
terminated tend to waste system resources while 
introducing data consistency issues [19]  which can be 
eliminated by more efficient and powerful algorithms 
for termination detection. 

Among the few available algorithms which can 
properly detect global termination in the case of 
orphan processes [12], the Tiered Algorithm is shown 
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to do so at minimum overhead.  It requires O(min(N, 
T)) synchronization messages where N is the number 
of PEs in the system and T is the number of tasks 
created during execution of the distributed 
application.  To a large extent, the reduced 
communication overhead is achieved by employing a 
processor-centered protocol.  In contrast to process-
centered protocols where a control message is sent 
from each terminating process to a parent or a global 
barrier detection process, a processor-centered 
protocol instead allows a single control message to be 
sent from each PE that accounts for all processes 
executed on that PE.  Hence, processor-centered 
protocols are especially suitable for the typical 
scenarios where the number of processes equals or 
exceeds the number of PEs allocated to the 
computation [17].  Unlike wave-based termination 
detection schemes [8, 21-23] which send control 
messages periodically, the Tiered Algorithm requires 
that a PE transmits control messages only when it 
becomes idle.   

Finally, static environments can be considered to be 
an equivalent case of a dynamic environment where 
all processes are created upon initialization.  Thus, an 
approach which solves the most general dynamic 
termination detection problem, while incurring 
overhead of the more restrictive static case, offers a 
general solution.  In this paper, the Tiered Algorithm 
is shown to support dynamic process creation 
environments at comparable costs to that of only 
static-capable termination detection schemes.  As 
shown in [24], the theoretical minimum in terms of 
communication overhead is given by the min(N, T) 
message and is this achieved by the Tiered 
Algorithm.  As described below, it achieves this 
bound by employing a global invariant of process 
nesting with a straightforward integer-based 
accounting scheme. 

2 RELATED WORK 
A wide range of termination detection algorithms 

have been proposed both as software-only [2, 9, 10] 
and hardware-specific [3, 4, 6, 7] approaches.  The 
most general software-based algorithms consider 
diffusing computation models [12, 21, 23, 25-27] in 
which one process initiates the distributed activity 
and launches subprocesses dynamically by 

transmitting messages to remote PEs.  Two broad 
termination detection approaches for these 
environments are parental responsibility algorithms [12, 
23, 26, 28-30] and wave-based algorithms [8, 21-23].  
Parental responsibility algorithms infer global 
termination status from a progression of local process 
initiation and completion activities on each PE.  Wave 
algorithms do not track process transactions 
continually, but instead periodically propagate waves 
of control messages to interrogate the current status 
of each PE.  Some of these algorithms can detect 
termination on arbitrary network topologies [8, 12, 
16, 22, 23, 26, 27, 29] while others require 
maintenance of process spanning trees or a specific 
underlying physical network topology [21, 23, 28, 30].  
For example, algorithms which detect termination by 
using a virtual spanning tree [11, 23, 31, 32] require 
that a single process be designated as the root and 
have direct means to track status of its children [8, 16, 
22, 27, 29].  Other algorithms require maintaining a 
dependent set [21] or a neighbor set [12, 30] of processes; 
others dictate that a controller process be aware of the 
network diameter [26] or synchronize activity 
through a local clock [11, 12, 33, 34].   

As in this paper, more recent algorithms address a 
completely asynchronous communication model in 
which messages arrive in arbitrary order [12, 22, 23, 
27, 29] without requiring FIFO channels [16, 26, 30] or 
assumptions of finite transmission delays [21].  The 
most general of these algorithms support a dynamic 
environment in which processes are created and 
destroyed as the underlying computation progresses 
[8, 12, 16, 21, 22].  However, many address only 
special cases of dynamic environments.  For example, 
the algorithms proposed in [13, 25, 35] allow 
processes to be created, but not destroyed, while the 
algorithm in [11] requires that a process participates 
in termination detection even after it has been 
destroyed, and in [22] only one process is allowed to 
execute on each PE.   

The best performing previous algorithms which 
support dynamic execution and do not impose 
message ordering nor topology constraints include 
the Credit Algorithm [2] which is a parental 
responsibility-based approach, and the CV Algorithm 
[9] and LTD Algorithm [10] which are wave-based 
approaches.  The CV Algorithm organizes all 



 

processors participating in barrier as a logical 
spanning tree such that when the root terminates, it 
declares global termination.  The LTD Algorithm 
refines the CV Algorithm by optimizing wave 
operations based on a local message stack maintained 
at each PE.   The Credit Algorithm relies instead on a 
credit distribution invariant where the top-level 
parent process is given a unit credit of 1.0.  Each time 
a subprocess is created, a parent gives half of its 
remaining credit to it.  Later as processes are 
terminated, credit portions are returned to a central 
controller process.  When the sum of the credit values 
returned equals 1.0, then global termination is 
declared.  Meanwhile, the Tiered Algorithm employs 
an improved global invariant that allows processor-
centered reporting and replacement of a time-
consuming fraction combining step with integer 
addition.   

3 TIERED DETECTION ALGORITHM 
The Tiered Algorithm supports a simultaneous-

initiation diffusing computation model.  The number 
and binding of processes need not be known a-priori, 
and processes can be created or completed without 
restriction during execution.  It does not assume any 
network topology and exchanges messages under an 
asynchronous communication model without any 
assumptions of message delivery neither ordering 
nor transmission time.  As in the Credit Algorithm, 
every participating PE reports the count of locally 
produced and terminated tasks at each level of 
process nesting to the designated process, called the 
controller process, which will announce global 
termination.  The controller updates a ledger of count 
values accordingly to determine whether the global 
consumption count matches the production count at 
every nesting level.   If so, the controller announces 
global termination.  Otherwise, the controller waits 
for the report as some processes have not yet 
completed execution.   So, the global invariant for 
termination detection is that process create count 
received by the controller equals process terminate 
count received on a nesting level-by-level basis as 
described below. 

Tiered reporting is a processor-centered mechanism 
in order to reduce message traffic under the usual 
condition T >> N for T logical tasks on N physical 

processors.  Processor-centered reporting means that 
PEs report status for all processes that they have 
initiated or completed.  Furthermore, synchronization 
message traffic is incurred only when a PE becomes 
idle, unlike wave-based approaches. 

3.1 PE OPERATION 
Under a distributed tasking model, each PE 

maintains a local queue of processes to be executed 
[36]. A process is entered into the queue by receipt of 
a process launch message from a parent process 
executing on this PE or on another PE.  Associated 
with each process launch message is an integer 
indicating the nesting level of the process that created 
it.  The level number of the child process is obtained 
by adding an integer value of 1 to the level number of 
the parent where the root process is assigned level 
L=0.  Figure 1 shows the local portion of the Tiered 
Algorithm executed on each PE.    

 
Procedure Receive_TaskLaunch_Message(L : level number) 
begin 
   Update row L of activity table to increase produced 
    count; 
end 
 
Procedure Finish_A_Task(L : level number) 
begin 
   Update row L of activity table to increase consumed  
    count; 
end 
 
Procedure Upon_Idle 
begin 
   Report to controller non-zero difference for  
     previously unreported rows of activity table; 
end 
 

Figure 1. PE operation in the Tiered Algorithm. 
 
Figure 2(a) shows the activity table maintained by 

each PE.  The activity table records the local process 
consumption and production counts for each level on 
that PE.  A PE’s consumption count values indicate 
the number of tasks that were locally consumed at 
each level on this PE. Likewise, the production count 
represents the number of tasks launched at each level 
at the local PE.  The count values can be stored to 
exploit a unique relationship by which the tasks 
dispatched by the kth level are also the tasks created 



 

on the (k + 1)th level.  Since the equality of the number 
of tasks launched at a specific level and the number 
of tasks consumed at the same level is critical, it is 
sufficient to maintain the difference between the two 
numbers for each level k as DIFF(k). As such, the 
number of quantities maintained and communicated 
is reduced in half.  Hence, a one-dimension table, 
shown in Figure 2(b), is maintained for the difference 
between the local consumption and production 
counts at each level of process nesting.  Whenever a 
launch message is received by a PE, the procedure 
Receive_TaskLaunch_Message is called to update the 
local activity table which increments the level 
number. Likewise, the procedure Finish_A_Task is 
called whenever a task is completed at a PE by 
updating the local activity table according to the level 
number which is associated with the finished task. 

 
Level Consumption Count Production Count 

0 0 4 
1 4 6 
2 6 8 
•   
•   

(D − 1) 5 7 
D 7 6 

(a) Theoretical data structure. 
 

DIFF(1) 
DIFF(2) 

• 
• 

DIFF(D−1) 
DIFF(D) 

(b) Implementation table. 
 

Figure 2. Activity tables for process creation/termination 
 

The update consists of decrementing the number in 
the corresponding table cell.  After the PE finishes all 
the tasks in its execution queue and becomes idle, the 
procedure Upon_Idle is invoked to report the 
difference between the numbers of consumed and 
produced tasks for each level to the controller. Only 
levels with nonzero DIFF values need be reported.  
Once a PE reports to the controller, there is no loss of 
availability as the PE can be reactivated by any new 
process launching messages that are subsequently 
received from remote PEs.  With the exception of the 

Credit Algorithm, processor reactivation capability, 
immediately upon reporting, is not typically 
supported by previous termination detection 
schemes.  In the case of the Tiered Algorithm, 
correctness is maintained even if reactivation occurs 
with new processes that contribute to the same 
barrier that has been previously reported by that PE. 

3.2 OPERATION OF THE CONTROLLER 
The controller maintains a ledger table to keep track 

of the global consumption and production counts 
using the control messages reported from the PEs. 
Using the same rationale as for the activity table for a 
PE, a one-dimension table suffices where only the 
difference between the consumption and production 
counts for each level is maintained. 

Figure 3 shows the algorithm for the controller. 
Whenever a PE reports to the controller, the 
controller invokes the Receive_Report procedure.  

 
Procedure Receive_Report(r : report) 
begin 
   Update ledger and idle table accordingly; 
   if (Check_Ledger)  
      Declare global termination; 
   endif 
end 
 
Procedure Check_Ledger 
begin 
   Check ledger table to determine if consumption and  
     production counts of every level match; 
   if yes, report TRUE; 
   else report FALSE; 
   endif 
end 
 

Figure 3. Operation of the controller in the Tiered Algorithm. 
 

It updates the ledger table accordingly based on the 
information sent by the reporting PE.  This can result 
in an increase or decrease in the value stored in the 
corresponding level cell of the ledger table by the 
amount reported.  Next, the controller process 
evaluates Check_Ledger.  If the difference values in 
all cells of the ledger table are zero, meaning all tasks 
launched to all levels have been consumed, the global 
termination has been reached. If the value of any cell 
in the ledger table is not zero, meaning that there are 
still messages in transit and/or PEs still active, then 



 

the controller exits the procedure as global 
termination cannot be declared until after the next 
report is received.  

3.3 CORRECTNESS PROOF  
A correctness proof of a dynamic process creation 

termination detection technique needs to demonstrate 
that the barrier is announced if and only if all PEs 
have entered an idle state and simultaneously that no 
process launch messages are in transit in the network.  
The correctness of the Tiered Algorithm uses a proof 
by induction based on the following parameters: 

• Task launching hierarchy: a tree-structured task 
graph with a root node at level 0 representing 
the main process in the original thread’s task.  

• Level: a positive integer associated depth of 
the task launching hierarchy assigned such that 
all processes operating in level k > 0 are 
launched by processes at level k − 1. 

• Launch message: process create control message 
transmitted from parent to child process, 
either on the same PE or to a remote PE.  

• Launch-in-transit hazard: occurs when PEs 
temporarily satisfy the idle-state condition of 
the barrier while the barrier is actually 
incomplete, i.e. one or more process launch 
message(s) is still in-transit in the 
interconnection network. 

• Terminate message:  a transmission from a PE to 
the controller indicating idle-status and the 
number of all processes locally produced and 
locally consumed at that level. 

To determine the correctness of the Tiered 
Algorithm, it must be shown that the controller 
indicates that the barrier is completed if and only if it 
detects the termination of all processes at each level 
of the process launching hierarchy.  In the case of the 
Tiered Algorithm, the basis statement is: For every 
level L ≥ 1 in the process launching hierarchy, the Tiered 
Algorithm (i) detects the completion of all processing at 
level L, and (ii) properly detects the total number of 
processes created at level L+1, thereby correctly 
determining when the synchronization barrier has been 
reached. The induction proof of the algorithm follows 
whereby (i) it is shown that the basis statement is true 
for L=1, and (ii) if it is assumed that the basis 

statement is true for some L=k, where k > 1, then it is 
true for L=k+1: 
• Step (i): L=1 activity is launched by a broadcast 
command from the controlling node. This activity 
occurs at all N nodes of the network. While this 
broadcast message may not cause application 
processing at all nodes in the network, every PE 
responds with at least one L=1 termination message 
indicating inactivity. Therefore, the controller knows 
how many terminate messages are to be received 
before L=1 processing can be considered complete. 
Since only an L=1 task can launch an L=2 task, all L=2 
task launching will have been initiated before the 
time the controller detects the completion of L=1 
processing, as PEs report only when they become 
idle. By the definition of a terminate message, the 
controller is able to determine the number of L=2  
tasks if it has received all L=1 terminate messages. 
• Step (ii): If L=k has been completed and properly 
handled, the controller node knows how many level 
L=(k+1) processes have been launched. The 
completion of processing at L=k+1 is detected when 
the number of terminate messages received for this 
level matches the number of processes launched by 
level L=k.  By the definition of the terminate message, 
when all L=(k+1) terminate messages are received, 
the total number of tasks launched at L=(k+1) will be 
known by the controller. The barrier is reached when 
the total number of processes launched by L=(k+1) is 
zero. 

Hence the barrier is known to be reached when all 
cells of the ledger table are zero since that implies the 
entry for level L=(k+1) be zero.  An optimization for 
the Check_Ledger task is that a pointer can be 
advanced past each level in the ledger table as it 
becomes zero, thus reducing the number of levels still 
remaining to be checked.  This reduces the global 
detection latency when all tasks finally complete by 
restricting ledger checking to just the levels of those 
tasks which were most recently executing.  

4 PERFORMANCE ANALYSIS   
Table 1 lists the parameters used in the analysis of 

the four termination detection algorithms capable of 
supporting dynamic process creation environments.  
Each algorithm needs to attach specific information to 
the initializing messages of the underlying 



 

computation. The Tiered Algorithm attaches the level 
number, the Credit Algorithm attaches the credit 
value, and the CV and LTD Algorithm attach the PE 
identification number referred to as the PE ID. Since 
this information is appended to the existing task 
launch messages, these messages can be considered 
as required by the underlying computation itself, so 
that the overhead of synchronization-related 
messages only includes additional messages as 
required by the termination detection algorithm. 

 
TABLE 1. PERFORMANCE ANALYSIS PARAMETERS. 

Parameter Quantity Measured 
Epoch Duration of processing which occurs between 

barriers 
N Number of physical PEs in the computing system 
E Number of idle events which occur in an epoch 

Mi Number of internal notifications during the 
processing interval preceding the ith idle event 

T Number of logical tasks created during an epoch 
D Maximum depth of task nesting levels during 

any epoch 
F Fanout or number of links between physical PEs 

sendt  Message transit time between source and 
destination PE 

Protocol
checkupt  Time required for termination criterion checkup 

of a specific protocol 
integer
combinet  Time required to perform an integer addition 

and determine if a ledger entry is null 
set
combinet  Time required to subtract an element from a set 

of elements 
stack
cleanupt  Time required to pop all the entries in the stack 

of a PE until a sending entry is found in the stack  

4.1 MESSAGE COMPLEXITY 
Message complexity accounts for the number of 
messages required to detect termination. To be 
consistent with existing literature, every terminating 
process is said to send one internal notification message 
to indicate completion of a process on that same PE in 
the PE’s local queue [10].  Hence the algorithms 

eventually require 
1

E

i
i

TM
=

=∑ internal notifications for 

T tasks in the epoch. Since there are E events in the 
epoch, E quantity of external notification messages are 
required from one physical PE to another [10].  In the 
case of the Tiered Algorithm as depicted in Figure 
4(a), a PE is allocated r tasks, but only one message is 
transmitted containing the DIFF value at nesting level 
i to the controller C.   Thus, (T + E) messages are 

required for internal and external messages overall.  
However, in the Credit Algorithm, every task sends 
one external message to the controller after it 
terminates containing the numerical value of its 
credit portion.  As shown in Figure 4(b), the number 
of external messages sent to the controller is equal to 
the number of tasks for each PE while the total 
number of tasks across all PEs totals T.  On the other 
hand, in the case of the CV Algorithm shown in 
Figure 4(c), every task in an event needs to send an 
external remove_entry message to its sender so T 
external messages are sent. The PE, where the event 
resides, needs to send a terminate message to its 
logical parent P.  Hence, (N − 1) external messages are 
required for (N − 1) children PEs.  However, (N − 1) 
messages instead of (E − 1) messages are needed in 
this context. Combined with 2F external messages to 
build the logical spanning tree of PEs, (2F + T + N − 1) 
external messages are needed for the CV Algorithm.  
Because a child PE is required to send a terminate 
message to its parent PE after it becomes idle, every 
task in an event needs to send one internal 
notification amounting to T messages.  In the case of 
the LTD Algorithm, the number of messages required 
depends on the mapping of the tasks. As shown in 
Figure 4(d), some tasks are launched by the same PE. 
In this case, the event needs to report to the launching 
PE with only one FINISH message instead of several 
messages as is the case in the CV Algorithm.  In the 
worst case, every task in any event is launched by a 
different PE to the point where the performance is 
similar to the CV Algorithm where 

( )
1

1 1
E

i
i

M T
=

− = −∑ external FINISH messages are 

generated.  However, in the best case, the 
performance of the LTD Algorithm matches that of 
the Tiered Algorithm where every task in an event is 
executed by the same PE. Therefore, only one external 
message is reported by each PE except for the event 
occurring on the root node.  Additionally, to initialize 
each wave of termination reporting, (N − 1) external 
messages are required to inform the Detecting 
Termination status [10].  As the required number of 
internal notifications amounts to T in all cases, the 
overall number of messages required by the LTD 
Algorithm ranges from (N + T + E − 2) to (N + 2T − 2).   
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Figure 4. External messages transmission after a PE becomes idle. 
 

As summarized in Table 2, the Tiered 
Algorithm outperforms the other algorithms by 
incurring the same number of synchronization 
messages since the total number of idle 
reporting events, E, which is the least of the 
four algorithms.  Note that by definition, E ≤ T 
while F > 1 and N > 1.  The Credit Algorithm 
needs as many messages as tasks while the CV 
Algorithm needs more messages than the 
number of tasks. Finally, the LTD Algorithm's 
performance lies somewhere in between 
depending on the termination interleaving. 

4.2 BIT COMPLEXITY 
Bit Complexity accounts for the number of bits 

transmitted to detect termination. In the Tiered 
Algorithm, every report consists of two fields, 
namely the level number and the difference 
between the production and consumption 
counts in the matching level.  The maximum 
level number of an epoch with T tasks is T 
when all tasks are dispatched sequentially to 
different levels as shown in Figure 5(a).  Hence, 

lgT⎡ ⎤⎢ ⎥  bits are required. The maximum value 
of DIFF(i) that can occur within an epoch 
having T tasks is (T − 1).  As shown in Figure 
5(b), this occurs when the controller launches a 
single task which in turn launches all the 
remaining (T − 1) tasks.  So approximately 

lgT⎡ ⎤⎢ ⎥ bits are also required for the difference 
field while a basic report unit requires 
2 lgT⎡ ⎤⎢ ⎥ bits.  The worst case occurs when all 
tasks are dispatched to different levels of the 
logical tree and are physically allocated to 
unique PEs.  In that case, the PE needs to report 
2 messages consisting of DIFF(i)=−1 and 
DIFF(i)=1 corresponding to “one task 
consumed and one task produced” because no 
two tasks from adjacent levels are dispatched to 
the same PE.  Eventually, 2T reports are 
required for T finished tasks. The worst case 
takes 4 lgT T⎡ ⎤⎢ ⎥ bits. On the other hand, the least 
transmission occurs when all tasks are 
dispatched to the first level as shown in Figure 
5(c). Since all tasks are in the first level, all tasks 
dispatched to the same event require only one 
report. Finally, E basic reports are required to 
cover all consumed tasks dispatched to the E 
events.  Thus, the best case requires 
2 lgE T⎡ ⎤⎢ ⎥ bits.  In the CV Algorithm, the 
message needs to identify its own type and 
from which PE it originates. To this end it is 
assumed that a message consists of two fields: 
PE ID and message ID, requiring lg N⎡ ⎤⎢ ⎥  bits 

and ( )( )2 1 lg 2L T N N+ + − +⎡ ⎤⎢ ⎥ bits, 

respectively. For the LTD Algorithm, two fields 
are used: message ID and amount.   



 

TABLE 2. MESSAGE COMPLEXITY. 
 

Algorithm Total Notifications Internal 
Notifications 

External Messages Required 

Tiered 
Algorithm 

E + T T E 

Credit 
Algorithm 

T 0 T 

CV Algorithm (2F + 2T + N − 1) T (2F + T + N − 1) 
LTD Algorithm from (N + T + E − 2) to (N + 2T − 

2) 
T from (N + E − 2) to (N + T − 

2) 
 

      
                    (a) Case 1.                                  (b) Case 2.                                                 (c) Case 3. 
 

Figure 5. Extreme dispatching cases in the Tiered detection algorithm. 
 
The amount field, which represents the 

number of messages reported by FINISH(n), 
needs lgT⎡ ⎤⎢ ⎥ bits since the largest possible 
number of messages that could be reported is 
T. Hence, the number of bits required by the 
LTD Algorithm can range from 

( )( )1 lg 1E N T+ − +⎡ ⎤⎢ ⎥ to ( )( )1 lg 1T N T+ − +⎡ ⎤⎢ ⎥ . 

As summarized in Table 3, the Credit algorithm 
displays performance with a complexity of 
( )lgT TΘ . This indicates that it always needs 

( )lgT T bits. On the other hand, the CV 
Algorithm is slightly better than the Credit 
Algorithm with a complexity of ( )lgT NΘ . 

4.3 DETECTION DELAY 
Detection delay accounts for the interval from 

when the last task ends until the controller 
process announces global termination.  In all 
cases of the Tiered and Credit algorithms, the 
PE sends a report to the controller after the last 
task ends.  The detection delay can be 

expressed as ( )protocol
send checkupt t+  where tsend is the 

message transit time and protocol
checkupt is the time 

taken by the final execution procedure for a 
given protocol.  In the Tiered Algorithm, the 
controller balances the ledger table entries for 
any non-zero levels and concludes global 
termination.  In the Credit Algorithm, credits 
are kept as floating-point values, or more 
optimally as negative exponent fractions of 
powers of two in a set called DEBTS that needs 
to be combined at the controller [2]. As for the 
CV Algorithm, the detection delay depends on 
the location of the last task in the physical tree 
of PEs. The worst case occurs when only one 
task is dispatched to each of the first (N − 1) 
PEs, the remaining tasks are dispatched to the 
last PE in the tree of PEs while the last ending 
task resides in the last PE. After the last task 
ends, the last PE needs to first send (T − N + 1) 
remove_entry messages serially, which takes 
time (T − N + 1)tsend. Next, it checks its status 
and sends terminate to its parent. In return, its 
parent also checks its status and sends 
terminate one level higher.  



 

TABLE 3. BIT COMPLEXITY.  
Algorithm Best Case Worst Case Complexity 
Tiered Algorithm 2 lgE T⎡ ⎤⎢ ⎥  4 lgT T⎡ ⎤⎢ ⎥  ( )lgO T T  

Credit Algorithm lgT T⎡ ⎤⎢ ⎥  lgT T⎡ ⎤⎢ ⎥  ( )lgT TΘ  

CV Algorithm ( ) ( )2 1 lg 2L T N N+ + − × +⎡ ⎤⎢ ⎥  ( ) ( )2 1 lg 2L T N N+ + − × +⎡ ⎤⎢ ⎥  ( )lgT NΘ  

LTD Algorithm ( ) ( )1 lg 1E N T+ − × +⎡ ⎤⎢ ⎥  ( ) ( )1 lg 1T N T+ − × +⎡ ⎤⎢ ⎥  ( )lgO T T  

 
This process goes on in every PE, except in 

the root PE of the physical tree, thus taking 

( )( )1 CV
checkup sendN t t− + .  Receiving the terminate 

message from its child, the root PE checks the 
status and concludes global termination, which 
takes CV

checkupt . In total, the detection delay for the 

worst case is ( )CV
send checkupTt Nt+ . On the other 

hand, the best case occurs when the last ending 
task resides in the root PE. The root PE checks 
the status and concludes global termination 
with the detection delay denoted by CV

checkupt .  In 

the case of the LTD Algorithm, the situation is 
very similar to that of the CV Algorithm since it 
all depends on where the last ending task is 
located. The worst case occurs when the tasks 
are dispatched where the last ending task 
resides in the deepest PE 
requiring ( ) ( )2 3 1 LTD

send checkupN t N t− + − .  Both 

require a stack cleanup operation [9] which takes 
stack
cleanupt   In the best case, the root PE checks its 

status and concludes global termination, which 
takes only LTD

checkupt . These results are summarized 

in Table 4 where the Tiered Algorithm exhibits 
performance related to the complexity of an 
integer combining step, i.e., addition and 
determination if ledger entry is equal to zero.  
The other algorithms require more complex 
messaging or combining operations.  

4.4 STORAGE COMPLEXITY 
In the Tiered Algorithm, the controller needs 

to maintain a ledger table with space for T 
records reserved for possible T levels in the 
worst case. Because the index of the records in 
the table can serve as the level number 
implicitly, there is no need to set a field for the 

level number in the table. The largest possible 
number for level difference is (T − 1), hence 

lgT⎡ ⎤⎢ ⎥ bits are sufficient for each record. In 

total, lgT T⎡ ⎤⎢ ⎥ bits are required for the ledger 
table. In the Credit Algorithm, a debt 
bookkeeping technique is proposed [2] in order 
to avoid underflow problems and process 
exponents. This technique maintains a DEBTS 
set so whenever a task becomes idle and 
returns its credit share, the controller removes 
it from the DEBTS set. When the DEBTS set 
becomes empty, termination is concluded. The 
controller needs space to maintain the set. The 
worst case, similar to the case shown in Figure 
5, occurs when all T tasks are active.  Therefore, 

lgT T⎡ ⎤⎢ ⎥ bits are needed to accommodate the 
worst case. As for the CV Algorithm, every PE 
maintains a stack to record sending and 
receiving activities. The stack must be 
sufficiently large to accommodate (T − N + 1) 
records, each of which are lg N⎡ ⎤⎢ ⎥  bits wide. 

The space required is ( )1 lgN T N N− + ⎡ ⎤⎢ ⎥ bits in 
total for N PEs. Hence, the storage complexity 
is ( )lgO NT N . As previously described, every 
node in the LTD Algorithm has to maintain 
four variables [10]. The first, ini, needs 
( )1 lgN T− ⎡ ⎤⎢ ⎥ bits. The second, outi, needs 

lgT⎡ ⎤⎢ ⎥ bits. The third, modei, needs 1 bit. The 

last, parenti, needs lg N⎡ ⎤⎢ ⎥ bits. The total is 

( )lg lg 1N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ bits for each PE. Hence, N 

PEs need ( )lg lg 1N N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ bits.   As 

summarized in Table 5, the Credit and the LTD 
algorithms require less space than the other 
two algorithms. 

 



 

TABLE 4. DETECTION DELAY. 
Algorithm Best Case Worst Case Complexity 
Tiered Algorithm ( )Tiered

send checkupt t+  ( )Tiered

send checkupt t+  ( )integer
combineO t  

Credit Algorithm ( )Credit

send checkupt t+  ( )Credit

send checkupt t+  ( )set
combineO t  

CV Algorithm CV

checkupt  ( )CV

send checkupTt Nt+  ( )stack
cleanupO T N t+ ×  

LTD Algorithm LTD

checkupt  ( ) ( )2 3 1 LTD

send checkupN t N t− + −  ( )stack
cleanupO N t×  

 
TABLE 5.  STORAGE COMPLEXITY. 

Algorithm Space Required Complexity 
Tiered 
Algorithm 

lgT T⎡ ⎤⎢ ⎥  ( )lgT TΘ  

Credit 
Algorithm 

lgT T⎡ ⎤⎢ ⎥  ( )lgT TΘ  

CV 
Algorithm 

( )1 lgN T N N− + ⎡ ⎤⎢ ⎥  ( )lgNT NΘ  

LTD 
Algorithm 

( )lg lg 1N N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥  ( )lgN TΘ  

5 EXPERIMENTAL EVALUATION 
The Tiered Algorithm performance is 

compared directly against the Credit Algorithm 
since they are parent-responsibility algorithms 
and both outperform CV and LTD by the 
metrics in Section 4. Experimental evaluation 
consists of a benchmark of 100 task nesting 
hierarchies [36] of varying depth, size, and 
characteristics of task creation and termination 
as shown in Figure 6.  The number of tasks in 
the hierarchies ranged from 101 to 703 with a 
mean of 311 tasks. 

5.1 SYNCHRONIZATION MESSAGE 

OVERHEAD 
The volume of a synchronization messages 

was quantified using three metrics: (i) the 
number of synchronization messages; (ii) the 
number of element values returned over all 
synchronization messages; and (iii) the total 
number of bits based on the size of the 
transmitted elements.  Figure 7 shows the 
number of messages in the Credit Algorithm 
with a second curve representing the difference 
between the number of messages in the Credit 
and the Tiered Algorithm.  A positive 
difference in the latter curve indicates an 
advantage for the Tiered Algorithm consistent 

with the analysis in Section 4.1.  Mean traffic 
was 263 messages vs. 302 messages while 
maximum traffic was 395 messages vs. 680 
messages, for the Tiered and Credit algorithms 
respectively.   

 
Figure 6. Task hierarchies. 

 
Figure 7. Synchronization messages. 

 
The difference curve in Figure 8 shows that 

the Tiered Algorithm returns a larger number 
of elements than the Credit Algorithm does.  
However, the difference curve in Figure 9 
shows that the Tiered Algorithm requires fewer 



 

bits to do so than the Credit Algorithm does.  In 
the case of the Tiered Algorithm, the maximum 
value of the element returned to the controller 
typically matches the maximum number of task 
levels created.  As shown in Figure 9, this 
allows the Tiered algorithm to reduce message 
traffic by 24% on average and by 30% in the 
best case when compared to Credit while 
exhibiting less standard deviation.  Note that 
the maximum task level of nesting establishes a 
lower limit on the maximum size of the credit 
list.  While the Tiered Algorithm may return 
more elements to the controller, the 
comparatively small values represented by 
these elements allow message encoding 
requiring fewer bits per message.  Nonetheless 
such reductions may be eliminated during 
packetization on a store and forward network. 

 
Figure 8. Synchronization elements returned. 

 
Figure 9. Message traffic.  

5.2 CONTROLLER WORKLOAD 
To evaluate the controller workload, 

equivalent machine-level instructions were 

tabulated for both the Tiered and Credit 
algorithms as shown in Figure 10.  Because the 
Credit Algorithm relies on complex operators, 
such as the combining elements in the DEBTS 
set, it tends to generate a significantly larger 
workload than the Tiered Algorithm since even 
the optimization for the Credit algorithm 
requires set subtraction utilizing O(|S|) 
operations assuming a linked list 
implementation of set S is maintained.    In 
addition, the variation in workload imposed on 
the controller by the Credit Algorithm is 
significantly greater than that of the Tiered 
Algorithm.  A worst case analysis would need 
to anticipate the largest of these workloads 
which was 15.3-fold larger in the case of the 
Credit Algorithm when compared to the Tiered 
Algorithm as depicted in Figure 10. 

 
Figure 10. Controller operations to detect 

termination. 

5.3 SIZE OF THE DATA STRUCTURE IN THE 

CONTROLLER 
In the Tiered Algorithm, there is a one-to-one 

correspondence between the number of 
elements in the data structure maintained by 
the controller and the maximum depth of 
nesting D that occurs during execution.  
However, in the Credit Algorithm, the size of 
DEBTS set is bounded below by D, yet can 
range up to the maximum credit value that is 
created during the execution of the application, 
which may be as high as T.  While their worst 
case asymptotic storage complexities are 
comparable as described in Section 4.4, it is 



 

shown in Figure 11 that the Tiered Algorithm is 
consistently preferable for a wide range set of 
tasks with maximum size at 12/19 = 63% of the 
maximum Credit structure size. 

6 CONCLUSION 
Given its broad capabilities for supporting 

both static and dynamic process creation 
environments at low overhead, the Tiered 
Algorithm offers a general approach to 
termination detection.  It performs well under 
widely varying characteristics of the number of 
created and terminated processes and depth of 
process nesting using metrics of message and 
storage complexity. 

 
Figure 11. Controller data structure. 

 
When compared to wave-based algorithms, 

the Tiered Algorithm’s use of invariance 
among equality of production and 
consumption counts at each nesting level to 
indicate global termination eliminates the 
necessity to periodically interrogate the status 
of PEs, which suspends throughput during the 
checking process.  When compared to a 
parental responsibility-based algorithm with 
comparable capabilities such as the Credit 
Algorithm, the practice of computing the 
difference between the production and 
consumption counts, instead of respective 
individual credit portions, reduces the bit 
complexity almost by half.  In addition, the 
Tiered Algorithm allows the last finishing task 
report to incur integer math for just the deepest 
level of process nesting in contrast to the 
computationally intensive binary exponent 

DEBTS set subtraction and union operations 
encountered in the Credit Algorithm 
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