

Tiered Algorithm for
Distributed Process Quiescence and Termination

Detection

Ronald F. DeMara, Yili Tseng, and Abdel Ejnioui

Abstract⎯The Tiered Algorithm is presented for time-efficient and message-efficient detection of process termination. It employs a
global invariant of equality between process production and consumption at each level of process nesting to detect termination
regardless of execution interleaving order and network transit time. Correctness is validated for arbitrary process launching hierarchies,
including launch-in-transit hazards where processes are created dynamically based on run-time conditions for remote execution. The
performance of the Tiered Algorithm is compared to three existing schemes with comparable capabilities, namely the CV, LTD, and
Credit termination detection algorithms. For synchronization of T tasks terminating in E epochs of idle processing, the Tiered Algorithm
is shown to incur O(E) message count complexity and O(T lg T) message bit complexity while incurring detection latency corresponding
to only integer addition and comparison. The synchronization performance in terms of messaging overhead, detection operations, and
storage requirements are evaluated and compared across numerous task creation and termination hierarchies.

Index Terms⎯ Synchronization, Multitasking, Distributed Architectures, Distributed Programming, Parallel Processing.

—————————— ——————————

1 INTRODUCTION

Efficient detection of process termination [1] is
essential for optimizing throughput in distributed
computer architectures and networks. An ensemble
of Processing Elements (PEs) is said to be
synchronized, or to have reached a quiescent state [2],
upon termination of each interval of concurrent
activity. Points at which synchronization occur are
referred to as barriers [3] and their detection can
significantly influence throughput since idle PEs
cannot proceed to subsequent operations in the
current thread until the barrier’s completion has been
signaled. In addition to execution overhead, the
interchange of synchronization messages during
barrier detection degrades the message transmission
capacity available to the underlying computations [4].

Many existing termination detection algorithms
require a-priori knowledge of process creation or

depend on various attributes of the network topology
for correct operation [3, 5-8]. However, the Tiered
Algorithm developed herein belongs to a class of more
capable termination detection schemes [2, 4, 9-11] that
support more general diffusing models of distributed
computation which allow dynamic process creation [12,
13]. Applications in which processes are created and
destroyed based on run-time conditions, such as
distributed garbage collection [14, 15], network
multicasting [16], parallel marker-passing [17], and
parallel polygon rendering in real time scientific
visualization [18], explicitly require such capabilities.
Detection of termination is complicated by
persistence of child processes after the completion of
their parents, as is the case with orphan processes
encountered in these applications and others such as
distributed databases [19, 20]. Rudimentary
approaches to this problem which maintain the
parent process until all of its children have
terminated tend to waste system resources while
introducing data consistency issues [19] which can be
eliminated by more efficient and powerful algorithms
for termination detection.

Among the few available algorithms which can
properly detect global termination in the case of
orphan processes [12], the Tiered Algorithm is shown

————————————————
• R. F. DeMara is with the School of Electrical Engineering and

Computer Science, University of Central Florida, Orlando, FL
32816, E-mail: demara@ mail.ucf.edu.

• Y. Tseng is with Auricular Medicine International Research and
Training Center, Fern Park, FL 32730, E-mail: ytseng@ieee.org.

• A. Ejnioui is with the Information Technology Department,
University of South Florida, Lakeland, FL 33863, E-mail:
aejnioui@lakeland.usf.edu.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the
bibliography.

to do so at minimum overhead. It requires O(min(N,
T)) synchronization messages where N is the number
of PEs in the system and T is the number of tasks
created during execution of the distributed
application. To a large extent, the reduced
communication overhead is achieved by employing a
processor-centered protocol. In contrast to process-
centered protocols where a control message is sent
from each terminating process to a parent or a global
barrier detection process, a processor-centered
protocol instead allows a single control message to be
sent from each PE that accounts for all processes
executed on that PE. Hence, processor-centered
protocols are especially suitable for the typical
scenarios where the number of processes equals or
exceeds the number of PEs allocated to the
computation [17]. Unlike wave-based termination
detection schemes [8, 21-23] which send control
messages periodically, the Tiered Algorithm requires
that a PE transmits control messages only when it
becomes idle.

Finally, static environments can be considered to be
an equivalent case of a dynamic environment where
all processes are created upon initialization. Thus, an
approach which solves the most general dynamic
termination detection problem, while incurring
overhead of the more restrictive static case, offers a
general solution. In this paper, the Tiered Algorithm
is shown to support dynamic process creation
environments at comparable costs to that of only
static-capable termination detection schemes. As
shown in [24], the theoretical minimum in terms of
communication overhead is given by the min(N, T)
message and is this achieved by the Tiered
Algorithm. As described below, it achieves this
bound by employing a global invariant of process
nesting with a straightforward integer-based
accounting scheme.

2 RELATED WORK
A wide range of termination detection algorithms

have been proposed both as software-only [2, 9, 10]
and hardware-specific [3, 4, 6, 7] approaches. The
most general software-based algorithms consider
diffusing computation models [12, 21, 23, 25-27] in
which one process initiates the distributed activity
and launches subprocesses dynamically by

transmitting messages to remote PEs. Two broad
termination detection approaches for these
environments are parental responsibility algorithms [12,
23, 26, 28-30] and wave-based algorithms [8, 21-23].
Parental responsibility algorithms infer global
termination status from a progression of local process
initiation and completion activities on each PE. Wave
algorithms do not track process transactions
continually, but instead periodically propagate waves
of control messages to interrogate the current status
of each PE. Some of these algorithms can detect
termination on arbitrary network topologies [8, 12,
16, 22, 23, 26, 27, 29] while others require
maintenance of process spanning trees or a specific
underlying physical network topology [21, 23, 28, 30].
For example, algorithms which detect termination by
using a virtual spanning tree [11, 23, 31, 32] require
that a single process be designated as the root and
have direct means to track status of its children [8, 16,
22, 27, 29]. Other algorithms require maintaining a
dependent set [21] or a neighbor set [12, 30] of processes;
others dictate that a controller process be aware of the
network diameter [26] or synchronize activity
through a local clock [11, 12, 33, 34].

As in this paper, more recent algorithms address a
completely asynchronous communication model in
which messages arrive in arbitrary order [12, 22, 23,
27, 29] without requiring FIFO channels [16, 26, 30] or
assumptions of finite transmission delays [21]. The
most general of these algorithms support a dynamic
environment in which processes are created and
destroyed as the underlying computation progresses
[8, 12, 16, 21, 22]. However, many address only
special cases of dynamic environments. For example,
the algorithms proposed in [13, 25, 35] allow
processes to be created, but not destroyed, while the
algorithm in [11] requires that a process participates
in termination detection even after it has been
destroyed, and in [22] only one process is allowed to
execute on each PE.

The best performing previous algorithms which
support dynamic execution and do not impose
message ordering nor topology constraints include
the Credit Algorithm [2] which is a parental
responsibility-based approach, and the CV Algorithm
[9] and LTD Algorithm [10] which are wave-based
approaches. The CV Algorithm organizes all

processors participating in barrier as a logical
spanning tree such that when the root terminates, it
declares global termination. The LTD Algorithm
refines the CV Algorithm by optimizing wave
operations based on a local message stack maintained
at each PE. The Credit Algorithm relies instead on a
credit distribution invariant where the top-level
parent process is given a unit credit of 1.0. Each time
a subprocess is created, a parent gives half of its
remaining credit to it. Later as processes are
terminated, credit portions are returned to a central
controller process. When the sum of the credit values
returned equals 1.0, then global termination is
declared. Meanwhile, the Tiered Algorithm employs
an improved global invariant that allows processor-
centered reporting and replacement of a time-
consuming fraction combining step with integer
addition.

3 TIERED DETECTION ALGORITHM
The Tiered Algorithm supports a simultaneous-

initiation diffusing computation model. The number
and binding of processes need not be known a-priori,
and processes can be created or completed without
restriction during execution. It does not assume any
network topology and exchanges messages under an
asynchronous communication model without any
assumptions of message delivery neither ordering
nor transmission time. As in the Credit Algorithm,
every participating PE reports the count of locally
produced and terminated tasks at each level of
process nesting to the designated process, called the
controller process, which will announce global
termination. The controller updates a ledger of count
values accordingly to determine whether the global
consumption count matches the production count at
every nesting level. If so, the controller announces
global termination. Otherwise, the controller waits
for the report as some processes have not yet
completed execution. So, the global invariant for
termination detection is that process create count
received by the controller equals process terminate
count received on a nesting level-by-level basis as
described below.

Tiered reporting is a processor-centered mechanism
in order to reduce message traffic under the usual
condition T >> N for T logical tasks on N physical

processors. Processor-centered reporting means that
PEs report status for all processes that they have
initiated or completed. Furthermore, synchronization
message traffic is incurred only when a PE becomes
idle, unlike wave-based approaches.

3.1 PE OPERATION
Under a distributed tasking model, each PE

maintains a local queue of processes to be executed
[36]. A process is entered into the queue by receipt of
a process launch message from a parent process
executing on this PE or on another PE. Associated
with each process launch message is an integer
indicating the nesting level of the process that created
it. The level number of the child process is obtained
by adding an integer value of 1 to the level number of
the parent where the root process is assigned level
L=0. Figure 1 shows the local portion of the Tiered
Algorithm executed on each PE.

Procedure Receive_TaskLaunch_Message(L : level number)
begin
 Update row L of activity table to increase produced
 count;
end

Procedure Finish_A_Task(L : level number)
begin
 Update row L of activity table to increase consumed
 count;
end

Procedure Upon_Idle
begin
 Report to controller non-zero difference for
 previously unreported rows of activity table;
end

Figure 1. PE operation in the Tiered Algorithm.

Figure 2(a) shows the activity table maintained by

each PE. The activity table records the local process
consumption and production counts for each level on
that PE. A PE’s consumption count values indicate
the number of tasks that were locally consumed at
each level on this PE. Likewise, the production count
represents the number of tasks launched at each level
at the local PE. The count values can be stored to
exploit a unique relationship by which the tasks
dispatched by the kth level are also the tasks created

on the (k + 1)th level. Since the equality of the number
of tasks launched at a specific level and the number
of tasks consumed at the same level is critical, it is
sufficient to maintain the difference between the two
numbers for each level k as DIFF(k). As such, the
number of quantities maintained and communicated
is reduced in half. Hence, a one-dimension table,
shown in Figure 2(b), is maintained for the difference
between the local consumption and production
counts at each level of process nesting. Whenever a
launch message is received by a PE, the procedure
Receive_TaskLaunch_Message is called to update the
local activity table which increments the level
number. Likewise, the procedure Finish_A_Task is
called whenever a task is completed at a PE by
updating the local activity table according to the level
number which is associated with the finished task.

Level Consumption Count Production Count

0 0 4
1 4 6
2 6 8
•
•

(D − 1) 5 7
D 7 6

(a) Theoretical data structure.

DIFF(1)
DIFF(2)

•
•

DIFF(D−1)
DIFF(D)

(b) Implementation table.

Figure 2. Activity tables for process creation/termination

The update consists of decrementing the number in
the corresponding table cell. After the PE finishes all
the tasks in its execution queue and becomes idle, the
procedure Upon_Idle is invoked to report the
difference between the numbers of consumed and
produced tasks for each level to the controller. Only
levels with nonzero DIFF values need be reported.
Once a PE reports to the controller, there is no loss of
availability as the PE can be reactivated by any new
process launching messages that are subsequently
received from remote PEs. With the exception of the

Credit Algorithm, processor reactivation capability,
immediately upon reporting, is not typically
supported by previous termination detection
schemes. In the case of the Tiered Algorithm,
correctness is maintained even if reactivation occurs
with new processes that contribute to the same
barrier that has been previously reported by that PE.

3.2 OPERATION OF THE CONTROLLER
The controller maintains a ledger table to keep track

of the global consumption and production counts
using the control messages reported from the PEs.
Using the same rationale as for the activity table for a
PE, a one-dimension table suffices where only the
difference between the consumption and production
counts for each level is maintained.

Figure 3 shows the algorithm for the controller.
Whenever a PE reports to the controller, the
controller invokes the Receive_Report procedure.

Procedure Receive_Report(r : report)
begin
 Update ledger and idle table accordingly;
 if (Check_Ledger)
 Declare global termination;
 endif
end

Procedure Check_Ledger
begin
 Check ledger table to determine if consumption and
 production counts of every level match;
 if yes, report TRUE;
 else report FALSE;
 endif
end

Figure 3. Operation of the controller in the Tiered Algorithm.

It updates the ledger table accordingly based on the
information sent by the reporting PE. This can result
in an increase or decrease in the value stored in the
corresponding level cell of the ledger table by the
amount reported. Next, the controller process
evaluates Check_Ledger. If the difference values in
all cells of the ledger table are zero, meaning all tasks
launched to all levels have been consumed, the global
termination has been reached. If the value of any cell
in the ledger table is not zero, meaning that there are
still messages in transit and/or PEs still active, then

the controller exits the procedure as global
termination cannot be declared until after the next
report is received.

3.3 CORRECTNESS PROOF
A correctness proof of a dynamic process creation

termination detection technique needs to demonstrate
that the barrier is announced if and only if all PEs
have entered an idle state and simultaneously that no
process launch messages are in transit in the network.
The correctness of the Tiered Algorithm uses a proof
by induction based on the following parameters:

• Task launching hierarchy: a tree-structured task
graph with a root node at level 0 representing
the main process in the original thread’s task.

• Level: a positive integer associated depth of
the task launching hierarchy assigned such that
all processes operating in level k > 0 are
launched by processes at level k − 1.

• Launch message: process create control message
transmitted from parent to child process,
either on the same PE or to a remote PE.

• Launch-in-transit hazard: occurs when PEs
temporarily satisfy the idle-state condition of
the barrier while the barrier is actually
incomplete, i.e. one or more process launch
message(s) is still in-transit in the
interconnection network.

• Terminate message: a transmission from a PE to
the controller indicating idle-status and the
number of all processes locally produced and
locally consumed at that level.

To determine the correctness of the Tiered
Algorithm, it must be shown that the controller
indicates that the barrier is completed if and only if it
detects the termination of all processes at each level
of the process launching hierarchy. In the case of the
Tiered Algorithm, the basis statement is: For every
level L ≥ 1 in the process launching hierarchy, the Tiered
Algorithm (i) detects the completion of all processing at
level L, and (ii) properly detects the total number of
processes created at level L+1, thereby correctly
determining when the synchronization barrier has been
reached. The induction proof of the algorithm follows
whereby (i) it is shown that the basis statement is true
for L=1, and (ii) if it is assumed that the basis

statement is true for some L=k, where k > 1, then it is
true for L=k+1:
• Step (i): L=1 activity is launched by a broadcast
command from the controlling node. This activity
occurs at all N nodes of the network. While this
broadcast message may not cause application
processing at all nodes in the network, every PE
responds with at least one L=1 termination message
indicating inactivity. Therefore, the controller knows
how many terminate messages are to be received
before L=1 processing can be considered complete.
Since only an L=1 task can launch an L=2 task, all L=2
task launching will have been initiated before the
time the controller detects the completion of L=1
processing, as PEs report only when they become
idle. By the definition of a terminate message, the
controller is able to determine the number of L=2
tasks if it has received all L=1 terminate messages.
• Step (ii): If L=k has been completed and properly
handled, the controller node knows how many level
L=(k+1) processes have been launched. The
completion of processing at L=k+1 is detected when
the number of terminate messages received for this
level matches the number of processes launched by
level L=k. By the definition of the terminate message,
when all L=(k+1) terminate messages are received,
the total number of tasks launched at L=(k+1) will be
known by the controller. The barrier is reached when
the total number of processes launched by L=(k+1) is
zero.

Hence the barrier is known to be reached when all
cells of the ledger table are zero since that implies the
entry for level L=(k+1) be zero. An optimization for
the Check_Ledger task is that a pointer can be
advanced past each level in the ledger table as it
becomes zero, thus reducing the number of levels still
remaining to be checked. This reduces the global
detection latency when all tasks finally complete by
restricting ledger checking to just the levels of those
tasks which were most recently executing.

4 PERFORMANCE ANALYSIS
Table 1 lists the parameters used in the analysis of

the four termination detection algorithms capable of
supporting dynamic process creation environments.
Each algorithm needs to attach specific information to
the initializing messages of the underlying

computation. The Tiered Algorithm attaches the level
number, the Credit Algorithm attaches the credit
value, and the CV and LTD Algorithm attach the PE
identification number referred to as the PE ID. Since
this information is appended to the existing task
launch messages, these messages can be considered
as required by the underlying computation itself, so
that the overhead of synchronization-related
messages only includes additional messages as
required by the termination detection algorithm.

TABLE 1. PERFORMANCE ANALYSIS PARAMETERS.

Parameter Quantity Measured
Epoch Duration of processing which occurs between

barriers
N Number of physical PEs in the computing system
E Number of idle events which occur in an epoch

Mi Number of internal notifications during the
processing interval preceding the ith idle event

T Number of logical tasks created during an epoch
D Maximum depth of task nesting levels during

any epoch
F Fanout or number of links between physical PEs

sendt Message transit time between source and
destination PE

Protocol
checkupt Time required for termination criterion checkup

of a specific protocol
integer
combinet Time required to perform an integer addition

and determine if a ledger entry is null
set
combinet Time required to subtract an element from a set

of elements
stack
cleanupt Time required to pop all the entries in the stack

of a PE until a sending entry is found in the stack

4.1 MESSAGE COMPLEXITY
Message complexity accounts for the number of
messages required to detect termination. To be
consistent with existing literature, every terminating
process is said to send one internal notification message
to indicate completion of a process on that same PE in
the PE’s local queue [10]. Hence the algorithms

eventually require
1

E

i
i

TM
=

=∑ internal notifications for

T tasks in the epoch. Since there are E events in the
epoch, E quantity of external notification messages are
required from one physical PE to another [10]. In the
case of the Tiered Algorithm as depicted in Figure
4(a), a PE is allocated r tasks, but only one message is
transmitted containing the DIFF value at nesting level
i to the controller C. Thus, (T + E) messages are

required for internal and external messages overall.
However, in the Credit Algorithm, every task sends
one external message to the controller after it
terminates containing the numerical value of its
credit portion. As shown in Figure 4(b), the number
of external messages sent to the controller is equal to
the number of tasks for each PE while the total
number of tasks across all PEs totals T. On the other
hand, in the case of the CV Algorithm shown in
Figure 4(c), every task in an event needs to send an
external remove_entry message to its sender so T
external messages are sent. The PE, where the event
resides, needs to send a terminate message to its
logical parent P. Hence, (N − 1) external messages are
required for (N − 1) children PEs. However, (N − 1)
messages instead of (E − 1) messages are needed in
this context. Combined with 2F external messages to
build the logical spanning tree of PEs, (2F + T + N − 1)
external messages are needed for the CV Algorithm.
Because a child PE is required to send a terminate
message to its parent PE after it becomes idle, every
task in an event needs to send one internal
notification amounting to T messages. In the case of
the LTD Algorithm, the number of messages required
depends on the mapping of the tasks. As shown in
Figure 4(d), some tasks are launched by the same PE.
In this case, the event needs to report to the launching
PE with only one FINISH message instead of several
messages as is the case in the CV Algorithm. In the
worst case, every task in any event is launched by a
different PE to the point where the performance is
similar to the CV Algorithm where

()
1

1 1
E

i
i

M T
=

− = −∑ external FINISH messages are

generated. However, in the best case, the
performance of the LTD Algorithm matches that of
the Tiered Algorithm where every task in an event is
executed by the same PE. Therefore, only one external
message is reported by each PE except for the event
occurring on the root node. Additionally, to initialize
each wave of termination reporting, (N − 1) external
messages are required to inform the Detecting
Termination status [10]. As the required number of
internal notifications amounts to T in all cases, the
overall number of messages required by the LTD
Algorithm ranges from (N + T + E − 2) to (N + 2T − 2).

C

Task r

Task 1

Task 2

PE

credit
portion

credit
portion

credit
portion

P

PEi

PE1

PE2

PE3

PEN

Task 1

Task 2

Task 3

Task (-1)

Task

(a) Tiered (b) Credit (c) CV (d) LTD

Figure 4. External messages transmission after a PE becomes idle.

As summarized in Table 2, the Tiered
Algorithm outperforms the other algorithms by
incurring the same number of synchronization
messages since the total number of idle
reporting events, E, which is the least of the
four algorithms. Note that by definition, E ≤ T
while F > 1 and N > 1. The Credit Algorithm
needs as many messages as tasks while the CV
Algorithm needs more messages than the
number of tasks. Finally, the LTD Algorithm's
performance lies somewhere in between
depending on the termination interleaving.

4.2 BIT COMPLEXITY
Bit Complexity accounts for the number of bits

transmitted to detect termination. In the Tiered
Algorithm, every report consists of two fields,
namely the level number and the difference
between the production and consumption
counts in the matching level. The maximum
level number of an epoch with T tasks is T
when all tasks are dispatched sequentially to
different levels as shown in Figure 5(a). Hence,

lgT⎡ ⎤⎢ ⎥ bits are required. The maximum value
of DIFF(i) that can occur within an epoch
having T tasks is (T − 1). As shown in Figure
5(b), this occurs when the controller launches a
single task which in turn launches all the
remaining (T − 1) tasks. So approximately

lgT⎡ ⎤⎢ ⎥ bits are also required for the difference
field while a basic report unit requires
2 lgT⎡ ⎤⎢ ⎥ bits. The worst case occurs when all
tasks are dispatched to different levels of the
logical tree and are physically allocated to
unique PEs. In that case, the PE needs to report
2 messages consisting of DIFF(i)=−1 and
DIFF(i)=1 corresponding to “one task
consumed and one task produced” because no
two tasks from adjacent levels are dispatched to
the same PE. Eventually, 2T reports are
required for T finished tasks. The worst case
takes 4 lgT T⎡ ⎤⎢ ⎥ bits. On the other hand, the least
transmission occurs when all tasks are
dispatched to the first level as shown in Figure
5(c). Since all tasks are in the first level, all tasks
dispatched to the same event require only one
report. Finally, E basic reports are required to
cover all consumed tasks dispatched to the E
events. Thus, the best case requires
2 lgE T⎡ ⎤⎢ ⎥ bits. In the CV Algorithm, the
message needs to identify its own type and
from which PE it originates. To this end it is
assumed that a message consists of two fields:
PE ID and message ID, requiring lg N⎡ ⎤⎢ ⎥ bits

and ()()2 1 lg 2L T N N+ + − +⎡ ⎤⎢ ⎥ bits,

respectively. For the LTD Algorithm, two fields
are used: message ID and amount.

TABLE 2. MESSAGE COMPLEXITY.

Algorithm Total Notifications Internal
Notifications

External Messages Required

Tiered
Algorithm

E + T T E

Credit
Algorithm

T 0 T

CV Algorithm (2F + 2T + N − 1) T (2F + T + N − 1)
LTD Algorithm from (N + T + E − 2) to (N + 2T −

2)
T from (N + E − 2) to (N + T −

2)

 (a) Case 1. (b) Case 2. (c) Case 3.

Figure 5. Extreme dispatching cases in the Tiered detection algorithm.

The amount field, which represents the

number of messages reported by FINISH(n),
needs lgT⎡ ⎤⎢ ⎥ bits since the largest possible
number of messages that could be reported is
T. Hence, the number of bits required by the
LTD Algorithm can range from

()()1 lg 1E N T+ − +⎡ ⎤⎢ ⎥ to ()()1 lg 1T N T+ − +⎡ ⎤⎢ ⎥ .

As summarized in Table 3, the Credit algorithm
displays performance with a complexity of
()lgT TΘ . This indicates that it always needs

()lgT T bits. On the other hand, the CV
Algorithm is slightly better than the Credit
Algorithm with a complexity of ()lgT NΘ .

4.3 DETECTION DELAY
Detection delay accounts for the interval from

when the last task ends until the controller
process announces global termination. In all
cases of the Tiered and Credit algorithms, the
PE sends a report to the controller after the last
task ends. The detection delay can be

expressed as ()protocol
send checkupt t+ where tsend is the

message transit time and protocol
checkupt is the time

taken by the final execution procedure for a
given protocol. In the Tiered Algorithm, the
controller balances the ledger table entries for
any non-zero levels and concludes global
termination. In the Credit Algorithm, credits
are kept as floating-point values, or more
optimally as negative exponent fractions of
powers of two in a set called DEBTS that needs
to be combined at the controller [2]. As for the
CV Algorithm, the detection delay depends on
the location of the last task in the physical tree
of PEs. The worst case occurs when only one
task is dispatched to each of the first (N − 1)
PEs, the remaining tasks are dispatched to the
last PE in the tree of PEs while the last ending
task resides in the last PE. After the last task
ends, the last PE needs to first send (T − N + 1)
remove_entry messages serially, which takes
time (T − N + 1)tsend. Next, it checks its status
and sends terminate to its parent. In return, its
parent also checks its status and sends
terminate one level higher.

TABLE 3. BIT COMPLEXITY.
Algorithm Best Case Worst Case Complexity
Tiered Algorithm 2 lgE T⎡ ⎤⎢ ⎥ 4 lgT T⎡ ⎤⎢ ⎥ ()lgO T T

Credit Algorithm lgT T⎡ ⎤⎢ ⎥ lgT T⎡ ⎤⎢ ⎥ ()lgT TΘ

CV Algorithm () ()2 1 lg 2L T N N+ + − × +⎡ ⎤⎢ ⎥ () ()2 1 lg 2L T N N+ + − × +⎡ ⎤⎢ ⎥ ()lgT NΘ

LTD Algorithm () ()1 lg 1E N T+ − × +⎡ ⎤⎢ ⎥ () ()1 lg 1T N T+ − × +⎡ ⎤⎢ ⎥ ()lgO T T

This process goes on in every PE, except in

the root PE of the physical tree, thus taking

()()1 CV
checkup sendN t t− + . Receiving the terminate

message from its child, the root PE checks the
status and concludes global termination, which
takes CV

checkupt . In total, the detection delay for the

worst case is ()CV
send checkupTt Nt+ . On the other

hand, the best case occurs when the last ending
task resides in the root PE. The root PE checks
the status and concludes global termination
with the detection delay denoted by CV

checkupt . In

the case of the LTD Algorithm, the situation is
very similar to that of the CV Algorithm since it
all depends on where the last ending task is
located. The worst case occurs when the tasks
are dispatched where the last ending task
resides in the deepest PE
requiring () ()2 3 1 LTD

send checkupN t N t− + − . Both

require a stack cleanup operation [9] which takes
stack
cleanupt In the best case, the root PE checks its

status and concludes global termination, which
takes only LTD

checkupt . These results are summarized

in Table 4 where the Tiered Algorithm exhibits
performance related to the complexity of an
integer combining step, i.e., addition and
determination if ledger entry is equal to zero.
The other algorithms require more complex
messaging or combining operations.

4.4 STORAGE COMPLEXITY
In the Tiered Algorithm, the controller needs

to maintain a ledger table with space for T
records reserved for possible T levels in the
worst case. Because the index of the records in
the table can serve as the level number
implicitly, there is no need to set a field for the

level number in the table. The largest possible
number for level difference is (T − 1), hence

lgT⎡ ⎤⎢ ⎥ bits are sufficient for each record. In

total, lgT T⎡ ⎤⎢ ⎥ bits are required for the ledger
table. In the Credit Algorithm, a debt
bookkeeping technique is proposed [2] in order
to avoid underflow problems and process
exponents. This technique maintains a DEBTS
set so whenever a task becomes idle and
returns its credit share, the controller removes
it from the DEBTS set. When the DEBTS set
becomes empty, termination is concluded. The
controller needs space to maintain the set. The
worst case, similar to the case shown in Figure
5, occurs when all T tasks are active. Therefore,

lgT T⎡ ⎤⎢ ⎥ bits are needed to accommodate the
worst case. As for the CV Algorithm, every PE
maintains a stack to record sending and
receiving activities. The stack must be
sufficiently large to accommodate (T − N + 1)
records, each of which are lg N⎡ ⎤⎢ ⎥ bits wide.

The space required is ()1 lgN T N N− + ⎡ ⎤⎢ ⎥ bits in
total for N PEs. Hence, the storage complexity
is ()lgO NT N . As previously described, every
node in the LTD Algorithm has to maintain
four variables [10]. The first, ini, needs
()1 lgN T− ⎡ ⎤⎢ ⎥ bits. The second, outi, needs

lgT⎡ ⎤⎢ ⎥ bits. The third, modei, needs 1 bit. The

last, parenti, needs lg N⎡ ⎤⎢ ⎥ bits. The total is

()lg lg 1N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ bits for each PE. Hence, N

PEs need ()lg lg 1N N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ bits. As

summarized in Table 5, the Credit and the LTD
algorithms require less space than the other
two algorithms.

TABLE 4. DETECTION DELAY.
Algorithm Best Case Worst Case Complexity
Tiered Algorithm ()Tiered

send checkupt t+ ()Tiered

send checkupt t+ ()integer
combineO t

Credit Algorithm ()Credit

send checkupt t+ ()Credit

send checkupt t+ ()set
combineO t

CV Algorithm CV

checkupt ()CV

send checkupTt Nt+ ()stack
cleanupO T N t+ ×

LTD Algorithm LTD

checkupt () ()2 3 1 LTD

send checkupN t N t− + − ()stack
cleanupO N t×

TABLE 5. STORAGE COMPLEXITY.

Algorithm Space Required Complexity
Tiered
Algorithm

lgT T⎡ ⎤⎢ ⎥ ()lgT TΘ

Credit
Algorithm

lgT T⎡ ⎤⎢ ⎥ ()lgT TΘ

CV
Algorithm

()1 lgN T N N− + ⎡ ⎤⎢ ⎥ ()lgNT NΘ

LTD
Algorithm

()lg lg 1N N T N+ +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ()lgN TΘ

5 EXPERIMENTAL EVALUATION
The Tiered Algorithm performance is

compared directly against the Credit Algorithm
since they are parent-responsibility algorithms
and both outperform CV and LTD by the
metrics in Section 4. Experimental evaluation
consists of a benchmark of 100 task nesting
hierarchies [36] of varying depth, size, and
characteristics of task creation and termination
as shown in Figure 6. The number of tasks in
the hierarchies ranged from 101 to 703 with a
mean of 311 tasks.

5.1 SYNCHRONIZATION MESSAGE

OVERHEAD
The volume of a synchronization messages

was quantified using three metrics: (i) the
number of synchronization messages; (ii) the
number of element values returned over all
synchronization messages; and (iii) the total
number of bits based on the size of the
transmitted elements. Figure 7 shows the
number of messages in the Credit Algorithm
with a second curve representing the difference
between the number of messages in the Credit
and the Tiered Algorithm. A positive
difference in the latter curve indicates an
advantage for the Tiered Algorithm consistent

with the analysis in Section 4.1. Mean traffic
was 263 messages vs. 302 messages while
maximum traffic was 395 messages vs. 680
messages, for the Tiered and Credit algorithms
respectively.

Figure 6. Task hierarchies.

Figure 7. Synchronization messages.

The difference curve in Figure 8 shows that

the Tiered Algorithm returns a larger number
of elements than the Credit Algorithm does.
However, the difference curve in Figure 9
shows that the Tiered Algorithm requires fewer

bits to do so than the Credit Algorithm does. In
the case of the Tiered Algorithm, the maximum
value of the element returned to the controller
typically matches the maximum number of task
levels created. As shown in Figure 9, this
allows the Tiered algorithm to reduce message
traffic by 24% on average and by 30% in the
best case when compared to Credit while
exhibiting less standard deviation. Note that
the maximum task level of nesting establishes a
lower limit on the maximum size of the credit
list. While the Tiered Algorithm may return
more elements to the controller, the
comparatively small values represented by
these elements allow message encoding
requiring fewer bits per message. Nonetheless
such reductions may be eliminated during
packetization on a store and forward network.

Figure 8. Synchronization elements returned.

Figure 9. Message traffic.

5.2 CONTROLLER WORKLOAD
To evaluate the controller workload,

equivalent machine-level instructions were

tabulated for both the Tiered and Credit
algorithms as shown in Figure 10. Because the
Credit Algorithm relies on complex operators,
such as the combining elements in the DEBTS
set, it tends to generate a significantly larger
workload than the Tiered Algorithm since even
the optimization for the Credit algorithm
requires set subtraction utilizing O(|S|)
operations assuming a linked list
implementation of set S is maintained. In
addition, the variation in workload imposed on
the controller by the Credit Algorithm is
significantly greater than that of the Tiered
Algorithm. A worst case analysis would need
to anticipate the largest of these workloads
which was 15.3-fold larger in the case of the
Credit Algorithm when compared to the Tiered
Algorithm as depicted in Figure 10.

Figure 10. Controller operations to detect

termination.

5.3 SIZE OF THE DATA STRUCTURE IN THE

CONTROLLER
In the Tiered Algorithm, there is a one-to-one

correspondence between the number of
elements in the data structure maintained by
the controller and the maximum depth of
nesting D that occurs during execution.
However, in the Credit Algorithm, the size of
DEBTS set is bounded below by D, yet can
range up to the maximum credit value that is
created during the execution of the application,
which may be as high as T. While their worst
case asymptotic storage complexities are
comparable as described in Section 4.4, it is

shown in Figure 11 that the Tiered Algorithm is
consistently preferable for a wide range set of
tasks with maximum size at 12/19 = 63% of the
maximum Credit structure size.

6 CONCLUSION
Given its broad capabilities for supporting

both static and dynamic process creation
environments at low overhead, the Tiered
Algorithm offers a general approach to
termination detection. It performs well under
widely varying characteristics of the number of
created and terminated processes and depth of
process nesting using metrics of message and
storage complexity.

Figure 11. Controller data structure.

When compared to wave-based algorithms,

the Tiered Algorithm’s use of invariance
among equality of production and
consumption counts at each nesting level to
indicate global termination eliminates the
necessity to periodically interrogate the status
of PEs, which suspends throughput during the
checking process. When compared to a
parental responsibility-based algorithm with
comparable capabilities such as the Credit
Algorithm, the practice of computing the
difference between the production and
consumption counts, instead of respective
individual credit portions, reduces the bit
complexity almost by half. In addition, the
Tiered Algorithm allows the last finishing task
report to incur integer math for just the deepest
level of process nesting in contrast to the
computationally intensive binary exponent

DEBTS set subtraction and union operations
encountered in the Credit Algorithm

REFERENCES
[1] J. Matocha and T. Camp, "A taxonomy of

distributed termination detection
algorithms," Journal of Systems and Software,
vol. 43, no. 3, pp. 207-221, Nov. 1998.

[2] F. Mattern, "Global quiescence detection
based on credit distribution and discovery,"
Information Processing Letters, vol. 30, no. 4,
pp. 195-200, Feb. 1989.

[3] W. E. Cohen, D. W. Hyde, and R. K. Gaede,
"An optical bus-based distributed dynamic
barrier mechanism," IEEE Transactions on
Computers, vol. 49, no. 12, pp. 1354-1365,
Dec. 2000.

[4] Y. Tseng, R. F. DeMara, and P. Wilder,
"Distributed-sum termination detection
supporting multithreaded execution,"
Parallel Computing, vol. 29, no. 7, pp. 953-
968, Jul. 2003.

[5] J. Matocha, "Distributed termination
detection in a mobile wireless network,"
Proc. ACM 36th Annual Southeast Regional
Conference, Marietta, GA, 1998, pp. 207-213.

[6] S. Moh, C. Yu, B. Lee, H. Y. Youn, D. Han,
and D. Lee, "Four-ary tree-based barrier
synchronization for 2D meshes without
nonmember involvement," IEEE
Transactions on Computers, vol. 50, no. 8, pp.
811-823, Aug. 2001.

[7] S. Shang and K. Hwang, "Distributed
hardwired barrier synchronization for
scalable multiprocessor clusters," IEEE
Transactions on Parallel and Distributed
Systems, vol. 6, no. 6, pp. 591-605, Jun. 1995.

[8] A. B. Sinha and L. V. Kale, "A dynamic and
adaptive quiescence detection algorithm,"
University of Illinois at Urbana-Champaign,
Urbana-Champaign, 1993, available at
http://citeseer.ist.psu.edu/sinha93dynamic
.html.

[9] S. Chandrasekaran and S. Venkatesan, "A
message-optimal algorithm for distributed
termination detection," Journal of Parallel and
Distributed Computing, vol. 8, no. 3, pp. 245-
252, Mar. 1990.

[10] T.-H. Lai, Y.-C. Tseng, and X. Dong, "A
more efficient message-optimal algorithm
for distributed termination detection," Proc.

Sixth International Parallel Processing
Symposium, 1992, pp. 646-649.

[11] T.-H. Lai, "Termination detection for
dynamic distributed systems with non-first-
in-first-out communication," Parallel and
Distributed Computing, vol. 3, no. 4, pp. 577-
599, Dec. 1986.

[12] D. M. Dhamdhere, S. R. Iyer, and E. K. K.
Reddy, "Distributed termination detection
for dynamic systems," Parallel Computing,
vol. 22, no. 14, pp. 2025-2045, Mar. 1997.

[13] S. Cohen and D. Lehman, "Dynamic
systems and their distributed termination,"
Proc. Annual ACM Symposium on Principles of
Distributed Computing, Ottawa, Canada,
1982, pp. 29-33.

[14] G. Tel and F. Mattern, "The derivation of
distributed termination detection
algorithms from garbage collection
schemes," Proc. Parallel Architectures and
Languages in Europe, Lecture Notes in
Computer Science, E. H. L. Aarts, J. Van
Leeuwen, and M. Rem, Eds.: Springer-
Verlag 505, 1991, pp. 137-149.

[15] N. C. Juul and E. Jul, "Comprehensive and
robust garbage collection in a distributed
system," in International Workshop on Memory
Management, Lecture Notes in Computer
Science, Y. Bekkers and J. Cohen, Eds. St.
Malo, France: Springer-Verlag 637, Sep.
1992, pp. 103-115.

[16] G. Stupp, "Stateless termination detection,"
Proc. International Symposium on Distributed
Computing, Toulouse, France, 2002, pp. 163-
172.

[17] R. DeMara, B. Motlagh, C. Lin, and S. Kuo,
"Barrier synchronization techniques for
distributed process creation," Proc.
International Parallel Processing Symposium,
Apr. 1994, pp. 597-603.

[18] T. W. Crockett and T. Orloff, "Parallel
polygon rendering for message-passing
architectures," Proc. IEEE Parallel &
Distributed Technology: Systems &
Applications, Summer 1994, pp. 17-28.

[19] M. P. Herlihy and M. S. McKendry,
"Timestamp-based orphan elimination,"
IEEE Transactions on Software Engineering,
vol. 15, no. 7, pp. 825-831, Jul. 1989.

[20] L. Svobodova, "File-servers for network-
based distributed systems," ACM Computing

Surveys, vol. 16, no. 4, pp. 353-396, Dec.
1984.

[21] X. Wang and J. Mayo, "A general model for
detecting distributed termination in
dynamic systems," Proc. International Parallel
and Distributed Processing Symposium, Santa
Fe, New Mexico, Apr. 2004, pp. 26-30.

[22] A. H. Baker, S. Crivelli, and E. R. Jessup,
"An efficient parallel termination detection
algorithm," Lawrence Berekeley Lab,
Berkeley, California, 2000, available at
http://www.cs.colorado.edu/~jessup/sele
cted_publications.htm.

[23] A. Khokhar, S. Hambrusch, and E. Kocalar,
"Termination detection in data-driven
parallel computations/applications," Journal
of Parallel and Distributed Computing, vol. 63,
no. 3, pp. 312-326, Mar. 2003.

[24] K. M. Chandy and J. Misra, "How processes
learn," Distributed Computing, vol. 1, no. 1,
pp. 40-52, Mar. 1986.

[25] E. W. Dijkstra and C. S. Scholten,
"Termination detection for diffusing
computations," Information Processing Letters,
vol. 11, no. 1, pp. 1-4, Aug. 1980.

[26] N. Mittal, S. Venkatesan, and S. Peri,
"Message-optimal and latency-optimal
termination detection algorithms for
arbitrary topologies," Proc. Annual
Conference on Distributed Computing,
Trippenhuis-Amsterdam, The Netherlands,
Oct. 2004.

[27] M. Filali, P. Mauran, and G. Padiou,
"Refinement based validation of an
algorithm for detecting distributed
termination," Proc. International Workshop on
Formal Methods for Parallel Programming,
2000, pp. 1027-1036.

[28] D. Kumar, "Development of a class of
distributed termination detection
algorithms," IEEE Transactions on Knowledge
and Data Engineering, vol. 4, no. 2, pp. 145-
155, Apr. 1992.

[29] N. R. Mahapatra and S. Dutt, "An efficient
delay-optimal distributed termination
detection algorithm," University of
Minnesota, 1994, available at
http://www.ece.uic.edu/~dutt/papers/pa
rallel/jpdc-term-detn-2003.pdf.

[30] C. Xu and F. C. M. Lau, "Efficient
termination detection for loosely
synchronous applications in

multicomputers," IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 5,
pp. 537-544, May 1996.

[31] F. Mattern, "Algorithms for distributed
termination detection," Distributed
Computing, vol. 2, no. 3, pp. 167-175, Sep.
1987.

[32] I. Lavallee and G. Roucairol, "A fully
distributed spanning tree algorithm,"
Information Processing Letters, vol. 23, no. 2,
pp. 55-62, Aug. 1986.

[33] S. P. Rana, "A distributed solution to the
distributed termination problem,"
Information Processing Letters, vol. 17, no. 1,
pp. 43-46, Jul. 1983.

[34] J. Mayo and P. Kearns, "Distributed
termination detection with roughly
synchronized clocks," Information Processing
Letters, vol. 52, no. 2, pp. 105-108, Oct. 1994.

[35] J. Misra and K. M. Chandy, "Termination
detection of diffusing computations in
communicating sequential processes," ACM
Transactions on Programming Languages and
Systems, vol. 4, no. 1, pp. 37-43, Jan. 1982.

[36] K. Drake, "Time and space efficient
multiprocessor synchronization and
quiescence detection," M.S. Thesis, Dept. of
Electrical and Computer Engineering,
University of Central Florida, Orlando,
Florida, 1995.

Ronald F. DeMara received the
Ph.D. degree in Computer
Engineering from the University of
Southern California in 1992.
Since 1993, he has been a full-
time faculty at the University of
Central Florida in the Department
of Electrical and Computer
Engineering. He is an Associate
Editor of the Journal of Circuits,

Systems, and Computers and IEEE Transactions on
VLSI Systems. He is a Senior Member of IEEE and
a Member of ACM and ASEE

Yili Tseng received the BS
degree in mechanical
engineering from National
Taiwan University in 1985 before
he served as a second lieutenant
of artillery in Taiwanese Army for
two years. Later he received the
MS degree in engineering

science from University of Florida in 1990, another
MS, and PhD degrees, both in computer
engineering, from University of Central Florida in
1995 and 2000, respectively. He is currently with
Auricular Medicine International Research and
Training Center. Prior to that, he was an assistant
professor for four years in Department of Computer
and Information Sciences at Florida A & M
University. His research interests include high-
performance computing, grid computing, parallel
and distributed computing, and numerical methods.
He is a member of the IEEE and the IEEE Computer
Society.

Abdel Ejnioui is currently an
Assistant Professor in the
Information Technology
Department at the University of
South Florida. He was previously
a faculty member in the
Department of Electrical and
Computer Engineering of the
University of Central Florida. He
obtained his M.S. and Ph.D. in

Computer Science and Engineering degrees from
the University of South Florida in 1995 and 1999
respectively. His research interests include
reconfigurable computing, computer architecture,
and VLSI design. He is a member of the IEEE and
the IEEE Computer Society.

This document is an author-formatted work. The definitive version for citation appears as:

R. F. DeMara, Y. Tseng, and A. Ejnioui, “Tiered Algorithm for Distributed Process Termination
Detection,” submitted to IEEE Transactions on Parallel and Distributed Systems on September 28, 2004
and available as UCF Technical Report UCF-ECE-0402 online at
http://netmoc.cpe.ucf.edu:8080/internal/yearReportsDetail.jsp?year=2004&id=0402

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without
notice, after which this version may no longer be accessible

http://netmoc.cpe.ucf.edu:8080/internal/yearReportsDetail.jsp?year=2004&id=0402

