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Abstract 

Recognizing the intention of others in real-time is a critical aspect of many human tasks.  This 

article describes a technique for interpreting the near-term intention of an agent performing a 

task in real-time by inferring the behavioral context of the observed agent. Equally significantly, 

the knowledge used in this approach can be captured semi-automatically through observation of 

an agent performing tasks on a simulator in the context to be recognized.  A hierarchical, 

template-based reasoning technique is used as the basis for intention recognition, where there is a 

one-to-one correspondence between templates and behavioral contexts or sub-contexts.  In this 

approach, the total weight associated with each template is critical to the correct selection of a 

template that identifies the agent’s current intention.  A template’s total weight is based on the 

contributions of individual weighted attributes describing the agent’s state and its surrounding 

environment.  The investigation described develops and implements a novel means of learning 



these weight assignments by observing actual human performance.  It accomplishes this using 

back-propagation neural networks and fuzzy sets.  This permits early discrimination between 

different pre-categorized behavioral contexts/sub-contexts on the human-controlled agent such as 

a military or passenger vehicle.  We describe an application of this concept and the 

experimentation to determine the viability of this approach. 
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1. Introduction and Background 

There is often a need to determine the intention of others before making decisions.  A driver 

making a left turn typically uses the left turn signal to advise other drivers of her intention, 

thereby preventing dangerous actions by other motorists.  Strategic team games virtually require 

that both teams be able to predict the intention of the opposition when designing plays. 

In warfare, law enforcement and anti-terrorist activities, however, determining the intent 

of the enemy often becomes a life and death issue.  Yet, like in team sports, it is quite unrealistic 

to directly ask the enemy about their intent.  It must be inferred by unobtrusive observation, and 

it must be done in real-time. 

Our work presented here is based upon the assumption that one’s near-term intentions are 

typically based upon a contextualized behavior – a set of actions and procedures humans perform 

while in a specific situation.  Likewise, contextualized behaviors and their associated actions are 

used to control an agent while in a particular situation.  We assert that once an agent’s near-term 

intentions have been identified by the observer, future (near-term) actions by the observed agent 

can be predicted relatively easily.   For example, if the observer sees that an a motorist agent 

intends to turn left (left turn signal on and approaching an intersection), he can predict its near-

term movement very accurately, and thereby act accordingly.  

We base our approach on inferring the behavioral context of an observed agent whose 

intention we wish to discover.  Behavioral contexts are defined in the Context-based Reasoning 

(CxBR) modeling paradigm for human tactical behavior representation.  See Gonzalez and 

Ahlers [1998] for details on CxBR.  If the observer can infer the context in which an agent is 

operating, then prediction of the agent’s actions would follow relatively easily.  In CxBR, the 

context currently controlling an agent (i.e., the active context) contains the functionality to allow 
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the agent to successfully “navigate” through the current situation.  This approach relies on the 

fact that, normally, only a limited number of contexts could be realistically used by the agent in 

that situation.  Furthermore, we assume that there is no desire on the part of the observed agent to 

disguise its intent to mislead the observer.  However, the approach could be modified to account 

for purposeful deception in future work. 

1.1 Previous Work 

Previous research related to intention and plan recognition is indeed extensive. Schmidt and his 

colleagues pioneered the field of plan recognition with their seminal paper in 1978 [Schmidt et 

al, 1978].  In their BELIEVER system, they posed psychological theories for understanding how 

humans view and infer the plans of others by observing their actions.  

Other research in intention recognition investigated the use of grammar parsing 

methodology to recognize behavior as matching previously defined sequences of events [Clark, 

1994; Wang & Arbib, 1993] while others investigated neural networks to do the same [Maskara 

& Noetzel, 1993]. Wang & Arbib’s model, however, required that the complete pattern be 

presented before the pattern recognition would occur.  This would not be useful for early 

recognition of actions to predict future behavior in real-time.   

In a different vein, a few investigators ran competing models of the expected behaviors in 

parallel, either as Kalman filters [Liu & Pentland, 1997] or linear models [Narendra et al., 1995]. 

They then observed which model best tracked the observations and used that model of behavior 

to represent the current behavior.  The results of Liu & Pentland were mixed, with typical 

success rates of between 40 and 70% in real-time tests, depending on the circumstances.  In 

reports of later experiments, Pentland & Liu [1999] used a hierarchy of Markov dynamic models 

to represent long-time-scale driver behavior and fine-grain behavior.  The Markov dynamic 
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models using patterns of acceleration and heading produced a 95 ± 3% recognition accuracy two 

seconds after the command.  

In one case, [Narendra et al., 1995] a model used for system control was adapted in real-

time to further reduce control errors.  One unique research effort [Austin & Rose, 1997] used 

supervised neural network learning of processed inputs to directly discriminate between three 

distinct behaviors, showing the feasibility for automated machine learning of behavior at some 

level. Their results showed a maximum of 95% accuracy, but only one of the different neural 

networks tried could recognize more than 85% of the test cases.   Furthermore, there is some 

question as to whether the recognition was conducted post facto, thereby precluding the 

advantage of predicting future behaviors by the agent.  Another investigation [Weng & Hwang, 

1998] hints that the examples of behavior could be clustered using automated self-organization.   

 Strohal and Onken [1998] describe the Crew Assistant Military Aircraft (CAMA) system, 

a knowledge-based assistant to enhance situation awareness for crews of future military transport 

aircraft.  To accomplish that goal, CAMA had to assess the situation on its own, including the 

crew’s intent. It was designed to infer the crew’s intentions, permitting the system to anticipate 

the need for assistance without a request by the pilot.  They used neuro-fuzzy techniques, but 

required a human to translate the resulting learned knowledge into rules usable by CAMA. 

Plan recognition for human-computer collaboration is described by Lesh, et al. [1999].  

Plan recognition, as they define it, is “… the process of inferring intentions from action.”  Their 

work exploits the properties of the collaborative setting to make plan recognition practical.  

These properties are the focus of attention, partially elaborated hierarchical plans and the 

possibility of asking for clarification. 
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Most recently, research in plan recognition has taken several different directions.  The 

most popular of these involves developing logic theories to provide an algebra through which to 

reason about plans from observed agent actions.  Wobke [2002] presents an approach built upon 

Kautz’ keyhole plan recognition work.  He presents two approaches, one monotonic and one 

non-monotonic.  The latter of these neglects Kautz’ simplifying assumption of equal relevance 

for all competing plans.  Wobke bases his approaches on defining a “... hierarchy of plan 

schemas”.   Jiang and Ma [2002] introduce plan knowledge graphs, along with a new formalism, 

to simplify the process of plan recognition.  They claim to reduce the plan recognition problem 

to a graph search with their approach, and obtain the same results as Kautz. 

Patterson et al [2003] address the problem of inferring high-level intentions from low-

level sensors.  They use Bayesian Nets to predict the position of a traveler in an urban setting, 

using auto, bus and foot travel as the means of locomotion.  They report high levels of accuracy 

in their predictions.  Computer vision has also addressed the problem of plan recognition, albeit 

in different ways.  Intille and Bobick [2001] use Bayesian networks and model-based object 

recognition to recognize multi-person actions in the real world.  Other investigators have 

addressed the problem from a case-based point of view [Kerkez and Cox, 2002]. 

Other researchers have followed somewhat different approaches.  Charniak and Goldman 

[1993] investigated Bayesian plan recognition.  Tambe [1996] and his colleagues [Kaminka and 

Tambe, 2000; Kaminka et al, 2002] have focused on plan recognition of multi-agent systems 

involved in teamwork.  Huber [1996], Han and Veloso [1999], Pynadath and Wellman [2000}, 

Devaney and Ram, 1998 and Goldman et al [1999] have also contributed to advances in plan 

recognition.  Our work presented here, however, focuses on the near-term intentions of a single 

agent – those that will manifest themselves within the next several seconds or minutes.  
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We now briefly discuss the work of Drewes, upon which our work is largely based.  

Drewes et al [2000], in his prototype system TRAMS, presents what he calls Template-based 

Interpretation (TBI) for interpreting a human’s intention in a simulation through external 

observation of this human’s actions.  His work involves observing the human’s low-level actions 

and reflecting those actions within partially filled templates. These templates consist of attributes 

that represent low-level actions performed when that plan is being executed.  As these low-level 

actions are performed by the human, the corresponding attributes are “checked-off.” A template 

can include temporal and sequential relationships between different low-level actions.  Each 

template reflects a plan potentially followed by the agent.  As templates come closer to having 

all their attributes checked off, they compete with each other for the right to be proclaimed as the 

one reflecting the agent’s intent.  His results on a prototype in the aviation domain indicate that 

this approach is able to correctly identify an agent’s intent.  However, one challenge not 

addressed by his work was the significant difficulties associated with creating the templates and 

their related weights.  The investigation described here addresses exactly this issue.  

Given that our work depends heavily on the concept of contexts and context-driven 

reasoning, it is worthwhile at this point to briefly mention related work in context-driven human 

behavior representation.  Turner [1994, 1998] used behavioral contexts arranged in hierarchies to 

control a robot’s behavior.  Both investigations used rules to recognize the environmental 

triggers to activate the behavior. Brezillon [2004] and Bass [1996] have also independently 

developed context-based approaches to modeling human behavior. 

1.2 Specific Problem and General Approach 

The review above indicates that whereas significant research is on-going in intention recognition, 

the problem has yet to be fully solved.  We present an approach to recognizing in real-time the 
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near-term intention of an observed agent as early as possible in the execution of its actions  This 

determination should be done as quickly as possible to permit the observing party to predict the 

observed agent’s future near-term actions as they unfold.  This gives the observer maximum 

opportunity to counter the observed agent’s actions. The system resulting from this work 

observes the agent (typically a vehicle controlled by a human), and after noting the execution of 

one or several low-level actions, declares the intention of the agent.  It does so by identifying its 

context – a module of knowledge that is able to control the agent in a particular situation.  If the 

context in which the observed agent is operating is known by the observer, then it is relatively 

easy to predict it’s the agent’s future actions by modeling the agent with its active context. 

 Applications of this work exist in military tactical planning as well as operations, where 

inferring the intentions of an enemy is important.  Furthermore, the application of a tank 

rounding a turn on the road also has more specific application in military affairs.  For example, 

being able to accurately predict the position of an enemy vehicle can be helpful in targeting it.  

Nevertheless, the original motivation for this work was in live-virtual embedded simulations for 

training where live and virtual units find themselves on the same virtual battlefield.  Knowing 

where a live vehicle will be at a specific time can reduce the required communications 

bandwidth in the live range.  The last two applications require significant accuracy in 

predictions. 

The basis of our approach is Template-based Interpretation [Drewes et al, 2000] and our 

extension of it, Temporal Template-based Interpretation [Gerber 2001].  This technique is 

described later in this article.  To evaluate the feasibility of our approach, we use the prediction 

of the near-term driving pattern used by a tank driver as he rounds a turn on a road. 

The following questions were addressed in our investigation: 
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• Can Temporal Template-based Interpretation be used to infer an agent’s near-term 

intentions in real time by observing its actions and the situational parameters of the 

environment in which it operates?   

• How can one efficiently build an artifact to perform this intention recognition?  We 

specifically refer to the need to build the templates and assign weights to each and every 

low-level action attribute in the templates. 

Our approach is founded upon recognizing actions associated with a previously defined template.  

We extend Drewes’ work in several ways.  The two most significant are 1) how we structure and 

manipulate the templates, making them capable of describing continuous actions, and 2) how we 

arrive at the weights assigned to each attribute in the various templates.  The first enhancement 

allows us to define a template attribute as a series of data points occurring sequentially over time.  

Thus, we call this enhanced version Temporal Template-based Interpretation (TTBI).  

More importantly, whereas Drewes selected the values of the weights after consultation 

with experts and a significant amount of trial and error, we extract the weights from direct 

observation of prior agent behavior.  Furthermore, we associate each template with a context, as 

defined in CxBR.  While contexts in CxBR are control mechanisms for an agent to successfully 

navigate a tactical situation, a template only contains the information about what could be 

externally observed about an agent being controlled by its corresponding context.  This one-to-

one correspondence between templates and contexts provides for integration of the two 

techniques and facilitates the prediction of the post-recognition behavior of the observed agent.   

The objective of this research is to determine the technical feasibility of Temporal 

Template-based Interpretation for the general problem defined.  The application used to evaluate 
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the concept is only the test application and not the driving force behind the paper.  A brief 

description of Temporal Template-based Interpretation (TTBI) is given in the next section. 
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2. Approach to Problem 

Template-based Interpretation is a weak-model approach that makes real time observations of an 

agent’s performance and matches its current observed behavior to predefined templates of 

potential high level intentions.  The template that most closely accounts for the agent's observed 

actions (beyond a certain threshold level) is deemed the winner.  We perform this match with a 

combination of single-layer, feed-forward neural networks with back-propagation training and 

fuzzy sets. We first briefly describe the original Template-based Interpretation concept, as it is an 

important component of our approach. Next, we (even more briefly) define the ideas behind 

Context-based Reasoning, as it is also influential in our work. We then discuss how by 

combining the two approaches we can accomplish our objectives.  Then we describe our 

enhancement to TBI, called TTBI.  Lastly, we explain how to automatically obtain the 

knowledge necessary to infer agent intention.  

  2.1 Template-based Interpretation 

Template-based interpretation involves using models, or templates, of typical human behavior to 

infer the intention of a human or of an agent acting like a human.  In some ways, it can be said to 

be an extension of case-based reasoning in that a template represents the pattern defining each 

case.  The case/template most closely matching the pattern of the inputs is declared as the one 

most representative of the observed inputs.  However, TBI extends traditional case-based 

reasoning by considering the temporal ordering of discrete events and the time differences 

between these events.  Furthermore, TBI monitors the inputs continuously, looking for the 

execution of low-level actions by the agent being observed.  Each template has selected 

attributes that represent actions that would be executed by the agent if it were carrying out the 

plan identified by that template, as well as aspects of the agent's state and of its environment.  
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The attributes in a template include only those actions and aspects relevant to the intent 

represented by that particular template.  At each monitoring cycle, each template's attributes are 

updated by an evaluation mechanism.  When an action is observed, attributes that represent that 

action are “checked off” in each template that contains that particular action.  This enhances the 

overall score for those templates containing that checked-off attribute in relation to the attribute’s 

pre-assigned weight.  

A template is not considered a candidate for identifying the agent's intentions/context 

until its overall score exceeds a minimum threshold value called the Critical Threshold (Tc).  The 

first template to exceed the Tc is chosen as the one representing the observed agent’s 

intentions/context.  Figure 1 illustrates the components of the template-based interpretation 

approach. In this figure, Wik is the weight associated with attribute k of template i, and Tx is the 

template from the set T of n competing templates that has the highest score above the minimum 

critical threshold value  

 

 

 

 

 

 

 

 

Simulation
Environment

N Templates
Template 
Selector 

Template N 
  Attribute 1 WN1
       .   .
       .   .
       .   .

  Attri  kbute     
WNk

 .
   .

.

W21
  .
  .
  .
W2k

W11
  .

}MAX{T

Tx = 

  .
  .
W1k

Template 2
 Attribute 1

 .
 Template 1     . Attribute 1      .      . Attribute k      .
      .
 Attribute k

 
 

Input 
Variables 

 

. .  . Tx

Figure 1 - Template Components 

More formally, each template is a model for a specific high-level action.  It describes the 
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observable low-level actions that a performing agent A would do if it were indeed performing 

that high-level action.   TBI works by defining the set of templates T, so that 

T = {T1, T2, T3, T4… Tn} 

where each template Ti contains several attributes.  The attributes of one template are not the 

same as those of other templates, but they could have some attributes in common.  Therefore, 

template Ti can be defined as consisting of several attributes atril, each describing an action made 

by agent A which partly indicates A’s current context, and which is observable by the observing 

agent O. 

Ti = {atri1, atri2, atri3, …, atrik} 

Each attribute is assigned a Boolean value indicating whether the action described by it has been 

performed by agent A.  If relevant, it is also possible to assign a time stamp for that action.   

Furthermore, the importance of the attributes may not be equal for interpreting the actions 

of the agent A.  Some may be more significant than others, and this can be indicated through a 

weight assigned to each attribute. Thus, attribute atriil for template Ti is a triple consisting of its 

weight, the Boolean “check off” and the time stamp.  

atril = < Wil, YES/NO, t> 

where the weight, Wil, is a real number between 0.0 and 1.0. 

As agent A is being observed by agent O, the latter monitors the execution of low-level 

actions by A.  Upon noticing that an action represented by atril has been executed by A, it will 

search each template in T and look for attribute atril in each template Ti∈T.  When it finds one, it 

will place a YES and a time stamp on the attribute.  This can be likened to the game of Bingo, 

when a number is called and players place a game piece on the called number in every card 

where the called number is found. 
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As agent O continues to observe A, the numbers of “check-offs” on the various 

competing templates grow.  Templates progressively become more completely “checked off” as 

more of the actions symbolized by their attribute are executed by A.  Templates that truly reflect 

A’s intention will have more checked off attributes, which will translate to a higher overall score 

for these templates.  This process represents a competition among the templates in T to be 

designated as the one truly describing the intention behind the actions of agent A.  At some 

point, the cumulative weight of one template exceeds its critical threshold Tc, at which time, this 

template is considered the winner of the competition. The reader is referred to Drewes et al. 

[2000] and Drewes [1997] for details on TBI. 

2.2 Context-based Representation of Behavior 

The behavior of A can be said to be controlled by several behavioral contexts that prescribe its 

actions.  These contexts, called Ci, are members of a set of contexts that define the behavioral 

universe for agent A.   

C = {C1, C2, C3, C4… Cn} 

Each such behavioral context contains the functions and procedures that result in  agent A’s 

actions and decisions while in that context. One and only one behavioral context can be in 

control of the agent at any time.  This context in control is called the active context, while all 

others are inactive.  Each context also contains the knowledge of how to transition to other 

behavioral contexts that, over time, emerge as being more relevant to the situation currently 

faced by the agent.  This is called context transition, and it is triggered by certain environmental 

events that signify that the situation faced by the agent has changed sufficiently to warrant 

activation of another behavioral context to better handle the emerging situation.  This transition 

represents the simultaneous self-deactivation of the active context and the activation of another, 
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more relevant context.  Context-based Reasoning (CxBR) is a human behavior modeling 

technique that uses this approach to model human behavior in tactical situations. See Gonzalez 

and Ahlers [1998] for more details on CxBR. 

Therefore, if agent A can be said to be in context Ci, we represent this as A[Ci].  

Furthermore, if agent O can infer that agent A is operating under context Ci, and the description 

of Ci is known to O, then O can predict the future near-term actions of agent A.  Our approach is 

based on doing exactly this – inferring context Ci in A by observing its actions externally. 

Therefore, while Ti and Ci are naturally associated, the viewpoints and functionality are radically 

different.  This paper only addresses the first part of the process – inferring Ti.   

2.3 Temporal Template-based Interpretation 

The original version of TBI could only detect and record discrete low-level actions – e.g., putting 

down the landing gear, firing the main gun, etc.  TBI is not capable of interpreting intent if the 

actions indicative of such intent are continuous in nature and last for several minutes.  An 

example of this would be that a drunk driver would be prone to continuously swerve her car on 

the road.  Such actions cannot be identified or interpreted with a static attribute.  TTBI permits 

the definition of temporal templates containing attributes defined as sequences of time- or 

distance-related data points.  Incidentally, this would make the determination of the weights by 

hand very complex, providing the inspiration for the other major enhancement to TBI – the 

automatic assignment of weights based on observed behavior by an agent in a simulator. 

To better correlate with corresponding behavioral contexts, TTBI implements a 

hierarchical organization of templates.  The top-level templates are called competing templates.  

These templates can describe an agent’s high-level intent, and correspond to Major Contexts in 

CxBR.  Supporting templates, on the other hand, are used to provide attribute values if they are 
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needed by a competing template or another support template.  Competing templates are 

evaluated in a bottom-up fashion.  Each supporting template is evaluated before the competing 

templates are evaluated.  Template attributes can be Mandatory or Non-mandatory.  A template 

is considered able to compete (referred to as being valid) if all of its Mandatory attributes (if 

any) are true, and unable to compete (invalid) if there is one or more Mandatory attributes, and at 

least one of them is not true. 

Non-mandatory attributes contribute to the total value of the template.  Their weights are 

indication of how relevant they are to the agent’s perceived intent.  However, they don’t have to 

have a value or be true for their template to be considered valid.  Valid competing templates 

whose output value exceeds Tc are compared immediately upon exceeding Tc, and the one with 

the highest value is announced as the current template representing the context active in agent A. 

Mandatory attributes can be allowed to contribute to the value of the template if a non-

zero weight is used.  Conversely, if a zero weight is used for a Mandatory attribute, it contributes 

nothing to the output value of the template. It merely needs to be true for the template to be even 

considered in the competition.  A zero weight for Mandatory attributes is typically more 

commonly used than non-zero. 

2.4 Automated Weight Determination 

Observing the structure of a template, one could make the analogy that each template is similar 

to a single layer neural network with a linear activation function.  Specifically, the inputs 

(attributes) are each individually multiplied by their own weights and the summation of each of 

those results becomes the output.  Figure 2 illustrates the analogy.  Let Ik be the kth input attribute 

and Wik be the corresponding weight associated with the kth input.  Their product is summed with 
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the other products for the output of the ith template, Ti.  This is equivalent to a single-layer neural 

network with a linear activation function and output Ti. 

ΣWik*Ik

(Bias) (Attributes 1 through k values)

-1 I1 I2 I3 Ik.  .  .
.  .  .

Ti

. . .Wi0 Wi1 Wi2 Wi3
Wik

Figure 2 - Template Weight Learning by Observation Using NN Framework 

That being so, a neural network training algorithm, such as back-propagation, could be used to 

set the value of the weights [Hertz et al., 1991].  For a one-layer neural network, this algorithm is 

called LMS.  In this case, the template output value, the sum of the weights of each input 

attribute multiplied by its associated weight, corresponds to the output of the neural network with 

a linear activation function. 

With this intuition, we used the neural network training procedures for determining these 

template weights by presentation of examples of the complex behavior to be recognized. 

Additionally, the templates were not restricted to a single layer neural network for 

implementation. For each template, only the template output resulting from the inputs is a 

consideration.  This is because the important thing is that the output from each of the competing 

templates has to compare correctly against each of the other templates.  Specifically, the template 

that wins the competition should be the one with the highest output value, or score.  Furthermore, 
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multiple internal neural network layers would allow for greater output discrimination with more 

complex behaviors than could be possible with a simple summation of weighted values. 

2.5 Fuzzy Functions for Attributes 

For training neural networks to recognize the complex behavioral contexts, a means for 

representing and normalizing the attribute input values was needed because the neural networks 

train most efficiently when the input values are in the range of -1.0 to +1.0.  The approach taken 

was to use fuzzy sets to represent the membership of the attribute to the behavior pattern 

classification whose detection is being sought.  As Zadeh [1987] points out, fuzzy sets provide a 

natural way for handling problems where sharply defined criteria for class membership are 

absent.  That is the situation here, since specific attributes could be members of more than one 

template.  In other words, we use fuzzy membership functions to define the weights.   

Fuzzy sets are characterized by a membership function that assigns a grade of 

membership between 0.0 and 1.0 for each member of the set.  A membership value of 1.0 

indicates full membership while 0.0 indicates no membership.  Values in between indicate partial 

membership.  Langari and Yen [1995] provide some examples of membership functions based 

on the exponential function.  One of their membership functions is shown below for the 

membership of the parameter T to the class “medium”. 

µmedium (T) = exp ( - α |T – T0| p ), p ≥ 1 

The above equation provides a description for a class where the membership, µmedium(T), is 

highest for the parameter T around a given value T0, and decreases as the parameter deviates 

from that value.  T0 denotes the center value where the membership is strongest.  The scaling 

factor α affects how broadly or narrowly the membership function is defined. 
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The values of the inputs for each set of behavior patterns to be recognized were 

statistically analyzed to determine the mean value and standard deviation for each parameter for 

the examples representing each pattern type.  The mean corresponded to the T0 in the above 

equation, and the inverse of the standard deviation was used as a scaling factor to define how 

narrow the membership function would be.  Thus, each input parameter for neural network 

training was transformed to a range of 0.0 to 1.0 through a fuzzy membership function. We now 

describe an application of this approach that identifies the intention of the observed entity and 

can determine the value of the weights through observation. 

2.6 High-level Algorithm Describing this Approach 

The approach presented in this paper can be described by the following high-level algorithm. 

1) Observe the entity to be modeled either in a simulator or in the real world.  Record 

the values of all variables of interest. There will be one data set for each run executed. 

2) Classify the results of the observation into types of actions that were executed by the 

performing agent A during the observation phase. 

3) Design a membership function for each of the identified action types. Transform each 

data set with each of the membership functions defined.  Assign a value of 1.0 or 0.0 

to each data set depending on whether or not the transformed data set describes the 

intention/behavior corresponding to each membership function. 

4) Partition the data sets into training, validation and testing data in accordance with 

established procedures. 

5) Design the architecture of the neural networks to be used according to established 

procedures. 

6) Train neural networks to determine the weights of each template attribute. 
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We should note that no effort was made in this investigation to automate the selection of 

the variables of interest.  In our evaluated application, the variables of interest were 

selected by a human who considered what was strictly necessary to infer the agent’s 

intention.  However, we see variable selection as an important issue, not only to select 

those variables that are necessary, but also to leave out those that are not.  We leave this 

for future research. 

3.0 Evaluation of Approach 

To evaluate the effectiveness of our approach, we implemented TTBI in an application for 

predicting how an agent is driving a vehicle in a military simulation.  The vehicle in question is a 

battle tank (M1A2) and the task is how to navigate a turn with this vehicle in a simulated 

environment.  There are many ways experienced tank drivers can perform this maneuver.  This 

application calls for an accurate prediction of a simulated tank’s path around a turn.  The 

accuracy requirements are indeed unforgiving.  Lateral deviations (positive to the right; negative 

to the left) are limited to not more than 14.4 inches.  Motional discrepancies (forward being 

positive) were limited to less than 29 inches.  Our use for such accurate prediction was to reduce 

the communication bandwidth required in a distributed simulation by being able to predict 

accurately the location of the vehicle.  See Gerber and Gonzalez [2001].   

To eliminate the difficulties involved with sensors interpretation in the real world, we 

restrict the performance of agent A’s behavior to a simulation.  Furthermore, we restrict our 

evaluation to recognizing the agent’s near-term intentions to follow a particular path when 

driving the tank around a turn in the road.  The selected path is one of several paths pre-classified 

through observation of the agent’s past behavior.  While this admittedly does not involve 
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recognition of high level-intentions per se, it does provide the ability to predict the exact location 

of the agent by recognizing the path upon which it is embarking at an early stage of the action.  It 

represents a special case of the general case described in Section 2, but with little loss of 

significance.  In effect, the template has several sub-context templates vying for selection as the 

one the agent is executing.  Given the structural and functional similarity of major context 

templates and sub-context templates, the evaluation of how TTBI infers sub-context level 

templates does not in any way invalidate the evaluation of the TTBI method as it would approach 

the major context template. 

3.1 Simulation Infrastructure Used 

The simulation system used for this experiment was the ModSAF system, a constructive military 

simulation environment.  A specific turn was selected in the terrain database for the National 

Training Center in California.  Figure 3 depicts the turn, all its related parameter definitions, and 

a typical outside path taken by the simulated tank.  ModSAF contains the functionality to steer a 

virtual tank though a turn, albeit imperfectly. 

Figure 3 – Turn used for experiments 

Waypoint 

New “Current Waypoint ”
    (after changeover)

Set of 26 “2-meter intervals” past the waypoint
(0, 2, 4, … , 46, 48, 50) for departure inputs

Tank Agent Position
(at Waypoint  changeover)

50             40             30             20             10        4  2 0

XD = Agent cross distance
HR = Agent heading relative to segment
SP = Agent speed

Old “Current Waypoint ”
   (before changeover)

SP
HR

XDDeparture Path

Approach
  Path
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The road segment of interest here is defined by its waypoints.  Waypoints are typically placed in 

locations that mark a change in direction for the vehicle of interest.  A turn, therefore, is defined 

as a segment of road consisting of three waypoints that are not in line with each other.  Figure 3 

depicts three of them, one at each terminus, and one at the center of the turn.  Depending on the 

angle of the turn, the driver may choose to take the turn either on the inside, thus cutting off the 

angle, or on the outside, thereby curving wide around the turn to provide room for maneuver.  

How the tank merges back into the center of the road after the turn can also vary in many ways.  

Therefore, the tank’s path is decomposed into two phases – its approach to the waypoint 

defining the turn of interest, and its departure from that waypoint towards the next waypoint. 

The approach is the path taken by the agent prior to reaching the center waypoint.  The departure 

is its path thereafter. The objective is to predict where the simulated tank (agent A) would be at 

all times within the strict accuracy requirements stated above.  We accomplished this by 

observing a priori that there is only a handful of ways the turns are taken, and later classified the 

real-time data into one of these paths using TTBI. 

3.2 A Priori Observations of Agent A in the Simulation Environment 

To learn the weights to be used in the templates, 110 simulations runs of the agent A taking the 

designated turn were executed in ModSAF and recorded.  Only these 110 recorded paths were 

used to learn the values of the weight of the template attributes.  The headings of agent A at the 

start of these simulations varied by one degree, from 6° to the left of north to 4° to the right of 

north.  Ten runs were executed for each initial heading, with each run beginning 20 waypoints 

and 3 km before the designated turn.  Given the slightly different initial headings, the actual 

paths taken by agent A tank in ModSAF varied significantly, but all within the realm of realism 

as if executed by a human.  
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Table 1 – Summary of Approach Category Frequencies 

Approach Categories No. of Runs
Early, Single Curve 47
Early, Double Curve 15 
Nominal , Single Curve 41 
Nominal, Double Curve 0 
Late, Single Curve 7 
Late, Double Curve 0 

Total 110

                                             a                                                                      b 

Figure 4 – X-Y Coordinates of Sample Experimental Runs. 

Analysis of the results indicate that the approaches can be classified into three categories: 1) 

Early – the tank began to curve away from the road centerline more than 45m before the turn 

center waypoint; 2) Nominal – between 30m and 45m before the turn waypoint; and 3) Late – 

less than 30m.  Furthermore, each category could be further divided into single curve and double 

curve.  Table 1 shows the distribution of the classifications, indicating that early and nominal 

single curves were the most prevalent. Figure 4 shows two data samples – graph a depicts an 

early, single curve approach while b shows a nominal single curve approach. 
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The departure categories were somewhat more complex.  Ten different categories were 

identified.  Table 2 contains a summary description.  See Table 11 in Gerber [2001] for details. 
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Note that these pre-classifications were done manually by the investigators.  However, the work 

could be reasonably extended in the future to do this automatically with a clustering algorithm.  

Table 2 - Departure Pattern Types 
  
Departure Types No. of Runs Description  
Flat Nominal (FN) 15 Parallels outbound segment, then turns to intercept at  
  about 45 meters beyond the turn 
Flat Bow Low (FBL) 16 Same as FN, but slight bow before turn to intercept 
Flat Bow High (FBH) 17 Same as FBL, but slightly more pronounced bow 
Bow Nominal (BN) 35 Definite bow on the departure that continues to an  
  intercept at about 45 meters beyond the turn 
Straight Angled (SA) 10 After initial turn, maintains an intercept heading with little  
  or no change to an intercept beyond 80 meters 
Bow Wide (BW) 7 Much wider bow than BN with intercept beyond 80 meters 
Bow Asymptotic (BA) 3 Initially similar to BN, then smoothly reduces intercept  
  heading to asymptotically intercept beyond 60 meters 
Bow Distant (BD)     3 After initial turn, slowly turns to an intercept heading  
  beyond 80 meters resulting in an extended slight bow 
Double Curve (DC) 3 Initially turns to a heading that would intercept close to the  
  turn, then turns away from the segment followed by a turn  
  back that closely resembles the SA pattern 
Close Intercept (CI) 1 Intercepts within about 10 meters followed by a long- 
  lasting overshoot before eventual re-intercept  
 

3.3 Extracting the Weights from the Observations 

Training, validation and testing examples were created from the 110 simulation runs.  These runs 

were used to train neural networks to recognize the six most frequently occurring departure types 

on the turn.  First, the runs for the departures were selected, and the XD, HR and SP variables 

(defined in Figure 3) were calculated for each run.  Then, six fuzzy set membership functions 

were created from those variables by calculating the means and standard deviations for the XD, 

HR and SP variables at 26 locations for the each of the six different data sets.  These 26 locations 

were at the beginning of each 2-meter segment from the turn’s center waypoint (its knee) to the 

third, as shown in Figure 3. The runs in each data set included only those runs of a specific 
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departure type, e.g., 35 BN categorized runs were used for the BN set and 17 FBH runs were 

used for the FBH set. 

The fuzzy membership functions expressed how close the values for the individual runs 

were to the average value for that variable for that classification data set.  These membership 

functions were based on the Gaussian probability density function, given by the equation below, 

f(y) = ( )πσ 21 ( ) 22 2σµ−− ye  

where µ  is the sample mean and σ the sample standard deviation of a normal random variable y.   

The constant in front of the exponential term was removed because for the transformation 

function, the desired output is 1 when the variable is equal to the mean (y = µ ), and approaches 0 

when |y - µ | is not close to the mean (i.e., the value is much greater thanσ ).  In the resulting 

Gaussian fuzzy function shown below, the variable Z = (y - µ )/σ  is a measure of the number of 

standard deviations that the variable is above or below the mean value.  

ffG(y) = 22Ze−  

After creating those six fuzzy functions, they were applied to the selected data for each of the 

110 runs, thus creating six master data sets of transformed inputs for each of the 110 runs, 

regardless of which type they were.  Within each of the six master sets, those runs that were 

classified as being of the same type as the fuzzy function used for the transformation had their 

single output value set to 1.0.  All other runs in the set had their single output value set to 0.0.  

The runs from those data sets were then separated into training, validation and testing sets.  The 

neural networks were then trained with the training and validation sets for each of the six classes, 

and their learned weights were the attribute weights for the template they represented.  
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Table 3 – Gaussian Transformed Examples 
Raw Values FBL Gaussian BN Gaussian

 DA
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

1.000

XD HR SP Transform Transform
2.283 7.348 5.138 0.906 0.865 0.949 0.999 0.232 0.077
2.467 7.348 5.518 0.966 0.865 0.908 0.473 0.232 0.218
2.730 5.167 5.879 0.999 0.991 0.879 0.313 0.054 0.367
2.909 5.167 5.922 1.000 0.696 0.950 0.213 0.010 0.272
3.039 3.228 6.258 0.998 0.845 0.907 0.145 0.304 0.389
3.134 1.549 6.354 0.998 0.872 0.964 0.112 0.241 0.333
3.193 1.549 6.598 0.997 0.842 0.951 0.101 0.999 0.375
3.231 0.144 6.883 0.995 1.000 0.883 0.094 0.993 0.429
3.236 0.144 6.935 0.995 0.955 0.984 0.111 0.550 0.320
3.222 -0.972 7.220 0.994 0.950 0.953 0.150 0.675 0.449
3.189 -0.972 7.264 0.997 0.950 0.980 0.232 0.121 0.381
3.155 -0.972 7.550 0.997 0.982 0.950 0.323 0.030 0.616
3.120 -0.972 7.930 0.996 0.812 0.957 0.424 0.139 0.898
2.991 -5.721 8.311 0.999 0.945 0.996 0.481 0.844 0.995
2.821 -5.721 8.596 0.997 0.945 0.980 0.578 0.360 1.000
2.553 -9.310 8.629 0.996 0.875 0.988 0.684 0.882 0.976
2.272 -9.310 8.629 0.999 0.915 0.874 0.770 0.733 0.934
1.903 -10.763 8.189 0.982 0.807 0.990 0.817 0.866 0.625
1.493 -10.763 8.189 0.946 0.830 0.873 0.830 0.874 0.678
1.186 -10.763 8.189 0.978 0.583 0.821 0.887 0.878 0.679
0.823 -9.410 7.990 0.936 0.809 0.910 0.909 0.789 0.636
0.473 -9.410 7.990 0.876 0.792 0.887 0.893 0.999 0.762
0.182 -9.410 5.846 0.855 0.788 0.135 0.892 0.998 0.001

-0.187 -11.930 3.259 0.743 0.644 0.325 0.833 0.725 0.000
-0.416 -0.715 2.193 0.738 0.438 0.278 0.851 0.045 0.000
-0.437 -0.491 2.903 0.918 0.547 0.255 0 .3380.984

0.000
0.170

 

 

 

 

 

 

 

 

 

 

 

 

 

The format for the data set examples for the three data values (XD, HR and SP) for the 26 

locations (from 0 through 50 meters past the center waypoint) is a sequential representation of 

the three variables in each of 26 rows with the output value (1.0 or 0.0) as the single data item on 

the 27th line.  Table 3 shows examples for a run with an FBL departure type at the turn.  The raw, 

calculated values for XD, HR and SP are in the box on the left with the nominal values of DA, 

the distance after the turn, next to the applicable rows.  The two examples on the right were 

transformed using the FBL and BN fuzzy membership functions, respectively.  Note that there 

are 26 examples produced from each run, one for each 2-meter increment of DA, since the XD, 
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HR, and SP values are zero at each DA value until the agent has reached it.  The 1.000 at the end 

of the middle box indicates that the data indeed represents an FBL departure.  On the other hand, 

the 0.000 at the end of the right-most box indicates that the raw data in the left-most box do not 

represent a BN departure. 

3.4 Templates for Application 

The context and sub-context templates developed for this research addressed only the limited 

case of a Road March task – the tactical process followed by the military to move men and 

materiel from one place to another by way of a road, without enemy presence.  As such, there 

was only one major context template created - RoadMarch.  Nevertheless, separate template 

files were created for both the RoadMarch major context and the sub-contexts relevant to the 

RoadMarch major context.  The experiment, however, centered on identifying the sub-context 

controlling the tank entity.  Given the identical structure of sub-contexts and major contexts, this 

was not considered a limitation to the experiment. 

The RoadMarch major context template is simplified – it contains only one attribute and 

it is mandatory.  That attribute, NearRoad, is true and produces a template value of 1.0 if the 

current value of XD, the entity’s cross distance measured perpendicularly from the current road 

segment’s centerline, is less than 5.0 meters on either side.  This equates to a simple rule: “If the 

entity is within five meters of the road segment’s centerline, then the RoadMarch template is 

valid with a competing value of 1.0; else, it is invalid and does not compete.”  This is reasonable.  

Otherwise, the tank agent would not be following a road and would be involved in some other 

action.   

The sub-context templates that competed for selection were divided into two groups – 

approach templates and departure templates.  The approach templates (A_EAR, A_NOM, 
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A_LATE and A_DBL) identified the type of approach the agent being observed (A) was taking.  

These approach templates are rule-based, and the rules turned out to be quite simple: If the agent 

began to separate from the centerline of the road more than 45m before the center waypoint, then 

it was classified as early (A-EAR).  If the separation began between 45 and 30m before the 

center waypoint, then it was considered nominal (A_NOM).  If separation began closer than 

30m, it was late (A_LATE).  The double curve – a double “hump” as it separated from the road 

centerline - introduced a bit of intrigue into the process, but in general, these templates were too 

simple to be interesting and were not pursued any further.   

The departure templates, on the other hand, did present interesting challenges.  These 

used neural networks with weights trained by observation of examples of the behaviors as 

described earlier.  They are described in this next section 

3.4.1 Neural Network-based Competing Templates for Turn Departure Sub-contexts 

There were six competing departure templates based on the observed behavior categorized into 

sub-contexts for the RoadMarch.  The six departure templates were DepartureOutsideBN 

(DP_BN), DepartureOutsideFBH (DPFBH), DepartureOutsideFBL (DPFBL), 

DepartureOutsideFN (DP_FN), DepartureOutsideSA (DP_SA) and DepartureOutsideBW 

(DP_BW).  The “DepartureOutside” label indicates that in each of these categories the agent 

took a wide turn on the outside the road, as opposed to cutting off the turn inside to minimize the 

distance.   

The only mandatory attribute, which calls the support template DPOUT to return its 

validity, is the same for all six departure templates.  DPOUT indicates whether the departure is 

outside or inside. Its weight is set as 0.0, so this mandatory attribute contributes nothing to the 

confidence value of the template, but is necessary for the template to be considered for 
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competition. The DPOUT support template can be valid only as long as the entity is closer to the 

previous waypoint than the current one being approached.  This identifies that the entity is on the 

departure phase of the turn, and not its approach.  Thus, none of these competing departure 

templates can be valid at the same time as the competing approach templates. 

Two non-mandatory attributes respectively call two functions that return the History and 

the Recent neural network outputs for the departure type of the template.  For example, the 

DP_BN template calls the BN_NN_HISTORY and BN_NN_RECENT function attributes and 

the DPFBL template calls the FBL_NN_HISTORY and FBL_NN_RECENT function attributes.  

The History neural network takes advantage of all the data being built up as the entity progresses 

through the turn.  In other words, the more ground the observed agent has covered, the more 

certain the observer becomes that it is properly identifying the turn classification.  However, 

because of the nature of neural network training with examples that are more heavily filled in 

with the earliest data in the departure, a change in behavior part way through the departure would 

not easily overcome the earlier identification.  The History neural networks were trained to 

output 1.0 for its recognized turn type and 0.0 for all other types.   

The Recent neural network, on the other hand, focuses on a moving window of the most 

recent data points in order to counteract the inertia of the History neural network.  They were 

trained to output 1.0 for recognized turn types and -1.0 for all others.  The attribute to which the 

History neural network is assigned has a Certainty Factor (CF) value of CFH, while the attribute 

assigned the Recent neural net has a CF of CFR. 

Those returned attribute values, when multiplied by their individual weights (CFH and 

CFR, respectively), are combined using standard certainty factor procedures to produce a 

template confidence value.  That value is then compared to the template’s critical threshold, Tc, 
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to determine whether the template can be considered the winner if it has the highest total output.  

The values to use for the weights and Tc were determined by experiment, which will be 

discussed in the next section on testing. 

4.0 Testing and Evaluation of Prototype 

Performance of the prototype was assessed using two measures: 1) number of correct 

identifications of the path actually taken by the observed agent and 2) how early a correct 

identification of the path could be made.  There were two series of tests performed on the 

prototype system developed as part of the work described.  In part 1, the template evaluation 

mechanism was subjected to the previously collected data representing an agent making a series 

of runs not used in training the neural networks, but for the same turn on which the training data 

was obtained.  This we refer to as Turn #1 testing.  The second set of tests evaluated the 

generalization ability of the system.  We subjected the same templates to runs executed on a 

similar, but different turn in the same National Training Center terrain database.  We refer to this 

as Turn #2 testing.  Runs from Turn #2 were not used in training the neural nets.   

Of the 110 (non-repeatable) runs used as data for our work, 18 of these, arbitrarily 

selected, were designated for use only during testing, and not used for training or validating the 

neural network.  Each run was composed of the approach phase and the departure phase.  As 

mentioned above, however, the approach phase was deemed almost trivial and thus was not 

evaluated.  More interesting was the departure, as there were several different types and they 

were not easily distinguished from one another by simple rules. This evaluation of the departure 

portion of the turn formed the basis for our testing. We begin by describing Turn #1 Testing. 

4.1 Turn #1 Testing 
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The 18 runs saved for system testing were evaluated using the templates and their accompanying 

neural networks for identification.  The output of the competing templates (six in all) was a value 

between -1.0 and 1.0.  The value indicated the confidence that each template had that the current 

run being presented to them was of their type.  The results were evaluated as either Correct-ID, 

False-ID or No-ID. A Correct-ID was indicated when the winning template in the template 

competition agreed with the a-priori classification of the test run.  A False-ID result indicated 

disagreement.  A No-ID came about when the template competition did not offer any template 

that arose above the Tc value selected for that competition.  One must note that, in two of the 18 

test cases, the correct classification of the run was not found among the six template 

classifications.  This happened because there were more than six original classifications, but only 

the six most popular in terms of frequency of appearance were formalized and used in the 

evaluation.  Therefore, for those cases not represented by a template, the correct identification in 

fact should have been No-ID.  For those two cases, if the template competition returned a No-ID, 

this was evaluated as a Correct-ID. 

Figure 5 depicts the results obtained with CFH and CFR, certainty factors for “History” 

and “Recent” neural network outputs (which acted as template attributes), both being set to either 

0.5 or 1.0 each, and Tc set at 0.3.  This mix of CFH and CFR maximized the ratios of correct 

percent over false percent compared to other mixtures of CFH and CFR with values of 0.0, 0.5, 

and 1.0.  These results indicated that when CFH = CFR = 1.0 rather than CFH = CFR = 0.5, the 

Correct-ID’s increased a bit, as did the False-ID’s, both at the expense of the No-ID’s.  This 

difference is not seen as significant.  
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Average Correct ID's, False ID's and No ID's 
for 30 NN Combinations and 18 Test Runs vs CF's (Tc = 0.3)
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Figure 5 – Averages of Correctness Results versus Equally Weighted CFH/CFR 

 
Table 4 - Competing Template Values (Turn 1, BN Test Run r4.2) 

 
 DA BN FBH FBL FN SA BW 
 0.0 -1.00 -1.00 -1.00 -1.00 -0.97 -0.93 
 2.1 0.87 -0.99 -1.00 -1.00 -0.97 -0.95 
 4.3 -1.00 0.01 -1.00 -1.00 -0.97 -0.99 
 6.2 0.93 -0.73 -0.98 -1.00 -0.97 -0.99 
 8.1 0.91 -0.74 -0.99 -1.00 -0.97 -0.99 
 10.2 0.93 -1.00 -1.00 -1.00 -0.97 -0.99 
 12.2 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 14.3 0.99 -0.99 -1.00 -1.00 -0.97 -0.99 
 16.5 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 18.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 20.3 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 22.4 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 24.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99 
 26.3 0.98 -0.97 -1.00 -1.00 -0.97 -0.99 
 28.5 0.98 -0.99 -1.00 -1.00 -0.97 -0.99 
 30.2 0.95 0.75 -1.00 -1.00 -0.97 -0.99 
 32.4 -1.00 0.82 -1.00 -1.00 -0.97 -0.99 
 34.1 -1.00 -0.99 -1.00 -1.00 -0.97 -0.99 
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 36.4 -1.00 -1.00 -0.72 -1.00 -0.97 -0.99 
 38.1 0.66 -0.99 0.14 -1.00 -0.97 -0.99 
 40.4 0.98 -0.99 -1.00 -1.00 -0.97 -0.99 
 42.1 -0.12 -0.93 -1.00 -1.00 -0.97 -0.99 
 44.4 0.70 0.92 -1.00 -1.00 -0.97 -0.99 
 46.1 0.96 -0.69 -1.00 -1.00 -0.97 -0.99 
 48.3 0.97 0.92 -1.00 -1.00 -0.97 -0.99 

 

Competitive templates are boxed and winning templates are italicized as well. 

Additional experiments were performed varying the value of Tc.  The objective here was to 

determine how selective to be in the template competition.  Naturally, we expected the number 

of No-ID’s to increase as Tc was increased.  This is in fact what happened.  The Correct-ID’s 

and False-ID’s, however, remained relatively constant until Tc reached 0.70. 

With regard to how early the identifications were made, we noted the first instance when 

the correct identification was made for those runs for which a correct-ID was made.  Table 4 

indicates an example of how early it was in one case to identify correctly the path taken by the 

simulated test entity. The results indicate that for the most part, the correct template was 

identified very early in the process, as in the first 2 to 6 meters beyond the turn waypoint.  This is 

a tremendous advantage in that it permits early identification of observed behavior, giving the 

observer time to react to the intended actions.  This is particularly important in conflicts where 

knowledge of an opponent’s intention can lead to better counter tactics and/or preparation. 

The results for a single 78-5-1 History NN and a Tc of 0.3 on the 18 runs are depicted in 

Table 5.  (78-5-1 indicates 78 input nodes, 5 hidden nodes, and 1 output node.)  The early 

recognition is admittedly a characteristic of the data presented to the system, and it may not be 

the case in all applications.  Nevertheless, when the data did permit early identification, the 

system was capable of doing so. 
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Table 5 – Real-time recognition of agent intention for Turn #1 
 

DA Correct ID False ID No-ID 
0-2 72.2% 22.2% 5.6% 
2-4 77.8% 16.7% 5.5% 
4-6 72.2% 16.7% 11.1% 
6-8 77.8% 11.1% 11.1% 
8-50 83.3% 11.1% 5.6% 

 

4.2 Turn #2 Testing 

These tests were conducted with runs from the agent taking a similar, but not identical turn in the 

same database.  This test introduced several differences in how the test was performed.  First of 

all, since we used the networks trained on data obtained for Turn #1, the idea of using training, 

validation and testing runs was not applicable.  Because the 110 original runs were executed for 

the entire route (encompassing both Turns #1 and #2 as well as other terrain), the same 18 runs 

were used for testing on Turn #2, except that the data specific for Turn #2 were used.  Secondly, 

since the departure classes on Turn #2 were not categorized as they were for Turn #1, there was 

no automatic means to check for Correct-ID, False-ID or No-ID for the outputs.  Thus, the 

winning template outputs from combining the History and Recent NN attributes could not be 

evaluated directly for correctness, as done for Turn #1.  Instead, the template program used for 

testing on Turn #1 was modified to record the winning template number along with the details of 

the template outputs rather than information on the correctness of the output.  For Turn #2 test 

evaluation, the XD, HR and SP outputs for each test run were compared against the XD, HR and 

SP mean values for the departure type identified as the winning template output for each of the 

18 runs to check for reasonableness.  
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Table 6 – Summary of Test Runs at Turn 2 Evaluations 
  
Test Departure Location 
Runs Type (Meters) Comments  
  1 FBL 0 – 24  
  4, 6- 13, 15 FBL 2 – 24  
16, 17, 18 FBL 0 – 28  
  3 FBL 8 – 28  
  5 FBL 0 – 6 Only departure type in this region 
 FBH/FBL 8 – 16 FBH is best match, but either is acceptable 
 FBH 18 – 24 Only departure type in this region 
  2 None 0 – 50 No departure type matches expected anyplace 
14 FBL 16 – 24   

Note: Lack of a winning template outside the locations shown is counted as a Correct ID. 

Table 6 depicts the 18 runs on Turn #2.  It shows that most of the runs could be labelled FBL, at 

least for the first half of the road segment after the waypoint.  Two others could be categorized as 

FBH and one (run #2) had no similarity whatsoever to the classifications determined in Turn #1. 

These determinations of what the templates should reasonably show were used as the basis for 

comparison to what the templates actually produced.  In making this evaluation, ten sets of 

trained History neural networks and ten sets of Recent neural networks were used in various 

combinations so that each set was used three times with three different sets of the other type of 

neural network.  Each set of trained neural networks consisted of six neural networks, each 

trained for a different one of the six major categorized turn types.  Thus, 30 evaluations were 

made of each of the 18 repeatable test runs.  The percentage results of correct, false and No-ID’s 

for these 30 evaluations for each test run are shown in Table 7.  Overall, approximately 84.9% of 

the template responses were correct, including No-ID’s when no match should have been made; 

11.1% were false; and 4.1% were of No-ID, when a match should have been made.  

While these results do not provide the fidelity for the correctness average shown for Turn 

#1, it gives us an appreciation for the ability of the system to generalize, to some degree, and 
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extend the results of one turn to another, similar one.  The results indicate that, except for run #2, 

the system was able to identify the path taken by the simulated entity for at least the first half of 

the trajectory past the initial waypoint.  Thereafter, the path diverges from any known 

categorization of Turn #1, and no identification was possible. 

 

Table 7 – Correct, False and No ID Percentages for Test Runs at Turn 2 
   
Test Runs Correct ID (%) False ID (%) No ID (%)  
1 86.9 12.3 0.8 
2 42.9 57.1 0.0 
3 91.5 3.8 4.6  
4 88.6 10.6 0.8 
5 76.4 9.7 13.8 
6 82.7 10.8 6.5  
7 92.6 1.3 6.2 
8 94.2 3.5 2.3 
9 92.6 1.9 5.5  
10 95.4 3.8 0.8 
11 91.9 6.5 1.5 
12 93.8 0.8 5.4  
13 91.5 1.9 6.5 
14 66.0 25.0 9.0 
15 93.3 1.3 5.4  
16 83.1 16.9 0.0 
17 83.5 16.5 0.0 
18 80.4 15.0 4.6  
Average  84.86% 11.05% 4.10%   

 
Continuing with the evaluation of how early the system can identify the agent’s intent for Turn 

#2, Table 8 depicts the results tabulated for only the first 10 meters of Turn #2 departure.  We 

used 30 sets of History and Recent NN’s combined using CFH and CFR = 0.5 and Tc = 0.3 on 

the 18 test scenarios used for Turn #1. 

 

 

 36



Table 8 – Real-time Evaluation for Turn #2 

DA Correct % False % No-ID % 

0-2 76.7% 16.7% 16.7% 

2-4 72.8% 7.2% 20% 

4-6 93.3% 5.0% 1.7% 
6-8 94.4% 5.6% 0.0% 

8-10 87.2% 7.8% 5.0% 

10-12 89.6% 8.7% 1.7% 
    

4.3 Summary of Testing 

The evaluation of the intention recognition of agent A on Turn #1 was generally good overall.  

Correct identifications were in the 75% to 85% range, false identifications in the 3% to 13% 

range and no identifications in the 7% to 12% range.  On Turn #2, the ModSAF agent used to 

generate the data did not reproduce the same behaviors that were identified on Turn #1.  

However, the early portions of most of the test runs were very similar to the early portions of one 

of the behaviors identified on Turn #1.  If the identifications for the portions of the departures 

that were judged to successfully match are counted as correct and those that did not, as false, the 

off-line responses on Turn #2 would be 85% correct, 11% false and 4% with no identification.  

These results are generally within the ranges noted for Turn #1. 

None of the turn action types observed on Turn #2 were the same as the ones observed on 

Turn #1.  However, the portions of the turn actions on Turn #2 that were very similar to an 

observed action type on Turn #1 were identified as that similar behavior.  That showed 

reasonable generalization by recognizing portions of actions that matched what had been 

previously learned on Turn #1.  There was a small but finite group of identifications of action 

types for the portions of the Turn #2 actions that did not match the learned actions from Turn #1. 
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It is also seen that TTBI avoids incorrect identification of behaviors (including No-IDs) where 

significant ambiguities existed and thus classification was not appropriate.   

5.0 Summary and Conclusions 

The results of our evaluation of our weak-model approach to recognize the intentions of a tank 

driver to follow a certain path around a turn in the road proved to be largely successful at 

identifying its  near-term intentions and predict its lower level actions.  However, we believe that 

the similarity in structures to higher level identification makes it such that the TTBI approach 

could be similarly applied at any level of context abstraction. 

The intuition of equating the template attribute weights to neural network weights 

resulted in a good method to learn the weights directly from observation of prior agent behavior.  

This is critical for a weak-model approach such as presented here.  While the process is not 

completely automated, future research could more readily make this learning process highly 

automated by using clustering algorithms to group similar types of runs. 

In conclusion, while the method yielded good results, it required significant manual effort 

to review the runs and classify them, build the fuzzy set membership functions and train the 

neural networks.  Much of the effort was application-specific.  Table 9 lists important 

characteristics for generalizing the TTBI technique to other applications.  These characteristics 

impact the feasibility of TTBI, as well as its context identification process during operation.  

Each characteristic is determined either by the knowledge engineer at design time, or at runtime 

by the constraints of the operational environment and entity operation itself.  As listed in Table 9, 

the knowledge engineer must be able to decompose the behaviors into mutually exclusive 

contexts that are complete and consistent.  It is important for the knowledge engineer to select 
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the most indicative environmental variables for observation and a suitable level of behavioral 

abstraction.  Automating the selection of these variables is beyond the scope of this research and 

is the subject of future research.  Furthermore, the operational environment needs to be properly 

instrumented to gather the observation stream required by TTBI and it must do so in real-time.  

Finally, the entity’s behavior needs to exhibit all modes during training while exhibiting minimal 

unforeseen or inconsistent modes during operation.  Making the system noise tolerant is also 

beyond the scope of this investigation and the subject of future research. 

Lastly, we present a discussion about the computational complexity for scaling this 

concept to other major behavioral contexts and their behavioral sub-contexts for the extended 

TTBI approach. Let N denote the number of major context templates, with an average number of 

attributes being A.  The number of comparisons to determine the major context would be on the 

order of N*A, or O(N*A).  If the number of attributes per template were considered relatively 

constant, the complexity would be expressed as O(N).  For any given major context that was 

selected as the winning template, the sub-contexts that would compete are limited to the sub-

contexts of that major context.  Thus, if the number of sub-context templates and their attributes 

were relatively constant from one major context to another, the complexity would still be 

expressed as O(N).  Therefore, the addition of new major contexts to be considered would scale 

with a linear complexity thereby demonstrating good potential for scalability. 
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Table 9:  Factors affecting the applicability of TTBI Technique 
 

 

Important Characteristics 

 
Responsible 
Information 

Source 

 
Criticality 
for Success 

Ability to decompose entity behaviors into mutually-
exclusive contexts within the given domain 

Knowledge 
Engineer 

Essential: must be accurate, 
complete, and internally consistent 

 
Ability to identify which of all possible observable 
environmental variables should be monitored as 
being most indicative of current context / transitions 

 
Knowledge 

Engineer 

Important: very strong positive 
correlation desired, but set of 
variables selected need not be 
optimal for TTBI to work correctly 

 
Ability to select a tractable yet useful level of 
abstraction of the entity’s actions 

 
Knowledge 

Engineer 

Important: low-level behaviors can 
be more readily correlated with 
environmental observations  

Availability of instrumentation to observe the 
identified environmental variables to create a stream 
of discrete or continuously-valued observations  

Operational 
Environment 

Essential: required during both the 
training and performance phases 

 
Sufficient breadth and consistency in the entity’s 
behavior as quantified by template inputs 

 
Entity 

Operation 

Important:  lack of breadth during 
training or inconsistencies during 
operation will decrease the context 
identification rate 

 

6.0 References 

[Austin and Rose, 1997] Austin, K. B. & Rose, G. M. Automated behavior recognition using 
continuous-wave Doppler radar and neural networks. Proceedings of the 19th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society: 
Magnificent Milestones and Emerging Opportunities in Medical Engineering, 4, 1997, 
Chicago, IL, October 30 to November 2, pp. 1458-1461. 

[Bass, 1996] Bass, E. J., Zenyuh, J.P., Small, R.L. and Fortin, S.T. (1996). “A Context-based 
Approach to Training Situation Awareness”, Proceedings of the Third Annual 
Symposium on Human Interaction with Complex Systems, Los Alamitos, CA: IEEE 
Computer Society Press, pp. 89-95 

[Brezillon, 2004] Brezillon, P., “Representation of Procedures and Practices in Contextual 
Graphs”, The Knowledge Engineering Review, 2004. 

[Charniak and Goldman, 1993] Charniak, E. and Goldman, R. P., “A Bayesian Model of Plan 
Recognition”, Artificial Intelligence, 64(1), pp. 53-79. 

[Clark, 1994] Clark, A. N. (1994). Pattern recognition of noisy sequences of behavioral events 
using functional combinators. The Computer Journal, 37(5), 385-398. 

[Devaney and Ram, 1998] Devaney, M. and Ram, A., “Needles in a Haystack: Plan Recognition 
in Large Spatial Domains involving Multiple Agents”, Proceedings of the 15th national 
Conference on Artificial Intelligence, pp 942-947. 

 40



[Drewes, 1997] Drewes, P. J. (1997). Automated Student Performance Monitoring in Training 
Simulation. Doctoral Dissertation, University of Central Florida, Orlando. 

[Drewes et al., 2000] Drewes, P. J., Gonzalez, A. J. and Gerber, W., “Interpreting Trainee Intent 
in Real Time in a Simulation-based Training System”, Transactions of the Society for 
Computer Simulation, Vol. 17, No. 3, September 2000, pp. 120-134. 

[Gerber, 2001] Gerber, W. J. (2001). Real-Time Synchronization of Behavioral Models With 
Human Performance in a Simulation. Doctoral Dissertation, University of Central 
Florida, Orlando. 

[Gerber and Gonzalez, 2001] Gerber, W. J. and Gonzalez, A. J. (2001, November 26-29). 
Behavior recognition results for behavioral vehicle model synchronization in distributed 
simulations. Proceedings of the 2001 Interservice/Industry Training, Simulation and 
Education Conference (pp. 260-270). Orlando, FL. 

[Goldman et al, 1999] Goldman, R. P., Geib, C. W. and Miller, C. A., “A New Model of Plan 
Recognition”, Proc. of the Conf. on Uncertainty in Artificial Intelligence, 1999. 

[Gonzalez and Ahlers, 1998] Gonzalez, A. J. & Ahlers, R. (1998). Context-based representation 
of intelligent behavior in training simulations. Transactions of the Society for Computer 
Simulation, 15(4), 153-166. 

[Han and Veloso, 1999] Han, K. and Veloso, M., “Automated Robot Behavior Recognition 
Applied to Robotic Soccer”, Proc. of IJCAI-1999 Workshop on Team Behavior and Plan 
Recognition, 1999. 

[Hertz et al., 1991] Hertz, J. A., Krough, A. S. & Palmer, R. G. (1991). Introduction to the 
Theory of Neural Computation. Redwood City, CA: Addison-Wesley Publishing 
Company. 

[Huber, 1996] Huber, M. J., “Plan-based Plan Recognition for Effective Coordination of Agents 
Through Observation”, PhD dissertation, U. of Michigan, 1996. 

[Intille and Bobick, 2001] Intille, S. S. and Bobick, A. F., “Recognizing Planned Multi-person 
Action”, Computer Vision and Image Understanding, 81(3), pp. 414-445, March 2001. 

[Jiang and Ma, 2002] Jiang, Y. F. and Ma, N., “Plan Recognition Algorithm based on Plan 
Knowledge Graph”, Journal of Software, 13(4), pp. 686-692, April, 2002. 

[Kaminka and Tambe, 2000] Kaminka, G. A and Tambe, M., “Robust Multi-agent Teams via 
Socially-attentive Monitoring”, Journal of Artificial Intelligence Research, 12, pp. 105-
147. 

[Kaminka et al, 2002] Kaminka, G. A., Pynadath, D. V, and Tambe, M., Monitoring Teams by 
Overhearing: A Multi-Agent Plan Recognition Approach”, Journal of Artficial 
Intelligence Research, 1(124), 2002. 

[Kerkez and Cox, 2002] Kerkez, B. and Cox, M. T., “Local Predictions for Case-based Plan 
Recognition”, Proceedings of the 2002 European Conference on Case-Based Reasoning, 
pp. 189-203. 

 41



[Lamgari and Yen, 1995] Langari, R. & Yen, J. (1995). Introduction to fuzzy logic control. In J. 
Yen, R Langari & L A. Zadeh (Eds.), Industrial Applications of Fuzzy Logic and 
Intelligent Systems (pp. 3-39). Piscataway, NJ: IEEE Press. 

[Lesh et al., 1999] Lesh, N., Rich, C. and Sidner, C. L. (1999). Using plan recognition in human-
computer collaboration. In J. Kay (Ed.), Proceedings of UM99: Seventh International 
Conference on User Modeling (pp. 23-32). Wien, Austria: Springer. 

[Liu and Pentland, 1997] Liu, A. & Pentland, A. (1997, November). Towards real-time 
recognition of driver intentions. Proceedings of the 1997 IEEE Conference on Intelligent 
Transportation Systems (pp. 236-241). Boston MA. 

[Maskara and Notzel, 1993] Maskara, A. & Noetzel, A. (1993, April 13-16). Training auto-
associative recurrent neural network with preprocessed training data. Proceedings of the 
SPIE – The International Society for Optical Engineering: Science of Artificial Neural 
Networks II, 1966 (pp. 420-428). Orlando, FL. 

[Narendra et al., 1995] Narendra, K. S., Balakrishnan, J., & Ciliz, M. K. (1995). Adaptation and 
learning using multiple models, switching, and tuning. IEEE Control Systems Magazine, 
15(3), 37-51. 

[Patterson et al, 2003] Patterson, D., Liao, L., Fox, D., and Kautz, H. “Inferring High Level 
Behaviors from Low Level Sensors”, Fifth Annual Conference on Ubiquitous Computing 
(UBICOMP 2003), Seattle, WA, 2003. 

[Pentland and Liu, 1999] Pentland, A. & Liu, A. (1999). Modeling and prediction of human 
behavior. Neural Computation, 11, 229-242. 

[Pynadath and Wellman, 2000] Pynadath, D. V. and Wellman, M. P., “Probabilistic State-
Dependent Grammars for Plan Recognition”, Proc. of UAI-2000, pp. 507-514. 

[Schmidt et al, 1978] Schmidt, CF, Sridharan, N. S. and Goodson, J. L., “The Plan Recognition 
Problem: An Intersection of Psychology and Artificial Intelligence”, Artificial 
Intelligence, Vol. 11, No. 1&2, pp. 45-83, August 1978. 

[Strohal and Onken, 1998] Strohal, M. & Onken, R. (1998). Intent and error recognition as part 
of a knowledge-based cockpit assistant. In S. K. Rodgers, D. B. Fogel, J. C. Bezdek & B. 
Bosacchi (Eds.), Applications and Science of Computational Intelligence: Proceedings of 
the SPIE, 3390, 287-299. 

[Tambe, 1996] Tambe, M., “Tracking Dynamic Team Activity”, Proceedings of the National 
Conference on Artificial Intelligence (AAAI), 1996. 

[Turner, 1994] Turner, R. M. (1994). Adaptive reasoning for real-world problems: a schema 
based approach. Hillsdale, NJ: Lawrence Erlbaum Associates. 

[Turner, 1998] Turner, R. M. (1998). Context-mediated behavior for intelligent agents. In B. R. 
Gaines (Ed.), International Journal of Human-Computer Studies: Incorporating 
Knowledge Acquisition, 48(3), 307-330. 

[Wang and Arbib, 1993] Wang, D. & Arbib, M. (1993). Timing and chunking in processing 
temporal order. IEEE Transactions on Systems, Man, and Cybernetics, 23(4), 993-1009. 

 42



[Weng and Huang, 1998] Weng, J. J. & Hwang, W. (1998, April 14-16). Toward automation of 
learning: the state self-organization problem for a face recognizer. Proceedings Third 
IEEE International Conference on Automatic Face and Gesture Recognition, 1 (pp. 384-
389). Nara, Japan. 

[Wobke, 2002] Wobke, W., “Two Logical Theories of Plan Recognition”, Journal of Logic and 
Computation, 12(3), pp. 371-412, June 2002. 

[Zadeh, 1987] Zadeh, L. A. (1987). Fuzzy sets. In R. R. Yager, S Ovchinnikov, R. M. Tong & H. 
T. Nguyen (Eds.), Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh (pp. 29-
44). New York: John Wiley & Sons, Inc. (Reprinted from Information and Control, 8, 
338-353, 1965, New York: Academic Press) 

 43


	William J. Gerber
	Intelligent Systems Laboratory
	Abstract


	More formally, each template is a model for a specific high-level action.  It describes the observable low-level actions that a performing agent A would do if it were indeed performing that high-level action.   TBI works by defining the set of templates
	
	
	
	
	
	
	
	Table 1 ¨C Summary of Approach Category Frequenc�
	Approach Categories
	No. of Runs








	Early, Single Curve
	Nominal, Double Curve
	Late, Double Curve
	
	
	
	
	
	
	
	Analysis of the results indicate that the approac
	Table 2 - Departure Pattern Types


	Flat Nominal (FN)15Parallels outbound segment, then turns to intercept at
	Bow Distant (BD)    3After initial turn, slowly turns to an intercept heading
	Double Curve (DC)3Initially turns to a heading that would intercept close to the
	Close Intercept (CI)1Intercepts within about 10 meters followed by a long-
	
	Table 3 ¨C Gaussian Transformed Examples



	DABNFBHFBLFNSABW
	
	
	Table 5 ¨C Real-time recognition of agent intent�
	DA







	Table 6 ¨C Summary of Test Runs at Turn 2 Evalua�
	
	
	
	
	
	
	Table 7 ¨C Correct, False and No ID Percentages �



	Average 84.86%11.05%4.10%




	Table 9:  Factors affecting the applicability of TTBI Technique

	Important Characteristics

