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Abstract

A fast, wire-efficient synchronization technique is developed that supports dynamic

allocation of multiple threads on shared-memory, message-passing, and/or single-chip

multiprocessors. The proposed distributed-sum bit-comparison (DSBC) method employs

the execution-sequence invariant property such that the instantaneous process production

equals the instantaneous process consumption only upon barrier completion. For a system

of n processing elements (PEs), a single instance of the global logic unit, and n instances of

the local logic unit, interconnected by 3n wires, are shown to provide direct support for any

arbitrary number of barriers. The barrier detection time is shown to scale linearly in terms

of the number of active barriers in the system. Comparisons to Wired-NOR hardware and

Shared-Lock software approaches indicate reduced barrier detection time, decreased inter-

PE wiring requirements, and increased functionality. Suitability of adaptation of the DSBC

method to a skew-insensitive clockless design is also discussed.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords:Multiprocessor barrier synchronization; Termination detection; Message-passing architectures;

Shared-memory architectures; Quiescence detection
*Corresponding author. Tel.: +1-260-422-5561.

E-mail addresses: demara@mail.ucf.edu (R.F. DeMara), pwilder@indtech.edu (P.J. Wilder).
1 Tel.: +1-407-823-5916; fax: +1-407-823-5835.

0167-8191/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-8191(03)00062-0

mail to: demara@mail.ucf.edu


954 Y. Tseng et al. / Parallel Computing 29 (2003) 953–968
1. Introduction

Efficient barrier synchronization and quiescence detection techniques are fun-

damental to optimizing throughput in multiprocessor architectures. An ensem-

ble of processing elements (PEs) is said to be synchronized [1,2], or to have
reached a quiescent state [1], upon the completion of each concurrent-activity inter-

val. The instances during execution when concurrent threads require synchronization

are referred to as barriers [1–3]. These barriers must be detected prior to the re-

sumption of processing to avoid violation of any precedence relationships be-

tween processes. Maintaining low overhead during barrier detection, while at the

same time minimizing the hardware and software resources required for detection,

is of primary importance in the development of an efficient barrier completion

scheme.

1.1. Characteristics of barrier mechanisms

Characteristics that influence the selection of an appropriate barrier mechanism
include the granularity of the threads in the application, the number of simultaneous

barriers during execution, and the thread creation/allocation strategy used by the ap-

plication. The thread granularity refers to the amount of processing that occurs dur-

ing a concurrent interval. As threads become finer-grained, the relative impact of

synchronization overhead on overall throughput becomes further magnified. Thus,

frequently synchronized threads are less able to tolerate barrier detection latency,

and are mostly likely to benefit from efficient hardware and software solutions to

the barrier synchronization problem.
Single-threaded parallel applications require at most one barrier at any instant,

whilemultithreaded parallel applications can take advantage of concurrent barriers to

increase aggregate throughput and processor efficiency. For example, in a multi-user

environment, each user�s processes participate in distinct barriers. Since there are no

data dependencies between processes from different users, multiple threads from one

user can execute simultaneously along side of the threads of other users. However,

the synchronization mechanism used must be capable of distinguishing between bar-

rier signals used among different users� jobs. Likewise, single-user applications may
also contain multiple threads participating in different active barriers that require

distinct identification. As with the barrier method proposed in this paper, several re-

cent research efforts have aimed at providing this important multiple barrier capabil-

ity [14,15,17].

Other recent efforts have concentrated on efficient implementation of barriers

when, at compile-time, knowledge of whether a particular PE participates in a bar-

rier is not available [11,12]. In particular, applications that dynamically determine a

PEs barrier participation, and/or generate new processes based on run-time condi-
tions, are said to be capable of adaptive process creation. Multiprocessor applications

requiring synchronization support for adaptive process creation include those with

dynamically allocated remote procedure calls, recursive algorithms, interpreted pro-

gram code, and others.
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Additionally, barrier synchronization schemes may need to handle launch-in-

transit hazards. This refers to situations when all PEs are idle, yet a message that

is in transit between PEs creates a new sub-process upon arrival at the destination

PE. Even if all processors are currently idle, the barrier cannot be attained when

an additional process create operation is queued within the interconnection network.
Thus, proper accounting of these messages is vital to barrier enforcement. Yet, this

can be difficult to achieve with low overhead in a physically distributed computing

environment, especially if processes are created adaptively at run-time. Launch-

in-transit hazards can arise on distributed-memory architectures, LANs, or clusters

of workstations. They are most difficult to deal with in environments where the syn-

chronization technique cannot obtain an instantaneous snapshot of process status.

In summary, a functionally capable synchronization method should readily ac-

commodate multiple threads, support adaptive process creation, and operate cor-
rectly in the presence of launch-in-transit hazards. Achieving this functionality in

an efficient manner implies incurring low detection latency, while requiring minimal

inter-PE message exchange and interconnection. The method proposed herein pro-

vides these capabilities at improved levels of performance in comparison to previous

methods.
1.2. Previous work

The barrier synchronization issue has been studied from both software [1–9] and

hardware perspectives [12–19]. A good overview of the barrier synchronization prob-

lem is presented by Arenstorf and Jordan [4], along with a representative range of

solutions. In general, software approaches typically employ variations of Test-

And-Set [10] or Fetch-And-Add [4] machine instructions. Hardware approaches

include the AND gate barrier [13], a distributed TTL logic implementation called

PAPERS [14], and a dedicated barrier synchronization Register Hardware [17].

More recently, Shang and Hwang presented a Wired-NOR logic design, with impres-
sively low detection overhead [15,16]. In their paper, they also assess the degree to

which hardware schemes can outperform software schemes.

However, even the Wired-NOR logic approach allows only one process per sig-

naling wire to be dispatched to an individual processor, thus restricting multi-

threaded applications. Additionally, Wired-NOR logic methods require that the

process allocation to physical PEs be available at compile time. The distributed-

sum bit-comparison (DSBC) logic developed in this paper is capable of overcoming

the above limitations, while achieving termination detection latency comparable to
that of Wired-NOR logic.
2. Distributed-sum bit-comparison technique

The DSBC logic configuration for n PEs is shown in Fig. 1. It includes one in-

stance of global logic residing at either an independent node or any one local PE.



Fig. 1. Overview of DSBC layout.
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The global logic unit communicates with n instances of local logic, whereby one in-
stance of local logic resides at each PE.

The global logic unit consists of a responder count encoder, a decision module, and

a global control signal source. Each local logic unit configuration is comprised of a

summation module, a dual-port random-access memory (RAM), and a reporting

and recording module (R&R). The DSBC technique employs local logic components

to maintain a ledger of the number of processes produced or consumed by each

thread at the local PE. These values are stored in a dual-port RAM for retrieval

by the global logic unit. Thus, the approach is designated as a distributed summation

technique, because each PE keeps a local ledger of process counts. It also employs

bit-comparison methods, since the values in the ledgers are compared in a bit-serial

fashion.

2.1. Operational concept

The global logic unit initiates Barrier detection. It requests the current process

counts from the local logic units, and then sums them to evaluate whether the barrier
completion criterion is satisfied. This criterion is satisfied whenever there exists an

equal number of produced and consumed processes during any snapshot of system

activity. It can be shown that this criterion is correctly computed even in the presence

of adaptively created processes and launch-in-transit hazards [11].
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Each PE notifies its own local logic unit whenever it produces or consumes a pro-

cess. The local logic unit then makes adjustments to the local process count of the

related barrier, which is stored in the dual-port RAM. To avoid the need to maintain

distinct process production and consumption counts in the ledger, the process count

for each thread is incremented before a process is produced, and decremented after a
process is consumed. Thus, a dual-port RAM that is m words deep is capable of re-

cording process counts to accommodate multithreading of degree m. The ledger

RAM is dual-ported so that the global logic unit can simultaneously inspect the local

process counts without impeding PE operation.

Once the global logic unit determines the completion status for a particular bar-

rier, it returns the status to each local logic unit. Each local logic unit then responds

by either storing the completed barrier number into a first-in first-out (FIFO) regis-

ter, or advancing to inspect the next barrier. The completion information for the bar-
rier is then available to the PE directly without incurring any unnecessary operating

system overhead. Each of these system components is described in detail in Section 3.

2.2. Interaction between global and local logic units

As shown in Fig. 2, the global logic unit and local logic units operate in parallel. A

technique is used to reduce both the required number of interconnections to each PE,

and the resulting detection time. To reduce the wire count, a bit-serial scan is used.
To reduce overhead that might otherwise be incurred by bit-serial communication,

a useful mathematical property of progressive summation is employed as described

below.

The first routine shown in Fig. 2 describes how each local logic unit acts to main-

tain the counts in its process ledger. The local logic unit increments the count for

each barrier whenever a process is produced, and decrements it whenever a process

is consumed. Initially, the process counts are set to zero. The procedure begins with

the PE asserting the thread index on the data bus shown in Fig. 1. Then, the PE in-
dicates process production or consumption by asserting the appropriate control line

that serves as an input to the local logic unit. This minimizes the operating system

overhead to simply toggling an I/O port, without incurring any delay-inducing com-

petition for spin-locks [10] or other shared resources. This is a distinct performance

advantage of using the local logic unit in the DSBC design.

The second routine shown in Fig. 2 describes the bit-scan process and the prop-

erty of summation used by the global logic unit to skip over non-zero sums, quickly.

Here the global logic unit considers each barrier in succession, and iteratively de-
mands bits from the local process count ledgers for a specific barrier. Each PE re-

sponds with its own local process count for the designated barrier. The global

logic unit keeps inspecting the global sums for consecutive barriers in a round-robin

fashion, independent of other events. To calculate the global sums, it examines the

counts bit-by-bit, starting from the least significant bit (LSB). If any bit of the

sum is one, indicating a non-zero process count summation from all PEs is im-

minent, then the process count word for the next barrier is immediately fetched and

checked. The reason for using this single-bit detection technique is as follows: a



Fig. 2. Local and global procedures in DSBC algorithm.
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non-zero sum indicates that the barrier is not reached. It is likely that a non-zero bit

will be encountered quickly, so that serial scanning is not necessarily inferior to the

practice of comparing all bits simultaneously in parallel. Furthermore, during in-

spection, the barrier will more often be pending, rather than complete. Additionally,
the local logic unit can potentially provide optimizations when all bits of a ledger

entry are zero, implying a lack of meaningful barrier activity at that PE. Section 4

presents a detailed probabilistic analysis of the impact of these effects on perfor-

mance.
3. Local logic components

Each of the local logic components shown in Fig. 1 cooperates to maintain the

process ledger counts and to coordinate barrier status information as discussed

below.
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3.1. Summation module

The inputs from the local PE determine the action taken by the summation mod-

ule. Fig. 3 shows the four possible activities, as well as the design of the summation

module. Each activity is designated by a unique 2-bit code determined by two output
lines from the PE. When the input code from the PE is 00, the summation module

takes no action. When the input code is 01, indicating that the PE produced a pro-

cess, the summation module reads the current process count from the dual-port

RAM, adds one to the count, and stores the result in the latch. When the input is

10, meaning that the PE consumed a process, then the summation module reads

the current process count from the dual-port RAM, deducts one from the count,

and stores the result in the latch. The operation of deducting one can be exe-

cuted by adding a value of negative one in two�s complement form; for example
adding 11112 to a 4-bit value. To simplify the control mechanism, an input of 01

or 10 can be assumed to be followed by a 11 input. The local logic unit generates

this code, which enables the result stored in the latch to transfer into the dual-port

RAM.
Fig. 3. Summation module.
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3.2. Reporting and recording module algorithm

Fig. 4 shows the layout of the R&R module. The R&R module consists of two

major components, a Parallel-In Serial-Out (PISO) register, and a FIFO register.

The PISO register loads the process count in parallel, yet outputs the binary repre-
sentation of the count serially, while the DSBC logic is inspects the count. The FIFO

queue stores the completed barrier numbers, and is driven under the control of the

global logic unit. The global control signal synchronizes the operation of the R&R

module. Counter CNT1, shown in Fig. 4, controls the sequences used. A second

counter, CNT2, maintains the next barrier number to be inspected, and provides

the completed barrier number in the event that the current barrier is found to be

complete. As the cycle begins, the R&R module loads the process count of the bar-

rier (identified by CNT2) from the dual-port RAM into the PISO register. The PISO
register outputs one bit at a time, starting with the LSB, to the global hardware. If

the result from the decision module is zero, meaning more bits need checking to de-

termine termination, then the next bit in the PISO register is fed to the global logic

unit, and so on. If the result remains non-zero after the global logic unit checks all
Fig. 4. Reporting and recording (R&R) module.
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bits in the word, then the barrier is not complete, and the global control starts a new

cycle with the next process count word for the next barrier. Alternatively, if, after

bitwise summation, all of the resulting bits are zero, then the sum of all the local pro-

cess counts is zero, implying that the barrier is finished. The control logic writes the

current barrier ID into the FIFO queue, and begins a new cycle for the next barrier.
4. Global logic unit

4.1. Responder count encoder

The Responder Count Encoder sums the single-bit indicator lines from all PEs,

and outputs the sum in a binary encoded format. As shown in Fig. 5, an adder-tree
serves this purpose. Log2n, the base-2 logarithm of the number n of supported PEs,

bounds the number of levels in the tree. Additionally, a carry look-ahead design can

provide a multiple-bit full adder capability without introducing significant gate de-

lays. Other schemes involving carry-save representations are possible to mitigate

the number of gate delays incurred for networks with a large number of PEs.

4.2. Decision module

Fig. 6 shows the decision module, which adds the sum from the responder count

encoder to the carry output from the previous addition. It then extracts the LSB
Fig. 5. Responder count encoder.



Fig. 6. Decision module.
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to indicate the decision using the line reducer, as shown. The reason for adopting the

LSB to indicate the result is that if the sum is an odd number then its LSB value is 1.

The LSB clearly indicates immediate non-termination under this scenario. Alterna-

tively, the result�s LSB is zero for either even-numbered or zero sums. Under this cir-

cumstance, the hardware checks the next significant bit to decide whether the barrier

is complete.
At the same time, the decision module directs the result from the adder to the shift

right function, which can be implemented by just re-labeling each bit as the next less

significant bit. This divide-by-two quotient is stored in the latch to be used as the car-

ry for the next bit. However, the carry is cleared if the decision is one, since the carry

only applies to the current barrier, and does not apply to the next barrier.
5. Performance analysis

This section first analyzes the time for termination detection with the DSBC logic,

denoted TDSBC. Next, it compares DSBC with a software-based Test-and-Set algo-

rithm [10] and wired-NOR logic [15] in terms of performance and features.

5.1. Detection time

The procedures described previously for the detection of barrier completion can
be decomposed as follows. First, the local process counts for the current barrier

are written into the dual-port RAM after the barrier has been reached. Next, any

completed barrier must wait its turn to be checked, requiring time Twait. Once check-

ing begins, the barrier can be determined to be complete, in serial-scan time denoted
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by Tword. In particular, let this time denote the worst-case circumstance when all bits

of the word, rather than just some of the bits in the ledger entry, are checked and

stored in the latch in front of the FIFO queue. Finally, the barrier number is imme-

diately written into the FIFO after the next cycle begins requiring time TFIFO. Thus,
this logic timing is given by Eq. (1).
TDSBC ¼ TRAM þ Twait þ Tword þ TFIFO ¼ TRAM þ Twait þ q � Tbt chk þ TFIFO ð1Þ

Here q ¼ t þ w, where t is selected so that 2t bounds the maximum number of process

counts supported by each PE, and w denotes the additional bits generated by the

carry operations. Tseng and DeMara analyze the worst case time for the DSBC

approach [20].

A nominal estimate the for DSBC parameters above can be found empirically
using delay times from an implementation with discrete ICs, since a gate array or

ASIC implementation would provide superior performance. First, the write time

for the dual-port RAM, TRAM, can be approximated at 30:10 ns to read the current

count, 10 ns to write back the incremented count, and 10 ns to perform the addition.

A nominal value for write time of the FIFO queue, TFIFO, is 12 ns for 16-bit wide and

1,024 word deep FIFO. The wait time, Twait, is variable and will be analyzed below.

The time needed for one barrier-checkup cycle, Tword, ranges from 1 to q times the

bit-checkup time, Tbt chk. For a completed barrier, all bits of the global process
counts are zero; hence, each bit is checked to decide whether the barrier is reached.

Thus, Tword ¼ q � Tbt chk, as indicated within Eq. (1). The bit-checkup time can be es-

timated by summing the cascading gate propagation delays along the critical path.

However, the depth of the adder tree in the responder count encoder increases as

the number of supported PEs grows. Therefore, a new notation T n
bt chk, where n is

the number of PEs in the system, is introduced to identify the different time delays

depending on n. Even using standard discrete 7400-series components with fast-carry

look-ahead, the bit-checkup cycle time for DSBC logic supporting n ¼ 256 PEs is
190 ns or less.

As the DSBC logic relies upon an instantaneous snapshot of the system�s state, the
maximum propagation delays dictate a 190 ns cycle time to ensure data integrity. Be-

cause synchronization behavior of parallel applications varies widely, a probability-

based estimate of the typical number of bit-checkup cycles in a barrier cycle provides

a fair and equiprobable estimation. The calculation using an arithmetic-geometric se-

ries is given in Eq. (2).
T n
word ¼

1

2
� 1

�
þ 1

22
� 2þ � � � þ 1

2q�1
� ðq� 1Þ þ 1

2q
� q
�
� T n

bt chk ð2Þ
The first parameter in each term, except the final term, is the probability of getting a
value of 1 from those bits remaining to be checked after encountering a string of i
values of zero. The second parameter is the number of checkup cycles to be ac-

counted for, which ranges from 1 to q. For example, in the second term the prob-

ability of encountering a bit with a value of one after already having encountered one

value of zero is ð1=2Þ � ð1=2Þ ¼ ð1=2Þ2. This situation results in two bit-checkup cy-

cles, because the first value of zero makes checking the next bit necessary. However,
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the fact that the second value is one clears the need to check the next bit. The

probability for the last term includes those values of both zero and one, because t bits
are checked regardless of whether the bit value is zero or one. The rearrangement

and summation of the series in Eq. (2) allows it to be expressed as Eq. (3):
T n
word ¼ 2

(
� 1

2

� �q�2

� qþ 1

2

� �q�1

� ð2q� 1Þ
)

� T n
bt chk ð3Þ
Assume that in the dual-port RAM m words are utilized, implying support for m
barriers. The best case scenario is when the current barrier completes precisely when
the previous barrier is finished being checked. The next barrier-checkup cycle detects

the termination condition without waiting, hence Twait ¼ 0. The worst case scenario

occurs when the barrier completes just after completion of checking. The termination

of the current barrier cannot be detected immediately because the previous process

count snapshot is being checked. Therefore, in the worse case, a delay of (m� 1)

barrier-checkup cycles occurs before the barrier can be checked again.

Additionally, an equiprobable analysis provides a fair estimation of the typical

wait time. The previous evaluation of the typical number of bit-checkup cycles in
a barrier-checkup cycle serves the purpose, and is shown in Eq. (4):
T n
wait ¼

1

m
� 0

�
þ 1

m
� 1þ � � � þ 1

m
� ðm� 1Þ

�
� T n

word ¼
ðm� 1Þ

2
� T n

word

¼ ðm� 1Þ 1

(
� 1

2

� �q�1

� qþ 1

2

� �q

� ð2q� 1Þ
)

� T n
bt chk ð4Þ
The expected value for barrier detection time using DSBC logic can be obtained

by substituting Eq. (4) into Eq. (1):
T n
DSBC ¼ TRAM þ T n

wait þ T n
word þ TFIFO

¼ TRAM þ ðm
(

� 1Þ 1

"
� 1

2

� �q�1

� qþ 1

2

� �q

� ð2q� 1Þ
#
þ q

)
� T n

bt chk

þ TFIFO ð5Þ
Thus, the barrier detection time scales linearly with respect to m, and is independent
of, or at most only weakly dependent on, growth proportional to log n.

5.2. Comparisons of performance and features to previous techniques

Based on Eq. (5) and information both from Anderson [10] and Shang and

Hwang [15], the detection times for four approaches are plotted in Fig. 7. Curves

are plotted for DSBC logic supporting 16 barriers, DSBC logic supporting 32 barri-

ers, wired-NOR logic replicated for an arbitrary number of barriers, and the Test-
and-Set software. The three hardware-based schemes outperform the software-based

scheme in termination detection, as the number of PEs increases. The ratio of benefit

increases from 10-fold for 20 PEs to 1000-fold for 512 PEs. Both wired-NOR logic
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and DSBC logic have nearly constant detection times in the respective ranges of the
number of PEs. Their detection times increase slightly, because new levels of prop-

agation delay are added. In particular, to accommodate more PEs, additional levels

of adders are required for the DSBC logic. In the case of wired-NOR logic, new re-

peater boards are required for larger numbers of PEs.

Theoretically, the detection time of the wired-NOR logic is independent of the

number of barriers supported, m. However, m is restricted to 16 with current technol-

ogy for wired-NOR logic [15]. DSBC faces no such restriction. Although the detec-

tion time of the DSBC logic increases as m increases, the version of the DSBC logic
supporting 16 barriers takes less detection time than the wired-NOR logic, while the

version of the DSBC logic supporting 32 barriers needs slightly more time than the

wired-NOR logic. The latency for DSBC is conservative compared to wired-NOR

logic because the DSBC estimates do not take into account speed enhancements

available from semi-custom implementations, while wired-NOR logic assumes delays

at transistor-level elements. Moreover, the DSBC logic requires only 3n lines be-

tween the local hardware and the global hardware (where n is the number of PEs

in the system), while the wired-NOR logic requires m � n lines. Therefore, the DSBC
logic still performs comparably, but at greatly reduced line complexity. Fig. 8 shows

the comparison for the interconnect requirements.



Fig. 8. Interconnection requirements of representative barrier methods.

966 Y. Tseng et al. / Parallel Computing 29 (2003) 953–968
There are additional features of the DSBC logic that are not revealed by the de-
tection time comparison. The wired-NOR logic supports only one process, dis-

patched to each PE per signaling line, which is effective for computations that are

statically scheduled and allocated at compile time. The DSBC logic can support ex-

ecution of multiple processes, dispatched to each PE, which contribute to the same

barrier dynamically at run time. This makes DSBC suitable for a wide range of ap-

plications. DSBC also provides adaptability, since the only interaction between the

local PE and the DSBC logic is writing into the dual-port RAM and reading from

the FIFO register of the local DSBC hardware. This fact makes applications on both
message-passing architectures and shared-memory architectures easily adaptable to

DSBC logic methods.

In some sense, the DSBC logic method blends aspects of traditional shared-

memory and message-passing synchronization approaches. In the DSBC logic

approach, the PE places an encoded message in the dual-port RAM to indicate pro-

duction or consumption of a process. This action is similar to that of synchroniza-

tion in message-passing architectures. However, the fact that the completed barrier

number is stored in the local FIFO register, waiting to be inspected, acts somewhat
like a shared-memory approach where the lock status is protected by atomic machine

instructions. Moreover, both the operating system and the compiler can readily sup-

port the DSBC design, because multithreaded synchronization is implemented sim-

ply by accessing I/O ports or specific memory-mapped locations, thus avoiding the

OS overhead associated with other approaches.
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6. Conclusion

6.1. Summary

The DSBC technique supports dynamic allocation of multiple barriers, and mul-
tiple processes per barrier, while remaining scalable in terms of both detection delay

and wiring complexity. DSBC can outperform some of the more efficient previous

termination detection methods, while providing additional capability. The speedup

of DSBC logic supporting 16 barriers over a Test-and-Set software-based scheme

ranges from 29-fold for a 20-PE system to 3008-fold for a 512-PE system. With con-

sideration of the number of barriers supported and the number of processes allo-

cated to each PE, a very efficient customization of DSBC logic can be developed.

Finally, DSBCs wiring requirement is less than that of wired-NOR methods for
all configurations supporting more than 3 threads. The software interface to the

DSBC logic consists of only writing to an I/O port and reading from a FIFO register.

This relieves the compiler and programmer from the overhead of all synchronization

activities except for accessing memory locations to obtain the identification number

of all completed barriers.
6.2. Suitability in the presence of interconnection delay skew

Finally, the low wiring interconnection requirement of the DSBC strategy allows

for a straightforward asynchronous adaptation. In physically distributed systems, or

systems with large numbers of PEs, the interconnection delay between the PEs and

global logic units can be significant. This can be remedied by converting only the 3

wires per PE to their dual-rail asynchronous encoding such as NULL convention

logic (NCL). NCL uses two wires per bit to encode a TRUE, FALSE, and NULL

(indeterminate) state for each bit, thus eliminating the need for clocked control sig-
nals. This approach is ideal for implementing barriers when a large number of PEs

are involved, because signals are defined to have every DATA (either TRUE or

FALSE) state flanked by a NULL state to eliminate both race conditions and the

need for global timing information. This extension to clockless interconnect is un-

ique among all previously proposed barrier detection approaches and is feasible

due to the low wiring complexity of the DSBC design.
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