FINAL ORAL EXAMINATION

OF

Ahmad Alzahrani
BS, Umm Al-Qura University, Saudi Arabia, 2002
MS, University of Arkansas, Fayetteville, 2009

for the degree of

DOCTOR OF PHILOSOPHY
IN COMPUTER ENGINEERING

November 3, 2015, 2:30 PM
HEC 438

Dissertation Committee:
Dr. Ronald F. DeMara, Chairman Ronald.Demara@ucf.edu
Jiann-Shiun Yuan yuanj@eecs.ucf.edu
Mingjie Lin mingjie@eecs.ucf.edu
Damla Turgut turgut@eecs.ucf.edu
Jun Wang jun.wang@ucf.edu
This dissertation presents contributions to the field of reconfigurable hardware testing and reliability. The increased demand for reliable and high performance computing for many applications including datacenters, medical devices, military aerospace, automobiles, power generation, electric rail systems, smart grids, and industrial manufacturing have fueled the growth of reconfigurable hardware-based systems. In 2013, the global market for FPGAs, as the prominent example of reconfigurable devices, was valued at $5.45 billion and it is forecasted to reach $9.88 billion by 2020. The requirement for more reliable FPGA system is further driven by promotion of safety regulations in electric and hybrid electric automobiles and increased high availability requirements of virtualization, social, cloud, and mobile technologies. Reliable FPGAs-based systems are also considered crucial elements for the success of upcoming space exploration missions. Traditionally, static modular redundancy techniques are considered to meet reliability objectives; however, they can incur substantial overheads in both area and power requirements. To achieve a better trade-off among performance, area, power, and reliability, this dissertation proposes design-time approaches that enable fine selection of redundancy level based on target reliability goals and autonomous adaptation to system runtime demands.

SELECTED PUBLICATIONS & PATENTS

Patents:

2015, Design Disjunction for Resilient Reconfigurable Hardware, UCF Invention Disclosure
Contemporary reconfigurable hardware devices have the capability to achieve high performance, power efficiency, and adaptability required to meet a wide range of design goals. With scaling challenges facing current complementary metal oxide semiconductor (CMOS), new concepts and methodologies supporting efficient adaptation to handle reliability issues are becoming increasingly prominent. Reconfigurable hardware and their ability to realize self-organization features are expected to play a key role in designing future dependable hardware architectures. However, the exponential increase in density and complexity of current commercial SRAM-based field-programmable gate arrays (FPGAs) has escalated the overhead associated with dynamic runtime design adaptation. Traditionally, static modular redundancy techniques are considered to surmount this limitation; however, they can incur substantial overheads in both area and power requirements. To achieve a better trade-off among performance, area, power, and reliability, this research proposes design-time approaches that enable fine selection of redundancy level based on target reliability goals and autonomous adaptation to runtime demands. To achieve this goal, three studies were conducted:

First, a graph and set theoretic approach, named Hypergraph-Cover Diversity (HCD), is introduced as a preemptive design technique to shift the dominant costs of resiliency to design-time. In particular, union-free hypergraphs are exploited to partition the reconfigurable resources pool into highly separable subsets of resources, each of which can be utilized by the same synthesized application netlist. The diverse implementations provide reconfiguration-based resilience throughout the system lifetime while avoiding the significant overheads associated with runtime placement and routing phases. Evaluation on a Motion-JPEG image compression core using a Xilinx 7-series-based FPGA hardware platform has demonstrated the potential of the proposed FT method to achieve 37.5% area saving and up to 66% reduction in power consumption compared to the frequently-used TMR scheme while providing superior fault tolerance.

Second, Design Disjunction based on non-adaptive group testing is developed to realize a low-overhead fault tolerant system capable of handling self-testing and self-recovery using runtime partial reconfiguration. Reconfiguration is guided by resource grouping procedures which employ non-linear measurements given by the constructive property of f-disjunctness to extend runtime resilience to a large fault space and realize a favorable range of tradeoffs. Disjunct designs are created using the mosaic convergence algorithm developed such that at least one configuration in the library evades any occurrence of up to d resource faults, where d is lower-bounded by f. Experimental results for a set of MCNC and ISCAS benchmarks have demonstrated f-diagnosability at the individual slice level with average isolation resolution of 96.4% (94.4%) for f=1 (f=2) while incurring an average critical path delay impact of only 1.49% and area cost roughly comparable to conventional 2-MR approaches.

Finally, the proposed Design Disjunction method is evaluated as a design-time method to improve timing yield in the presence of large random within-die (WID) process variations for application with a moderately high production capacity.
AHMAD ALZAHRANI
2002, Earned B.Sc. Degree in Electrical Engineering from, Umm Al-Qura University, Makkah, Saudi Arabia
2002, Became a TA at Jeddah College of Technology, Jeddah, Saudi Arabia
2003, Became a TA at Umm Al-Qura University, Makkah, Saudi Arabia
2009, Earned M.Sc. Degree in Computer Engineering from University of Arkansas, Fayetteville
2012, Passed Ph.D. Candidacy Examination
2014, Passed Ph.D. Proposal Defense

SELECTED AWARDS & HONORS:
2009, Fellowship Sponsored by the Government or Organization in Another Country
2014, Graduate Travel or Presentation Fellowship
2015, Graduate Travel or Presentation Fellowship