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     Abstract—We introduce SCALER, a two-pronged 

strategy utilizing digital resources for refining intrinsic 

evolution of analog computational circuits. A Self-Scaling 

Genetic Algorithm is proposed to adapt solutions to 

computationally-tractable ranges in hardware-constrained 

analog reconfigurable fabrics. Differential Digital 

Correction is developed utilizing an error metric computed 

from the evolved analog circuit to reconfigure the digital 

fabric intrinsically thereby enhancing precision. We 

demonstrate our methods by evolving square, square-root, 

cube, and cube-root analog computational circuits on the 

Cypress PSoC-5LP System-on-Chip. Results indicate that 

the Self-Scaling Genetic Algorithm improves an error 

metric on average 7.18-fold, up to 12.92-fold for 

computational circuits that produce outputs beyond device 

range. Overall, Differential Digital Correction can reduce 

computational error by 23.1% compared to the 

performance of the evolved analog circuit. 

I. INTRODUCTION 

As we continue to advance towards CMOS technology-scaling 

limits, new and innovative strategies to enhance computational 

performance are sought.  One fundamental inefficiency in 

today’s computational models comes from utilizing digital 

computation to solve continuous real-world phenomena [1]. An 

intriguing way of alleviating this inefficiency is to utilize 

analog devices to perform continuous time computations where 

applicable [1]. Analog computers are not an unprecedented 

concept in computation, and their speed and energy 

performance can be better than their digital counterparts for 

certain computations [1,2,3]. According to Gene’s Law, 

utilizing analog computation where applicable could provide a 

20-year leap in performance versus their digital counterparts 

[2]. Approaches presented in [1,3] demonstrated that analog 

computation reduced energy consumption 8-fold compared to 

the corresponding digital implementation. However, complex 

analog circuits can be challenging to design and lack precision. 

We show in this paper how both of these issues can be 

addressed using Evolutionary Algorithms (EAs).  

Precise and efficient complex analog circuits typically require 

design expertise and experience [4]. Nonetheless, [4,5,6,7] have 

demonstrated that EAs are a viable candidate to address the 

problem of automated analog design, having successfully 

evolved analog computational circuits and even evolved analog 

circuits to perform digital functions, such as a NAND gate and 

a 2-input ALU [8]. In [4] it has been shown that it is possible to 

evolve robust nonlinear analog circuits with EAs. However, due 

to the stochastic nature of EAs, it can be challenging to 

determine how accurately the evolved analog circuits map to 

the desired function, especially on realistic commercial devices 

with constrained hardware. 

A. Evolutionary Optimization Algorithms 

Genetic Algorithms (GAs) are a well-known class of EAs that 

emulate natural forms of survival-of-the-fittest Darwinian 

evolution [9]. GAs utilize a population of configurations, 

denoted as individuals, the relative quality of their solutions, 

called fitness, and various bio-inspired genetic operators, such 

as crossover and mutation, to find solutions in large search 

spaces [10]. The Island GA evolves multiple populations in 

parallel and periodically exchanges individuals between them; 

this helps to preserve genetic diversity while each island is 

allowed to follow different trajectories in the search space.  

Figure 1: Objectives and challenges of evolving analog circuits for 

computation. 



Particle Swarm Optimization (PSO) is a parameter optimization 

algorithm inspired by bird or fish flocking and swarming theory 

[11]. In operation, a population of particles is initialized with 

randomly-distributed optimization parameters within a 

specified range [pmin, pmax]. Each particle is then evaluated 

based on the quality of output, as determined by the desired 

functionality, given by the particles coordinates, or parameters, 

substituted into the function to be optimized. Each particle’s 

previous best parameter configuration is saved (pBest) along 

with the global best parameter configuration (gBest), and the 

particles are moved towards pBest and gBest parameters with a 

particular velocity. Using this method, particles are “flown” 

across the search space to realize optimizations within the 

problem space [11]. 

This paper delineates two new cooperating techniques to utilize 

digital resources address the challenges facing evolved analog 

computational circuits as depicted in Figure 1. In order to 

demonstrate our methods, we have developed the Scaling 

Evolutionary Refinement (SCALER) technique.  SCALER is 

delineated in Figure 2 and consists of an analog Self-Scaling GA 

(SSGA) on an intrinsic commercial prototyping platform. Once 

an evolved solution is chosen, the proposed technique of 

Differential Digital Correction (DDC) is applied to refine the 

most-fit analog solution.  In particular, case studies are 

examined on the Cypress PSoC-5LP commercially-available 

System on a Chip (SoC), which combines reconfigurable 

analog fabric in the form of four switched capacitor operational 

amplifier blocks, a PLD-based reconfigurable digital fabric, an 

ARM core, and other modules such as ADCs and DACs.  We 

describe how the proposed techniques operate and demonstrate 

their capabilities to intrinsically evolve, adapt, and refine the 

Computational Circuits (CCs) in [7], specifically the square, 

square-root, cube, and cube-root functions, and then utilize our 

contributions to refine the accuracy of the evolved circuits. 

B. Research Contributions 

The following research contributions are provided: 

1) an extension to analog domain evolution called Self-

Scaling GA (SSGA) which utilizes particle swarm

optimization to allow genetic algorithms to self-scale

the range of outputs to best fit an intrinsic

computational domain’s available resources,

2) use of an Island-like GA to explore multiple SSGA

parameter-sets and exchange best-parameter-set

information periodically, and

3) a novel refinement technique implemented with a

small amount of digital logic and memory to improve

the accuracy of computations performed by analog

circuits significantly.

II. RELATED WORK

A variety of EAs have been used to realize novel electronic 

circuit designs intrinsically on reconfigurable fabrics. 

Numerous innovative works have contributed to the literature 

of which only a few are highlighted in Table 1 relating to analog 

and hybrid analog-digital domains.  For example, Koza et al. 

demonstrated an approach for the automatic synthesis of analog 

circuits using Genetic Programming (GP) to synthesize 

crossover and lowpass filters at various frequencies, an 

amplifier, a source identification circuit, a CC (cube-root), a 

time-optimal controller circuit, a voltage reference circuit, and 

a temperature-sensing circuit, all extrinsically using DC sweeps 

for fitness evaluation [5]. Mydlowec and others followed the 

path of Koza, evolving other CCs extrinsically [7,12], some 

using multiple time domain simulations to improve robustness. 

Figure 2:  Scaling Evolutionary Refinement (SCALER). 



McConaghy et al. showed that automated analog circuit 

synthesis using GP could build construction trustworthy 

circuits by using expert designed building blocks [13]. 

Keymeulen et al. demonstrated intrinsic EHW on Field 

Programmable Analog Arrays (FPAAs) for population-based 

and fitness-based evolution of fault-tolerant analog circuits 

[14]. Aggarwal et al. showed that PSO can be used to optimize 

an FPAA for PID control [15]. A novel FPAA architecture was 

developed in [16] to realize GA synthesizable and intrinsically 

adaptable analog filters.  Later, Streeter et al. [17] also showed 

that GP was able to iteratively evolve circuits that could be 

attached to computational circuits to refine their performance. 

In [7] EAs were used to evolve four analog CCs as well as two 

digital circuits using analog components. In [18] swarming 

algorithms such as PSO were used to evolve analog circuit 

sizing.  Recently, Cornforth et al. evolved non-linear circuits by 

utilizing a strategic fitness evaluation scheme without 

necessarily optimizing them for area [4]. Their work showed 

that a variety of stimuli are able to extrinsically evolve 

nonlinear analog circuits, which conform to randomly 

generated black-box circuits, demonstrating the strength of the 

method. 

While several previous works in analog CC design using EAs 

have involved simulation, recent Programmable System on 

Chip (PSoC) devices providing reconfigurable analog fabric, 

digital logic, and ARM cores enable new capabilities.  Analog 

fabrics allow rapid evolution, but are limited by precision 

and/or accuracy, which may be refined with evolved digital 

circuits. The ARM core on the PSoC allows on-chip execution 

of EAs such as the GAs and PSO as developed herein. 

III. SELF-SCALING EVOLUTION OF ANALOG CIRCUITS WITH 

DIFFERENTIAL DIGITAL CORRECTION 

When initially evolving analog CCs with a rudimentary GA, the 

evolution was observed to converge to solutions which showed 

characteristics of the desired CC, but was limited by the 

available voltage range. Figure 3 shows a typical rudimentary 

GA-evolved cube circuit output measured on the PSoC-5LP 

intrinsic platform compared to the ideal curve. Since the PSoC 

device on our prototype platform is limited to a 4.08V peak 

signal level, any input over 1.6V would exceed the platform’s 

range for a cube CC. It would be possible to scale the inputs in 

such a way that the maximum output voltage would be within 

our device limit, but we seek an intelligent adaptive method. 

We also consider that there may be particular output voltage 

ranges that more effectively map the available resources to our 

desired CC, and we would like to adapt and search for such 

exploitations, which we show in Section IV.  

Table 1: Selected Related Research in Analog Evolvable Hardware. 

Figure 3: Analog cube CC output evolved with unrefined GA. 

Figure 4: Phases of SCALER. 



SCALER provides interconnected GAs which operate in phases 

as shown in Figure 4. The first phase is the unrefined analog 

GA which evolves a coarse solution in a small voltage range. 

The second stage is the SSGA, which performs output scaling 

by working with the unrefined GA to scale output to a more 

computationally-tractable range. Finally, the DDC Genetic 

Algorithm (DDCGA) evolves digital fabric to select 

appropriate correction factors to offset errors in the SSGA 

output, thereby improving accuracy and to some extent 

precision where possible. Thus, solutions are accurate in some 

ranges, but have diminished accuracy in others. We show in 

Section V that SCALER is able to use DDC to refine our 

solutions to overcome such losses in accuracy without 

distorting the accurate ranges. 

IV. SELF-SCALING GENETIC ALGORITHM

In order to evolve analog CCs, it can be beneficial to consider 

circuits to be composed of multiple Computational Analog 

Elements (CAEs) that the GA can operate on. CAEs could be 

higher-level analog blocks such as integrators, filters, adders, 

multipliers, etc., or they could be lower-level analog elements 

such as transistors and capacitors.  

Each gene for our analog GA constitutes all of the information 

necessary to fully develop a CAE. Figure 5 shows the complete 

individual genome consisting of n genes, which specifies 

configurable characteristics of all CAEs for the target 

application, as well as the SS parameters for scaling and 

translation, A and B, their velocity parameters, vA and vB, as 

well and their previous best value pBest. Routing is encoded by 

using bits to enable or disable CAE terminal connections to 

available routing lines. Each CAE requires f bits to describe its 

function, p bits to describe the various parameters of the 

components contained within, such as resistance values, and r 

bits to determine routing.  

For our study, an Island-like GA is utilized where the only 

information exchanged between the island populations consists 

of SS parameters. The initial P populations for our GA each 

consists of N individuals with genomes consisting of n 

randomly generated CAEs. Once the initial population is 

generated, the fitness for each individual is calculated by 

evaluating the circuit with M test inputs for which we know the 

desired output that we denote as the oracle output values [19], 

which are pre-computed by the ARM core. The fitness is then 

the sum of differences of all the test cases. If the difference 

between a particular test input and the oracle is greater than 

penalty_case, we add penalty to the fitness. 

Once the fitness of each individual is established, both the best 

fit and the second best fit individuals from each population are 

transferred to the next generation implementing elitism of 

degree 2. The next generation for each population is developed 

by selecting 2 parents via tournament selection and performing 

crossover with their genomes to make two offspring, which 

contain the mixed genes of their parents. Crossover has a 50/50 

chance to perform single-point or 2-point crossover. Once 

selection and crossover has been completed N/2-1 times to 

generate a total of N new individuals combined with the best fit 

and second best fit, mutation is performed on all but the best fit 

individual. Mutation is designed as a low probability chance, 

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, of flipping a single bit in each of the parameters in

the genome, excluding the SS parameters. In order to help lift 

the GA out of local minimums, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛is varied dynamically

based on convergence, which we define as the difference 

between the best fit individual’s fitness and the average fitness. 

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  is doubled when 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡  and tripled when 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 −

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 < 0.5 × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 .

To implement our SSGA, a two-dimensional PSO algorithm is 

used to optimize two Self-Scaling parameters, a scaling factor, 

A, and a translation factor, B, such that  

𝑆𝑆{𝑓(𝑥)} = 𝐴𝑓(𝑥) +  𝐵      (1) 

is more accurately mapped to our desired function, i.e. has a 

better fitness, where f(x) is our raw output from the evolved 

analog circuit and SS is our Self-Scaling transformation. The 

GA is extended to a SSGA by altering the fitness function, as 

shown in Equation 2, and updating the SS parameters with PSO 

as the GA is running. The SSGA flow is shown in Algorithm 1. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ |𝑆𝑆{𝑓(𝑥)} − 𝑜𝑟𝑎𝑐𝑙𝑒𝑥|𝑀
𝑥=0 (2) 

Initial tests attempted to adjust the fitness function to include a 

weighted combination, fixed or adaptive, of both the raw analog 

circuit fitness and the SSGA adapted fitness, which showed 

improvements in fitness. However, the best fitness 

improvement was obtained when we only considered the SSGA 

adapted fitness to evaluate our individuals. 

The SS parameters A and B are initialized for each individual 

when the populations are initialized by randomly assigning 

values between pmin and pmax. Because PSO is now being 

performed on a dynamic population whose functional ranges 

are changing, we implement a hypermutation function, similar 

to [20], to help circumvent local minima and find new 

optimization parameters for new generations. The 

hypermutation simply reinitializes the scaling and translation 

factors (A and B) of all the particles to random values within the 

range [pmin, pmax], and reinitializes half of the population to 

random individuals so that there is enough genetic diversity to 

Figure 5: Breakdown of individual genome, gene expression, and binary 

representation for SCALER’s analog GA. 



make use of the new SS parameters. Exchange of SS parameters 

will be demonstrated in Figure 8. The hypermutation function 

does not modify the gBest parameters, so the SSGA has the 

chance to explore new parameters without sacrificing current 

best parameters. Hypermutation is performed when gBest 

hasn’t improved for hypermutation_condition generations. 

Due to the stochastic nature of such algorithms, it is observed 

that the SSGA sometimes converges to poor solutions. To 

alleviate this issue, an island-like GA is used with SSGA. We 

consider it island-like because neither individual’s genomes nor 

genes are shared, but only SS parameters. At every gen_share 

generations, all of the island populations are checked, and the 

best-fit island’s SS parameters are shared. This greatly 

increases the chance of finding high quality solutions and SS 

parameters, and allows populations consisting of different 

genes and genomes to evolve with known good SS parameters, 

possibly giving rise to further improvements.  

V. DIFFERENTIAL DIGITAL CORRECTION 

The solutions obtained from analog evolution can rapidly 

approximate the desired solutions, although their accuracy is 

limited and susceptible to imprecision. The DDC technique 

selects a correction factor for each test input from a Normalized 

Error Array (NEA), which contains fractions of the maximum 

analog error. DDC utilizes correction factors quantized to 256 

levels and hence evolves PLDs to produce an 8-bit mapping for 

the 256 test inputs. The DDC fitness is evaluated as: 

𝑓𝑜𝑟 𝑖 ∶=  0 𝑡𝑜 255 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 +=  𝑜𝑟𝑎𝑐𝑙𝑒[𝑖] − 𝑜𝑢𝑡𝑎𝑛𝑎𝑙𝑜𝑔[𝑖] − 𝑁𝐸𝐴 [𝐷] 

The NEA containing correction factor elements called 

normalized differences is indexed by D to realize the 8-bit 

output mapped to one of the 256 values which provides a 

correction factor of proportional magnitude. The fitness 

function represents an error correction factor which is 

minimized by a GA that intrinsically evolves the digital fabric. 

A. Digital Genome 

In order to evolve a single PLD, its configuration bits are 

encoded into a chromosome which genetic operators can act 

upon. The configuration bits consist of the following: active 

lines, AND array parameters and OR array parameters. Input 

lines that are active, i.e. not in high impedance state, in the 

actual implementation are determined from the register 

configuration immediately after booting and are marked as 

active lines; other lines cannot be written. There are 12 input 

lines for the AND array and four output lines for the OR array. 

a) AND array parameters

For each input line that is active, the corresponding product 

term can be asserted as true or complement input. In order to 

encode the configuration, the configurations of the active input 

lines alone are to be recorded and hence up to eight such 32-bit 

integers store the configuration from the corresponding 

registers for two PLDs constituting a Universal Digital Block 

(UDB) in the fabric.  

b) OR array parameters

Like the AND array, for the OR array, each of the product terms 

arriving from the AND array may be asserted or not asserted 

and are encoded likewise in the chromosome. We thus have 

four such 16-bit integers that store the configuration from the 

corresponding registers. The chromosome for each PLD is 

encoded as a structure with three arrays: AL (active lines), 

AND array parameters and OR array parameters representing 

configuration bits as described above and effectively describing 

contents of one UDB. 

Figure 6: Chromosome for each UDB being evolved. 

For evolution of four PLDs, two sets of such chromosomes, one 

for each UDB are evolved simultaneously. 

B. Differential Digital Correction Genetic Algorithm 

A separate Differential Digital Correction GA (DDCGA) 

reconfigures the digital fabric. The DDCGA evolves four PLDs 

of two chromosome sets per individual: one each for the AND 

and OR arrays, and one set of individuals for each pair of four 

PLDs, given constraints of the digital fabric.  

Individuals are randomly initialized and their fitness is 

evaluated intrinsically to identify the top two elite individuals. 

The crossover operation is performed separately in each 



iteration for the AND arrays and OR arrays owing to their 

inherent functional differences, at the boundaries indicated in 

Figure 6.  For the remaining individuals, tournament selection 

is done with a tournament size of two and constitute 40 of the 

total 80 individuals per generation. Single-point crossover is 

then performed between one of these individuals and another 

individual randomly chosen from the whole population. New 

offspring then replace the lower fraction of the total population 

while the fitter individuals selected via tournament selection fill 

the upper fraction.  All but the two most elite individuals 

undergo simple bit flip mutation with a default mutation rate of 

0.1% per bit in the chromosome.  

Mutation rate was observed to be a crucial factor in the 

performance of the DDCGA with adaptive mutation being very 

useful in overcoming stasis. Stasis is detected and reported if 

the best fitness achieved hasn’t changed in 50 iterations. The 

difference between average fitness and best fitness achieved is 

compared and combined with stasis information to decide 

whether mutation should be enabled at the default rate or at an 

incremented rate in steps of 0.01, which improved performance. 

The maximum deviation of the analog output from the oracle 

and the distribution of errors determine the extent to which the 

DDCGA can perform. With appropriate conditioning of analog 

outputs, DDC helps improve the accuracy of the solutions 

obtained and adds a few more bits of precision to evolved 

analog solutions. 

VI. EXPERIMENTAL CONFIGURATION

A. Computational Analog Blocks 

The primary reconfigurable analog elements in the PSoC-5LP 

consist of Switched Capacitor op-amp Blocks (SC Blocks). SC 

Blocks have a variety of topologies and parameters, which can 

be readily configured via memory-mapped registers accessible 

from the onboard ARM core. There are eight SC Block 

topologies available: naked op-amp, trans-impedance 

amplifier, continuous-time mixer, discrete-time mixer, unity 

gain buffer, first order modulator, programmable gain 

amplifier, and track and hold amplifier.  

For our experimentation, we consider the SC blocks to be our 

CAEs, of which there are four in the PSoC-5LP. This leads to 

each individual having a genome of n = 4 CAEs along with the 

SS parameters.  

B. Universal Digital Blocks (UDBs) 

PSoC’s digital fabric consists of PLDs, organized in pairs 

within the UDBs, which can all be interconnected under GA 

control. There are 24 UDBs or 48 PLDs in total. This PLD 

architecture is referred to as 12C4, where 12 stands for the 

number of input terms, C indicates that the PTs are constant and 

are accessible to the OR array and 4 indicates the number of 

output terms emerging from the OR array. Given this capability 

of the digital fabric, the routing is not easily reconfigured, 

unfortunately.  These are determined at boot-time rather than 

during evolution.  

Placement directives, such as force directives may be used to 

force placement of LUT implementation to any specific PLD, 

which is analogous to the PROHIBIT command in the Xilinx 

User Constraint File [21].  Owing to restrictions on routing, the 

initial configuration for the LUTs instantiated has to be 

carefully chosen to make available the maximum possible 

resources in the route whose logic configuration is then 

reconfigured by the DDCGA. Also, decoupling PLD outputs 

from the registers to ensure pure combinational outputs is 

essential and is done through additional register writes for every 

individual when their fitness is evaluated. Detection of active 

lines in Figure 6 is first performed on the initial configuration 

of LUTs to demarcate register writes that are legal. 

C. Test Cases 

The input/output ranges in Table 2 show the difference between 

attempting to evolve CCs with SSGA versus a rudimentary GA 

running on PSoC-5LP. Due to the native range of our platform, 

evolving without any form of scaling would severely reduce 

computational range for square and cube circuits.  

Each computational circuit in Table 3 was evolved five times 

each with different random number generator seeds for both 

evolution with a simple GA and evolution with an SSGA. 

Globally, max_generation = 500, pmin = 0, P = 4, N = 30, 

penalty = 10, hypermutation_condition = 100, and gen_share = 

200. Parameters pmax and penalty_case are delineated in Table 

3. All parameters chosen are roughly optimized values based on

trial experimentation. Average fitness values are computed 

along with best-case average error.  

In order to compare our circuit complexity to [5,7,12], all of 

which used an unconstrained quantity of resistors and Bipolar 

Junction Transistors (BJTs) to evolve their CCs, we’ve 

identified a complexity cost metric, which relates roughly to 

computational capability. The complexity of a component is 

assigned according to the range of operations it can perform. 

Since resistors can only perform 1 operation, they are assigned 

a complexity of 1. BJTs can be wired up in 4 different 

configurations, and therefore have a complexity of 4. The SC 

blocks of the PSoC 5LP can perform 8 functions, and therefore 

it has a complexity of 8. Since we have 4 SC blocks for our 

CCs, our circuits have a fixed complexity of 32. 

Table 2: Computational Circuit test cases used in literature and herein. 



VII. RESULTS

Table 3 shows the fitness scores of the four CCs evolved. Each 

of the evolved CCs produced solutions, which closely matched 

their ideal outputs as shown in Figure 7. The worst performing 

circuit, with regards to fitness, is the cube circuit, which is 

understandable considering it required the greatest scaling 

beyond its native range. Considering that test points are 

penalized when they are more than 0.5V away from the oracle, 

and the cube circuit had an average error of 1.19V, the 

penalization kept the cube circuit from obtaining better fitness. 

Even though the cube circuit had the worst fitness relative to 

the circuits tested, it was the best demonstration of the SSGA 

as it was able to increase its effective range seventeen-fold.  

The square circuit showed the most significant improvements, 

which is reasonable considering that the square circuits’ 

effective range is unobtainable with an unrefined GA, but 

requires less scaling than the cube case. Furthermore, the square 

circuit only had an average error of 140 mV, so it is rarely 

penalized. Square-root and cube-root both were able to evolve 

good solutions with the unrefined GA. Interestingly, the best 

observed fitness amongst all of our tests was an unrefined 

evolution of cube-root, which gave a fitness of 0.85. However, 

this was an atypical case, as the average fitness scores show 

significant improvements for using the SSGA. 

Compared to the results of the previous works in Table 4, the 

square-root and cube-root CCs evolved with SSGA achieved an 

average error of 30mV and 23mV, respectively, and performed 

better than Koza et al. The square-root CC evolved in this paper 

performed marginally better than Mydlowee et al., with an 

average error of 20mV, but the square CC did not outperform. 

All test cases performed worse than Sapargaliyev et al., but 

considering their work evolved CCs extrinsically without 

device constraints, this is understandable. It is interesting to 

note that DDC improved accuracy of all circuits to various 

degrees. The greatest reduction in average error was seen for 

Table 3: Improvements of SSGA compared to unrefined GA 
Circuit GA Average Fitness SSGA Average Fitness Improvement 

Square 506.95 39.23 12.92 

Square-root 9.45 1.35 7.00 

Cube 1084.45 291.56 3.72 

Cube-root 7.54 1.49 5.07 

Average Improvement: 7.18 

Table 4: Results compared to previous works. 

[Koza 

97] 

[Mydlowec 

00] 

[Sapargaliyev 

12] 

SCALED 

SSGA 

DDCGA 

Square 

root 

Average 

error, mV 
183.57 20.00 9.23 30.00 26.8 

Average 

Fitness 
3.86 70.40 0.19 8.14 6.786 

Complexity - 84.00 60.00 32.00 - 

Square Average 

error, mV 
- 27.00 1.44 140.00 100 

Average 

Fitness 
- 4.81 0.03 35.23 25.11 

Complexity - 72.00 118.00 32.00 - 

Cube-

root 

Average 

error, mV 
80.00 - 11.90 23.00 19.25 

Fitness 1.68 - 0.25 5.98 5.032 

Complexity 164.00 - 116.00 32.00 - 

Cube Average 

error, mV 
- - 11.90 1160.00 732.00 

Average 

Fitness 
- - 0.25 296.30 187.67 

Complexity - - 141.00 32.00 - 

Figure 7: Evolved CCs with SSGA compared to ideal curves 

Figure 8: Total error over generation for SSGA and DDC when evolving cube CC. The top red line is the population average total error and the bottom blue 

line is the best fit individual’s total error. During SSGA, four populations are evolved in parallel. Each population’s average error and best fit error is shown. 



the cube circuit where a reduction from 1160mV to 732mV 

yielded a 36.89 percent reduction in error on average. Likewise, 

DDC improved accuracy by reducing average error in square, 

square root and cube-root CCs by 28.57, 10.67 and 16.3 percent 

respectively, on average. Some general trends were observed 

with regards to error reduction by DDC. For all CCs, the error 

reduction was larger when SSGA performance was worse than 

average, thus providing for a stabilizing effect to maintain 

accuracy within reasonable bounds. Performance for individual 

cases depended on error distribution of SSGA output. As shown 

in Figure 8, SSGA evolves four islands of populations in 

parallel to produce a best fit individual with a total error of 

296.3. The DDC then evolves the digital fabric to correct errors 

and reduce it to 169.48. As far as the authors are aware, this is 

the first realization of intrinsic evolution of analog CCs on a 

commercial PSoC device utilizing a compact fabric of 4 SC op-

amp Blocks rather than an unlimited number of resistors and 

BJTs. With an addition of only four PLDs, significant accuracy 

improvements were also achieved.  

VIII. CONCLUSION

SCALER is able to scale, translate, and refine evolved analog      

computational circuits using evolved  digital 

resources. PSO with an Island-like GA realizes a 12.9-

fold fitness improvement of the best-fitness analog circuit. The 

novel hybrid analog-digital design that is evolved, leverages the 

relative advantages of both circuit domains. SCALER could 

benefit from exploration in the search space of PSO parameters 

and seeds for the unrefined GA.  Also, the precision of DDC 

can further be improved by using values that can satisfy a 16-

bit mapping instead of the 8-bit mapping used here. We would 

be interested to see our techniques applied to larger FPAA 

platforms with additional computational analog blocks and 

determine how large of a range of accurate computation is 

possible. Finally, the SSGA could be applied to frequency 

domain analysis via adjustment of FFT coefficients. Energy-

conserving hybrid analog-digital computational circuits for 

scientific or low energy applications are being investigated. 
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