
Self-Scaling Evolution of Analog Computation Circuits with

Digital Accuracy Refinement

Steven D. Pyle, Vignesh Thangavel, Stephen M. Williams, and Ronald F. DeMara

Computer Architecture Lab

Department of Electrical Engineering and Computer Science

University of Central Florida

Orlando, FL, 32816-2362

demara@mail.ucf.edu

 Abstract—We introduce SCALER, a two-pronged

strategy utilizing digital resources for refining intrinsic

evolution of analog computational circuits. A Self-Scaling

Genetic Algorithm is proposed to adapt solutions to

computationally-tractable ranges in hardware-constrained

analog reconfigurable fabrics. Differential Digital

Correction is developed utilizing an error metric computed

from the evolved analog circuit to reconfigure the digital

fabric intrinsically thereby enhancing precision. We

demonstrate our methods by evolving square, square-root,

cube, and cube-root analog computational circuits on the

Cypress PSoC-5LP System-on-Chip. Results indicate that

the Self-Scaling Genetic Algorithm improves an error

metric on average 7.18-fold, up to 12.92-fold for

computational circuits that produce outputs beyond device

range. Overall, Differential Digital Correction can reduce

computational error by 23.1% compared to the

performance of the evolved analog circuit.

I. INTRODUCTION

As we continue to advance towards CMOS technology-scaling

limits, new and innovative strategies to enhance computational

performance are sought. One fundamental inefficiency in

today’s computational models comes from utilizing digital

computation to solve continuous real-world phenomena [1]. An

intriguing way of alleviating this inefficiency is to utilize

analog devices to perform continuous time computations where

applicable [1]. Analog computers are not an unprecedented

concept in computation, and their speed and energy

performance can be better than their digital counterparts for

certain computations [1,2,3]. According to Gene’s Law,

utilizing analog computation where applicable could provide a

20-year leap in performance versus their digital counterparts

[2]. Approaches presented in [1,3] demonstrated that analog

computation reduced energy consumption 8-fold compared to

the corresponding digital implementation. However, complex

analog circuits can be challenging to design and lack precision.

We show in this paper how both of these issues can be

addressed using Evolutionary Algorithms (EAs).

Precise and efficient complex analog circuits typically require

design expertise and experience [4]. Nonetheless, [4,5,6,7] have

demonstrated that EAs are a viable candidate to address the

problem of automated analog design, having successfully

evolved analog computational circuits and even evolved analog

circuits to perform digital functions, such as a NAND gate and

a 2-input ALU [8]. In [4] it has been shown that it is possible to

evolve robust nonlinear analog circuits with EAs. However, due

to the stochastic nature of EAs, it can be challenging to

determine how accurately the evolved analog circuits map to

the desired function, especially on realistic commercial devices

with constrained hardware.

A. Evolutionary Optimization Algorithms

Genetic Algorithms (GAs) are a well-known class of EAs that

emulate natural forms of survival-of-the-fittest Darwinian

evolution [9]. GAs utilize a population of configurations,

denoted as individuals, the relative quality of their solutions,

called fitness, and various bio-inspired genetic operators, such

as crossover and mutation, to find solutions in large search

spaces [10]. The Island GA evolves multiple populations in

parallel and periodically exchanges individuals between them;

this helps to preserve genetic diversity while each island is

allowed to follow different trajectories in the search space.

Figure 1: Objectives and challenges of evolving analog circuits for

computation.

Particle Swarm Optimization (PSO) is a parameter optimization

algorithm inspired by bird or fish flocking and swarming theory

[11]. In operation, a population of particles is initialized with

randomly-distributed optimization parameters within a

specified range [pmin, pmax]. Each particle is then evaluated

based on the quality of output, as determined by the desired

functionality, given by the particles coordinates, or parameters,

substituted into the function to be optimized. Each particle’s

previous best parameter configuration is saved (pBest) along

with the global best parameter configuration (gBest), and the

particles are moved towards pBest and gBest parameters with a

particular velocity. Using this method, particles are “flown”

across the search space to realize optimizations within the

problem space [11].

This paper delineates two new cooperating techniques to utilize

digital resources address the challenges facing evolved analog

computational circuits as depicted in Figure 1. In order to

demonstrate our methods, we have developed the Scaling

Evolutionary Refinement (SCALER) technique. SCALER is

delineated in Figure 2 and consists of an analog Self-Scaling GA

(SSGA) on an intrinsic commercial prototyping platform. Once

an evolved solution is chosen, the proposed technique of

Differential Digital Correction (DDC) is applied to refine the

most-fit analog solution. In particular, case studies are

examined on the Cypress PSoC-5LP commercially-available

System on a Chip (SoC), which combines reconfigurable

analog fabric in the form of four switched capacitor operational

amplifier blocks, a PLD-based reconfigurable digital fabric, an

ARM core, and other modules such as ADCs and DACs. We

describe how the proposed techniques operate and demonstrate

their capabilities to intrinsically evolve, adapt, and refine the

Computational Circuits (CCs) in [7], specifically the square,

square-root, cube, and cube-root functions, and then utilize our

contributions to refine the accuracy of the evolved circuits.

B. Research Contributions

The following research contributions are provided:

1) an extension to analog domain evolution called Self-

Scaling GA (SSGA) which utilizes particle swarm

optimization to allow genetic algorithms to self-scale

the range of outputs to best fit an intrinsic

computational domain’s available resources,

2) use of an Island-like GA to explore multiple SSGA

parameter-sets and exchange best-parameter-set

information periodically, and

3) a novel refinement technique implemented with a

small amount of digital logic and memory to improve

the accuracy of computations performed by analog

circuits significantly.

II. RELATED WORK

A variety of EAs have been used to realize novel electronic

circuit designs intrinsically on reconfigurable fabrics.

Numerous innovative works have contributed to the literature

of which only a few are highlighted in Table 1 relating to analog

and hybrid analog-digital domains. For example, Koza et al.

demonstrated an approach for the automatic synthesis of analog

circuits using Genetic Programming (GP) to synthesize

crossover and lowpass filters at various frequencies, an

amplifier, a source identification circuit, a CC (cube-root), a

time-optimal controller circuit, a voltage reference circuit, and

a temperature-sensing circuit, all extrinsically using DC sweeps

for fitness evaluation [5]. Mydlowec and others followed the

path of Koza, evolving other CCs extrinsically [7,12], some

using multiple time domain simulations to improve robustness.

Figure 2: Scaling Evolutionary Refinement (SCALER).

McConaghy et al. showed that automated analog circuit

synthesis using GP could build construction trustworthy

circuits by using expert designed building blocks [13].

Keymeulen et al. demonstrated intrinsic EHW on Field

Programmable Analog Arrays (FPAAs) for population-based

and fitness-based evolution of fault-tolerant analog circuits

[14]. Aggarwal et al. showed that PSO can be used to optimize

an FPAA for PID control [15]. A novel FPAA architecture was

developed in [16] to realize GA synthesizable and intrinsically

adaptable analog filters. Later, Streeter et al. [17] also showed

that GP was able to iteratively evolve circuits that could be

attached to computational circuits to refine their performance.

In [7] EAs were used to evolve four analog CCs as well as two

digital circuits using analog components. In [18] swarming

algorithms such as PSO were used to evolve analog circuit

sizing. Recently, Cornforth et al. evolved non-linear circuits by

utilizing a strategic fitness evaluation scheme without

necessarily optimizing them for area [4]. Their work showed

that a variety of stimuli are able to extrinsically evolve

nonlinear analog circuits, which conform to randomly

generated black-box circuits, demonstrating the strength of the

method.

While several previous works in analog CC design using EAs

have involved simulation, recent Programmable System on

Chip (PSoC) devices providing reconfigurable analog fabric,

digital logic, and ARM cores enable new capabilities. Analog

fabrics allow rapid evolution, but are limited by precision

and/or accuracy, which may be refined with evolved digital

circuits. The ARM core on the PSoC allows on-chip execution

of EAs such as the GAs and PSO as developed herein.

III. SELF-SCALING EVOLUTION OF ANALOG CIRCUITS WITH

DIFFERENTIAL DIGITAL CORRECTION

When initially evolving analog CCs with a rudimentary GA, the

evolution was observed to converge to solutions which showed

characteristics of the desired CC, but was limited by the

available voltage range. Figure 3 shows a typical rudimentary

GA-evolved cube circuit output measured on the PSoC-5LP

intrinsic platform compared to the ideal curve. Since the PSoC

device on our prototype platform is limited to a 4.08V peak

signal level, any input over 1.6V would exceed the platform’s

range for a cube CC. It would be possible to scale the inputs in

such a way that the maximum output voltage would be within

our device limit, but we seek an intelligent adaptive method.

We also consider that there may be particular output voltage

ranges that more effectively map the available resources to our

desired CC, and we would like to adapt and search for such

exploitations, which we show in Section IV.

Table 1: Selected Related Research in Analog Evolvable Hardware.

Figure 3: Analog cube CC output evolved with unrefined GA.

Figure 4: Phases of SCALER.

SCALER provides interconnected GAs which operate in phases

as shown in Figure 4. The first phase is the unrefined analog

GA which evolves a coarse solution in a small voltage range.

The second stage is the SSGA, which performs output scaling

by working with the unrefined GA to scale output to a more

computationally-tractable range. Finally, the DDC Genetic

Algorithm (DDCGA) evolves digital fabric to select

appropriate correction factors to offset errors in the SSGA

output, thereby improving accuracy and to some extent

precision where possible. Thus, solutions are accurate in some

ranges, but have diminished accuracy in others. We show in

Section V that SCALER is able to use DDC to refine our

solutions to overcome such losses in accuracy without

distorting the accurate ranges.

IV. SELF-SCALING GENETIC ALGORITHM

In order to evolve analog CCs, it can be beneficial to consider

circuits to be composed of multiple Computational Analog

Elements (CAEs) that the GA can operate on. CAEs could be

higher-level analog blocks such as integrators, filters, adders,

multipliers, etc., or they could be lower-level analog elements

such as transistors and capacitors.

Each gene for our analog GA constitutes all of the information

necessary to fully develop a CAE. Figure 5 shows the complete

individual genome consisting of n genes, which specifies

configurable characteristics of all CAEs for the target

application, as well as the SS parameters for scaling and

translation, A and B, their velocity parameters, vA and vB, as

well and their previous best value pBest. Routing is encoded by

using bits to enable or disable CAE terminal connections to

available routing lines. Each CAE requires f bits to describe its

function, p bits to describe the various parameters of the

components contained within, such as resistance values, and r

bits to determine routing.

For our study, an Island-like GA is utilized where the only

information exchanged between the island populations consists

of SS parameters. The initial P populations for our GA each

consists of N individuals with genomes consisting of n

randomly generated CAEs. Once the initial population is

generated, the fitness for each individual is calculated by

evaluating the circuit with M test inputs for which we know the

desired output that we denote as the oracle output values [19],

which are pre-computed by the ARM core. The fitness is then

the sum of differences of all the test cases. If the difference

between a particular test input and the oracle is greater than

penalty_case, we add penalty to the fitness.

Once the fitness of each individual is established, both the best

fit and the second best fit individuals from each population are

transferred to the next generation implementing elitism of

degree 2. The next generation for each population is developed

by selecting 2 parents via tournament selection and performing

crossover with their genomes to make two offspring, which

contain the mixed genes of their parents. Crossover has a 50/50

chance to perform single-point or 2-point crossover. Once

selection and crossover has been completed N/2-1 times to

generate a total of N new individuals combined with the best fit

and second best fit, mutation is performed on all but the best fit

individual. Mutation is designed as a low probability chance,

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, of flipping a single bit in each of the parameters in

the genome, excluding the SS parameters. In order to help lift

the GA out of local minimums, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛is varied dynamically

based on convergence, which we define as the difference

between the best fit individual’s fitness and the average fitness.

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 is doubled when 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 and tripled when 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 −

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 < 0.5 × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 .

To implement our SSGA, a two-dimensional PSO algorithm is

used to optimize two Self-Scaling parameters, a scaling factor,

A, and a translation factor, B, such that

𝑆𝑆{𝑓(𝑥)} = 𝐴𝑓(𝑥) + 𝐵 (1)

is more accurately mapped to our desired function, i.e. has a

better fitness, where f(x) is our raw output from the evolved

analog circuit and SS is our Self-Scaling transformation. The

GA is extended to a SSGA by altering the fitness function, as

shown in Equation 2, and updating the SS parameters with PSO

as the GA is running. The SSGA flow is shown in Algorithm 1.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ |𝑆𝑆{𝑓(𝑥)} − 𝑜𝑟𝑎𝑐𝑙𝑒𝑥|𝑀
𝑥=0 (2)

Initial tests attempted to adjust the fitness function to include a

weighted combination, fixed or adaptive, of both the raw analog

circuit fitness and the SSGA adapted fitness, which showed

improvements in fitness. However, the best fitness

improvement was obtained when we only considered the SSGA

adapted fitness to evaluate our individuals.

The SS parameters A and B are initialized for each individual

when the populations are initialized by randomly assigning

values between pmin and pmax. Because PSO is now being

performed on a dynamic population whose functional ranges

are changing, we implement a hypermutation function, similar

to [20], to help circumvent local minima and find new

optimization parameters for new generations. The

hypermutation simply reinitializes the scaling and translation

factors (A and B) of all the particles to random values within the

range [pmin, pmax], and reinitializes half of the population to

random individuals so that there is enough genetic diversity to

Figure 5: Breakdown of individual genome, gene expression, and binary

representation for SCALER’s analog GA.

make use of the new SS parameters. Exchange of SS parameters

will be demonstrated in Figure 8. The hypermutation function

does not modify the gBest parameters, so the SSGA has the

chance to explore new parameters without sacrificing current

best parameters. Hypermutation is performed when gBest

hasn’t improved for hypermutation_condition generations.

Due to the stochastic nature of such algorithms, it is observed

that the SSGA sometimes converges to poor solutions. To

alleviate this issue, an island-like GA is used with SSGA. We

consider it island-like because neither individual’s genomes nor

genes are shared, but only SS parameters. At every gen_share

generations, all of the island populations are checked, and the

best-fit island’s SS parameters are shared. This greatly

increases the chance of finding high quality solutions and SS

parameters, and allows populations consisting of different

genes and genomes to evolve with known good SS parameters,

possibly giving rise to further improvements.

V. DIFFERENTIAL DIGITAL CORRECTION

The solutions obtained from analog evolution can rapidly

approximate the desired solutions, although their accuracy is

limited and susceptible to imprecision. The DDC technique

selects a correction factor for each test input from a Normalized

Error Array (NEA), which contains fractions of the maximum

analog error. DDC utilizes correction factors quantized to 256

levels and hence evolves PLDs to produce an 8-bit mapping for

the 256 test inputs. The DDC fitness is evaluated as:

𝑓𝑜𝑟 𝑖 ∶= 0 𝑡𝑜 255

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 += 𝑜𝑟𝑎𝑐𝑙𝑒[𝑖] − 𝑜𝑢𝑡𝑎𝑛𝑎𝑙𝑜𝑔[𝑖] − 𝑁𝐸𝐴 [𝐷]

The NEA containing correction factor elements called

normalized differences is indexed by D to realize the 8-bit

output mapped to one of the 256 values which provides a

correction factor of proportional magnitude. The fitness

function represents an error correction factor which is

minimized by a GA that intrinsically evolves the digital fabric.

A. Digital Genome

In order to evolve a single PLD, its configuration bits are

encoded into a chromosome which genetic operators can act

upon. The configuration bits consist of the following: active

lines, AND array parameters and OR array parameters. Input

lines that are active, i.e. not in high impedance state, in the

actual implementation are determined from the register

configuration immediately after booting and are marked as

active lines; other lines cannot be written. There are 12 input

lines for the AND array and four output lines for the OR array.

a) AND array parameters

For each input line that is active, the corresponding product

term can be asserted as true or complement input. In order to

encode the configuration, the configurations of the active input

lines alone are to be recorded and hence up to eight such 32-bit

integers store the configuration from the corresponding

registers for two PLDs constituting a Universal Digital Block

(UDB) in the fabric.

b) OR array parameters

Like the AND array, for the OR array, each of the product terms

arriving from the AND array may be asserted or not asserted

and are encoded likewise in the chromosome. We thus have

four such 16-bit integers that store the configuration from the

corresponding registers. The chromosome for each PLD is

encoded as a structure with three arrays: AL (active lines),

AND array parameters and OR array parameters representing

configuration bits as described above and effectively describing

contents of one UDB.

Figure 6: Chromosome for each UDB being evolved.

For evolution of four PLDs, two sets of such chromosomes, one

for each UDB are evolved simultaneously.

B. Differential Digital Correction Genetic Algorithm

A separate Differential Digital Correction GA (DDCGA)

reconfigures the digital fabric. The DDCGA evolves four PLDs

of two chromosome sets per individual: one each for the AND

and OR arrays, and one set of individuals for each pair of four

PLDs, given constraints of the digital fabric.

Individuals are randomly initialized and their fitness is

evaluated intrinsically to identify the top two elite individuals.

The crossover operation is performed separately in each

iteration for the AND arrays and OR arrays owing to their

inherent functional differences, at the boundaries indicated in

Figure 6. For the remaining individuals, tournament selection

is done with a tournament size of two and constitute 40 of the

total 80 individuals per generation. Single-point crossover is

then performed between one of these individuals and another

individual randomly chosen from the whole population. New

offspring then replace the lower fraction of the total population

while the fitter individuals selected via tournament selection fill

the upper fraction. All but the two most elite individuals

undergo simple bit flip mutation with a default mutation rate of

0.1% per bit in the chromosome.

Mutation rate was observed to be a crucial factor in the

performance of the DDCGA with adaptive mutation being very

useful in overcoming stasis. Stasis is detected and reported if

the best fitness achieved hasn’t changed in 50 iterations. The

difference between average fitness and best fitness achieved is

compared and combined with stasis information to decide

whether mutation should be enabled at the default rate or at an

incremented rate in steps of 0.01, which improved performance.

The maximum deviation of the analog output from the oracle

and the distribution of errors determine the extent to which the

DDCGA can perform. With appropriate conditioning of analog

outputs, DDC helps improve the accuracy of the solutions

obtained and adds a few more bits of precision to evolved

analog solutions.

VI. EXPERIMENTAL CONFIGURATION

A. Computational Analog Blocks

The primary reconfigurable analog elements in the PSoC-5LP

consist of Switched Capacitor op-amp Blocks (SC Blocks). SC

Blocks have a variety of topologies and parameters, which can

be readily configured via memory-mapped registers accessible

from the onboard ARM core. There are eight SC Block

topologies available: naked op-amp, trans-impedance

amplifier, continuous-time mixer, discrete-time mixer, unity

gain buffer, first order modulator, programmable gain

amplifier, and track and hold amplifier.

For our experimentation, we consider the SC blocks to be our

CAEs, of which there are four in the PSoC-5LP. This leads to

each individual having a genome of n = 4 CAEs along with the

SS parameters.

B. Universal Digital Blocks (UDBs)

PSoC’s digital fabric consists of PLDs, organized in pairs

within the UDBs, which can all be interconnected under GA

control. There are 24 UDBs or 48 PLDs in total. This PLD

architecture is referred to as 12C4, where 12 stands for the

number of input terms, C indicates that the PTs are constant and

are accessible to the OR array and 4 indicates the number of

output terms emerging from the OR array. Given this capability

of the digital fabric, the routing is not easily reconfigured,

unfortunately. These are determined at boot-time rather than

during evolution.

Placement directives, such as force directives may be used to

force placement of LUT implementation to any specific PLD,

which is analogous to the PROHIBIT command in the Xilinx

User Constraint File [21]. Owing to restrictions on routing, the

initial configuration for the LUTs instantiated has to be

carefully chosen to make available the maximum possible

resources in the route whose logic configuration is then

reconfigured by the DDCGA. Also, decoupling PLD outputs

from the registers to ensure pure combinational outputs is

essential and is done through additional register writes for every

individual when their fitness is evaluated. Detection of active

lines in Figure 6 is first performed on the initial configuration

of LUTs to demarcate register writes that are legal.

C. Test Cases

The input/output ranges in Table 2 show the difference between

attempting to evolve CCs with SSGA versus a rudimentary GA

running on PSoC-5LP. Due to the native range of our platform,

evolving without any form of scaling would severely reduce

computational range for square and cube circuits.

Each computational circuit in Table 3 was evolved five times

each with different random number generator seeds for both

evolution with a simple GA and evolution with an SSGA.

Globally, max_generation = 500, pmin = 0, P = 4, N = 30,

penalty = 10, hypermutation_condition = 100, and gen_share =

200. Parameters pmax and penalty_case are delineated in Table

3. All parameters chosen are roughly optimized values based on

trial experimentation. Average fitness values are computed

along with best-case average error.

In order to compare our circuit complexity to [5,7,12], all of

which used an unconstrained quantity of resistors and Bipolar

Junction Transistors (BJTs) to evolve their CCs, we’ve

identified a complexity cost metric, which relates roughly to

computational capability. The complexity of a component is

assigned according to the range of operations it can perform.

Since resistors can only perform 1 operation, they are assigned

a complexity of 1. BJTs can be wired up in 4 different

configurations, and therefore have a complexity of 4. The SC

blocks of the PSoC 5LP can perform 8 functions, and therefore

it has a complexity of 8. Since we have 4 SC blocks for our

CCs, our circuits have a fixed complexity of 32.

Table 2: Computational Circuit test cases used in literature and herein.

VII. RESULTS

Table 3 shows the fitness scores of the four CCs evolved. Each

of the evolved CCs produced solutions, which closely matched

their ideal outputs as shown in Figure 7. The worst performing

circuit, with regards to fitness, is the cube circuit, which is

understandable considering it required the greatest scaling

beyond its native range. Considering that test points are

penalized when they are more than 0.5V away from the oracle,

and the cube circuit had an average error of 1.19V, the

penalization kept the cube circuit from obtaining better fitness.

Even though the cube circuit had the worst fitness relative to

the circuits tested, it was the best demonstration of the SSGA

as it was able to increase its effective range seventeen-fold.

The square circuit showed the most significant improvements,

which is reasonable considering that the square circuits’

effective range is unobtainable with an unrefined GA, but

requires less scaling than the cube case. Furthermore, the square

circuit only had an average error of 140 mV, so it is rarely

penalized. Square-root and cube-root both were able to evolve

good solutions with the unrefined GA. Interestingly, the best

observed fitness amongst all of our tests was an unrefined

evolution of cube-root, which gave a fitness of 0.85. However,

this was an atypical case, as the average fitness scores show

significant improvements for using the SSGA.

Compared to the results of the previous works in Table 4, the

square-root and cube-root CCs evolved with SSGA achieved an

average error of 30mV and 23mV, respectively, and performed

better than Koza et al. The square-root CC evolved in this paper

performed marginally better than Mydlowee et al., with an

average error of 20mV, but the square CC did not outperform.

All test cases performed worse than Sapargaliyev et al., but

considering their work evolved CCs extrinsically without

device constraints, this is understandable. It is interesting to

note that DDC improved accuracy of all circuits to various

degrees. The greatest reduction in average error was seen for

Table 3: Improvements of SSGA compared to unrefined GA
Circuit GA Average Fitness SSGA Average Fitness Improvement

Square 506.95 39.23 12.92

Square-root 9.45 1.35 7.00

Cube 1084.45 291.56 3.72

Cube-root 7.54 1.49 5.07

Average Improvement: 7.18

Table 4: Results compared to previous works.

[Koza

97]

[Mydlowec

00]

[Sapargaliyev

12]

SCALED

SSGA

DDCGA

Square

root

Average

error, mV
183.57 20.00 9.23 30.00 26.8

Average

Fitness
3.86 70.40 0.19 8.14 6.786

Complexity - 84.00 60.00 32.00 -

Square Average

error, mV
- 27.00 1.44 140.00 100

Average

Fitness
- 4.81 0.03 35.23 25.11

Complexity - 72.00 118.00 32.00 -

Cube-

root

Average

error, mV
80.00 - 11.90 23.00 19.25

Fitness 1.68 - 0.25 5.98 5.032

Complexity 164.00 - 116.00 32.00 -

Cube Average

error, mV
- - 11.90 1160.00 732.00

Average

Fitness
- - 0.25 296.30 187.67

Complexity - - 141.00 32.00 -

Figure 7: Evolved CCs with SSGA compared to ideal curves

Figure 8: Total error over generation for SSGA and DDC when evolving cube CC. The top red line is the population average total error and the bottom blue

line is the best fit individual’s total error. During SSGA, four populations are evolved in parallel. Each population’s average error and best fit error is shown.

the cube circuit where a reduction from 1160mV to 732mV

yielded a 36.89 percent reduction in error on average. Likewise,

DDC improved accuracy by reducing average error in square,

square root and cube-root CCs by 28.57, 10.67 and 16.3 percent

respectively, on average. Some general trends were observed

with regards to error reduction by DDC. For all CCs, the error

reduction was larger when SSGA performance was worse than

average, thus providing for a stabilizing effect to maintain

accuracy within reasonable bounds. Performance for individual

cases depended on error distribution of SSGA output. As shown

in Figure 8, SSGA evolves four islands of populations in

parallel to produce a best fit individual with a total error of

296.3. The DDC then evolves the digital fabric to correct errors

and reduce it to 169.48. As far as the authors are aware, this is

the first realization of intrinsic evolution of analog CCs on a

commercial PSoC device utilizing a compact fabric of 4 SC op-

amp Blocks rather than an unlimited number of resistors and

BJTs. With an addition of only four PLDs, significant accuracy

improvements were also achieved.

VIII. CONCLUSION

SCALER is able to scale, translate, and refine evolved analog

computational circuits using evolved digital

resources. PSO with an Island-like GA realizes a 12.9-

fold fitness improvement of the best-fitness analog circuit. The

novel hybrid analog-digital design that is evolved, leverages the

relative advantages of both circuit domains. SCALER could

benefit from exploration in the search space of PSO parameters

and seeds for the unrefined GA. Also, the precision of DDC

can further be improved by using values that can satisfy a 16-

bit mapping instead of the 8-bit mapping used here. We would

be interested to see our techniques applied to larger FPAA

platforms with additional computational analog blocks and

determine how large of a range of accurate computation is

possible. Finally, the SSGA could be applied to frequency

domain analysis via adjustment of FFT coefficients. Energy-

conserving hybrid analog-digital computational circuits for

scientific or low energy applications are being investigated.

REFERENCES

[1] S. Sethumadhavan, R. Roberts, Y. Tsividis, "A Case for Hybrid Discrete-
Continuous Architectures," Computer Architecture Letters, vol. 11, no.1,
pp. 1-4, Jan.-June 2012.

[2] P. Hasler and D.V. Anderson, "Cooperative analog-digital signal
processing," IEEE Int’l Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol.4, pp.IV-3972 - IV-3975, 13-17 May 2002.

[3] S. Suh, A. Basu, C. Schlottmann, P. E. Hasler, J. R. Barry, "Low-Power
Discrete Fourier Transform for OFDM: A Programmable Analog
Approach," , IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 58, no. 2, pp. 290-298, Feb. 2011.

[4] T. W. Cornforth and H. Lipson, "Reverse-Engineering Nonlinear Analog
Circuits with Evolutionary Computation," in Unconventional
Computation and Natural Computation. Springer, 2014. pp. 105-116.

[5] J. R. Koza, F.H. Bennett, III, D. Andre, M. A. Keane, and F. Dunlap,
"Automated synthesis of analog electrical circuits by means of genetic
programming," IEEE Transactions on Evolutionary Computation, vol.1,
no.2, pp.109-128, Jul 1997.

[6] Y. Jiang, J. Ju, X. Zhang, B. Yang, "Automated analog circuit design
using Genetic Algorithms," ASID 2009. 3rd International Conference on
Anti-counterfeiting, Security, and Identification in Communication, pp.
223 - 228, 20-22 Aug. 2009.

[7] Y. A. Sapargaliyev and T. G. Kalganova. "Open-ended evolution to
discover analogue circuits for beyond conventional applications," Genetic
Prog. and Evolvable Machines, 13.4 (2012): pp. 411-443.

[8] F. H. Bennett III, et al. "Evolution by Means of Genetic Programming of
Analog Circuits that Perform Digital Functions," GECCO. 1999.

[9] G. Cowan, R. C. Melville, and Y. Tsividis. "A VLSI analog
computer/digital computer accelerator," Solid-State Circuits, IEEE
Journal of 41.1 (2006): 42-53.

[10] R. F. DeMara, K. Zhang, and C. A. Sharma, "Autonomic Fault-Handling
and Refurbishment Using Throughput-Driven Assessment," Applied Soft
Computing, Volume 11, Issue 2, Pages 1588-1599, March 2011.

[11] Russ C. Eberhart and James Kennedy, "A new optimizer using particle
swarm theory." Proceedings of the sixth international symposium on
micro machine and human science. Vol. 1. 1995.

[12] W. Mydlowec and J. Koza, "Use of time-domain simulations in automatic
synthesis of computational circuits using genetic programming," Late
Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, Las Vegas, Nevada, 2000.

[13] McConaghy, T.; Palmers, P.; Steyaert, M.; Gielen, G.G.E., "Trustworthy
Genetic Programming-Based Synthesis of Analog Circuit Topologies
Using Hierarchical Domain-Specific Building Blocks," Evolutionary
Computation, IEEE Transactions on , vol.15, no.4, pp.557,570, Aug.
2011.

[14] D. Keymeulen, R. Zebulum, Y. Jin, A. Stoica,, "Fault-tolerant evolvable
hardware using field-programmable transistor arrays," IEEE Transactions
on Reliability, vol. 49, no. 3, pp. 305-316, Sept. 2000.

[15] Aggarwal, V.; Mao, M.; O'Reilly, U.-M., "A Self-Tuning Analog
Proportional-Integral-Derivative (PID) Controller," Adaptive Hardware
and Systems, 2006. AHS 2006. First NASA/ESA Conference on , vol., no.,
pp.12,19, 15-18 June 2006.

[16] Becker, J.; Trendelenburg, S.; Henrici, F.; Manoli, Y., "A field
programmable Gm-C filter array (FPAA) for online adaptation to
environmental changes.,"Adaptive Hardware and Systems, 2007. AHS
2007. Second NASA/ESA Conference on , vol., no., pp.547,553, 5-8 Aug.
2007.

[17] M. J. Streeter, M. A. Keane, and J. R. Koza. "Iterative Refinement Of
Computational Circuits Using Genetic Programming." GECCO, 2002.

[18] S. L. Sabat, K. S. Kumar, and S. K. Udgata. "Differential evolution and
swarm intelligence techniques for analog circuit synthesis." NaBIC 2009
World Cong. Nature & Biologically Inspired Computing, IEEE, 2009.

[19] K. Zhang, R. F. DeMara, C. A. Sharma, "Consensus-based Evaluation for
Fault Isolation and On-line Evolutionary Regeneration," in Proceedings
of the International Conference in Evolvable Systems (ICES'05), pp. 12 -
24, Barcelona, Spain, September 12 - 14, 2005.

[20] Monica Sam, Sanjay K Boddhu, Kayleigh E. Duncan, John C.Gallagher,
"Evolutionary strategy approach for improved in-flight control learning
in a simulated Insect-Scale Flapping-Wing Micro Air Vehicle," IEEE
Conf. on Evolvable Systems (ICES), 2014, pp.211,218, 9-12 Dec. 2014.

[21] R. S. Oreifej, C. A. Sharma, R. F. DeMara, "Expediting GA-Based
Evolution Using Group Testing Techniques for Reconfigurable
Hardware," in Proceedings of the IEEE International Conference on
Reconfigurable Computing and FPGAs (Reconfig'06), San Luis Potosi,
Mexico, September 20-22, 2006, pp 106-113.

This document is an author-formatted work.
The definitive version for citation appears as:
S. D. Pyle, V. Thangavel, S. M. Williams, and R.
F. DeMara, "Self-Scaling Evolution of Analog
Computation Circuits with Digital Accuracy
Refinement," in Proceedings of NASA/ESA
Conference on Adaptive Hardware and
Systems (AHS 2015), Montreal, QC, Canada,
June 15 - 18, 2015.

