
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Mixed-signal SoC devices offer single-chip solutions,

but face challenges of hardware-software co-design optimization,

device signal range constraints and limited precision. These issues

are addressed by developing a multi-level evolutionary approach

to realize complex computational circuits called ECHELON, or

Embedded-Cascaded Hierarchically Evolved Logic Output

Networks. ECHELON utilizes analog evolved building blocks and

refines their output using digital fabric to compose power series

expansions of transcendental functions which are all routed under

intrinsic control on a Field Programmable SoC. The result for

evolution of seven different powers of the independent variable is

a reduction of 31.24% in the overall error as compared to the

analog circuits that produce the raw inputs to a Differential Digital

Correction phase. Computation blocks developed on a Cypress

PSoC-5LP mixed signal SoC reduced error in the final

mathematical approximation to the range of 40mV-150mV. In

doing so, speedups of roughly 1.4-fold to 6.6-fold with an average

of 2.72-fold reduction in function execution times were attained.

Specifically, this approach achieved a 41.7-fold reduction in error

with respect to the largest power of the independent variable used

as an input to compute an erf(x) function.

Index Terms—Programmable System on Chip (PSoC), Power

Series, Genetic Algorithm, Programmable Logic Device.

I. INTRODUCTION

ooperative analog-digital signal processing techniques

outlined in [1] have recently gained recognition for their

ability to address problems in both domains by drawing out

their complementary computational characteristics. As depicted

in Fig.1, the advent of the SoC era is characterized by embedded

computing architectures with support to perform a wide range

of computations, autonomously under real-time constraints.

SoC architectures addressed in this paper utilize a

heterogeneous fabric of mixed-signal based circuitry along with

dedicated Computing Elements (CEs) realized from the more

generic analog and digital subsystems. SoCs face challenges of

sparser reconfigurable fabrics, limited memory capacities, and

need for area-efficient design. On the other hand, they offer the

mixed-signal advantage where analog computations manipulate

data in continuous ranges very cost-effectively and interface

well with real world data, while digital computations offer great

scalability in performing accurate computations. These CEs are

operationally distinct from the more specially designed

accelerators and coprocessors that perform special operations

such as error detection and correction, cryptographic functions,

audio/video codecs, which require ASIC design methodology

and cannot be modified readily at runtime. The CEs developed

herein utilize reconfigurable analog and digital fabric

components only and are driven by the rationale of relying on

the underlying adaptive algorithm developed in this work to

perform various mathematically intensive computations while

minimizing the additional hardware required. The specific

objectives herein, are to autonomously organize these

heterogeneous resources to attain custom CEs for a range of

transcendental mathematical functions with tunable accuracies.

Contemporary high performance embedded computing

applications rely on heterogeneous multiprocessor SoC

(MPSoCs) utilizing specialized units and accelerators for

realization of different mathematical functions. In response,

Tabkhi, et al., [2] recognize the need for simpler mechanisms

to avoid instruction bandwidth and memory bottlenecks

resulting from Hardware Accelerators and Coarse Grain

Reconfigurable Architectures. They propose the addition of

Function-Level Processor (FLP) instead, requiring a separate

Functional Set Architecture and extra buffers/cache per stage.

Such specialized FLPs realize complex computations through

“functional wiring” of elements designed in hardware.

However, such approaches can add overheads to design time

effort and execution speed, which ECHELON seeks to avoid.

Vignesh Thangavel1, Zi-Xia Song2 and Ronald F. DeMara1, Senior Member, IEEE

Computer Architecture Laboratory
1Department of Electrical Engineering and Computer Science and 2Department of Mathematics

University of Central Florida

Orlando, FL 32816-2362

demara@mail.ucf.edu

Intrinsic Evolution of Truncated Puiseux Series

on a Mixed-Signal Field Programmable SoC

C

Fig. 1. Meeting mixed-signal challenges with ECHELON.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. ECHELON AND RELATED WORK

A time and area sparing approach called ECHELON or

Embedded-Cascaded Hierarchically-Evolved Logic Output

Network, is developed herein, which computes special

mathematical functions by cascading incremental functionality

of reconfigurable analog and digital blocks. ECHELON relies

on evolutionary algorithms to search the design space based on

the intrinsic switching behavior of the target circuit. This

method to realize CEs extends the work done in [3] and [4] to

exploit the interaction between general purpose analog and

digital reconfigurable fabrics under the control of an embedded

ARM core. The analog computation engine evolves analog

reconfigurable fabric composed of switched capacitor op-amp

blocks which may be to realize various amplifier, mixer and

modulator topologies. This circuit produces analog signals

roughly approximating the mathematical function desired and

performs intelligent operations with self-scaling genetic

algorithm (SSGA) to compress outputs beyond the device ADC

range. It realizes a more sophisticated elaboration of hybrid

analog and digital computation identified in [3] whereby an

unrefined analog GA evolves a coarse solution in a narrow

voltage range. Next, the output is scaled to allow a more

computationally-tractable range. The entire set of operations

performed up-to this stage is referred to here as analog pre-

processing. This output is then converted to digital signals

which are then adaptively refined by PLD-based digital fabric

and combined in cascaded stages with digitally-evolved

weights, using techniques for spatial self-adaptation of digital

fabrics [5][6][9].

Most recent embedded architectures rely on specialized

hardware based computation units and a combination of lookup

tables and series expansions to improve accuracy. These

techniques typically consume extra power and may increase

computation time to produce an arbitrary level of accuracy

determined at design time for the hardware. Work done in [7]

analyzes Worst Case Execution Time (WCET) and resource

demands for various iterative and lookup table based methods,

concluding that iterative schemes based on power series can

provide a better choice for resource constrained hardware, but

naturally reduce accuracy. On the other hand, pure software-

based implementations of iterative techniques such as CORDIC

require minimal hardware but large computation times as

elaborated in [8]. Table I indicates some major research whose

key ideas were useful in formulating the approach developed

here. ECHELON extends the idea of decomposing a single

complex problem into viable and simple connected parts as

outlined by Kazadi [9], and others. It uses multi-stage evolution

popularized by Ando in [10] with increased pressure on the last

stage and deploys the divide-and-conquer strategy outlined by

Haddow in [11] to simplify fitness evaluations in each stage.

Finally, it combines them at the finest granularity as suggested

in work done by Mitchell in [12] on Royal Road functions.

Herein, the realization of specialized functions as a

mathematical power series occurs by evolving the constituent

powers with analog pre-processing followed by digital

refinement to serve as universal building blocks. As depicted in

the lower right corner of Fig. 1, these are combined to leverage

cumulative error to improve accuracy.

Research contributions of this work include:

1. optimization of digital reconfigurable logic fabrics

capable of tuning analog circuit outputs for mathematical

computations,

2. adaptive prediction of power-series coefficients via

dynamic allocation of programmable logic resources, and

3. an approach to partially decouple the computational

complexity from sophistication of the mathematical

function being expressed.

III. PUISEUX SERIES AND COMPUTATIONAL COMPLEXITY

Power series based approaches are frequently used to

approximate and compute functions to arbitrary accuracies

around a particular point. They usually involve positive,

integral powers of the independent variable. Puiseux or

Newton-Puiseux series are a generalization of power series

allowing for fractional (and negative) powers of the

independent variable [13]. Mathematically speaking, it is well-

known that any polynomial equation f(x,y)=0 has degy(f) zeros

being Puiseux series in x, i.e., 𝑦(𝑥) = ∑ (yk ×x𝑘/𝑛)∞
k=k0

, for

suitable integers n≥1, k0, and the coefficients yk from an

algebraically closed field, where degy(f) is the highest degree of

y in f. Usually, Puiseux series expansions are used to describe

the behavior of a curve near singularities with mathematically

elaborate techniques to compute the corresponding coefficients.

Another popular approach to approximating functions to better

accuracies, albeit at the cost of greater computation time and

added complexity, is known to be that of the computation of

Padé approximants, which are rational functions whose power

series agree with the Taylor series of the function being

approximated up to a certain number of terms. The different

approaches to mathematically approximate a curve at a given

point, are elaborated in [14].

While power series are not new to numerical computational

techniques, the use of Puiseux series has rarely been attempted

in embedded computations due to the need to determine

coefficients and associated complexities. Typically

transcendental functions such as trigonometric, exponential and

hyperbolic functions and their combinations are

computationally more expensive, requiring significantly more

TABLE I

 MOTIVATION FOR ECHELON AND COMPARISON.

Researcher/Name of
Work Done

EA
Type

Major Contributing
Idea

Incorporation in Current
Work

Ando 2003 [10]

Extrinsic

Multi-stage evolution
with increasing

evolutionary pressure

Cascaded stages for
evolution of powers and
pressure on coefficient

prediction

Kazadi 2001 [9]

Extrinsic
Piece-wise evolution

of simple parts
Evolution of mathematical

building blocks

Haddow 2011 [11]

Extrinsic

Divide-and-conquer
strategy to simplify
fitness evaluation

Separate fitness functions
for each component

Mitchell 1992 [12]

Extrinsic
Smallest evolving
blocks preserve
genetic diversity

Each power and its
associated coefficient
evolved independently

ECHELON

Intrinsic

Range Adaptive
Evolution

N/A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

clock cycles than simpler arithmetic operations, and are

implemented with a combination of lookup tables and

interpolation technique. Composition of such functions are

prohibitively costly requiring even more time and resources in

real-time systems. Such interpolation techniques achieve high

accuracies at each point of interest, but require several iterations

and hence more computation to achieve the same for a large

number of points over a range while also requiring several

lookup table memory accesses. They may increase computation

time to achieve the desired accuracy or better in many

computations.

In this work, a Puiseux series inspired approach is extended

to quickly approximate a function to an acceptable error

tolerance over an entire input range as determined by the device

characteristics. The number of powers used in the

approximation usually depends on the accuracy desired at a

given point of interest, “near” which the function is being

approximated. Usually, increasing the number of powers

involved can improve the approximation that is obtained.

However, calculation of greater number of powers takes more

computational resources and/or time. When the same is

extended to several points on a relatively wide range, the

computation time required increases rapidly. In order to

compute an expansion, the powers used are to be computed

accurately followed by storage and retrieval of predetermined

coefficients. However, if the powers computed are subject to

several errors, the coefficients no longer serve their purpose and

determination of coefficients becomes a non-trivial concern.

Intuitively, a combination of convex and concave curves is

expected to better balance the approximation process and hence

eight powers namely x(1/4), x(1/3), x(1/2), x0, x, x2, x3 and x4 have

been used largely in this work. Evolution of x (1/5), x (1/6) have

also been attempted and x (1/5) was used to replace x4 in some

cases. This selection of powers is unconventional and doesn’t

have a set of pre-determined coefficients to guide the process.

Herein, we consider a running example of evaluation of sin(x)

over the desired range approximated using truncated Puiseux

series using a hybrid analog and digital reconfigurable fabric.

IV. ECHELON TECHNIQUE ON PSOC

Cypress Semiconductors PSoC devices versions 3 and higher

contain a fabric of Configurable Analog Blocks (CABs),

Universal Digital Blocks (UDBs), ARM Cortex-M cores,

flexible GPIOs and serial communication blocks and

peripherals for interfacing as outlined in [15] and [16]. The

PSoC 5LP is a low power model of Cypress’ most recent design

with 32-bit ARM Cortex-M3, 256 KB flash and 64 KB SRAM

as used in developing and testing ECHELON. Different

processing stages of ECHELON are shown in Fig. 2. The

analog evolution engine detailed in [3] produces

approximations that serve as pre-processed inputs to the digital

fabric, but exhibit low accuracy and precision across the input

range. The device ADC has a range of 0-4.08V. Starting from

0V, there are 256 data points or values of the independent

variable x, increasing in steps of 0.016V. Differential Digital

Correction (DDC) evolves PLDs to approximate various

powers of x. The Coefficient Prediction (CP) stage evolves

coefficients of the powers of x indicated to approximate the

function sought to the desired accuracy. In this work, a tunable

tradeoff of execution time versus accuracy is sought. Accuracy

is considered to be valuable over the entire device range. Thus,

the metric for accuracy selected is the summation of absolute

error of the computed output using increments of 16 mV over

the operating range, which is denoted herein as the Total Error.

A design goal of 10 percent Total Error is sought and up to 15

percent Total Error is considered acceptable.

For instance, to approximate sin(x), 8 different powers are

evolved first and then the corresponding coefficients are

determined corresponding to each power from fourth root to

fourth power. To evolve the mixed signal circuit for each

power, analog evolution is first performed in order to obtain a

rough approximation, where the output may saturate if it is

beyond the device limit of 4.08V. This is followed by scaled

analog evolution to handle and compress outputs beyond device

limit. Consider the evolution of x3. As shown in Fig. 3,

uncompensated analog evolution produces unsaturated outputs

for x where f(x) ≤ 4.08V. The outputs for the values of x larger

than this saturate at 4.08V as indicated by the horizontal line in

Fig. 3. Scaled Analog Evolution then proceeds to optimize

saturated outputs beyond device range to produce a better

approximation of x3. The maximum deviation of this

approximation from the oracle is extracted. This is then

followed by Differential Digital Correction which uses

fractions of this maximum deviation to refine the output over

the device range for x3 as in Fig. 4 and then proceeds to evolve

Fig. 2. Schematic of ECHELON technique. The two stages of ECHELON are shown in blue and green colors, receiving analog pre-processed inputs.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

other powers likewise. The frequencies of correction factors of

different magnitudes produced on-demand for x3 in different

ranges are indicated in blue in Fig. 4. The impact of these stages

are as indicated in Fig. 3. This then proceeds to the Coefficient

Prediction stage in order to evolve coefficients of the powers

evolved, to approximate sin(x).

The CP stage first considers issues of data overflow and

hence implements range scaling to ensure that these coefficients

are randomly initialized within appropriate value ranges. Once

initialized, CP Genetic Algorithm (CPGA) performs fitness

evaluation over 256 data points starting from 0 and incremented

in steps of 0.016 for the independent variable x corresponding

to the native range for analog pre-processed inputs. ECHELON

can refine analog preprocessed data for any arbitrary range and

then use the same to compute functions sought for those ranges.

Evolution proceeds till the termination limit of 1,000

generations and may also be configured to proceed until the

desired accuracy is reached. Evolution starts with creation of a

population of 80 random individuals, fitness evaluation and

identification of elites. Binary tournament selection, crossover

between one individual from the fitter half and another

randomly selected from the population are then performed. The

number of individuals replaced is set at 60, but can be varied.

Mutation is performed on these individuals and the steps

starting from fitness evaluation are repeated again. The best-

performing circuit configuration in each generation is retained

without undergoing mutation. Once the termination condition

is attained, the coefficients of the best fit individual are recorded

and the function computed by this individual is evaluated

against the originally-computed oracle to determine Total error.

The corresponding execution time is recorded.

After receiving the analog pre-processed inputs over the

native data range from the analog evolution phase, digital

refinement starts by application of DDC to these inputs. DDC

constructs a Normalized Error Array (NEA), which contains

fractions of the maximum error produced in the analog

computation data. These elements are both positively and

negatively valued to accommodate all possible errors and

provide to correct them. The NEA containing correction factor

elements called normalized differences, is indexed by D[i] at

the i-th point, to realize the 8-bit output mapped to one of the

256 values of correction factors for the corresponding data

input. The DDC fitness is evaluated as:

𝑓𝑜𝑟 𝑖 ∶= 0 𝑡𝑜 255

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 += | 𝑜𝑟𝑎𝑐𝑙𝑒[𝑖] − |(𝑜𝑢𝑡𝑎𝑛𝑎𝑙𝑜𝑔[𝑖] − 𝑁𝐸𝐴 [𝐷[𝑖]]) ||;

This calculates Total Error across all data points for each

individual and evolution proceeds to minimize the same.

A. DDCGA Genome and Operation

Each pair of PLDs belonging to the same PSoC Universal

Digital Block (UDB) is encoded with the genome indicated in

Fig. 5. The bits indicate which product terms are asserted in

PLD’s AND arrays and OR arrays respectively as elaborated in

[3]. The Differential Digital Correction GA (DDCGA) evolves

the 4 PLDs or two UDBs in parallel to produce more accurate

computations of different powers of the independent variable,

x, through optimized use of correction factors to minimize Total

Error as discussed above. Evolution proceeds in a cascade of

stages, producing the output for each power of x desired. In this

work, powers of x evolved include {x1/4, x1/3, x1/2, x0, x, x2, x3,

x4} which were used in further computations. Other powers

evolved include x1/5 and x1/6 from a different set of pre-

Fig. 3. Example of evolution of cube of independent variable and how
analog and digital correction improve accuracy in respective regions of

operation [3].

Fig. 4. Elements of the NEA or normalized differences appearing as
fractions of the maximum analog error (above) and correction factors

evolved (below) for each point on x3 indexed by D[i] by DDC.

Fig. 5. Chromosome used in DDC. Each chromosome controls a pair of PLDs in a UDB

and two such chromosomes are evolved in parallel [3].

16bits 32bits 32bits 32bits 32bits 32bits 32bits 32bits 32bits 16bits 16bits 16bits 16bits

AL AND array parameters OR array parameters

0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1

Active Lines(AL) in AND array AL in OR array

Fig. 6. Chromosome used in CP. Each coefficient C0

through C7 is a 32-bit floating point value corresponding to

the power of x indicated above it. The zeroth power term

has a stabilizing effect on the computations [4].

x^1/4 x^1/3 x^1/2 1 x x^2 x^3 x^4

C0 C1 C2 C3 C4 C5 C6 C7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

processed inputs and some computations were attempted with

them too. DDCGA is characterized by single-point crossover,

binary tournament selection with a variable replacement rate

typically around 60, elitism of two, bit mutation at 0.1% rate.

Variable threshold parameters are used to ascertain stasis based

on the difference between the average and best fitness. To

mitigate stasis, 0.01% increment in mutation rate and hyper-

mutation at variable intervals are implemented.

B. CPGA Genome and Operation

Following evolution of powers of x in cascaded stages,

Coefficient Prediction (CP) algorithm evolves coefficients for

these powers to form a truncated Puiseux series of the function

sought, for instance, sin(x). The genome for sin(x) is indicated

in Fig. 6. Coefficients C0 through C7 are floating-point values.

However, each is multiplied by the corresponding power of x to

calculate the function at every evaluation point. Coefficient

prediction involves an eight dimensional search space, and it is

necessary to determine the largest allowable coefficient or

range limit to prevent overflow in subsequent computations.

To illustrate, consider the calculation of sin(x) where each

power xk has been evaluated at every x:

sin(x) = C0∙x(1/4) + C1∙x(1/3) + C2∙x(1/2) + C3 + C4∙x + C5∙x2

+ C6∙x3 + C7∙x4

For the above calculation, the sum of products at each x must

be a value within the range of a 32-bit floating-point number.

Range Scaling is performed in order to ensure that all

coefficients have the same scaled range and that overflow does

not occur in the sum of products computed. Coefficients are

then initialized randomly within this scaled range.

 Algorithm 1 defines the CGPA used to evolve coefficients to

minimize the Total Error in the functional approximation

constructed using the imperfect building blocks produced.

Dynamic Range Adaptation technique reduces the range for

random assignment of coefficients, which otherwise become

intractable to conventional GA operators such as crossover and

mutation. Crossover is implemented as exchange of

coefficients about a point chosen randomly on the chromosome

and entails binary tournament selection with a replacement rate

of 60 per generation which could be varied as a parameter.

Mutation is implemented in two versions denoted Q and S with

the Mutation_Q performed at a rate of 0.1% as addition of a

TABLE II: EVOLUTION OF COEFFICIENTS.

Circuit Evolved

Coefficients Evolved Error Speed

up

(fold) x(1/4) x(1/3) x(1/2) x0 x x2 x3 x4 x(1/5)
10 %

(V)
Total

(V)

Avg

(mV)

e(x)(Pa)
Num 2.415 0.025 -0.041 0.227 0.150 0.063 0.161 0.152 NA

366.4 195.37 763 0.938
Den 0 0 0 1 0 0 0 -2.260 NA

sin(x)(P2) 0.157 0.123 0.189 0.393 0.184 0.073 -0.063 NA 0.068 15.09 36.064 140 1.398

log(x+1)(P2) 0.316 -0.222 0.405 -0.057 0.175 0 0 NA 0.041 26.18 10.485 40 1.670

arctan(x)(P1) 0.183 -0.028 0.613 -0.218 0 0 0 0 NA 25.02 15.616 61 1.692

sinh(x)

(Pa)

Num 0.436 0.199 0.561 -0.608 0.197 -0.168 0.128 0.072 180.1
180.1 92.536 361 1.614

Den 12205.30 20902.78 -9184.51 50845.21 12771.27 9145.81 35283.54 18047.67 NA

arcsinh(x)(P2) -2.023 3.120 0 -0.182 0 0 0 NA -0.087 34.00 28.207 110 2.289

erf(x)(P1) 0.263 1.180 -0.852 0.073 -0.046 0.160 -0.035 0.001 NA 22.02 27.444 107 2.926

sinh(cos(sin(x)))

(P2)
0.443 0.187 0 -0.055 0.129 0 0 NA -0.168 22.74 37.480 146 3.021

sinh(cos(sin(x)))

+ sin4(x) (P2)
2.476 0 -1.578 0.992 -0.034 0.183 -0.035 NA 0.081 30.72 40.024 156 6.635

Hyper-

mutation rate

300 and

slower

300 or

faster

200 or

slower
NA

200 or

faster

200 or

faster
150-200 100-150 100 - - - -

Total (V) 4.059 5.247 6.703 NA 18.155 26.57 161.156 1146.01 12.71 - - - -

10 % (V) 29.05 30.63 34.44 NA 52.22 142.32 436.37 1427.11 28.20 - - - -

Average (mV) 15.9 20.4 26.1 NA 70.9 103.8 629.5 4476.60 49.6 - - - -

(P1): Puiseux 1 scheme [x 1/4, x 1/3, x 1/2, x0, x, x2, x3, x4]; (P2):Puiseux 2 scheme [x 1/4, x 1/3, x 1/2, x0, x, x2, x3, x1/5]; (Pa): Pade scheme [(P1) Num / (P1) Den]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

number between -4 and 4, while Mutation_S induces a sign

inversion at the same rate randomly for 10 out of 80 individuals.

To deal with potential stasis conditions, the mutation rate for

Mutation_Q increases to 0.01% rate. Hypermutation replaces

half of the population with new random individuals every 100

iterations to mitigate stasis.

The use of rational approximations or Padé approximants to

compute elementary functions in a numerical coprocessor has

been described in [17]. In this work, Padé approximant

computations with x1/4, x1/3, x1/2, x0, x, x2, x3, x4 have also been

attempted for different functions and are provided as a runtime

selection. They have identical chromosome structure with one

chromosome each for the numerator and denominator

(represented with D in the end) evolved together with the

quotient as the result. For instance for sin(x) we have:

sin(x) = (C0∙x(1/4) + C1∙x(1/3) + C2∙x(1/2) + C3 + C4∙x + C5∙x2

+ C6∙x3 + C7∙x4) / (C0D∙x(1/4) + C1D∙x(1/3) + C2D∙x(1/2) + C3D

+ C4D∙x + C5D∙x2 + C6D∙x3 + C7D∙x4)

V. EXPERIMENTAL RESULTS AND DISCUSSION

Following analog-processing, DDC was used to focus the

effort during evolution on the powers {x1/4, x1/3, x1/2, x0, x, x2, x3,

x4} one-by-one in a cascaded fashion to serve as building blocks

for the next hierarchy of evolution. The results of their

evolution have been indicated in Table III. The outputs

generated exhibit significantly increased accuracy having Total

Error well below 10%. Analog evolution produced

approximations of each power, which were then refined using

DDC as indicated. The Total Error for each case has been

indicated with and without use of the hyper-mutation operator.

Hyper-mutation helps improve accuracy for larger/integral

powers, whereas for fractional powers evolution without hyper-

mutation performs better, since only minor refinements with

DDC are required for very good results with the evolution of

fractional powers as against larger powers where bigger error

corrections are needed to achieve desired accuracy.

The average error is reported as the Total Error divided by

256, i.e., the total number of data points. The best case average

errors for each power appear at the bottom of Table II. Apart

from these, evolution of x1/5 and x1/6 were also attempted from a

series of ones to serve as input instead of actual analog pre-

processed data, to demonstrate and evaluate the ability of DDC

to evolve them independent of the analog stage. The results

were less favorable than expected, but indicated accuracies well

within the 10% limit. This approach proves to be viable for

smaller fractional powers since their curves asymptotically

approach the y=1 line over the device range. It is also to be

noted that as integral powers get larger, their curves approach

the x=1 line asymptotically. Since it is not possible to model

the behavior of the latter, evolution of larger powers can’t be

attempted independent of the analog stage. Their evolution with

TABLE III

EVOLUTION OF POWERS

Comp.

Circuit

Evolved

(Power

of x)

Analog

Error (V)

DDC Error Percent Improvement

Without

Hyp. (V)

With

Hyp. (V)

Without

Hyp. (%)

With

Hyp. (%)

Fourth

Root
6.734 4.649 4.059 31 39

Cube

Root
5.984 5.582 5.247 6.7 12.3

Square

Root
8.137 6.703 7.475 17.6 8.1

First

Power
180.614 18.155 - - 89.9

Square 35.233 - 26.574 - 24.6

Cube 296.306 196.851 166.953 33.5 43.6

Fourth

Power
1696.815 1552.985 1299.830 8.4 23.3

TABLE IV

EXECUTION TIME DATA

Times
Total

Core

time

(ms)

Core time

per

point(µs)

Total

ECHELON

time (ms)

ECHELON

time per

point (µs)

Speedup

(fold)

Circuit

Evolved

sin(x) 59.327 231.74 42.409 165.66 1.398

log(x+1) 70.040 273.59 41.916 163.73 1.670

arctan(x) 70.106 273.85 42.452 165.83 1.692

sinh(x) 87.022 339.92 40.873 159.66 2.129

arcsinh(x) 93.583 365.55 40.869 159.64 2.289

erf(x) 124.835 487.63 42.661 166.64 2.926

sinh(cos(sin

(x)))
138.314 540.28 41.318 161.40 3.021

sinh(sin(cos

(x))) +

sin4(x)

278.830 1089.17 42.023 164.15 6.635

Average 115.25 450.21 41.815 163.33 2.72

Fig. 8. Evolution of coefficients approximating erf(x) as a Puiseux series
in x (1/4), x (1/3), x (1/2), x0, x, x2, x3 and x4.

Fig. 7. Evolution of coefficients approximating sin(x) as a Puiseux series in
x (1/4), x (1/3), x (1/2), x0, x, x2, x3 and x (1/5).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

analog stage produced results with much error and hence they

were avoided from being used in CPGA.

Powers evolved in cascaded DDC stages were used to

approximate transcendental functions as a truncated Puiseux

series of powers of x. The result for evolution of sin(x) is

indicated in Fig. 7. The red line indicates the average fitness and

the faint blue line at the very bottom indicates the Total Error

for the best fit individual, which is the only circuit retained in

each generation and thus maximizes the accuracy of the

operational circuit. Initially, the powers used were symmetrical

from the fourth root to fourth power and is indicated as the

Puiseux 1 Scheme (P1) in Table II. This resulted in a fitness of

63.232V in total or 247 mV on average for sin(x). The Puiseux

2 Scheme (P2) in Table II, involved replacing fourth power with

fifth root evolved, thereby skewing the symmetry towards

concave (fractional) powers and eliminating the power with

most error (fourth power) in it. Interestingly, this reduced the

Total Error to 36.064V and the average error to 140mV. Thus,

starting out from a practically unbounded error, CPGA reduces

the average error to about 140 mV in 1,000 iterations.

Several different types of functions were evolved and the

corresponding coefficients are indicated in Table II. Work done

in [18] estimates resource and time requirements for

computation of elementary functions using a combination of

lookup tables and dedicated adder stages for a similar range of

x. In contrast, ECHELON completely avoids the need for

individual lookup tables for each function and encapsulates the

required functionality in a much smaller chromosome in an

actual implementation. As can be seen, CPGA leverages errors

in the powers to produce functions that have much less Total

Error than the constituting powers do. In this context, it is to be

noted that the coefficients evolved are applicable to the powers

evolved only with their native errors and within the device

range for which evolution was performed. On computing the

function with the same coefficients while using error free

powers, it was observed that the Total Error was larger. Hence

ECHELON can adaptively compose building blocks using a set

of hardware resources to compute corresponding coefficients

which best optimize the output.

Fig. 8 indicates the coefficients evolved for the sigmoid error

function or erf(x) which has an ARM core execution time of

124.835ms, while ECHELON achieves the same computation

in 42.661ms. The execution time here refers to the time taken

by the function to obtain and the return the result, while

evolution time refers to the time spent in evolving the circuit

that evaluates the function being called. The execution time

data for different functions evolved have been tabulated in

Table IV. The improvement in execution times due to

ECHELON over those for standard library based

implementations ranges from speedups of 1.4-fold to 6.6-fold

and on average, is of the order of 2.72-fold for the functions

evolved. Also it can be observed that the computation times for

functions over all ranges of complexity are essentially the same

in ECHELON as the only computations involved are simple

multiplication, addition and subtraction operations. The only

differentiating feature required to accommodate higher

complexity functions is the utilization of adequate

chromosomes to denote the coefficients, as a viable alternative

to lookup tables.

The main advantage of utilizing ECHELON is seen during

computation of more complex composite functions as greater

speedups are achieved. The ARM core is expected to be

operating at the bus clock frequency of 24 MHz. However, it is

to be noted that the large computation times reported here are

owing to several factors, including the threads active in it while

executing the code, memory access times for stored results and

Fig. 9. ECHELON evolved circuits (blue) approximating arctan(x), sin(x), log(1+x) and sinh(x) as a Puiseux series in x (1/4), x (1/3), x (1/2), x0, x, x2, x3 x4/ x(1/5)
or the Pade approximant with the corresponding ideal curves (red) indicating relative performance of ECHELON

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

arctan(x)

Evolved Ideal

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

sin(x)
Evolved Ideal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

log(x+1)

Evolved Ideal

-5

0

5

10

15

20

25

30

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

sinh(x)

Evolved Ideal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

peripheral data transfer speed, which determines the actual

number of clock cycles needed. The computation times were

measured using in-built PSoC timers with 24-bit resolution

counting down, set to count to a maximum range for

measurement of up to one second. Execution times are a relative

measure of performance of the two approaches to perform the

same computation.

Figure 9 indicates some circuits evolved using ECHELON

within each category of transcendental functions targeted. For

arctan(x) and log(x+1) functions, CPGA performed much

better than others, reducing average error to 61mV and 40mV

respectively over the device range. Work done in [19] compares

prevailing formulae and implementations to compute the

arctan(x) function with a lookup table based approach and

argues in favor of the latter for an ARM based platform.

Comparison of ECHELON with the same indicates that

ECHELON achieves good results for a larger number of points

at a much slower frequency and achieves greater speedups

against the reference platform without the need for a lookup

table. Initially, all functions were computed with the (P1)

scheme of constituting powers and it was noted that the Total

Errors in final circuits were larger than the 15% error limit for

most functions. With evolution of the fifth root, the same was

used to replace fourth power and much better performance was

observed. Most of the functions attempted stayed within the

15% error limit and quite a few stayed within the 10% limit

targeted, three of which are indicated in Fig. 9. Unfortunately,

sin(x) exceeded the 15% limit for itself, but this is because the

output range of sin(x) is relatively small and hence is more

challenging to evolve to a high degree of accuracy.

For rapidly increasing functions such as sinh(x) and e(x), (P1)

and (P2) schemes failed to produce results within 10% error,

but still managed to stay close to or within 15%. However, Padé

approximant scheme (Pa) produced a much better

approximation, at the cost of increased computation time owing

to division operations and computation with a greater number

of coefficients. Execution time data for sinh(x) indicates

performance for approximation calculated with (P2) scheme

that produced a Total Error of 101V versus 92V as indicated in

Table II. The computation time with (Pa) scheme was found to

be 20-25% slower than with (P2) or (P1) schemes in general.

Functions evolved spanned three categories ranging from

concave (slowly increasing), convex (rapidly increasing) and

oscillatory (increasing and decreasing). Deeply concave

functions benefit more with (P2) scheme, meanwhile shallow

concave functions perform well using the (P1) scheme and

convex functions may perform best from (Pa) scheme.

Oscillatory functions were hardest to evolve to within 10%

error and they can benefit from balanced schemes with very

small coefficients. Illustratively, moderately concave arctan(x)

function performed best with (P1) scheme to attain a Total Error

of 15.616V, as against (P2) and (Pa) schemes resulting in Total

Errors of 21.507V and 58.378V respectively. Excessive use of

very small (concave) powers of x doesn’t necessarily improve

the accuracy of concave functions. When evolution for

arctan(x) was attempted with {x1/4, x1/3, x1/2, x0, x, x2, x1/5, x1/6}

the Total Error was 126V approximately. The zeroth power

term proved to be of significance in evolution, adding or

subtracting a required bias adjustment.

VI. CONCLUSION AND FUTURE WORK

ECHELON is developed as a multi-level embedded strategy

to evolve transcendental functions as a truncated fractional

power series of the independent variable. Development of this

approach on a highly-constrained reconfigurable fabric

recognizes the need to achieve powerful computational

capabilities while constraining storage requirements compared

to a look-up-table approach to correlate (input, output) pairs.

ECHELON was instrumental in approximating functions to

the targeted 10% error limit for most of the functions evolved.

Further improvements in accuracy for existing schemes and

powers may be achieved using evolution with a larger number

of generations, bigger populations, and improved mutation

schemes. It is also expected that with a larger chromosome for

CPGA and hence more power terms in the calculation, greater

accuracies may be realizable albeit at the cost of some

computation time while still attaining speedup for complex

functions over other implementations.

The results library by ECHELON may be used as a

configuration store with minimal memory overhead for

chromosomes of different computational circuits evolved to

perform rapid computations of functions with increasing levels

of complexity. Significant speedup in performance is achieved

using ECHELON in comparison with standard approaches to

perform similar computations, as shown in Table IV, and a

directly proportional relationship between speedup and

complexity makes this approach more promising for

computation and analysis of complex datasets. Memoization

techniques similar to [20] may be used for specific data ranges

which require further speedups. Within the device limits,

ECHELON realizes a promising mixed-signal approach

towards decoupling mathematical complexity from

computation running time.

ACKNOWLEDGEMENTS

The authors wish to thank the reviewers for constructive

suggestions and Sindhu Muttineni for editorial assistance.

REFERENCES

[1] P. Hasler and D.V. Anderson, “Cooperative Analog-Digital Signal
Processing,” IEEE Int’l Conference on Acoustics, Speech, and Signal

Processing (ICASSP), vol.4, pp. IV-3972 - IV-3975, May 13-17, 2002.

[2] H. Tabkhi, R. Bushey, G. Schirner, “Function-Level Processor (FLP): A
High Performance, Minimal Bandwidth, Low Power Architecture for

Market-Oriented MPSoCs,” IEEE ,Embedded Systems Letters, vol.6,

no.4, pp. 65-68, Dec. 2014.
[3] S.D Pyle, V. Thangavel, S. M. Williams, R. F. DeMara, “Self-Scaling

Evolution of analog computation circuits with digital accuracy

refinement,” in Adaptive Hardware and Systems (AHS), 2015 NASA/ESA
Conference on , vol., no., pp.1-8, 15-18 June 2015.

[4] V. Thangavel, “Cascaded Digital Refinement for Intrinsic Evolvable

Hardware,” M.S. thesis, Dept. Elec. Eng. and Comp. Sci., Univ. of Central
Fl., Orlando, FL, USA, 2015.

[5] N. Imran, R. F. DeMara, J. Lee, and J. Huang, “Self-Adapting Resource

Escalation for Resilient Signal Processing Architectures,” Journal of
Signal Processing Systems, Volume 77, Issue 3, pp. 257 – 280, July 2013.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

[6] R. S. Oreifej, R. N. Al-Haddad, H. Tan, R. F. DeMara, “Layered

Approach To Intrinsic Evolvable Hardware Using Direct Bitstream
Manipulation Of Virtex II Pro Device,” in Proceedings of the 17th

International Conference On Field Programmable Logic And

Applications (FPL'07), Amsterdam, Netherlands, August 27 – 29, 2007.
[7] Kirner, Raimund, Markus Grössing, and Peter Puschner, “Comparing

WCET and resource demands of trigonometric functions implemented as

iterative calculations vs. table-lookup,” In Proceedings of the Sixth
International Workshop on Worst-Case Execution Time Analysis

(WCET'06), Dagstuhl, Germany, 2006.

[8] Meher, Pramod K., et al., “50 years of CORDIC: Algorithms,
architectures, and applications,” IEEE Transactions on Circuits and

Systems I: Regular Papers, 56.9 (2009): 1893-1907.

[9] S. Kazadi, Y. Qi, I. Park, N. Huang, P. Hwu, B. Kwan, W. Lue, and H.
Li, “Insufficiency of piecewise evolution,” in Proc. 3rd NASA/DoD

Workshop on Evolvable Hardware, pp. 223–231, Los Alamitos, CA, July

12-14, 2001.
[10] S. Ando, M. Ishizuka, and H. Iba, “Evolving analog circuits by variable

length chromosomes,” in Advances in Evolutionary Computing, Ashish

Ghosh and Shigeyoshi Tsutsui, Eds., Springer-Verlag, pp. 643-662.

[11] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware: past,

present and the path to a promising future,” Genetic Programming and

Evolvable Machines, vol. 12, no. 3, 2011. pp. 183-215.
[12] M. Mitchell, S. Forrest, and J. Holland, “The Royal Road for Genetic

Algorithms: Fitness landscapes and GA performance,” Proc. of the First

European Conference on Artificial Life. Paris, France, Dec. 11 – 13, 1991.
[13] A. Poteaux and M. Rybowicz, “Improving Complexity Bounds for the

Computation of Puiseux Series over Finite Fields,” in Proc. of ACM
International Symposium on Symbolic and Algebraic

Computation (ISSAC -15), pp. 299-306, Bath, UK. July 6-9, 2015.

[14] R. Walker, “Algebraic curves,” Princeton, 1950.
[15] PSoC 5LP Architecture TRM, Cypress Semiconductor, San Jose, CA,

2014, pp. 299.

[16] PSoC 5LP Registers TRM, Cypress Semiconductor, San Jose, CA, 2014,
pp. 299.

[17] Koren, Israel, and Ofra Zinaty. “Evaluating elementary functions in a

numerical coprocessor based on rational approximations,” IEEE
Transactions on Computers, 39.8 (1990): 1030-1037.

[18] Wong, Weng-Fai, and Eiichi Goto, “Fast evaluation of the elementary

functions in single precision," IEEE Transactions on Computers, 44.3
(1995): 453-457.

[19] Ukil, Abhisek, Vishal H. Shah, and Bernhard Deck. "Fast computation of

arctangent functions for embedded applications: A comparative analysis,"
In Proceedings of 2011 IEEE International Symposium on Industrial

Electronics (ISIE), IEEE, 2011.

[20] A. Suresh, B. N. Swamy, E. Rohou, and A. Seznec, “Intercepting
Functions for Memoization: A Case Study Using Transcendental

Functions,” ACM Trans. Archit. Code Optim. 12, 2, Art. 18, June 2015.

 Ronald F. DeMara received the Ph.D.
degree in Computer Engineering from the University of
Southern California in 1992. Since 1993, he has been a full-time
faculty member at the University of Central Florida where he is
a Professor and Computer Engineering Program Coordinator.
His research interests are in Computer Architecture with
emphasis on Reconfigurable Logic, Evolvable Hardware, and
Emerging Computing Devices, on which he has published 175
articles. He is a Senior Member of IEEE and has served on the
Editorial Boards of IEEE Transactions on VLSI Systems, the
Journal of Circuits, Systems, and Computers, the journal
Microprocessors and Microsystems, and as Associate Guest
Editor of ACM Transactions on Embedded Systems, on various
conference program committees, and he is currently an
Associate Editor of IEEE Transactions on Computers. He
received the Joseph M. Bidenbach Outstanding Engineering
Educator Award from IEEE in 2008.

 Zi-Xia Song received her Ph.D. degree
from Georgia Institute of Technology in Algorithms,
Combinatorics and Optimization in 2004, under the supervision
of Robin Thomas. She then spent one year at The Ohio State
University as a Zassenhaus Assistant Professor. Since 2005,
she has been a full-time faculty at the University of Central
Florida. Her research interests are in Graph Theory,
Combinatorics, Optimization and Algorithms. Her current
interest is mainly in Structural Graph Theory, Well-quasi-
ordering, Graph Colorings, and Degree Sequences of Graphs.

 Vignesh Thangavel received the B.E.
(Hons.) degree in Electrical and Electronics Engineering in 2013
from the Birla Institute of Technology and Sciences, Pilani,
India. He received his M.S. degree in Electrical Engineering in
May 2015 from the University of Central Florida, Orlando,
Florida, USA. His research interests include Adaptive Computer
Architectures & Evolvable Hardware, Embedded Systems, and
FPGA Design. His co-authored research work on hybrid analog
& digital adaptive design received the Best Design Paper award
at the 2015 NASA/ESA Conference on Adaptive Hardware and
Systems.

