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Abstract—Mixed-signal SoC devices offer single-chip solutions, 

but face challenges of hardware-software co-design optimization, 

device signal range constraints and limited precision. These issues 

are addressed by developing a multi-level evolutionary approach 

to realize complex computational circuits called ECHELON, or 

Embedded-Cascaded Hierarchically Evolved Logic Output 

Networks.  ECHELON utilizes analog evolved building blocks and 

refines their output using digital fabric to compose power series 

expansions of transcendental functions which are all routed under 

intrinsic control on a Field Programmable SoC.  The result for 

evolution of seven different powers of the independent variable is 

a reduction of 31.24% in the overall error as compared to the 

analog circuits that produce the raw inputs to a Differential Digital 

Correction phase.  Computation blocks developed on a Cypress 

PSoC-5LP mixed signal SoC reduced error in the final 

mathematical approximation to the range of 40mV-150mV. In 

doing so, speedups of roughly 1.4-fold to 6.6-fold with an average 

of 2.72-fold reduction in function execution times were attained. 

Specifically, this approach achieved a 41.7-fold reduction in error 

with respect to the largest power of the independent variable used 

as an input to compute an erf(x) function.  

 
Index Terms—Programmable System on Chip (PSoC), Power 

Series, Genetic Algorithm, Programmable Logic Device. 

I. INTRODUCTION  

ooperative analog-digital signal processing techniques 

outlined in [1] have recently gained recognition for their 

ability to address problems in both domains by drawing out 

their complementary computational characteristics. As depicted 

in Fig.1, the advent of the SoC era is characterized by embedded 

computing architectures with support to perform a wide range 

of computations, autonomously under real-time constraints. 

SoC architectures addressed in this paper utilize a 

heterogeneous fabric of mixed-signal based circuitry along with 

dedicated Computing Elements (CEs) realized from the more 

generic analog and digital subsystems. SoCs face challenges of 

sparser reconfigurable fabrics, limited memory capacities, and 

need for area-efficient design. On the other hand, they offer the 

mixed-signal advantage where analog computations manipulate 

data in continuous ranges very cost-effectively and interface 

well with real world data, while digital computations offer great 

scalability in performing accurate computations. These CEs are 

operationally distinct from the more specially designed 

accelerators and coprocessors that perform special operations 

such as error detection and correction, cryptographic functions, 

audio/video codecs, which require ASIC design methodology 

and cannot be modified readily at runtime. The CEs developed 

herein utilize reconfigurable analog and digital fabric 

components only and are driven by the rationale of relying on 

the underlying adaptive algorithm developed in this work to 

perform various mathematically intensive computations while 

minimizing the additional hardware required. The specific 

objectives herein, are to autonomously organize these 

heterogeneous resources to attain custom CEs for a range of 

transcendental mathematical functions with tunable accuracies. 

Contemporary high performance embedded computing 

applications rely on heterogeneous multiprocessor SoC 

(MPSoCs) utilizing specialized units and accelerators for 

realization of different mathematical functions.  In response, 

Tabkhi, et al., [2] recognize the need for simpler mechanisms 

to avoid instruction bandwidth and memory bottlenecks 

resulting from Hardware Accelerators and Coarse Grain 

Reconfigurable Architectures. They propose the addition of 

Function-Level Processor (FLP) instead, requiring a separate 

Functional Set Architecture and extra buffers/cache per stage. 

Such specialized FLPs realize complex computations through 

“functional wiring” of elements designed in hardware. 

However, such approaches can add overheads to design time 

effort and execution speed, which ECHELON seeks to avoid. 
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Fig. 1. Meeting mixed-signal challenges with ECHELON. 
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II. ECHELON AND RELATED WORK 

A time and area sparing approach called ECHELON or 

Embedded-Cascaded Hierarchically-Evolved Logic Output 

Network, is developed herein, which computes special 

mathematical functions by cascading incremental functionality 

of reconfigurable analog and digital blocks. ECHELON relies 

on evolutionary algorithms to search the design space based on 

the intrinsic switching behavior of the target circuit. This 

method to realize CEs extends the work done in [3] and [4] to 

exploit the interaction between general purpose analog and 

digital reconfigurable fabrics under the control of an embedded 

ARM core. The analog computation engine evolves analog 

reconfigurable fabric composed of switched capacitor op-amp 

blocks which may be to realize various amplifier, mixer and 

modulator topologies. This circuit produces analog signals 

roughly approximating the mathematical function desired and 

performs intelligent operations with self-scaling genetic 

algorithm (SSGA) to compress outputs beyond the device ADC 

range. It realizes a more sophisticated elaboration of hybrid 

analog and digital computation identified in [3] whereby an 

unrefined analog GA evolves a coarse solution in a narrow 

voltage range. Next, the output is scaled to allow a more 

computationally-tractable range. The entire set of operations 

performed up-to this stage is referred to here as analog pre-

processing. This output is then converted to digital signals 

which are then adaptively refined by PLD-based digital fabric 

and combined in cascaded stages with digitally-evolved 

weights, using techniques for spatial self-adaptation of digital 

fabrics [5][6][9].  

Most recent embedded architectures rely on specialized 

hardware based computation units and a combination of lookup 

tables and series expansions to improve accuracy. These 

techniques typically consume extra power and may increase 

computation time to produce an arbitrary level of accuracy 

determined at design time for the hardware. Work done in [7] 

analyzes Worst Case Execution Time (WCET) and resource 

demands for various iterative and lookup table based methods, 

concluding that iterative schemes based on power series can 

provide a better choice for resource constrained hardware, but 

naturally reduce accuracy. On the other hand, pure software-

based implementations of iterative techniques such as CORDIC 

require minimal hardware but large computation times as 

elaborated in [8]. Table I indicates some major research whose 

key ideas were useful in formulating the approach developed 

here. ECHELON extends the idea of decomposing a single 

complex problem into viable and simple connected parts as 

outlined by Kazadi [9], and others. It uses multi-stage evolution 

popularized by Ando in [10] with increased pressure on the last 

stage and deploys the divide-and-conquer strategy outlined by 

Haddow in [11] to simplify fitness evaluations in each stage. 

Finally, it combines them at the finest granularity as suggested 

in work done by Mitchell in [12] on Royal Road functions.  

Herein, the realization of specialized functions as a 

mathematical power series occurs by evolving the constituent 

powers with analog pre-processing followed by digital 

refinement to serve as universal building blocks. As depicted in 

the lower right corner of Fig. 1, these are combined to leverage 

cumulative error to improve accuracy.  

Research contributions of this work include: 

1. optimization of digital reconfigurable logic fabrics 

capable of tuning analog circuit outputs for mathematical 

computations, 

2. adaptive prediction of power-series coefficients via 

dynamic allocation of programmable logic resources, and 

3. an approach to partially decouple the computational 

complexity from sophistication of the mathematical 

function being expressed. 

III. PUISEUX SERIES AND COMPUTATIONAL COMPLEXITY 

Power series based approaches are frequently used to 

approximate and compute functions to arbitrary accuracies 

around a particular point. They usually involve positive, 

integral powers of the independent variable. Puiseux or 

Newton-Puiseux series are a generalization of power series 

allowing for fractional (and negative) powers of the 

independent variable [13]. Mathematically speaking, it is well-

known that any polynomial equation f(x,y)=0 has degy(f) zeros 

being Puiseux series in x, i.e., 𝑦(𝑥) = ∑ (yk ×x𝑘/𝑛)∞
k=k0

, for 

suitable integers n≥1, k0, and the coefficients yk from an 

algebraically closed field, where degy(f) is the highest degree of 

y in f. Usually, Puiseux series expansions are used to describe 

the behavior of a curve near singularities with mathematically 

elaborate techniques to compute the corresponding coefficients. 

Another popular approach to approximating functions to better 

accuracies, albeit at the cost of greater computation time and 

added complexity, is known to be that of the computation of 

Padé approximants, which are rational functions whose power 

series agree with the Taylor series of the function being 

approximated up to a certain number of terms. The different 

approaches to mathematically approximate a curve at a given 

point, are elaborated in [14].  

While power series are not new to numerical computational 

techniques, the use of Puiseux series has rarely been attempted 

in embedded computations due to the need to determine 

coefficients and associated complexities. Typically 

transcendental functions such as trigonometric, exponential and 

hyperbolic functions and their combinations are 

computationally more expensive, requiring significantly more 

TABLE I 

 MOTIVATION FOR ECHELON AND COMPARISON. 

Researcher/Name of 
Work Done 

EA 
Type 

Major Contributing 
Idea 

Incorporation in Current 
Work 

 
Ando 2003 [10] 

 
Extrinsic 

 

Multi-stage evolution 
with increasing 

evolutionary pressure 

Cascaded stages for 
evolution of powers and 
pressure on coefficient 

prediction  
 

Kazadi 2001 [9] 

 

Extrinsic 
Piece-wise evolution 

of simple parts 
Evolution of mathematical 

building blocks  

 
Haddow 2011 [11] 

 
Extrinsic 

Divide-and-conquer 
strategy to simplify 
fitness evaluation 

 

Separate fitness functions 
for each component 

 

Mitchell 1992 [12] 
 

Extrinsic 
Smallest evolving 
blocks preserve 
genetic diversity 

Each power and its 
associated coefficient 
evolved independently 

 

ECHELON 
 

Intrinsic 

 

Range Adaptive 
Evolution 

 

N/A 
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clock cycles than simpler arithmetic operations, and are 

implemented with a combination of lookup tables and 

interpolation technique. Composition of such functions are 

prohibitively costly requiring even more time and resources in 

real-time systems. Such interpolation techniques achieve high 

accuracies at each point of interest, but require several iterations 

and hence more computation to achieve the same for a large 

number of points over a range while also requiring several 

lookup table memory accesses. They may increase computation 

time to achieve the desired accuracy or better in many 

computations.  

In this work, a Puiseux series inspired approach is extended 

to quickly approximate a function to an acceptable error 

tolerance over an entire input range as determined by the device 

characteristics. The number of powers used in the 

approximation usually depends on the accuracy desired at a 

given point of interest, “near” which the function is being 

approximated. Usually, increasing the number of powers 

involved can improve the approximation that is obtained. 

However, calculation of greater number of powers takes more 

computational resources and/or time. When the same is 

extended to several points on a relatively wide range, the 

computation time required increases rapidly. In order to 

compute an expansion, the powers used are to be computed 

accurately followed by storage and retrieval of predetermined 

coefficients. However, if the powers computed are subject to 

several errors, the coefficients no longer serve their purpose and 

determination of coefficients becomes a non-trivial concern. 

Intuitively, a combination of convex and concave curves is 

expected to better balance the approximation process and hence 

eight powers namely x(1/4), x(1/3), x(1/2), x0, x, x2, x3 and x4 have 

been used largely in this work. Evolution of x (1/5), x (1/6) have 

also been attempted and x (1/5) was used to replace x4 in some 

cases. This selection of powers is unconventional and doesn’t 

have a set of pre-determined coefficients to guide the process. 

Herein, we consider a running example of evaluation of sin(x) 

over the desired range approximated using truncated Puiseux 

series using a hybrid analog and digital reconfigurable fabric.  

IV. ECHELON TECHNIQUE ON PSOC 

Cypress Semiconductors PSoC devices versions 3 and higher 

contain a fabric of Configurable Analog Blocks (CABs), 

Universal Digital Blocks (UDBs),  ARM Cortex-M cores, 

flexible GPIOs and serial communication blocks and 

peripherals for interfacing as outlined in [15] and [16]. The 

PSoC 5LP is a low power model of Cypress’ most recent design 

with 32-bit ARM Cortex-M3, 256 KB flash and 64 KB SRAM 

as used in developing and testing ECHELON. Different 

processing stages of ECHELON are shown in Fig. 2. The 

analog evolution engine detailed in [3] produces 

approximations that serve as pre-processed inputs to the digital 

fabric, but exhibit low accuracy and precision across the input 

range. The device ADC has a range of 0-4.08V. Starting from 

0V, there are 256 data points or values of the independent 

variable x, increasing in steps of 0.016V. Differential Digital 

Correction (DDC) evolves PLDs to approximate various 

powers of x. The Coefficient Prediction (CP) stage evolves 

coefficients of the powers of x indicated to approximate the 

function sought to the desired accuracy. In this work, a tunable 

tradeoff of execution time versus accuracy is sought.  Accuracy 

is considered to be valuable over the entire device range. Thus, 

the metric for accuracy selected is the summation of absolute 

error of the computed output using increments of 16 mV over 

the operating range, which is denoted herein as the Total Error. 

A design goal of 10 percent Total Error is sought and up to 15 

percent Total Error is considered acceptable. 

For instance, to approximate sin(x), 8 different powers are 

evolved first and then the corresponding coefficients are 

determined corresponding to each power from fourth root to 

fourth power. To evolve the mixed signal circuit for each 

power, analog evolution is first performed in order to obtain a 

rough approximation, where the output may saturate if it is 

beyond the device limit of 4.08V. This is followed by scaled 

analog evolution to handle and compress outputs beyond device 

limit. Consider the evolution of x3. As shown in Fig. 3, 

uncompensated analog evolution produces unsaturated outputs 

for x where f(x) ≤ 4.08V. The outputs for the values of x larger 

than this saturate at 4.08V as indicated by the horizontal line in 

Fig. 3. Scaled Analog Evolution then proceeds to optimize 

saturated outputs beyond device range to produce a better 

approximation of x3. The maximum deviation of this 

approximation from the oracle is extracted. This is then 

followed by Differential Digital Correction which uses 

fractions of this maximum deviation to refine the output over 

the device range for x3 as in Fig. 4 and then proceeds to evolve 

 
Fig. 2. Schematic of ECHELON technique. The two stages of ECHELON are shown in blue and green colors, receiving analog pre-processed inputs. 
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other powers likewise. The frequencies of correction factors of 

different magnitudes produced on-demand for x3 in different 

ranges are indicated in blue in Fig. 4. The impact of these stages 

are as indicated in Fig. 3. This then proceeds to the Coefficient 

Prediction stage in order to evolve coefficients of the powers 

evolved, to approximate sin(x).  

The CP stage first considers issues of data overflow and 

hence implements range scaling to ensure that these coefficients 

are randomly initialized within appropriate value ranges. Once 

initialized, CP Genetic Algorithm (CPGA) performs fitness 

evaluation over 256 data points starting from 0 and incremented 

in steps of 0.016 for the independent variable x corresponding 

to the native range for analog pre-processed inputs. ECHELON 

can refine analog preprocessed data for any arbitrary range and 

then use the same to compute functions sought for those ranges. 

Evolution proceeds till the termination limit of 1,000 

generations and may also be configured to proceed until the 

desired accuracy is reached. Evolution starts with creation of a 

population of 80 random individuals, fitness evaluation and 

identification of elites. Binary tournament selection, crossover 

between one individual from the fitter half and another 

randomly selected from the population are then performed. The 

number of individuals replaced is set at 60, but can be varied.  

Mutation is performed on these individuals and the steps 

starting from fitness evaluation are repeated again. The best-

performing circuit configuration in each generation is retained 

without undergoing mutation. Once the termination condition 

is attained, the coefficients of the best fit individual are recorded 

and the function computed by this individual is evaluated 

against the originally-computed oracle to determine Total error. 

The corresponding execution time is recorded. 

After receiving the analog pre-processed inputs over the 

native data range from the analog evolution phase, digital 

refinement starts by application of DDC to these inputs. DDC 

constructs a Normalized Error Array (NEA), which contains 

fractions of the maximum error produced in the analog 

computation data. These elements are both positively and 

negatively valued to accommodate all possible errors and 

provide to correct them. The NEA containing correction factor 

elements called normalized differences, is indexed by D[i] at 

the i-th point, to realize the 8-bit output mapped to one of the 

256 values of correction factors for the corresponding data 

input. The DDC fitness is evaluated as: 

𝑓𝑜𝑟 𝑖 ∶=  0 𝑡𝑜 255 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 += | 𝑜𝑟𝑎𝑐𝑙𝑒[𝑖] − |(𝑜𝑢𝑡𝑎𝑛𝑎𝑙𝑜𝑔[𝑖] − 𝑁𝐸𝐴 [𝐷[𝑖]]) ||;   
 

This calculates Total Error across all data points for each 

individual and evolution proceeds to minimize the same.  

A. DDCGA Genome and Operation 

Each pair of PLDs belonging to the same PSoC Universal 

Digital Block (UDB) is encoded with the genome indicated in 

Fig. 5. The bits indicate which product terms are asserted in 

PLD’s AND arrays and OR arrays respectively as elaborated in 

[3]. The Differential Digital Correction GA (DDCGA) evolves 

the 4 PLDs or two UDBs in parallel to produce more accurate 

computations of different powers of the independent variable, 

x, through optimized use of correction factors to minimize Total 

Error as discussed above. Evolution proceeds in a cascade of 

stages, producing the output for each power of x desired. In this 

work, powers of x evolved include {x1/4, x1/3, x1/2, x0, x, x2, x3, 

x4} which were used in further computations. Other powers 

evolved include x1/5 and x1/6 from a different set of pre-

Fig. 3. Example of evolution of cube of independent variable and how 
analog and digital correction improve accuracy in respective regions of 

operation [3]. 

 
 

 
Fig. 4. Elements of the NEA or normalized differences appearing as 
fractions of the maximum analog error (above) and correction factors 

evolved (below) for each point on x3 indexed by D[i] by DDC. 

  
Fig. 5. Chromosome used in DDC. Each chromosome controls a pair of PLDs in a UDB 

and two such chromosomes are evolved in parallel [3]. 

16bits 32bits 32bits 32bits 32bits 32bits 32bits 32bits 32bits 16bits 16bits 16bits 16bits

AL AND array parameters OR array parameters

0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1

Active Lines(AL) in AND array AL in OR array

 
Fig. 6. Chromosome used in CP. Each coefficient C0 

through C7 is a 32-bit floating point value corresponding to 

the power of x indicated above it. The zeroth power term 

has a stabilizing effect on the computations [4]. 

x^1/4 x^1/3 x^1/2 1 x x^2 x^3 x^4

C0 C1 C2 C3 C4 C5 C6 C7
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processed inputs and some computations were attempted with 

them too. DDCGA is characterized by single-point crossover, 

binary tournament selection with a variable replacement rate 

typically around 60, elitism of two, bit mutation at 0.1% rate. 

Variable threshold parameters are used to ascertain stasis based 

on the difference between the average and best fitness. To 

mitigate stasis, 0.01% increment in mutation rate and hyper-

mutation at variable intervals are implemented.  

B. CPGA Genome and Operation 

Following evolution of powers of x in cascaded stages, 

Coefficient Prediction (CP) algorithm evolves coefficients for 

these powers to form a truncated Puiseux series of the function 

sought, for instance, sin(x). The genome for sin(x) is indicated 

in Fig. 6. Coefficients C0 through C7 are floating-point values. 

However, each is multiplied by the corresponding power of x to 

calculate the function at every evaluation point. Coefficient 

prediction involves an eight dimensional search space, and it is 

necessary to determine the largest allowable coefficient or 

range limit to prevent overflow in subsequent computations.  

To illustrate, consider the calculation of sin(x) where each 

power xk has been evaluated at every x:  

sin(x) = C0∙x(1/4) + C1∙x(1/3) + C2∙x(1/2) + C3 + C4∙x + C5∙x2 

+ C6∙x3 + C7∙x4 

For the above calculation, the sum of products at each x must 

be a value within the range of a 32-bit floating-point number. 

Range Scaling is performed in order to ensure that all 

coefficients have the same scaled range and that overflow does 

not occur in the sum of products computed. Coefficients are 

then initialized randomly within this scaled range. 

  Algorithm 1 defines the CGPA used to evolve coefficients to 

minimize the Total Error in the functional approximation 

constructed using the imperfect building blocks produced. 

Dynamic Range Adaptation technique reduces the range for 

random assignment of coefficients, which otherwise become 

intractable to conventional GA operators such as crossover and 

mutation. Crossover is implemented as exchange of 

coefficients about a point chosen randomly on the chromosome 

and entails binary tournament selection with a replacement rate 

of 60 per generation which could be varied as a parameter. 

Mutation is implemented in two versions denoted Q and S with 

the Mutation_Q performed at a rate of 0.1% as addition of a 

TABLE II: EVOLUTION OF COEFFICIENTS. 

Circuit Evolved 

Coefficients Evolved Error Speed

up 

(fold) x(1/4) x(1/3) x(1/2) x0 x x2 x3 x4 x(1/5) 
10 % 

(V) 
Total 

(V) 

Avg 

(mV) 

e(x)(Pa) 
Num 2.415 0.025 -0.041 0.227 0.150 0.063 0.161 0.152 NA 

366.4 195.37 763 0.938 
Den 0 0 0 1 0 0 0 -2.260 NA 

sin(x)(P2) 0.157 0.123 0.189 0.393 0.184 0.073 -0.063 NA 0.068 15.09 36.064 140 1.398 

log(x+1)(P2) 0.316 -0.222 0.405 -0.057 0.175 0 0 NA 0.041 26.18 10.485 40 1.670 

arctan(x)(P1) 0.183 -0.028 0.613 -0.218 0 0 0 0 NA 25.02 15.616 61 1.692 

sinh(x) 

(Pa) 

Num 0.436 0.199 0.561 -0.608 0.197 -0.168 0.128 0.072 180.1 
180.1 92.536 361 1.614 

Den 12205.30 20902.78 -9184.51 50845.21 12771.27 9145.81 35283.54 18047.67 NA 

arcsinh(x)(P2) -2.023 3.120 0 -0.182 0 0 0 NA -0.087 34.00 28.207 110 2.289 

erf(x)(P1) 0.263 1.180 -0.852 0.073 -0.046 0.160 -0.035 0.001 NA 22.02 27.444 107 2.926 

sinh(cos(sin(x)))

(P2) 
0.443 0.187 0 -0.055 0.129 0 0 NA -0.168 22.74 37.480 146 3.021 

sinh(cos(sin(x))) 

+ sin4(x) (P2) 
2.476 0 -1.578 0.992 -0.034 0.183 -0.035 NA 0.081 30.72 40.024 156 6.635 

Hyper-

mutation rate 

300 and 

slower 

300 or 

faster 

200 or 

slower 
NA 

200 or 

faster 

200 or 

faster 
150-200 100-150 100 - - - - 

Total (V) 4.059 5.247 6.703 NA 18.155 26.57 161.156 1146.01 12.71 - - - - 

10 % (V) 29.05 30.63 34.44 NA 52.22 142.32 436.37 1427.11 28.20 - - - - 

Average (mV) 15.9 20.4 26.1 NA 70.9 103.8 629.5 4476.60 49.6 - - - - 

(P1): Puiseux 1 scheme [x 1/4, x 1/3, x 1/2, x0, x, x2, x3, x4];  (P2):Puiseux 2 scheme [x 1/4, x 1/3, x 1/2, x0, x, x2, x3, x1/5]; (Pa): Pade scheme [(P1) Num / (P1) Den] 
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number between -4 and 4, while Mutation_S induces a sign 

inversion at the same rate randomly for 10 out of 80 individuals. 

To deal with potential stasis conditions, the mutation rate for 

Mutation_Q increases to 0.01% rate. Hypermutation replaces 

half of the population with new random individuals every 100 

iterations to mitigate stasis.  

The use of rational approximations or Padé approximants to 

compute elementary functions in a numerical coprocessor has 

been described in [17]. In this work, Padé approximant 

computations with x1/4, x1/3, x1/2, x0, x, x2, x3, x4 have also been 

attempted for different functions and are provided as a runtime 

selection. They have identical chromosome structure with one 

chromosome each for the numerator and denominator 

(represented with D in the end) evolved together with the 

quotient as the result. For instance for sin(x) we have: 

sin(x) = (C0∙x(1/4) + C1∙x(1/3) + C2∙x(1/2) + C3 + C4∙x + C5∙x2 

+ C6∙x3 + C7∙x4) / (C0D∙x(1/4) + C1D∙x(1/3) + C2D∙x(1/2) + C3D 

+ C4D∙x + C5D∙x2 + C6D∙x3 + C7D∙x4) 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

Following analog-processing, DDC was used to focus the 

effort during evolution on the powers {x1/4, x1/3, x1/2, x0, x, x2, x3, 

x4} one-by-one in a cascaded fashion to serve as building blocks 

for the next hierarchy of evolution. The results of their 

evolution have been indicated in Table III. The outputs 

generated exhibit significantly increased accuracy having Total 

Error well below 10%. Analog evolution produced 

approximations of each power, which were then refined using 

DDC as indicated. The Total Error for each case has been 

indicated with and without use of the hyper-mutation operator. 

Hyper-mutation helps improve accuracy for larger/integral 

powers, whereas for fractional powers evolution without hyper-

mutation performs better, since only minor refinements with 

DDC are required for very good results with the evolution of 

fractional powers as against larger powers where bigger error 

corrections are needed to achieve desired accuracy.  

The average error is reported as the Total Error divided by 

256, i.e., the total number of data points. The best case average 

errors for each power appear at the bottom of Table II. Apart 

from these, evolution of x1/5 and x1/6 were also attempted from a 

series of ones to serve as input instead of actual analog pre-

processed data, to demonstrate and evaluate the ability of DDC 

to evolve them independent of the analog stage. The results 

were less favorable than expected, but indicated accuracies well 

within the 10% limit. This approach proves to be viable for 

smaller fractional powers since their curves asymptotically 

approach the y=1 line over the device range. It is also to be 

noted that as integral powers get larger, their curves approach 

the x=1 line asymptotically. Since it is not possible to model 

the behavior of the latter, evolution of larger powers can’t be 

attempted independent of the analog stage. Their evolution with 

TABLE III 

EVOLUTION OF POWERS  

Comp. 

Circuit 

Evolved 

(Power 

of x) 

Analog 

Error (V) 

DDC Error  Percent Improvement 

Without 

Hyp. (V) 

With 

Hyp. (V) 

Without 

Hyp. (%) 

With 

Hyp. (%) 

Fourth 

Root 
6.734 4.649 4.059 31 39 

Cube 

Root 
5.984 5.582 5.247 6.7 12.3 

Square 

Root 
8.137 6.703 7.475 17.6 8.1 

First 

Power 
180.614 18.155 - - 89.9 

Square 35.233 - 26.574 - 24.6 

Cube 296.306 196.851 166.953 33.5 43.6 

Fourth 

Power 
1696.815 1552.985 1299.830 8.4 23.3 

 

TABLE IV 

EXECUTION TIME DATA  

Times  
Total 

Core 

time 

(ms) 

Core time 

per 

point(µs) 

Total 

ECHELON 

time (ms) 

ECHELON 

time per 

point (µs) 

Speedup 

(fold) 

Circuit 

Evolved 

sin(x) 59.327 231.74 42.409 165.66 1.398 

log(x+1) 70.040 273.59 41.916 163.73 1.670 

arctan(x) 70.106 273.85 42.452 165.83 1.692 

sinh(x) 87.022 339.92 40.873 159.66 2.129 

arcsinh(x) 93.583 365.55 40.869 159.64 2.289 

erf(x) 124.835 487.63 42.661 166.64 2.926 

sinh(cos(sin

(x))) 
138.314 540.28 41.318 161.40 3.021 

sinh(sin(cos

(x))) + 

sin4(x) 

278.830 1089.17 42.023 164.15 6.635 

Average 115.25 450.21 41.815 163.33 2.72 

 

 

 
Fig. 8. Evolution of coefficients approximating erf(x) as a Puiseux series 
in x (1/4), x (1/3), x (1/2), x0, x, x2, x3 and x4. 

 
Fig. 7. Evolution of coefficients approximating sin(x) as a Puiseux series in 
x (1/4), x (1/3), x (1/2), x0, x, x2, x3 and x (1/5). 
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analog stage produced results with much error and hence they 

were avoided from being used in CPGA.  

Powers evolved in cascaded DDC stages were used to 

approximate transcendental functions as a truncated Puiseux 

series of powers of x. The result for evolution of sin(x) is 

indicated in Fig. 7. The red line indicates the average fitness and 

the faint blue line at the very bottom indicates the Total Error 

for the best fit individual, which is the only circuit retained in 

each generation and thus maximizes the accuracy of the 

operational circuit.  Initially, the powers used were symmetrical 

from the fourth root to fourth power and is indicated as the 

Puiseux 1 Scheme (P1) in Table II. This resulted in a fitness of 

63.232V in total or 247 mV on average for sin(x). The Puiseux 

2 Scheme (P2) in Table II, involved replacing fourth power with 

fifth root evolved, thereby skewing the symmetry towards 

concave (fractional) powers and eliminating the power with 

most error (fourth power) in it. Interestingly, this reduced the 

Total Error to 36.064V and the average error to 140mV. Thus, 

starting out from a practically unbounded error, CPGA reduces 

the average error to about 140 mV in 1,000 iterations.  

Several different types of functions were evolved and the 

corresponding coefficients are indicated in Table II. Work done 

in [18] estimates resource and time requirements for 

computation of elementary functions using a combination of 

lookup tables and dedicated adder stages for a similar range of 

x. In contrast, ECHELON completely avoids the need for 

individual lookup tables for each function and encapsulates the 

required functionality in a much smaller chromosome in an 

actual implementation. As can be seen, CPGA leverages errors 

in the powers to produce functions that have much less Total 

Error than the constituting powers do. In this context, it is to be 

noted that the coefficients evolved are applicable to the powers 

evolved only with their native errors and within the device 

range for which evolution was performed. On computing the 

function with the same coefficients while using error free 

powers, it was observed that the Total Error was larger. Hence 

ECHELON can adaptively compose building blocks using a set 

of hardware resources to compute corresponding coefficients 

which best optimize the output. 

Fig. 8 indicates the coefficients evolved for the sigmoid error 

function or erf(x) which has an ARM core execution time of 

124.835ms, while ECHELON achieves the same computation 

in 42.661ms. The execution time here refers to the time taken 

by the function to obtain and the return the result, while 

evolution time refers to the time spent in evolving the circuit 

that evaluates the function being called. The execution time 

data for different functions evolved have been tabulated in 

Table IV. The improvement in execution times due to 

ECHELON over those for standard library based 

implementations ranges from speedups of 1.4-fold to 6.6-fold 

and on average, is of the order of 2.72-fold for the functions 

evolved. Also it can be observed that the computation times for 

functions over all ranges of complexity are essentially the same 

in ECHELON as the only computations involved are simple 

multiplication, addition and subtraction operations. The only 

differentiating feature required to accommodate higher 

complexity functions is the utilization of adequate 

chromosomes to denote the coefficients, as a viable alternative 

to lookup tables.  

The main advantage of utilizing ECHELON is seen during 

computation of more complex composite functions as greater 

speedups are achieved. The ARM core is expected to be 

operating at the bus clock frequency of 24 MHz. However, it is 

to be noted that the large computation times reported here are 

owing to several factors, including the threads active in it while 

executing the code, memory access times for stored results and 

      
 

      
Fig. 9. ECHELON evolved circuits (blue) approximating arctan(x), sin(x), log(1+x) and sinh(x) as a Puiseux series in x (1/4), x (1/3), x (1/2), x0, x, x2, x3  x4/ x(1/5) 
or the Pade approximant with the corresponding ideal curves (red) indicating relative performance of ECHELON 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

arctan(x)

Evolved Ideal

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

sin(x)
Evolved Ideal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

log(x+1)

Evolved Ideal

-5

0

5

10

15

20

25

30

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

sinh(x)

Evolved Ideal



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

peripheral data transfer speed, which determines the actual 

number of clock cycles needed. The computation times were 

measured using in-built PSoC timers with 24-bit resolution 

counting down, set to count to a maximum range for 

measurement of up to one second. Execution times are a relative 

measure of performance of the two approaches to perform the 

same computation.   

Figure 9 indicates some circuits evolved using ECHELON 

within each category of transcendental functions targeted. For 

arctan(x) and log(x+1) functions, CPGA performed much 

better than others, reducing average error to 61mV and 40mV 

respectively over the device range. Work done in [19] compares 

prevailing formulae and implementations to compute the 

arctan(x) function with a lookup table based approach and 

argues in favor of the latter for an ARM based platform. 

Comparison of ECHELON with the same indicates that 

ECHELON achieves good results for a larger number of points 

at a much slower frequency and achieves greater speedups 

against the reference platform without the need for a lookup 

table. Initially, all functions were computed with the (P1) 

scheme of constituting powers and it was noted that the Total 

Errors in final circuits were larger than the 15% error limit for 

most functions. With evolution of the fifth root, the same was 

used to replace fourth power and much better performance was 

observed. Most of the functions attempted stayed within the 

15% error limit and quite a few stayed within the 10% limit 

targeted, three of which are indicated in Fig. 9. Unfortunately, 

sin(x) exceeded the 15% limit for itself, but this is because the 

output range of sin(x) is relatively small and hence is more 

challenging to evolve to a high degree of accuracy.  

For rapidly increasing functions such as sinh(x) and e(x), (P1) 

and (P2) schemes failed to produce results within 10% error, 

but still managed to stay close to or within 15%. However, Padé 

approximant scheme (Pa) produced a much better 

approximation, at the cost of increased computation time owing 

to division operations and computation with a greater number 

of coefficients. Execution time data for sinh(x) indicates 

performance for approximation calculated with (P2) scheme 

that produced a Total Error of 101V versus 92V as indicated in 

Table II. The computation time with (Pa) scheme was found to 

be 20-25% slower than with (P2) or (P1) schemes in general.  

Functions evolved spanned three categories ranging from 

concave (slowly increasing), convex (rapidly increasing) and 

oscillatory (increasing and decreasing). Deeply concave 

functions benefit more with (P2) scheme, meanwhile shallow 

concave functions perform well using the (P1) scheme and 

convex functions may perform best from (Pa) scheme. 

Oscillatory functions were hardest to evolve to within 10% 

error and they can benefit from balanced schemes with very 

small coefficients. Illustratively, moderately concave arctan(x) 

function performed best with (P1) scheme to attain a Total Error 

of 15.616V, as against (P2) and (Pa) schemes resulting in Total 

Errors of 21.507V and 58.378V respectively. Excessive use of 

very small (concave) powers of x doesn’t necessarily improve 

the accuracy of concave functions. When evolution for 

arctan(x) was attempted with {x1/4, x1/3, x1/2, x0, x, x2, x1/5, x1/6} 

the Total Error was 126V approximately. The zeroth power 

term proved to be of significance in evolution, adding or 

subtracting a required bias adjustment.  

VI. CONCLUSION AND FUTURE WORK 

ECHELON is developed as a multi-level embedded strategy 

to evolve transcendental functions as a truncated fractional 

power series of the independent variable. Development of this 

approach on a highly-constrained reconfigurable fabric 

recognizes the need to achieve powerful computational 

capabilities while constraining storage requirements compared 

to a look-up-table approach to correlate (input, output) pairs.  

ECHELON was instrumental in approximating functions to 

the targeted 10% error limit for most of the functions evolved. 

Further improvements in accuracy for existing schemes and 

powers may be achieved using evolution with a larger number 

of generations, bigger populations, and improved mutation 

schemes. It is also expected that with a larger chromosome for 

CPGA and hence more power terms in the calculation, greater 

accuracies may be realizable albeit at the cost of some 

computation time while still attaining speedup for complex 

functions over other implementations.  

The results library by ECHELON may be used as a 

configuration store with minimal memory overhead for 

chromosomes of different computational circuits evolved to 

perform rapid computations of functions with increasing levels 

of complexity. Significant speedup in performance is achieved 

using ECHELON in comparison with standard approaches to 

perform similar computations, as shown in Table IV, and a 

directly proportional relationship between speedup and 

complexity makes this approach more promising for 

computation and analysis of complex datasets. Memoization 

techniques similar to [20] may be used for specific data ranges 

which require further speedups. Within the device limits, 

ECHELON realizes a promising mixed-signal approach 

towards decoupling mathematical complexity from 

computation running time. 
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