
IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 1

ApGAN: Approximate GAN for Robust Low
Energy Learning from Imprecise Components

Arman Roohi, Student Member, IEEE, Shadi Sheikhfaal, Student Member, IEEE, Shaahin Angizi, Student
Member, IEEE, Deliang Fan, Member, IEEE, and Ronald F DeMara, Senior Member, IEEE

Abstract—A Generative Adversarial Network (GAN) is an adversarial learning approach which empowers conventional deep learning
methods by alleviating the demands of massive labeled datasets. However, GAN training can be computationally-intensive limiting its
feasibility in resource-limited edge devices. In this paper, we propose an approximate GAN (ApGAN) for accelerating GANs from both
algorithm and hardware implementation perspectives. First, inspired by the binary pattern feature extraction method along with
binarized representation entropy, the existing Deep Convolutional GAN (DCGAN) algorithm is modified by binarizing the weights for a
specific portion of layers within both the generator and discriminator models. Further reduction in storage and computation resources is
achieved by leveraging a novel hardware-configurable in-memory addition scheme, which can operate in the accurate and approximate
modes. Finally, a memristor-based processing-in-memory accelerator for ApGAN is developed. The performance of the ApGAN
accelerator on different data-sets such as Fashion-MNIST, CIFAR-10, STL-10, and celeb-A is evaluated and compared with recent
GAN accelerator designs. With almost the same Inception Score (IS) to the baseline GAN, the ApGAN accelerator can increase the
energy-efficiency by ∼28.6× achieving 35-fold speedup compared with a baseline GPU platform. Additionally, it shows 2.5× and 5.8×
higher energy-efficiency and speedup over CMOS-ASIC accelerator subject to an 11% reduction in IS.

Index Terms—Generative adversarial network, in-memory processing platform, neural network acceleration, hardware mapping.

F

1 INTRODUCTION

R ECENTLY, deep Convolutional Neural Networks
(CNNs) [1] have shown impressive performance for

computer vision, e.g. image recognition tasks, achieving
close to human-level perception rates. These neural network
models are usually trained using a supervised approach,
which limits scalability due to the requirement for large-
scale labeled data-sets. The processing demands of high-
depth CNNs spanning hundreds of layers face serious chal-
lenges for their tractability in terms of memory and com-
putation resources and because of so-called “CNN power
and memory wall” phenomena, conventional processing plat-
forms such as CPU cannot perform this training step. This
has been motivating the development of alternative ap-
proaches in both SW/HW domains to improve conventional
CNN efficiency.

In algorithm-based approaches, use of quantizing pa-
rameters [2], and network binarization [3] have been
explored extensively to eliminate the need for inten-
sive Multiplication-And-Accumulate (MAC) operations. Re-
cently, utilizing weights with low bit-width and activations
reduces both model size and computing complexity [3].
For instance, performing bit-wise convolution between the
inputs and low bit-width weights has been demonstrated
in [3] by converting conventional MAC operations into
their corresponding AND-bitcount operations. Meanwhile
to improve computing efficiency of CNNs from the hard-
ware point of view extensive studies for developing deep
learning accelerators using GPUs and FPGAs have been re-
searched. However, within conventional isolated computing

• The authors are with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, 32816.
E-mail: aroohi@knights.ucf.edu

units and memory elements interconnected via buses, there
are serious challenges, such as limited memory bandwidth
channels, long memory access latency, significant congestion
at I/O chokepoints, and high leakage power consumption
[4], [5].

Processing-in-Memory (PIM) paradigms built on top
of non-volatile devices, such as Resistive Random Access
Memory (ReRAM) [6], [7], Magnetic RAM (MRAM) [8],
[9], and Phase Change Memory (PCM) [10] have been
introduced to address the aforementioned concerns, such
as memory bottlenecks and high leakage power dissipation
that has become increasingly prominent with technology
scaling. Due to the interesting features of Non-Volatile Mem-
ory (NVM) technology such as near-zero standby power,
high integration density, compatibility with CMOS fabri-
cation processes, and radiation-hardness, they offer some
promising attributes for in-memory processing implementa-
tions including the realization of logic functions along with
an inherent state-holding capability.

Due to the abovementioned challenges, semi-supervised
and unsupervised learning models, such as the Generative
Adversarial Network (GAN) algorithm [11], especially Deep
convolutional GANs (DCGANs) [12], are of increasing inter-
est. The DCGAN architecture is composed of two separate
models. A discriminator model (D) that estimates the prob-
ability of a given sample being legitimate or counterfeit. It
is trained as a detective to discern between fake samples
and real ones. Whereas, the other model, known as the
generator (G), samples a uniform random noise input and
also captures the real data distribution to generate images
as real as possible to deceive the discriminator, as shown
in Fig. 1. Basically, this realizes a zero-sum game between
the two models. Based on the GAN structure, two training

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 2

Fig. 1: GAN structure. D downsamples the input data, while
G is given a uniform noise distribution to generate fake
samples 1 . In 2 , fine-tuning of training is performed.

processes, i.e. consisting of four forward and four backward
passes are required, which are more sophisticated than CNN
training with one forward pass and one backward pass.
Therefore, implementing an efficient accelerator for GAN
using the existing designs for energy and area -constrained
IoT nodes, is vital but challenging.

In this paper, to make GAN suitable for resource-limited
edge devices, the advancements from both algorithm and
hardware architecture perspectives to efficiently accelerate
GAN training are deployed. The existing GAN algorithm
is modified by replacing the multiplications in convolution
layers in the generator (G) model and in the discriminator
(D) model, with less complex and more efficient subtraction
and addition. In summary, our major contributions in this
paper can be listed as follows:

1) We introduce a partial replacement approach which
can find the locations of layers in both G and D networks
to be quantized in a way to achieve the best performance,
a maximum number of quantized layers and lowest ac-
curacy loss. It can massively reduce the required storage
and computational resources in the inference paths with the
minimum performance degradation compared to the full-
precision model.

2) Further improvement in the performance efficiency
of systems such as energy and area reduction is achieved by
developing a new approximate arithmetic unit. To avoid un-
acceptable error in output behaviors a partial approximate
computing datapath consisting of a precise adder and an
approximate adder is developed.

3) We propose a PIM accelerator for GAN, namely
ApGAN, based on memristor computational sub-arrays and
ultra-low power activation function to efficiently accelerate
its training within the non-volatile memory. Moreover, we
present a pipeline computation optimization approach to
further enhance the training efficiency of ApGAN in hard-
ware level.

4) Finally, the evaluation of system accuracy in different
data precision and the system performance in speed and
energy are carried out. Applying steps 1 to 3 causes an
extensive reduction in energy and area as well, whereas an
acceptable accuracy is achieved. Our experimental results
show that it improves the energy-efficiency and speed by
∼21× and 35.5× speedup compared with GPU platform.

2 DCGAN REVIEW

Compared to conventional CNN topologies, realization of
Deep convolutional GAN (DCGAN) [12] implementations

have several constraints: a) the strided convolutions and
fractional-strided convolutions on D and G, respectively, are
utilized instead of the pooling layers; b) Although in the last
layer of both D and G models, Sigmoid and Tanh activations
are highly used, in the other layers of G and D models, ReLU
and LeakyReLU activations are utilized, respectively; and c)
batch normalization is leveraged on both D and G models
to stabilize the training process.

DCGANs are composed of two learning subnetworks,
a generator (G) as a deconvolutional neural network and
a discriminator (D) as a CNN. Usually, these are devel-
oped as Deep Neural Networks (DNNs), which are trained
simultaneously. Despite traditional unsupervised learning
techniques, in GAN, feature representations can be learned
from raw data, which results in higher accuracy. The gener-
ator learning model can be optimized to produce deceptive
samples to fool the discriminator, whereas the discriminator
learning model is trained in a way to distinguish the real
samples from the artificial ones. The entire process is similar
to a 2-player minimax game, which is expressed by:

minG maxDV (D,G) = Ex∼pdata(x)[log D(x)] +

Ez∼pz(z)[log
(
1− D(G(z))

)
]

(1)

where pdata(x) is the distribution of data and z is the noise
vector. By leveraging minibatch of data samples from D and
fake images from G, we minimize V (D,G) regarding G by
assuming fixed D and maximize it regarding elements of D
by assuming fixed G. Due to the nature of zero-sum game,
each of D and G models try to improve their performance,
finding a Nash equilibrium point [13], in a non-cooperative
manner, which in turn causes several issues like no guaran-
tee for convergence. Some of the most recent and promising
advancements in GAN training algorithms are Wasserstein
GAN (WGAN) [14], WGAN with weight clipping (WGAN-
CP) [15], and WGAN with gradient penalty (WGAN-GP)
[15] leveraging modified loss functions. WGAN algorithm
uses Wasserstein distance as a quantitative scheme to mea-
sure the distance between two probability distributions. Fur-
ther improvements can be achieved by limiting the trained
weights of D in a certain range in WGAN-CP and utilizing
gradient penalty in WGAN-GP training algorithms.

Although GAN, particularly DCGAN, can be considered
as a dominant algorithm for unsupervised learning tech-
nique, which is useful for self-learning IoT nodes [16], its
deconvolution/convolutional layers occupy the largest por-
tion of running time and consume significant computational
resources, which is crucial for IoT nodes. Therefore herein
we focus on developing an optimized in-memory acceler-
ator for both types of layers via algorithm and hardware
co-design approach.

3 APPROXIMATE GAN (APGAN) ARCHITECTURE

Figure 2 depicts the general architecture for our deep
convolutional-based Approximate GAN (ApGAN), which
consists of four deconvolution and four convolution layers
for generator (G) and discriminator (D), respectively. In this
section, first, the training procedure of ApGAN is analyzed
with respect to the partially-quantized layers. Afterwards,
we introduce the method of partial approximate computing
to further improvement at the cost of lower accuracy.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 3

Fig. 2: Approximate GAN system and its training loop from T1 to T8 .

3.1 ApGAN Training
Since discriminator units are developed similar to conven-
tional CNNs, all the proposed compression techniques such
as quantization and pruning can be applied in the same
way. However, due to the deconvolution process in G, local
to global mapping instead of the global to local mapping
process in D, leveraging these techniques have negative
effects on the developed compression methods. On the other
hand, as mentioned previously, GAN consumes massive
computational power for the training phase, in which two
distinct D and G models should be trained separately but
simultaneously.

Therefore, to enhance the efficiency of training and
facilitate hardware mapping, a novel training approach
including partially-quantized layers, i.e. wight binariza-
tion, and modification of the loss function presented in
[17], is introduced. Herein, both D and G networks are
trained using binarized weights (-1, +1), which results in
the elimination of the computationally expensive multi-
plication operations. ApGAN training includes a) forward
computation, computation phase, and b) backpropagation,
update phase. After producing a series of fake samples by
generator (T1), both real and fake samples are imported
into the D network(T2). Next, regarding the output layer
of D, the error is calculated based on the gradient of the loss
function (T3). Then T4 starts by feeding the error back into
D. After passing the error to each layer of D, the weight of
D are updated. Updating the G network starts by importing
artificial sample (T5) into D (T6). The loss for training G
is then computed (T7) and back-propagated to G (T8) to
update its weights.

The eight-step training process can be summarized into
three main phases, which are operating sequentially in
an iterative manner: I weight binarization and statistical
weight scaling, II binary weight-based inference to com-
pute the loss function and III back propagation to update
full precision weights. In I , current full precision weights
are binarized by only taking the sign function, expressed in
Equation 2 and then the corresponding scaling factor will
be computed based on the current statistical distribution of
full precision weight.

Forward: b = sgn(y) =

{
+1, ify ≥ 0
−1, otherwise

(2)

In this case, the sign function is non-convex, which re-
sults in the gradient becoming zero. Thus, a standard back-
propagation approach will be impractical due to the van-

ishing gradient problem. Several studies have performed to
make the sign function smooth by developing continuation
methods such as softsign [18] and appsign [19], in which
the original complex problem is split into several problems
that can be optimized easier by reducing the smoothing
rate steadily. Herein, due to similar observations between
appsign(.) and tanh(.) functions and also ease of implemen-
tation of tanh activation function in hardware perspective,
Equation 3 is considered in the forward path.

appsign(y) =

 +1, ify ≥ 0
y, if1 ≥ y ≥ −1
−1, ify ≤ −1

Forward: sign(y) = lim
β→∞

appsign (βy) ≈ lim
β→∞

tanh (βy)

(3)

In order to achieve a good binary representation, we
use the modified Binarized Representation Entropy (BRE)
regularization [17] to boost the variety of binary columns
in the low-dimensional layer [18]. The BRE is calculated
over a mini-batch of X = {x1, ..., xK} including two terms,
marginal entropy (ME), and modified activation correlation
(MAC) [17].

`ME =
1

d

d∑
j=1

(
1

K

K∑
k=1

(sk, j)

)2

`MAC =

N∑
j,k=1,j 6=k

αk,j∑N
j,k=1,j 6=k αk,j

.
|STf,j . Sf,k|

d

(4)

where sk is the activation vector of x ∈ X , while the
large parenthesis denotes the average of jth element of the
sk. Letter αk,j are weights regarding STf,j . Sf,k pairs, and
the sum in the denominator is defined as a normalization
constant. Therefore in II , the input mini-batch takes the
binarized model for inference and the loss function of the
discriminator will be calculated, which can be expressed as
follow:

L = λ1.`D + λ2.`ME + λ3.`MAC (5)

where, `D as adversarial loss is computed by Equation 1 and
λs (λ1-λ3) are regularization constants. Whereas training
D is performed by Equation 5, the G model is trained by
`G = ||Ex∼pdata(x)f(x)−Ex∼pz(z)f(G(z))||22, where the inter-
mediate layer of D, penultimate layer, defines f(x). In III ,
the weights will be updated during back-propagation and
stochastic gradient descent is utilized to minimize the loss.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 4

-1000 -500 0 500 1000
Degree of Redundancy

1

2

3

4

N
um

be
r

of
 la

ye
r

0

20

40

60

80

B
in

ar
iz

at
io

n
E

rr
or

A
G

A
D

be
G

be
D

Last layer of G and
first layer of D show the
maximum binarization
error.

Fig. 3: Number of layers and binarization error (be) w.r.t
degree of redundancy (ψ).

The next iteration starts to recompute the weight scaling
factor and binarize weights as described in step I .

To realize the possible layers to be quantized, in both
G and D networks, degree of redundancy parameter [20],
(ψ) ≈ (ci − hiwi), is utilized. This term is defined and
computed based on the input matrix dimension, where ci
is the number of channels, hi and wi are the number of
height and width, respectively. It has been proven that the
deconvolution layer with the negative value of ψ, which
indicates that the dimension of the input space is lower than
the dimension of the output space, is more susceptible to
binarization errors. The obtained results regarding ApGAN,
as shown in Fig. 3, depict deeper layers, i.e. layer 1 (4) in
D (G), generate the lowest values for degree of redundancy,
means biggest negative number, which causes the maximum
binarization errors. As a result, the shallower layers, layers
with a higher degree of redundancy, will be binarized. To
avoid further accuracy degradation in our ApGAN, all the
deconvolution layers in G except the last one and all the
convolution layers in D except the first and last layers1 are
quantized.

3.2 Partial Approximate Computing Unit

Approximate computing paradigms can improve metrics
such as energy, delay, and area at the cost of lower ac-
curacy [21]. However, the technique needs to be applied
judiciously to avoid unacceptable error in output behaviors.
Nowadays, approximate computing paradigms have been
studied extensively to improve the performance efficiency
of systems such as energy and area reduction at the cost of
lower accuracy.

Figure 4(a) depicts the simplified computation of Ap-
GAN’s binarized convolutional layers. Initially, c channels
(herein c = 4) in the size of kh × kw (herein 3×3 has
been used) are selected from input batch and accordingly
generates a combined batch w.r.t. the corresponding {-1,+1}
kernel batch. The combined batch is then mapped to the
designated computational sub-arrays of ApGAN accelerator
(detailed in Section 4). After this step, the main computation
is to perform full-precision addition/subtraction between
32-bit output feature maps. Since, implementation of the
whole design using approximate adders results in large
errors in outputs, herein, a partial approximate computing

1. These layers are kept in floating point, un-binarized, format.

a3a31 a2a30 a1a29 a0a28

b3b31 b2b30 b1b29 b0b28

s3s31 s2s30 s1s29 s0s28

Sub-array

#1

f7

f4

f1

f8

f5

f2

f9

f6

f3

f7

f4

f1

f8

f5

f2

f9

f6

f3

f7

f4

f1

f8

f5

f2

f9

f6

f3

k7

k4

k1

k8

k5

k2

k9

k6

k3

k7

k4

1

k8

k5

1

k9

k6

1

k7

k4

1

k8

k5

1

+1

-1

-1
Sub-array

#9Sub-array

#1
Sub-array

#1
Input channels

binarized

kernel batch

+1

-1

+1

+1

+1

+1

+1

-1

-1

f7

f4

f1

f8

f5

f2

f9

f6

f3

input batch
c

kw

kh f7

f4

f1

f8

f5

f2

f9

f6

f3

f7

f4

f1

f8

f5

f2

f9

f6

f3

f7

f4

f1

f8

f5

f2

f9

f6

f3

Input channels
+f7

-f4

+f8

+f5

-f1
+f2

+f9

-f6

-f3

output batch

+f1

+f10

+f1

(a)

(b)

Fig. 4: (a) ApGAN’s binary convolution, and (b) partial
approximate computing on three LSBs.

unit consisting of a Precise Adder (PA) and an Approxi-
mate Adder (ApA) is developed. As shown in Fig. 4(b),
the PA and ApA are used for the most significant bits
(MSBs) and the least significant bits (LSBs), respectively, in
a manner to maximize the accuracy and minimize energy
consumption. In order to find the optimal number of LSBs
for ApA, regarding accuracy and energy trade-off, PyTorch
implementation of ApGAN inspired by BGAN [19] and
BRE regularization [17] method combined with depthwise
separable convolution is developed and evaluated.

4 APGAN ACCELERATOR

4.1 Architecture

In order to address data transfer and computation limi-
tations of various GAN architectures, we develop an in-
memory accelerator for approximate GAN, based on mem-
ristive computational sub-array. In comparison to well-
trained GANs using floating point operations on CPUs
and GPUs, ApGAN has the least computational complex-
ity on the underlying hardware, due to the binarization
of weights in the forward path. The proposed accelerator
can execute the entire GAN training step discussed in the
previous sections and the forward path of training in both
discriminator and generator units is focused upon herein.
The architecture of ApGAN accelerator is shown in Fig.
5(a). It includes Image and Kernel sub-arrays, distributed
across the memory banks, which are storing the original
values of input feature-maps and weights, respectively.
It also contains the memristive computational sub-arrays
and an External Processing Unit (EPU) with five computa-
tional components (i.e. Binarizer, Activation Function, Batch
Normalization, Loss Functions 1 and 2). Mathematically,
a DConv can be implemented with a direct Conv [7].
This step is achieved by adding zeros, using zero padding
between inputs in the feature maps, and then computing
the convolution phase between the kernels and extended
input feature maps. Since, in the forward path the binarized
weights are utilized, all the DConv and Conv operations
are converted to subtraction/addition (sub/add). Here, we
give an overview of ApGAN accelerator’s functionality.
Initially, for each ApGAN layer, c channels in the size of
kh × kw are selected from input batch and accordingly
produce a combined batch to which is the corresponding
binary {-1,+1} kernel processing 1 performed by the EPU’s

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 5

R
D

CD
0 1 0 0

0 0 0 1

1 1 1 0

0 0 1 1
0 0 1 1

0 0 0 0

0 0 1 1

Ctrl Me

R
D

CD
0 1 0 0

0 0 0 1

1 1 1 0

0 0 1 1
0 0 1 1

0 1 0 1

0 1 1 1

M3

R
D

CD
1 0 0 0

1 0 0 0

1 1 1 0

0 0 1 1

0 1 0 1

1 0 0 0

M5

I1
[3
1
]
I1
[3
0
]

I1
[1
]

I1
[0
]

I2
[3
1
]
I2
[3
0
]

I2
[1
]

I2
[0
]

Image
Bank Carry

Carry=Sumap1 0 0 0 Sumac

output
 fmaps

R
D

WL1

SL
1

WL2
SA

V
se
n
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

WL3

R1

R2

R3

<0,1,0>

Isen

R
D

WL1

SL
1

WL2
SA

V
se
n
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

WL3

R1

<1,0,0>

Isen

Mem

(d)

Isen

Isen

ApGAN Accelerator

c_
ad

d
R

D
r_

ad
d

WL1

S
L

1

B
L

1

WL2

SC

VD

SA

V
se
ns
e

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

BL

VD VD VD

CD

WL3

<Me,M3,M5>

(a)

<1,0,0>
<0,1,0>

<0,0,1>

 read
3-input MAJ

5-input MAJ

Op.

(b)

(c)

MAJ3

R
D

WL1

S
L

1

WL2

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

WL3

R1

R2

R3

<0,0,1>

Isen

MAJ5
MAJ5

R4

R5

WL4

WL5Isen

Isen

G
lo

ba
l R

ow
 D

ec
od

er

#n

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#2

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#1

Comp. Subarrays

Subarrays

Images Kernels

Ctrl

Images Kernels

Ctrl

Binarizer

Connections
Global Row Buffer

Controller

Activate. BN Loss1 Loss2

EPU

EPU R
D

WL1

S
L

1

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

R1

<1,0,0>

Isen

Mem

(d)

Isen

R
D

WL1

S
L

1

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

CD

R1

<0,1,0>

Isen

Isen

(e)0

R2

R3

MAJ3

(f)

1

2

34

WL2

WL3

a0

a30

a31

b0

b30

b31

c0

c30

c31

d0

d30

d31

C
a

rr
y

e0

e30

e31

f0

f30

f31

g0

g30

g31

h0

h30

h31

S
u
m

1

1

3
2

-b
it

3
2

-b
it

co
3
2

co
3
2

co
3
2

co
3
2

co
3
2

co
3
2

co
3
2

co
3
2

co31 co31 co31 co31 1

a0

a30

a31

b0

b30

b31

c0

c30

c31

d0

d30

d31

co32 co32 co32

e0

e30

e31

f0

f30

f31

g0

g30

g31

h0

h30

h31

s0

s30

s0

s30

s0

s30

s0

s30

s1 s1 s1 s1

1

1

co32

co32 co32 co32co32

co32 co32 co32co32

s3
1

s3
1

s3
1

s3
1

co31 co31 co31 co31 1

a0

a30

a31

b0

b30

b31

c0

c30

c31

d0

d30

d31

co32 co32 co32

e0

e30

e31

f0

f30

f31

g0

g30

g31

h0

h30

h31

s0

s30

s31

s0

s30

s31

s0

s30

s31

s0

s30

s31

s1 s1 s1 s1

1

1

co32

co32 co32 co32co32

co32 co32 co32co32

1
1

2
2
2

2

0 0 0 0 1

co1 co1 co1

s0 s0 s0 s0

co1 2

s0 co
1

s0 co
1

s0 co
1

s0 co
1

2

SA

V
s

e
n
s

e

Vref

Iref

R
M

3

Ctrl

M
3

M
5

M
e

R
M

5

R
M

e

BL

Op.

R
D

WL1

S
L

1

WL2

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

WL3

R1

R2

R3

<0,0,1>

Isen

MAJ5
MAJ5

R4

R5

WL4

WL5

Isen

Isen

R
D

WL1

S
L

1

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

0

CD

R1

<1,0,0>

Isen

Mem

(d)

Isen

(f)

SA

V
s

e
n
s

e

Vref

Iref

R
M

3

Ctrl

M
3

M
5

M
e

R
M

5

R
M

e

BL

ApGAN Accelerator
c
_

a
d

d
R

D
r_

a
d

d

WL1

S
L

1

B
L

1

WL2

SC

VD VD VD VD

CD

WL3

(a)

(b)

MAJ3

G
lo

b
a
l
R

o
w

 D
e
c
o

d
e
r

#n

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#2

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#1

Comp. Subarrays

Subarrays

Images Kernels

Ctrl

Images Kernels

Ctrl

Binarizer

Connections
Global Row Buffer

Controller

Activate. BN Loss1 Loss2

EPU

EPU

R
D

WL1

S
L

1

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

CD

R1

<0,1,0>

Isen

Isen

(d)
0

R2

R3

MAJ3

1

2

4

WL2

WL3

3

Iref

(c)

Isen

Ctrl

SA

Vref

Vsense

BL

<Me,M3,M5>

<1,0,0>
<0,1,0>
<0,0,1>

 read
3-input MAJ
5-input MAJ

Function

ApGAN Accelerator

c
_
a

d
d

R
D

r_
a

d
d

WL1

S
L

1

B
L

1

WL2

SC

VD VD VD VD

CD

WL3

(a)

(b)

MAJ3

G
lo

b
a
l
R

o
w

 D
e
c
o

d
e
r

#n

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#2

Ctrl

 5
1

2
×

 2
5

6

C
o

m
p

.

S
u

b
.

#1

Comp. Subarrays

Subarrays

Images Kernels

Ctrl

Images Kernels

Ctrl

Binarizer

Connections
Global Row Buffer

Controller

Activate. BN Loss1 Loss2

EPU

EPU

R
D

WL1

S
L

1

SA

V
s
en
se

Vref

Iref

R
M
3

Ctrl

M
3

M
5

M
e

R
M
5

R
M
e

CD

R1

<0,1,0>

Isen

Isen

(d)
0

R2

R3

MAJ3

1

2

4

WL2

WL3

3

Iref(c)

Isen

Ctrl

SA

Vref

Vsense

BL

<Me,M3,M5>

<1,0,0>
<0,1,0>
<0,0,1>

 read
3-input MAJ
5-input MAJ

Function

(e)

M
A

J3
 (

V
)

C
LK

Pre-charge

state (1)
Discharge

state (2)

Fig. 5: (a) The ApGAN accelerator, (b) memristive computa-
tional sub-array architecture, (c) configurable memory sense
amplifier, (d) 3-input majority functions realization using
resistive references, and (e) MAJ3’s transient response for
four different inputs.

binarizer. This step is readily accomplished by changing the
sign-bit of input data w.r.t. kernel data. After this step, the
channels of a combined batch are transposed and mapped
to the designated computational sub-arrays of ApGAN 2 .
The presented computational array architecture can support
massively-parallel and flexible bit-width add/sub opera-
tions required in forward path of ApGAN’s training as
elaborated in the next part. After parallel processing over
combined batches, EPU’s shared components are employed
to process 3 the batches (i.e. calculating the losses, etc.)
and eventually generate output feature-maps 4 required
for next layer.

4.2 Resistive Computational Sub-array
The memristive sub-array architecture is shown in Fig.
5(b). This architecture includes one modified Row Decoder
(RD), Column Decoder (CD), and Sense Circuitry (SC). SC
includes one configurable sense amplifier per bit-line to
maximize the throughput (Fig. 5(c)), and can be adjusted by
Ctrl unit to morph between write operation and 3 possible
read-based in-memory operations. Write is accomplished by
activating the corresponding Word-Line (WL) using RD and
then applying the differential voltage to the corresponding
Bit-Line (BL) and Source-Line (SL) by voltage driver leading
to a change in memristor resistivity to either High-RH
(/Low-RL). Read operation is performed by activating the
corresponding WL. The corresponding BL activated through
CD is connected to the SC. The SC’s sense amplifier gener-
ates a read current passing through the resistive device to
the grounded SL to generate a sense voltage (V sen), which is

then compared with memory reference voltage activated by
Me signal (Vsen,Low<VMe<Vsen,High). Accordingly, the sense
amplifier outputs Low-‘0’ (/High-‘1’) voltage if the path
resistance is lower (/higher) than RMe, memory reference
resistance.

We propose to extend the existing SC unit only by
adding two low-overhead reference resistances per sense
amplifier to enable required in-memory computing within
ApGAN’s sub-arrays. The proposed configurable memory
sense amplifier (Fig. 5(c)) now consists of three reference-
resistance branches that can be selected by control bits
(Me, M3, M5) by the sub-array’s Ctrl to carry out one-
threshold memory, 3-input (MAJ3), and 5-input (MAJ5) ma-
jority functions and their complement in a single memory
cycle, respectively. To perform such in-memory computa-
tion, every three (/five) resistive cells located in the same
bit-line could be activated by RD and sensed to imple-
ment MAJ3/MAJ5. To realize MAJ3 operation, as shown
in Fig. 5(d), RM3 is set between RL//RL//RH (‘0’,‘0’,‘1’)
and RL//RH//RH (‘0’,‘1’, ‘1’). For MAJ5, such reference is
set between RL//RL// RL//RH//RH (‘0’,‘0’,‘0’,‘1’,‘1’) and
RL//RL//RH//RH//RH (‘0’,‘0’,‘1’, ‘1’,‘1’). Now, parallel
resistances of selected three (/five) cells will be compared
with the corresponding reference resistances to produce
desired output.

4.3 Configurable In-Memory Addition Scheme
As the main operation of ApGAN, add/sub is widely
used to process most iterative layers which consume the
vast majority of the run-time in the network. Therefore,
we present a parallel in-memory computation and map-
ping method for add/sub based on ApGAN’s resistive
computational sub-arrays to accelerate multi-bit operations.
A close observation on Full-Adder (FA) truth table clar-
ifies that an approximate FA (25%-ER on Sum) could
be implemented through making approximate sum like
Sumapp = Cout. Based on this, a streamlined and cost-
effective approximate in-memory FA circuit can be de-
signed by storing three input operands (Ri, Rj , Rk) as
resistances in the same memory bit-line and then using
the MAJ3 scheme (Fig. 5(d)). The Cout and Sumapp of
such adder are generated through MAJ3(Ri, Rj , Rk) and
MAJ3(Ri, Rj , Rk), respectively, in a single memory cy-
cle. Moreover, the accurate sum (SumAcc) can be carried
out through MAJ5(Ri, Rj , Rk, Cout, Cout) with only writ-
ing back the Cout into memory and then applying MAJ5
scheme. In addition to transient response for MAJ3, Fig. 5(e)
illustrates all possible functional modes.

4.4 Instructions
While ApGAN is designed to be an independent energy-
efficient and high-performance accelerator, we need to ex-
pose it to programmers and system-level libraries to use it.
From a programmer perspective, ApGAN is a third party
accelerator that can be connected directly to the memory
bus or through PCI-Express lanes rather than a memory
unit, thus it is integrated similar to that of GPUs. Therefore,
a virtual machine and ISA for general-purpose parallel
thread execution need to be defined similar to PTX [22] for
NVIDIA. In this way, the programs will be translated to the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 6

Fig. 6: Mapping and parallel in-memory addition within the
resistive computational sub-array of ApGAN.

ApGAN hardware instruction set at install time. ApGAN
basically supports three main instructions of in-memory
copy (consecutive read and write), MAJ3 and MAJ5. The
in-memory copy takes two operands corresponding to des-
tination and source row addresses. MAJ3 and MAJ5 takes
the address of input operands and write back the result on a
destination row. Such instructions is directly copied/written
to a predefined memory-mapped address ranges, for ex-
ample, in the memory type range registers (MTRRs), or
by programming to Memory-Mapped I/O regions that are
allocated through a simple device driver to do initializa-
tion/cleanup for required software memory structures. We
allotted the subsection 4.4 to the aforementioned explana-
tion as highlighted in the manuscript.

4.5 Hardware Mapping
Figure 6 elaborates the required data organization and com-
putation steps of ApGAN with a straightforward and intu-
itive example only considering the add operation. Clearly,
sub can be implemented based on add.

Considering n-activated sub-arrays with the size of x×y,
each sub-array can handle the parallel add/sub of up to
x elements of m-bit (3m + 4 ≤ y) and so ApGAN could
process n×x elements simultaneously within computational
sub-arrays to maximize the throughput. After the mapping
step 2 shown in Fig. 5(a), the parallel in-memory adder of
ApGAN accelerator operates to produce the output feature
maps. The memory sub-array organization for such parallel
computation is delineated in Fig. 6. Four reserved rows for
Carry results initialized by zero and 32 reserved rows are
considered for Sum results. Every pair of corresponding
elements to be added together have to be aligned in the
same bit-line. Herein, channel 1 (Ch1) and Ch2 should be
aligned in the same sub-array. Ch1 elements occupy the first
32 rows of the sub-array followed by Ch2 in the next 32
rows.

The addition algorithm starts bit-by-bit from the LSBs of
the two words and continues towards MSBs. We consider

approximate computation for LSBs and accurate computa-
tion for MSBs based on conclusion drawn from algorithm-
level evaluations in Section 3.2. Figure 6 L.H.S. shows App.
LSB computation. There are 2 cycles for every bit-position
to perform such computation. In step one (1 in Fig. 6), two
WLs (accessing to LSBs of elements) and one reserved carry
row are enabled to generate Cout and Sumapp in parallel for
whole memory sub-array with Ctrl’s M3 command. During
step 2 , two WLs are activated to save back the results to the
designated locations. This carry-out bit overwrites the data
in the carry latch and becomes the carry-in of the next cycle.
This process is concluded after 2 × m cycles, where m is
a number of bits in its elements. Figure 6 R.H.S. shows an
Acc. MSB computation as a 4-cycle operation. In step 1 ,
two WLs (accessing to LSBs of elements) and one reserved
carry row are enabled to generate Cout in parallel. During
step 2 , three WLs are activated to store back the results of
Cout and Cout to the designated locations. Now, five WLs
are selected (step 3) to generate the Sumacc with Ctrl’s
M5 command and write it back (step 4) to the sub-array.
The Acc. MCB computation is concluded after 4×m cycles,
where m is a number of bits in its elements.

4.6 Parallelism

Here, we design a Fully-Pipelined Computation mechanism
named FPC on top of the presented spatial parallelism (SP)
method in [7] to boost ApGAN performance. The input data
are usually processed in 8/32/64 batch size-b during the
training phase. For the sake of simplicity, Figure 7 depicts
FPC method with a batch size of 2. Obviously, regardless
of pipelining, GAN training takes b×(D1+D2+G) cycles.
Typically, if all inputs in the prior batch are processed,
a new batch can come into the pipeline. The key idea
behind FPC is to duplicate the data for intermediate layers
such that pipelining can be readily achieved in ApGAN.
Fig. 7 shows such pipeline forb1 and b2. Consider DL as
the discriminator’s layers, D1 needs DL+1+DL+(b-1) cycles,
where b-1 cycles is needed for draining a batch from a
pipeline. The (SP) method [7] proves that for each input
batch, as there is no data-dependency between the training
phases of discriminator, they can perform simultaneously.
We exploit the SP method in FPC, as shown Figure 7; D1
and D2 training phases occupy different computational sub-
arrays and both Conv and DConv layers can be run at a
same time. Consider GL as the generator’s layers, D2 takes
GL+DL+1+DL+1+(b-1) latency for updating the D. Besides,
FPC takes advantage of this observation that after D2’s loss
function computation and back-propagation to GD4 layer,
the training of generator for different batches can be started
while the corresponding GD3 is being processed in D2. This
phase takes 2DL+2GL+2+(b-1).

5 PERFORMANCE EVALUATION

5.1 Experimental Setup and Results

In order to perform a fair comparison between our design
and the well-known GAN models, DCGAN, WGAN-CP,
and WGAN-GP, the same architecture including four convo-
lution and deconvolution layers for D and G, respectively,
is leveraged.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 7

Fig. 7: Fully-paralleled training method for ApGAN.
Fig. 8: Energy consumption vs. IS regard-
ing number of approximated bits.

Datasets: We conduct experiments of ApGAN on several
datasets to evaluate the performance of the proposed algo-
rithm, including MNIST [23], Fashion-MNIST [24], CIFAR-
10 [25], STL-10 [26], and celeb-A [27]. MNIST is leveraged
as a gray-scale dataset which contains 70,000 28×28 images
of handwritten digits from 0 to 9, 60,000 images for train-
ing and 10,000 images for testing sets. Similar to MNIST,
Fashion-MNIST consists of 28×28 gray-scale images but
it includes 10,000 images for each of training and testing
sets to form ten fashion categories. We use CIFAR-10 for
RGB images of size 32×32. It has 60,000 images evenly
distributed in ten distinct classes, in which 50,000 and 10,000
examples are used for training and testing, respectively. In
addition to CIFAR-10, STL-10 is used, which is similar to
CIFAR-10 dataset except that it has 100,000 unlabeled im-
ages for unsupervised learning and only 500 labeled images
for training. Finally, we also exploit celeb-A to evaluate
performance quantitatively. It includes 202,559 images of
celebrity faces labeled with 40 different face attributes and
because each image consists of only one face, the quality of
the generated images is readily evaluated.

Evaluation Metrics: According to [30], which includes
extensive studies for highly-used metrics i.e. log-likelihood
to evaluate the performance of NN models, authors showed
there is not necessarily a direct relationship between the
good performance of GANs and the metric(s). Therefore
herein, we use Inception Score (IS) [31] as an evaluation
metric in our experiments, which is leveraged to measure

TABLE 1: IS values on CIFAR-10 and STL10 Datasets.

Model CIFAR-10 STL-10

DCGAN

32-bit 5.46±0.2 2.93±0.2
DoReFa-Net [2] 1.2±0.003 1.39±0.007
TWN [28] 1.09±0.003 1.45±0.008
TGAN [29] 4.52±0.1 2.91±0.3
ApGAN 5.01±0.08 2.46±0.07

WGAN-CP

32-bit 4.69±0.15 3.13±0.1
DoReFa-Net [2] 3.84±0.09 2.37±0.05
TWN [28] 4.26±0.07 2.78±0.06
TGAN [29] 3.76±0.07 2.31±0.09
ApGAN 4.46±0.15 2.93±0.1

WGAN-GP

32-bit 5.51±0.008 3.04±0.09
DoReFa-Net [2] 4.70±0.05 2.31±0.012
TWN [28] 4.45±0.05 2.68±0.015
TGAN [29] 4.98±0.01 2.81±0.05
ApGAN 5.08±0.05 2.61±0.09

information on the quality and variation of the generated
images by using a pre-trained inception V3 [32] network.
The IS’s of generators is calculated by

ISG = exp
(
Ex∼Pg

DKL(p(y|x)||p(y))
)

(6)

where x is an image, y is the output label which will be
predicted, and DKL(p|q) is the KL divergence between two
distributions, p and q. A high IS2 illustrates diversity and
clarity among generated images and it is achieved if p(y|x)
is low entropy, means that the generated image includes
clear objects, and p(y) is high entropy, which indicates a
high diversity of images from all categories.

Results and Analysis: Herein, several sets of exper-
iments on both CIFAR-10 and STL-10 using DCGAN,
WGAN-CP, and WGAN-GP are conducted. First, GAN
networks are trained using 32-bit floating point number
weights as the baseline. Next, several variant GANs are
trained from scratch. Since the GAN training phase usually
suffers from training instability and convergence problems,
the change of IS is monitored after each epoch, which helps
us to observe the stability of the proposed method compared
to the full precision models.

Figure 8 depicts the IS results for ApGAN on CIFAR-
10 with respect to the number of approximated LSBs, and
energy consumption of the convolution layers. The optimal
condition occurs when 2 to 4 LSBs are approximated, which
leads to a relatively high reduction in energy whereas
IS is slightly decreased. Table 1 summarizes ISs of DC-
GAN, WGAN-CP, and WGAN-GP on CIFAR-10 and STL-

2. The higher score is better.

0 1 2 3 4
1

1.5

2

2.5

3

0 1 2 3 40 1 2 3 4

1

2

3

4

5

full precision ApGAN

iterations iterations iterations

DCGAN WGAN-CP WGAN-GP
#104 #104 #104

S
T

L
-1

0

IS

IS

C
IF

A
R

-1
0

Fig. 9: Inception score on CIFAR-10 and STL-10 datasets
leveraging full precision and ApGAN for different GANs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 8

Fig. 10: Generated images for various datasets by ApGAN.

10 datasets. In addition to the 32-bit full-precision as the
baseline, ApGAN and three other GANs including ternar-
ized and binarized -weight training are examined. Based
on the obtained results, the full precision WGAN-GP and
WGAN-CP show the best ISs for CIFAR-10 (5.51) and STL-
10 (3.13) datasets, respectively. Although the IS of our pro-
posed ApGAN degrades roughly by 0.37 (in both examined
datasets) compared to the best results, it shows better scores
than 32-bit WGAN-CP and almost all of the proposed fully-
quantized training approaches. Moreover, the training con-
vergence behaviors for all the examined GANs are shown
in Fig. 9. Although the baseline full-precision training has
a faster convergence, our ApGAN achieves comparable IS
results for CIFAR-10 and STL-10.

In addition to the quantitative comparison, Fig. 10 de-
picts the generated images by ApGAN architectures for five
different datasets as qualitative evidence. The generated
images which look similar to the full-precision DCGAN’s
results verify the performance and functionality of ApGAN.
Figure 11 depicts loss values for both discriminator (D)
and generator (G) networks in full precision, fully-binarized
and ApGAN in Celeb-A dataset. The y and x axes indicate
the loss values and the number of epochs, respectively. As
depicted in the fully-binarized network shown in Fig.11 (b),
after a few epochs for initializing and competition steps,
the convergence process and consequently improvement in
the generated images stop. Nonetheless, for ApGAN, after

initial state, competition starts quickly to improves the qual-
ity of the generated images and due to the semi-balanced
binarized structures for D and G, the competition continues
for a sufficient number of epochs. The ApGAN actually
converges in an almost similar manner as the original 32-
bit full-precision training.

5.2 Hardware Setup and Results
In this section, we estimate ApGAN’s energy-efficiency and
performance and compare it with other feasible GAN accel-
erators (based on ASIC, SOT-MRAM, ReRAM, and GPU)
based on three GAN architectures (DCGAN, WGAN-CP,
and WGAN-GP). It is clear that the larger chip area is, then
the higher performance for ApGAN and other accelerators
are achieved due to having additional sub-arrays or com-
putational units, albeit the memory die size impacts the
area cost. To have a fair comparison in this work, we report
the area-normalized results (performance/energy per area),
henceforth.

Experiment Setup: To assess the performance of the
proposed accelerator at the circuit-level, we use the SPICE
model for memristors with the Ag-Si memristor device
parameters from [33]. We then combine the SPICE models
of CMOS transistors and memristors under NCSU 45nm
CMOS PDK [34]. To perform the system-level evaluations,
we modified the memory evaluation tool NVSim [35] to
co-simulate with our developed in-house C++ code based

Fig. 11: Value of losses in (a) 32-bit (full precision) DCGAN, (b) fully-binarized DCGAN, and (c) proposed ApGAN.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 9

on circuit-level results. We configure the memory organi-
zation of the sub-arrays with 512 rows and 256 columns
per memory matrix (mat) considering an H-tree routing
method, 2×2 mats per bank, 8×8 banks per group; in
total 16 groups leading to a 512Mb total capacity. For
comparison, a ReRAM-based in-memory accelerator based
on [7] was developed with 256 fully-functional sub-arrays
with the size of 256×256 and eight-bit configurable SAs. To
perform the evaluations, NVSim was extensively modified
to estimate the system energy and performance adopting
its default ReRAM cell file (.cell). We developed a SOT-
MRAM-based accelerator based on PIM-TGAN [29]. For
the circuit level simulation, a Verilog-A model of 2T1R
SOT-MRAM device is developed to co-simulate with the
interface CMOS circuits in SPICE. Finally, an architectural-
level simulator was built on top of NVSim. To compare the
result with ASIC accelerators, we developed a YodaNN-
like [36] design with two 8×8 tiles configuration. Then, the
designs were synthesized using Design Compiler [37] with
45nm technology. The SRAM and eDRAM performances
were calculated using CACTI [38]. We created a compre-
hensive Verilog model for EPU to interact with our SPICE
circuit code to perform the evaluation. Activation functions
were developed based on lookup-table-based transforma-
tions [39] with case-statement codes. Batch normalization
unit generally performs an affine function (y = kx + h) [40],
where y and x represent the corresponding output and input
feature map pixels, respectively. During inference mode, all
the other parameters (k,h) are pre-computed and stored in
ApGAN sub-arrays, therefore, Batch normalization unit can
readily fetch each pixel of input feature map, fed forward
to the batch-norm layer, and write back the corresponding
normalized pixel employing an internal, multiplexed CMOS
adder and multiplier to perform this computation efficiently.

Energy Efficiency: Figure 12 shows ApGAN’s energy-
efficiency (frames per joule) results implemented by FPC
method for three possible approximation degree (i.e., 2-
, 3-, and 4-bit) compared with other designs, running a
similar task under two batch size configurations, i.e. 8
and 32. Here, as the batch size gets larger, higher energy-
efficiency is obtained. We can see that ApGAN-4b has the
highest energy-efficiency normalized to the area, related to
other methods, as a result of its 4-bit approximated, par-
allel, energy-efficient operations. ApGAN-3b shows ∼2.5×,
13.1×, and 28.6× higher energy-efficiency than that of the
leading ASIC, ReRAM, and GPU-based solutions. This en-
ergy reduction arises from three sources: 1) standard Conv
and DeConv operations in the forward path are replaced
with energy-efficient add/sub operations due to binariza-
tion, 2) ApGAN’s inter-layer parallelism which massively
reduces the latency of operations and 3) bulk and energy-
efficient approximated in-memory operations of ApGAN.
Compared to the recent processing-in-MRAM platform in
[29], ApGAN reduces energy consumption by ∼2.3×.

Throughput: Figure 13 compares the ApGAN through-
put (frames per second) results for three possible approx-
imation degree (i.e., 2-, 3-, and 4-bit), normalized with
the area, for different accelerators. Based on the results,
ApGAN-3b is 35× and 5.8× faster on average than GPU and
ASIC-64 methods. This efficiency can be related to parallel
and ultra-fast in-memory operations of ApGAN compared

8 32 8 32 8 32
1e-02

1e-01

1e+00

1e+01

E
ne

rg
y

ef
fic

ie
nc

y/
A

re
a

(f
r.

/J
/m

m
2
)

ApGAN (4b) ApGAN (3b) ApGAN (2b) PIM-TGAN ASIC ReRAM GPU

DCGAN WGAN-CP WGAN-GP

Fig. 12: Energy-efficiency evaluation of various platforms
normalized to the area (Y-axis: log scale).

to multi-cycle ASIC and GPU operations as well as the
potential mismatch between data movement and compu-
tation in ASIC and GPU methods. Additionally, ApGAN is
1.9× faster than ReRAM method. It is worth pointing out
that ReRAM accelerators suffer matrix splitting owning to
intrinsically-limited bit levels of ReRAM device, thus more
sub-arrays need to be occupied. This can further limit paral-
lelism methods. Additionally, a ReRAM crossbar imposes a
large peripheral circuit overhead due to existing DAC/ADC
and buffers occupying roughly 85% of area [4], [41]. We also
observe that ApGAN achieves ∼ 40% better performance
compared to that of PIM-TGAN platform [29].

Area Overhead: To assess the area overhead of ApGAN
on top of commodity RRAM chip, three main hardware cost
sources must be taken into consideration as shown in Fig.
14(a). First, add-on transistors to SAs; in our design, each SA
requires 2 additional transistors connected to each BL (Fig.
5(c)) to enable in-memory computing; Second, the modified
MRD overhead; we modify each WL driver by adding two
more transistors in the typical buffer chain based on the
method used in [42]. Third, the ctrl’s overhead to control
enable bits; ctrl generates the activation bits with MUX units
with 6 transistors. To sum it up, ApGAN roughly imposes 3
additional rows per sub-array, which can be interpreted as
∼ 2% of memory chip area. The detailed breakdown of area
overhead is shown in Fig. 14(b).

Resource Utilization: We estimated the time fraction at
which the computation has to wait for data and on-/off-chip
data transfer limits the performance referred to as memory
bottleneck ratio for different platforms, as depicted in Fig.
15. This evaluation is done through the peak performance
and experimentally extracted results for each platform con-
sidering a number of memory access. We observe that8 32 8 32 8 32

1e-02

1e-01

1e+00

1e+01

E
ne

rg
y

ef
fic

ie
nc

y/
A

re
a

(f
r.

/J
/m

m
2
)

ApGAN (4b) ApGAN (3b) ApGAN (2b) PIM-TGAN ASIC ReRAM GPU

8 32 8 32 8 32
1e-02

1e-01

1e+00

1e+01

P
er

fo
rm

an
ce

/A
re

a

 (
fr

./s
/m

m
2
)

DCGAN WGAN-CP WGAN-GP

DCGAN WGAN-CP WGAN-GP

Fig. 13: Performance evaluation of various platforms nor-
malized to the area (Y-axis: log scale).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 10

R
D

Ctrl

11%
6%

36% 39%

7%

~1%

modified
 SA

output
 driver

modified
decoder

misc
WL and
BL drivers

add-on
control

(a) (b)

Fig. 14: (a) Three main hardware cost sources in ApGAN’s
sub-array. Note: Access transistors and CD are not shown
for simplicity, and (b) Area overhead breakdown of Ap-
GAN.

processing-in-memory solutions i.e. ApGAN, PIM-TGAN,
and ReRAM spend less than 30% time for data transfer and
memory access. But, ASIC and GPU spend over 50% and
90% time, respectively, waiting for the loading data from the
memory. In this way, we can define a resource utilization
ratio for different platforms. We observe that ApGAN-4b
achieves the highest ratio by efficiently utilizing up to 88%
of its computation resources. This number is limited to 5%
for GPUs performing the similar task.

6 CONCLUSION

In this paper, we presented a novel hardware-optimized
GAN training algorithm using binary weights for three
and two layers of generator and discriminator networks,
respectively. Moreover, we developed a reconfigurable ad-
dition approach in which both approximate and accurate
add operations are performed. In order to further accelerate
the ApGAN training process, a new PIM accelerator based
on memristor was implemented. Finally, in addition to focus
on the computational performance of ApGAN exploiting its
intrinsic in-memory parallelism to increase the throughput
of the system, we developed FPC optimization as a spatial
parallelism method. The performance of the ApGAN in
both quantitative and qualitative approaches have been
evaluated on different data-sets including Fashion-MNIST,
CIFAR-10, STL-10, and celeb-A. The generated images by
ApGAN look similar to the full-precision DCGAN’s result.
Moreover, the obtained simulation results showed that our
PIM-ApGAN can achieve ∼2.5× better energy-efficiency

ApGAN (4
b)

ApGAN (3
b)

ApGAN (2
b)

PIM
-TGAN

ASIC

ReRAM
GPU

0

20

40

60

80

100

(%
)

Memory bottleneck ratio
Resource utilization ratio

Fig. 15: Memory bottleneck ratio for different platforms.

and 5.1× speedup compared to CMOS-ASIC accelerator,
whereas IS is degraded by 11%. Hence, due to the small
IS degradation and a significant reduction in the hardware
aspect, the ApGAN can be a promising weight training
scheme for resource-limited IoT devices. Since in an en-
vironment tens to hundreds of IoT nodes are distributed,
similar approaches which are used in random forest meth-
ods, majority voters and mean prediction methods, can be
leveraged.

ACKNOWLEDGMENTS

We would like to acknowledge and thank the Advanced
Research Computing Center at the University of Central
Florida for provision of computing resources used herein.

This work was supported in part by the Center for
Probabilistic Spin Logic for Low-Energy Boolean and Non-
Boolean Computing (CAPSL), one of the Nanoelectronic
Computing Research (nCORE) Centers as task 2759.006, a
Semiconductor Research Corporation (SRC) program spon-
sored by the NSF through CCF-1739635.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems 25 (NIPS), 2012, pp. 1097–1105.

[2] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[3] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in ECCV. Springer, 2016, pp. 525–542.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural net-
work computation in reram-based main memory,” in Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA).
IEEE Press, 2016, pp. 27–39.

[5] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-
memory processing using configurable resistive memory,” in
Proceedings of the 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2017, pp. 757–763.

[6] B. Li, L. Song, F. Chen, X. Qian, Y. Chen, and H. H. Li, “Reram-
based accelerator for deep learning,” in Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
March 2018, pp. 815–820.

[7] F. Chen, L. Song, and Y. Chen, “Regan: A pipelined reram-based
accelerator for generative adversarial networks,” in Proceedings of
the 23rd ASP-DAC. IEEE, 2018, pp. 178–183.

[8] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: an energy-
efficient comparator-based processing-in-memory neural network
accelerator,” in Proceedings of the 55th DAC. ACM, 2018, p. 105.

[9] A. Roohi and R. F. DeMara, “Nv-clustering: Normally-off comput-
ing using non-volatile datapaths,” IEEE Transactions on Computers,
vol. 67, no. 7, pp. 949–959, 2018.

[10] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat,
R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N.
Kurdi, and H. Hwang, “Experimental demonstration and toleranc-
ing of a large-scale neural network (165 000 synapses) using phase-
change memory as the synaptic weight element,” IEEE Transactions
on Electron Devices, vol. 62, no. 11, pp. 3498–3507, November 2015.

[11] I. J. Goodfellow, J. Pouget-Abadie, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (NIPS), 2014,
pp. 2672–2680.

[12] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” arXiv preprint arXiv:1511.06434, 2015.

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” in Advances
in neural information processing systems 29 (NIPS), 2016, pp. 2234–
2242.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 11

[14] M. Arjovsky, C. Soumith, and B. Leon, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances
in Neural Information Processing Systems 30 (NIPS), 2017, pp. 5767–
5777.

[16] M. Song, Z. Jiaqi, C. Huixiang, and L. Tao, “Towards efficient mi-
croarchitectural design for accelerating unsupervised gan-based
deep learning,” in HPCA, Feb 2018, pp. 66–77.

[17] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski, “Bingan:
Learning compact binary descriptors with a regularized gan,”
Advances in Neural Information Processing Systems 31 (NIPS), 2018.

[18] Y. Cao, W. D. Gavin, K. Y.-C. Lui, and R. Huang, “Improving
gan training via binarized representation entropy (BRE) regular-
ization,” arXiv preprint arXiv:1805.03644, 2018.

[19] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, “Binary
generative adversarial networks for image retrieval,” in Proceed-
ings of Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[20] J. Liu, J. Zhang, Y. Ding, X. Xu, M. Jiang, and Y. Shi, “Pbgan: Partial
binarization of deconvolution based generators,” arXiv preprint
arXiv:1802.09153, 2018.

[21] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-
power digital signal processing using approximate adders,” IEEE
TCAD, vol. 32, no. 1, pp. 124–137, January 2013.

[22] (2018) Parallel thread execution isa version 6.1. [On-
line]. Available: http://docs.nvidia.com/cuda/parallel-thread-
execution/index.html

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[24] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[25] A. Krizhevsky and G. Hinton, “Convolutional deep belief net-
works on cifar-10,” Unpublished manuscript, vol. 40, no. 7, 2010.

[26] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer
networks in unsupervised feature learning,” in Proceedings of the
fourteenth international conference on artificial intelligence and statis-
tics, 2011, pp. 215–223.

[27] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE ICCV, 2015, pp. 3730–3738.

[28] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv
preprint arXiv: 1605.04711, 2016.

[29] A. S. Rakin, S. Angizi, Z. He, and D. Fan, “Pim-tgan: A processing-
in-memory accelerator for ternary generative adversarial net-
works,” in 2018 IEEE 36th International Conference on Computer
Design (ICCD), Oct 2018, pp. 266–273.

[30] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation
of generative models,” arXiv preprint arXiv:1511.01844, 2015.

[31] S. Barratt and R. Sharma, “A note on the inception score,” arXiv
preprint arXiv:1801.01973, 2018.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and W. Zbigniew,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE CVPR, 2016, pp. 2818–2826.

[33] L. Gao, F. Alibart, and D. B. Strukov, “Analog-input analog-weight
dot-product operation with ag/a-si/pt memristive devices,” in
Proceedings of the IEEE/IFIP 20th International Conference on VLSI
and System-on-Chip (VLSI-SoC). IEEE, 2012, pp. 88–93.

[34] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[35] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-
level performance, energy, and area model for emerging non-
volatile memory,” IEEE Transactions On Computer-Aided Design Of
Integrated Circuits And Systems, no. 7, pp. 994–1007, July 2012.

[36] R. Andri, L. Cavigelli, D. Rossiand, and L. Benini, “Yodann: An
ultra-low power convolutional neural network accelerator based
on binary weights,” in Proceedings of the 2016 IEEE Computer Society
Annual Symposium on VLSI. IEEE, 2016, pp. 236–241.

[37] Synopsys, Inc., “Synopsys design compiler, product version
14.9.2014,” 2014.

[38] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-
stacked dram main memory,” in Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium, March
2012, pp. 33–38.

[39] M. Tommiska, “Efficient digital implementation of the sigmoid
function for reprogrammable logic,” IEE Proceedings-Computers and
Digital Techniques, vol. 150, no. 6, pp. 403–411, 2003.

[40] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional
neural networks with software-programmable fpgas,” in Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 2017, pp. 15–24.

[41] S. Angizi, Z. He, F. Parveen, and D. Fan, “IMCE: energy-efficient
bit-wise in-memory convolution engine for deep neural network,”
in Proceedings of the 23rd ASP-DAC. IEEE, January 2018, pp. 111–
116.

[42] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan, “Design and
evaluation of a spintronic in-memory processing platform for
nonvolatile data encryption,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1788–
1801, 2018.

Arman Roohi (S’14) received his B.Sc. degree
in Computer Engineering in 2008 from Shiraz
University, Shiraz, Iran. He also received his
M.Sc. degree in Computer Architecture at De-
partment of Computer Engineering, Science and
Research Branch of Azad University, Tehran,
Iran, in 2011. He is completing the Ph.D. de-
gree in Computer Engineering at the University
of Central Florida, Orlando, USA. His research
interests span neuromorphic computing, deep
learning hardware acceleration and deep learn-

ing security, reconfigurable and adaptive computer architectures, be-
yond CMOS computing, with emphasis on QCA and Spintronics.

Shadi Sheikhfaal (S’19) received her B.Sc. de-
gree in computer engineering from Azad Univer-
sity, Ardebil, Iran, in 2012 and her M.Sc. degree
in computer engineering and computer systems
architecture from Science and Research Branch
of Azad University, Tehran, Iran, in 2014. She is
currently pursuing her Ph.D. degree in computer
engineering at University of Central Florida, Or-
lando, FL, USA. Her current research interests
include biologically inspired computing and spin-
based computing.

Shaahin Angizi (S’15) received his B.Sc. in
Computer Engineering, Hardware from South
Tehran Branch of Azad University, Tehran, Iran
in 2012 and his M.Sc. in Computer Engineering,
Computer Systems Architecture from Science
and Research Branch of Azad University, Tabriz,
Iran in 2014. He is currently working toward the
Ph.D. degree in Computer Engineering at Uni-
versity of Central Florida, Orlando, USA. His re-
search interests include in-memory computing,
deep learning, low power VLSI designs, Spin-

based computing and Quantum-dot Cellular Automata (QCA).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 99, NO. 99, APRIL 2019 12

Deliang Fan (M’15) received his B.S. degree
in Electronic Information Engineering from Zhe-
jiang University, China, in 2010. He received
M.S. and Ph.D. degree in Electrical and Com-
puter Engineering from Purdue University, West
Lafayette, IN, USA, in 2012 and 2015, respec-
tively. He joined the Department of Electrical and
Computer Engineering at University of Central
Florida, Orlando, FL, as an Assistant Professor
in 2015. His primary research interest lies in
Ultra-low Power Brain-inspired (Neuromorphic),

Non-Boolean and Boolean Computing Using Emerging Nanoscale De-
vices like Spin-Transfer Torque Devices and Memristors. His other
research interests include nanoscale physics based spintronic device
modeling and simulation, low power digital and mixed-signal CMOS
circuit design.

Ronald F. DeMara (SM’10) received the Ph.D.
degree in Computer Engineering from the Uni-
versity of Southern California in 1992. Since
1993, he has been a full-time faculty member
at the University of Central Florida where he is
a Professor of Electrical and Computer Engi-
neering, and joint faculty of Computer Science,
and has served as Associate Chair, ECE Gradu-
ate Coordinator, and Computer Engineering Pro-
gram Coordinator. His research interests are in
adaptive computer architectures with emphasis

on reconfigurable and post-CMOS devices, evolvable and intelligent
hardware, resilient and energy-aware logic design, and the digitization
of STEM education. On these topics, he has completed over 275 pub-
lications, 47 funded projects as PI or Co-PI including sponsorship of
NSF, NASA, Army, Navy, Air Force, DARPA, and NSA, with one patent
granted and one provisional patent. He has completed 48 graduates
as Ph.D. dissertation or M.S. thesis advisor and was previously an
Associate Engineer at IBM and a Research Scientist at NASA Ames,
in total for four years. He is an Associate Editor of IEEE Transactions
on Emerging Topics in Computing. He has served as Topical Editor
of IEEE Transactions on Computers and as Associate Editor of IEEE
Transactions on VLSI Systems, Microprocessors and Microsystems, and
as Guest Editor of various Transactions, and serves on various IEEE
conference program committees including ISVLSI, NVMSA, SSCI, etc.
He received the IEEE Joseph M. Bidenbach Outstanding Engineering
Educator Award in 2008.

