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Logic Wear-Leveling for Anti-aging

Logic Wear-Leveling (LWL): 

 a post-fabrication self-adapting circuit-level 

approach to mitigate timing degradations.

Research Objective: 

 Mitigate Transistor Aging due to BTI and HCI thus 

reducing the energy wastage due to conservative 

selection of guardbands.

Targeting Aging-critical Elements:

 aging-critical logic portions of the circuit are 

targeted for protection  minimal overhead

 power-gating is effective in reducing BTI and HCI.  

Switching activity (p) effects the shift in Vth
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Potential Benefits of Logic Wear-Leveling

Need addressed Approach Benefit

Transistor Aging Power-gating of critical 

elements

Reduced lifetime delay 

degradation

through stress reduction

Energy 

Consumption

Reduced voltage guard 

bands

Low energy requirement with 

narrower

margins for longer periods

De-emphasized role of 

voltage regulators

Circumvent conversion 

inefficiencies

and switching losses

Selective Redundancy Power-gating lowers the 

leakage energy

overheads
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Related Works

Technique
Anti-Aging 

Strategy

Design Requirements/

Parameters

Adaptability 

Characteristics/

Degree

Overheads

Throughput Power Area

Worst-case Design

VM, FM Static Margin

MD-RoD/

∆VDD,

∆Fnominal

None FM: High

VM: High 

(Dynamic & 

Leakage)

None

Gate-Sizing Static Margin

MD-RoD; Extended Std. 

Lib.;

Multi-obj. Opt./

Δβi, ∀ gates i

None None
Medium (Dynamic 

& Leakage)
Low (Gate-level)

Re-Synthesis Static Margin

MD-RoD annotated Std. 

Lib.;

Aging-aware

Synthesis/ Δβi,

ΔVth,i ∀ gates i

None None

Low-Medium

(Dynamic &

Leakage)

Low (Gate-level)

Dynamic Operating Conditions

DVFS Dynamic Margin

Timing Sensors;

Feedback Control/ 

ΔVDD(t), ΔF(t),

ΔVbb(t)

Yes/ Fully 

Autonomous
Low

Medium (Dynamic 

& Leakage)

Medium (On-chip 

VR &

sensors)

SVS Dynamic Margin
MD-RoD/

ΔVDD(t +Δtstep)
Yes/ tstep None

Medium (Dynamic 

& Leakage)

Medium (On-chip 

VR)

GNOMO
Static Margin +

Power-Gating

MD-RoD/

(VDD,g, tidle)
None

Medium (Workload 

Dependent)

Medium (Dynamic 

& Leakage)
None

Adaptive Resource Management

SD
Proactive Mngt.

+ Power-Gating

Modular Redundancy/ 

Sleep Interval
Yes/ Sleep Interval None High (Leakage)

High (Module-

level)

ITL schemes
Proactive Mngt.

+ Power-Gating

Exploit App.

Redundancy/

Idle time

Yes/ Task

Scheduling

Medium (Workload 

Dependent)
None None

LWL

Proactive Fine-

Grain Mngt. +

Power-Gating

CPRT/ Sleep Interval Yes/ Sleep Interval None Minimal (Leakage) Low (Gate-level)

RR

Proactive Fine-

Grain Mngt. +

Power-Gating

Timing Sensors; 

Feedback

Control; CPRT/

ERT%

Yes/ Fully 

Autonomous
None Minimal (Leakage)

Low (Gate-level & 

sensors)

Proposed herein



slide 5CF-2016

Aging-Sensitive Logic Domains

2) Parameter P can be traded-off 

against area overhead incurred.

P=10%

1) Path distribution of OpenSPARC ALU

[G. Hoang et al.“Exploring circuit timing-aware language and 

compilation,” SIGPLAN Not., vol. 47, no. 4, pp. 345–356, 

Mar. 2011.]

Variation of P allows varying 

quantity of near-critical paths 

protected

3) LWL covers logic paths having delays:

 P is top-path parameter

 based on near critical paths due to aging and/or PV effects 

 P=10% used herein
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Critical Path Remodeling Tool (CPRT)

Synopsys DC & PrimeTime

CPRT (Critical Path 
Remodeling Tool)

Synopsys 
TetraMAX

Function 
Verification

Synopsys HSPICE MOSRA = pre-
stress and post-stress 

simulation

STA dataGate-level Netlists

Standard 
Cell Libaray

RTL Sources

Power & Delay Analysis for 
Fresh and Aged Designs

Test P
attern

s

Circuit After Critical Path Replication

Circuit Before Critical Path Replication
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Effect of Switching Interval

LWL: Proactive resource switching to balance stress among replicated    

components.
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LWL Reduction of 

Delay Degradation [ALU4]

NanGate Library based on 45nm Predictive Technology Model is used.

Built-in models for BTI and HCI  are utilized for HSPICE simulations 

LWL

LWL

LWL

LWL
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LWL Reduction of

Delay Degradation 

Delay degradation (% inc in delay from initial time) over a lifetime of 10 years.
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LWL Energy Savings

Delay reduction factors are calculated by taking the ratio of VM’s degradation    

and LWL’s degradation.

The reduction factors are seen to correlate with the energy savings achieved.
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Implications of Tighter 

Timing Specifications

Implications of reducing delay headroom towards that of a baseline circuit   

operating at nominal voltage
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Area Overhead 

w.r.t. Related Works

Case-study: 

 45nm-based Intel Penryn multicore processor

 based on [9], 46.1% of total die area is considered as Core-area

Execution unit: 

 only 39.03% of a single core area is occupied by execution unit

 65.5% of execution unit can be considered as aging-critical portion

 aging-critical portion = 11.7% of die

Area cost:

 SD and BubbleWrap: 4.36% to 23.03%

 LWL:  0.79% to 2.7%

 For BubbleWrap: half of the cores 

are designated as expandable

 For SD: aging-sensitive logic is 

replicated

 For LWL:  utilization model with P = 

7% of paths in arithmetic unit

LWL
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Conclusions

Summary of Approach

 LWL provides an adaptive technique for anti-aging using a spatial 
redundancy and power-gating to enable BTI recovery

 Accurate aging modeling  unnecessary 

as circuit degradation is determined using operational conditions

 LWL is shown to successfully reduce the guardband with delay 
reductions ranging from 1.92-fold to 2.84-fold over nominal values with 
5% timing margin

 Favorable energy savings as high as  31.98% with 0% timing margin are 
obtained due to further reduction of operating voltage

 Area cost is traded for energy reduction by minimizing

 Dark silicon effect has inspired us to allocate unused space to reduce 
aging impact in critical region of circuit 

− reduce energy consumption,

− avoid need for precise aging models, and

− intrinsically accommodate the process variation within the actual as-
built circuits
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