
AOS: Adaptive Overwrite Scheme for Energy-Efficient MLC
STT-RAM Cache

Xunchao Chen1, Navid Khoshavi1, Jian Zhou1, Dan Huang1, Ronald F. DeMara1, Jun Wang1

Wujie Wen2, Yiran Chen3

1Department of ECE, University of Central Florida
2Department of ECE, Florida International University

3Department of ECE, University of Pittsburgh
{xchen, nkhoshavi}@eecs.ucf.edu, {ronald.demara, jun.wang}@ucf.edu

ABSTRACT
Spin-Transfer Torque Random Access Memory (STT-RAM)
has been identified as an advantageous candidate for on-chip
memory technology due to its high density and ultra low
leakage power. Recent research progress in Magnetic Tun-
neling Junction (MTJ) devices has developed Multi-Level
Cell (MLC) STT-RAM to further enhance cell density. To
correct the write disturbance in MLC strategy, data stored
in the soft bit must be restored back immediately after the
hard bit switching is completed. However, frequent restores
are not only unnecessary, but also introduce a significant
energy consumption overhead. In this paper, we propose an
Adaptive Overwrite Scheme (AOS) which alleviates restora-
tion overhead by intentionally overwriting selected soft bit
lines based on RRD (Read Reuse Distance). Our experi-
mental results show 54.6% reduction in soft bit restoration,
delivering 10.8% decrease in overall energy consumption.
Moreover, AOS promotes MLC to be a preferable L2 design
alternative in terms of energy, area and latency product.

Keywords
MLC; STT-RAM; Write Disturbance; Prediction

1. INTRODUCTION
In order to meet the ever-growing demand for performance

and energy efficiency, a large portion of modern processors
is occupied by on-chip multi-level SRAM caches. However,
the significant leakage power and cell area of SRAM impedes
its future deployment in energy critical applications, such
as mobile platforms. Despite several remarkable research
advances to reduce the leakage power, it is inevitable to
encounter additional SRAM energy consumption as CMOS
technology continues to scale down. Recently, emerging non-
volatile memory technologies, such as Spin-Transfer Torque
RAM (STT-RAM), have been identified as promising alter-
natives to SRAM. STT-RAM is ideal for on-chip caches due

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897987

to its near-zero leakage and high cell density. In fact, com-
panies like Qualcomm, already advanced their research in
using STT-RAM to revamp the memory hierarchy [1].

By storing two or more bits in a single cell, Multi-Level
Cell (MLC) designs boost data density and have been adopted
in commercial products, such as MLC NAND flash. In light
of this, MLC STT-RAM has been explored to enhance cache
capacity [2][3]. Compared to the Single Level Cell (SLC)
structure, one more Magnetic Tunnel Junction (MTJ) is
placed into a single MLC STT-RAM cell. These two MTJs,
whose feature sizes are maintained to meet certain Tunneling
Magneto-Resistance (TMR), can be implemented either in
plane or perpendicularly. Various bit to cache line mapping
strategies are enabled due to the proposal of MLC designs.

In order to read data without flipping MTJs, a very small
sensing current is applied to the bit line in MLC. While in
a write operation, switching current for a large MTJ (hard
bit) is able to change the magnetization direction of the
corresponding small MTJ (soft bit), which is called Write
Disturbance (WD). To rectify WD, on every write access to
a hard bit, data stored in the soft bit of the same STT-RAM
cell must be sensed out first and restored back after the
writing is completed. Although the contemporary restore
scheme guarantees data integrity, it introduces extra reads
and writes and is energy inefficient in some scenarios. For
instance, if a soft bit cache line is not subsequently read
prior to its eviction, immediately restoring this line is not
only unnecessary, but also brings an energy overhead.

In this paper, we propose an energy efficient restore scheme,
Adaptive Overwrite Scheme (AOS), for MLC STT-RAM
based cache. AOS chooses to overwrite the soft bit line
when it is less likely to be read in the near future. For
the sake of this, first we define the concept of Read Reuse
Distance (RRD), which is the timing distance between two
consecutive read accesses. We also develop the RRD pred-
icator inspired by an existing cache line reuse distance pre-
diction design [4][5]. The RRD predictor samples memory
access streams (hashed values of program counter) to cal-
culate RRD at run time, and the RRD predication table
is updated for higher accuracy upon the incoming pairs of
PC and RRD. Furthermore, to determine if it is harmless to
overwrite, a threshold RRD with high coverage is adopted
and compared with the Estimated Distance to the next Read
(EDR). Our experimental results show AOS fully release the
potential of MLC to be the favored L2 alternative.

2. BACKGROUND AND MOTIVATION

Free Layer

Reference Layer

MgO

BL

SL

Parallel

Low Resistance

Free Layer

Reference Layer

MgO

BL

SL

Anti-Parallel

High Resistance MgO

BL

SL

Word Line

(a) (b) (c)

MgO

Figure 1: (a) Low Resistance State (b) High Re-
sistance State (c) Serial MLC STT-RAM

STT-RAM is an emerging non-volatile memory which can
provide SRAM-like read speed, DRAM-like density and near-
zero leakage power. Each MTJ consists of two ferromagnetic
layers (free and reference layer) and an oxide barrier (MgO)
sandwiched between them. As shown in Fig. 1(a) & Fig.
1(b), the magnetization directions of two ferromagnetic lay-
ers can be tuned to either parallel or anti-parallel, indicating
whether the MTJ is in a low resistance state (logical 0) or a
high resistance state (logical 1), respectively.

In the write operation, a high voltage is applied between
the source line (SL) and the bit line (BL), generating a cur-
rent across the MTJ and switching the magnetization direc-
tion of the free layer. When reading data from a STT-RAM
cell, a small sensing current is injected to generate a bit line
voltage (VBL). This VBL is then compared with a reference
voltage in order to decide whether a logical 1 or a logical 0
is stored in the cell.

To further improve the density of STT-RAM, MLC de-
signs have been introduced and studied recently. There are
two varieties of MLC structures, namely, serial MLC and
parallel MLC. In this paper, we use the serial MLC STT-
RAM structure as shown in Fig. 1(c) by default, for the
serial MLC has been proven to be more reliable and easier
to fabricate. However, our proposed technique is also ap-
plicable to the parallel structure. The serial MLC stacks
two MTJs vertically in a single memory cell. These two
MTJs must occupy different cell areas so that four differen-
tial resistance states can be achieved. We call the small and
large MTJ as the soft bit and hard bit respectively. Under
constant resistance-area product, the soft bit, with larger
resistance, is easier to be flipped than the hard bit because
the soft bit requires a smaller switching current.

The read and write schemes of MLC STT-RAM have been
well studied in [6]. To read a 2-digit value from a MLC,
it takes two comparisons as shown in Fig. 2(a). Recall
that the sensing current passing through MTJs will produce
a VBL. This VBL is compared with the reference voltage
Vref1 first to decide the value of the soft bit, then a second
comparison with Vref2 or Vref3 is done to decide the hard
bit. Programming a MLC needs up to two steps as shown in
Fig. 2(b). If the target 2-digit number has the same value
on soft and hard bits, then a strong current IHigh is used
to switch both bits. Otherwise, a weak current ILow, which
will only affect the small MTJ, can be applied to switch the
soft bit.

As we have described, the switching current Iw flows through
an MTJ and changes its magnetization direction. The write
current value is proportional to its MTJ area [7][8] as defined

< Vref1?

< Vref2 ? < Vref 3 ?

VBL

[0X] [1X]

Yes No

[00] [01] [10] [11]

Yes

No Yes

No

[00] [10]

[11][01]

ILow IHigh

(a) (b)

[SoftBit, HardBit]

Figure 2: MLC STT-RAM (a) Read Scheme (b)
Write Scheme

in Equation (1):

Iw = A · (Jc0 +
C

Tω
α) (1)

where Jc0 is the critical current density at zero temperature;
Tω is the switching current duration; C and α denotes fitting
parameters. In a serial MLC, switching the large MTJ (hard
bit) requires higher current according to Equation (1), which
will overwrite the value stored in the small MTJ (soft bit).
This is also known as Write Disturbance (WD). To deal
with WD, upon each hard bit write request, data stored
in the soft bit has to be read out first, then restored back
after the hard bit update is completed. As astute readers
may point out, this inefficient, yet necessary immediately
restore scheme will incur significant performance and energy
consumption overheads.

To be more specific, we illustrate the energy overhead
caused by restoration using cell split mapping MLCs [2]
which will be presented in the next section. Assume EPC is
the dynamic energy consumed by cache peripheral circuitry
(e.g. address decoder) per access, EWSBL and ERSBL are
the average write and read energy of Soft Bit Line (SBL) per
request, while NWHBL is the write access number of Hard
Bit Line (HBL). The energy overhead spent on immediately
restore operations is:

EIRS = (EPC + EWSBL + ERSBL) ·NWHBL (2)

Fig. 3 demonstrates the dynamic energy consumption
breakdown of read, write, and restore operations for PAR-
SEC benchmarks (see Section 4.1 for detailed experiment
settings). Restoration consumes 23% on average and up to
27% more dynamic energy, which brings a significant over-
head to MLC STT-RAM based L2.

3. TECHNICAL APPROACH

3.1 Cell Split Mapping MLC STT-RAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
or

m
al

ize
d

En
er

gy

read write restore

Figure 3: Dynamic Energy Breakdown of MLC
STT-RAM

Line‐0

Line‐1

Line‐2

Line‐3
...

βSBL

αHBL

SBL (Small MTJs)

HBL (Large MTJs)

512 MLCs

Line‐6

Line‐7
...

Figure 4: A 8-way Cell Split Mapping Cache Set

There are three practical bit mapping strategies for MLC
STT-RAM cache, namely, direct mapping, cell split map-
ping, and interleaved mapping [2][9]. Direct mapping ne-
glects the fact that it is easier to access soft bits than hard
bits, and interleaved mapping requires additional address
decomposition to support mixed block modes. Therefore,
we choose cell split mapping strategy in our design, which
maps an entire data block to the favourable SBL. Fig. 4 de-
picts an 8-way associative cell split mapping cache set. 512
MLC cells construct two 64-byte cache lines, where all the
hard bits form an HBL and the corresponding soft bits in
the same cells compose an SBL.

3.2 Adaptive Overwrite Scheme
The intuition behind saving energy for MLC is to avoid

unnecessary restore operations. In light of this, Adaptive
Overwrite Scheme (AOS) is proposed as shown in Fig. 5.
By overwriting selected SBLs, a large portion of restorations
can be reduced. Here αHBL is a cache data block stored in
a HBL, βSBL is another block saved in the corresponding
SBL of αHBL as shown in Fig. 4, both of which are in L2.
A separated tag- and data- array implementation as well as
an non-inclusive cache hierarchy are adopted here. We will
elaborate the design of read reuse predictor in Section 3.3
and the adoption of threshold RRD value in Section 4.2.
AOS works as follows:

• If βSBL is invalid (V bit is ‘0’), it can only serve write
access, but not read access. Overwriting it will not
introduce any cache miss. The dirty bit of αHBL is set
when the write request is a dirty cache block write-
back from higher level. When the request is a new
write allocation from main memory due to L2 cache
miss (i.e., cache fills), the dirty bit remains ‘0’ .

• If βSBL has a replica in L1, overwriting it will not
incur extra cache miss. Recall that in the non-inclusive
hierarchy, upon a cache miss in L2, the missing block
is retrieved from the main memory to all cache levels.
However, the copy stored in L2 will not be accessed
until its eviction from L1. Thus, immediately restoring
βSBL will not benefit cache read hit. Also, since L1
maintains the most updated copy of the cache block,
there is no need to write back βSBL at the time of
overwrite even if it is dirty.

• If βSBL has no copy in L1, overwriting and invalidating
this block may lead to a future read miss. Therefore,
it is necessary to predict the read reuse behavior of
βSBL and calculate when the next time this block is
read (EDR). When EDR is shorter than a threshold
value (RRDth), the block is considered to be involved
in subsequent reads soon. Conventional immediately
restore scheme is applied to handle read miss.

• Supposing βSBL has no copy in L1 (i.e., no write-back)
and will not be read in the near future (i.e., no read
fetch) according to the prediction result, βSBL can be
overwritten in the write access of αHBL. Note here the

Write Access to

αHBL

For βSBL

V == 0?

βSBL has a copy in

higher level cache?

Yes

No

overwrite βSBL,

set its V to 0

Yes

For βSBL

EDR<RRDth?

Restore βSBL

after αHBL

write access
For βSBL

D == 0?

Yes

No

No

overwrite βSBL,

set its V to 0

Write back βSBL

to main memory

No

Yes

V: Valid Bit EDR: Estimated Distance to next Read

D: Dirty Bit RRDth: Threshold Read Reuse Distance

Figure 5: Adaptive Overwrite Scheme Flowchart

dirty bit of βSBL needs to be checked first. If it is ‘1’,
this block is written back to the main memory and is
then overwritten.

3.3 Read Reuse Distance Prediction
In contrast to the reuse distance measurement considering

both read and write [10], RRD is the interval between two
successive reads to the same block. In other words, RRD is a
notion that quantifies data block read reuse frequency. Here,
we use the number of intervening L2 access to represent it.
EDR is defined as the interval from the time an HBL is writ-
ten to the next time its corresponding SBL is read. Previous
work [4][5] proposed a PC-based reuse distance predictor to
optimize cache replacement policy. In light of this design,
we exploit the instructions of cache accesses to predict block
read reuse behavior.

Similar to prior work [4][11], there are two parts in our
RRD predictor, namely, “read sampler” and “RRD predic-
tion table”. Read sampler aims to calculate the correspond-
ing RRD of a given PC. The sampling FIFO buffer is scanned
for a matching PC on each read access. Simultaneously,
read sampler samples the access stream and stores into the
sampling buffer. To calculate RRD, read sampler simply
multiplies the sample period by its relative tail pointer posi-
tion. For example, in Fig. 6, the sampling period is set to 2,
therefore PCs associated with RdA, RdC are sampled into
the buffer from the access stream. WrtB is stored as a“stall”
regardless of its PC particularly. Then the WrtC request
comes into cache followed by the RdC. WrtC is skipped in
the PC matching process. While triggered by the next read
access RdC, the sampling buffer is scanned for a match with
the PC associated with block C (PC2). Since PC2 exists
in the buffer already, a match is found and the RRD paired
to this PC is computed as 4. The second part of our RRD
predictor, RRD prediction table, is similar to the one in [4],
which is indexed by hashed PC and holds correlated RRD
and Confidence Counter (CC). Upon every incoming pair of
PC and RRD from the read sampler, the CC of the corre-
sponding pair in RRD prediction table is updated. Only if
the CC reaches a certain threshold, the RRD can be taken
for prediction. EDR is calculated using the last read ac-
cess timestamp stored in the cache line, current time, and
predicted RRD.

Our RRD predictor differs from previous designs in the

Access Stream: RdA, WrtB, RdC, RdD, WrtB, WrtC, RdC …...

Sampling FIFO buffer: A (PC1), C (PC2), Stall,
Match

Tail Pointer

Figure 6: Read Sampler Operation

following aspects. First, at the sampling stage, if a write re-
quest is sampled, a “stall” will be stored in the FIFO buffer
as a placeholder without its PC. However, in [4], the PC
associated with a sampled write request will be stored into
the FIFO buffer for matching. Second, at the PC match-
ing stage, only an incoming read request can trigger PC
matching. This is due to AOS objective of estimating the
read reuse distance instead of the general reuse distance in
[4]. Lastly, in [4], a write-back access filter is needed, which
significantly increases the design overhead. This is because
evictions from L1 appear as write accesses at L2. However,
these write-backs are not associated with any instructions.
Failure to consider this will substantially degrade predic-
tion accuracy. Read sampler explicitly avoids irrelevant PCs
brought by evictions without the need for a write-back filter.
Therefore, our predictor is more lightweight, but delivers
even better performance over a range of workloads.

Regarding the memory size overhead incurred by RRD
predictor, for example, a 512-entry RRD prediction table
brings 512 entries × 39 bits (32 bits PC + 5 bits bucket
+ 2 bits confidence counter) per entry = 2.4 KB overhead,
which is only 0.06% of a 4 MB cache. Also, for the 10-bit
timestamp in each cache line, it only consumes 10 bits per
64 B = 1.95% of cache line size.

4. EVALUATION

4.1 Experiment Setup
The evaluation was conducted by using the cycle-accurate

simulator MARSSx86 [12]. We modified its cache controller
module to realize the proposed function. The simulator
mimics the computer architecture as shown in Table 1. Eleven
different benchmarks from PARSEC 2.1 suite [13] were used
for the experiment, executing 500 million instructions start-
ing at the Region Of Interest (ROI) after warming up the
cache with 5 million instructions. The simsmall input sets
are selected for all benchmarks.

We adopted the serial MLC STT-RAM cell design from [3]
and scaled it under 32nm technology node [14]. The MTJ
pillar is configured as a 32nm×64nm elliptical shape. We
used the NVSim and CACTI [15][16] to obtain the key design
parameters as shown in Table 2. MLC STT-RAM model is
integrated into NVSim by modifying configurations, such as
set/ reset currents, nMOS transistor sizes, etc. The energy
contributions from peripheral circuits are also included.

Table 1: Baseline Configuration
CPU 4 cores, 3.3 GHz, Fetch/ Exec/ Commit width 4
L1 private, 32 KB, I/D separate, 8-way, 64 B, SRAM, WB
L2 private, 4 MB, unifed, 8-way, 64 B, STT-RAM, WB

Main
Memory

8 GB, 1 channel, 4 ranks/ channel, 8 bank/ rank

4.2 RRD Predictor Configuration

Table 2: Comparsion of 4 MB SLC STT-RAM, MLC
STT-RAM and SRAM

SLC STT-RAM MLC STT-RAM SRAM

Array Area (mm2) 1.86 1.01 7.28

Read Latency (Cycles) 9.08
S: 6.73
H: 9.80

7.43

Write Latency (Cycles) 25.58
S: 25.31
H: 56.50

5.78

Read Energy (nJ) 0.216
S: 0.22
H: 0.43

0.161

Write Energy (nJ) 0.839
S: 0.843
H: 2.502

0.156

Leakage (mW) 18.39 7.02 295.58

RRD Theshold Value: In order to determine whether
restoration can be postponed or not, EDR of an SBL needs
to be compared with a threshold RRD value. This value
is adopted from the analysis of various memory accesses.
Note here RRD value is presented by the power of two as
this can help us define RRD access counter size. Fig. 7
shows cache blocks whose RRD is greater than 24 account
for 62% of the total number on average. In other words,
more than half of the cache blocks have a distant RRD and
are eligible for overwrite. Moreover, the number of reads
associated with these blocks takes only 13% of total read
accesses as described in Fig. 8. That means overwriting
these blocks is less likely to incur read misses. Hence, we
adopted 24 as the threshold RRD. Blocks with RRD greater
than the threshold (i.e., non read-intensive) are selected to
skip restorations.

Read Sampler Sampling Period: To reduce the stor-
age requirement for RRD prediction table, a reasonable sam-
pling period needs to be adopted. We conducted an exper-
iment to explore the impact of sampling frequency on the
hit rate of L2 cache. We found when the sampling period
increases from 23 to 27, the average hit rate barely changes
across PARSEC benchmarks. However, from 27 to 210, it
started to fluctuate and decreased significantly at 210. This
is because a large sampling period is not able to capture the
locality in the access stream. Since a small sampling pe-
riod introduces intensive PC comparison and table updates,
which impairs predictor performance in turn, we chose a
sampling period of 27 in our final evaluation. The size of
sampling buffer can be determined via the equation:

Sampling FIFO size =
Max RRD

Sampling Period

0

10

20

30

40

50

60

%
 o

f c
ac

he
 b

lo
ck

s

2⁰-2¹ 2¹-2² 2²-2³ 2³-2⁴ 2⁴-2⁶ 2⁶-up

Figure 7: Percentage of total cache line for six
RRD ranges

0

10

20

30

40

50

60
%

 o
f r

ea
d

op
er

ai
on

s
2⁰-2¹ 2¹-2² 2²-2³ 2³-2⁴ 2⁴-2⁶ 2⁶-up

Figure 8: Percentage of total read operation for
six RRD ranges

The maximum RRDs we observed in memory traces are gen-
erally under 210, and the sampling period is set as 27. Thus
we selected 23 as the FIFO size.

4.3 Energy Area Latency (EAT) Product Com-
parison

There are a few other technologies that can be employed as
L2, for instance, SLC STT-RAM and conventional SRAM.
SLC almost doubles the cell area of MLC with the same ca-
pacity, whereas MLC suffers from asymmetric read and write
performance and needs restoration. On the other hand,
SRAM consumes significantly more leakage power and size
in contrast to MTJ-based technologies. We use Energy Area
Latency (EAT) product [17] as metrics to not only find the
energy efficiency AOS can help to improve, but also to eval-
uate the preferred L2 candidate.

In the following evaluations, the baseline is the MLC with
conventional immediately restore scheme. No SBL restora-
tion can be deducted in the baseline.

Restoration Reduction: The normalized numbers of
restoration reduced by AOS are shown in Fig. 9. The base-
line MLC has 100% restoration. When applying AOS, 54.6%
of the total restore operations are avoided on average; in
some benchmarks like streamcluster, where there are a large
portion of distant read intervals, AOS can save up to 62.7%
of restoration.

Energy Comparison: Fig. 10 compares the dynamic
energy consumption of four L2 candidates. SRAM consumes
the least dynamic power, as switching transistors from “on”
to “off” and “off” to “on” are symmetrical. Writes are not as
power hungry as they are in STT-RAM. With AOS, 10.2%
of dynamic energy in MLC is reduced on average.

To calculated the leakage energy of four candidates, we
used the execution time of each benchmark and the unit
leakage power. The overall energy consumption equals the
sum of dynamic and leakage energy as shown in Fig. 11.

0

20

40

60

80

100

%
 o

f R
es

to
ra

tio
ns

After AOS Reduced by AOS

Figure 9: Restoration Reduction with AOS

0

1

2

3

4

5

6

N
o
rm

al
iz
ed

D
yn
am

ic
 E
n
er
gy

SLC MLC MLC(AOS) SRAM

Figure 10: Dynamic energy comparison among
different L2 candidates

SRAM consumes considerably more leakage energy than other
candidates, making the overall energy consumption enor-
mous. AOS can mitigate 10.8% of the total energy for MLC
on average. In write intensive benchmark like vips, AOS can
save up to 13.0% energy.

Latency Comparison: We used the read and write
numbers and unit latency to calculate cache access latency.
AOS reduces unnecessary restorations and decreases MLC
latency by up to 14.85% and 11.72% on average as shown in
Fig. 12. SRAM is the fastest among four candidates due to
its symmetrical rapid access speed. Note here the overhead
incurred by the peripheral circuits are also included.

EAT Product: Fig. 13 shows that MLC with AOS has
the preferable EAT in most cases. Compared to SLC, which
tends to be considered as the preferred L2 candidate by in-
tuition, MLC with AOS decreases EAT by 4.6% on average.
In the read intensive workload like streamcluster, EAT is
reduced by 20.3%. This is because SLC almost doubles the
size of MLC, and besides, the read latency of SLC is very
close to that of the hard bit in MLC. AOS also reduces the
baseline MLC EAT by 10.1%.

5. RELATED WORK
Previous research on MLC STT-RAM mainly focused on

leveraging the performance disparity of two MTJs. For in-
stance, Jiang et al. [18] proposed to promote frequently
written data into write-fast-read-slow soft bit lines, and fre-
quently read data into read-fast-write-slow hard bit lines
within parallel MLC structured STT-RAM. Similarly, based
on series MLC, Bi et al. [2] advocated a bit mapping strat-
egy constructing general fast- and slow- lines which is used
in our paper. Wang et al. [9] proposed to dynamically dis-
able the hard bits in cache line while keep the number of
associativity. Chi et al. [19] presented an efficient local
checkpointing method by storing working data in soft bits
and checkpoint data in hard bits.

Meanwhile, the reliability issue of STT-RAM is gaining

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

al
iz
ed

 O
ve
ra
ll
En

e
rg
y

SLC MLC MLC(AOS) SRAM

5.00 3.25 1.65 2.04
3.68 4.66

3.26 3.78 3.58
3.17

2.41

Figure 11: Overall energy consumption among
different L2 candidates

0

1

2

3

4

5

6
N
o
rm

al
iz
ed

La
te
n
cy

SLC MLC MLC(AOS) SRAM

Figure 12: Cache latency comparison among differ-
ent L2 candidates

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

al
iz
ed

 E
A
T

SLC MLC MLC(AOS) SRAM

3.89 3.45 2.91 8.73 10 3.77 8.71
4.29

6.22

2.7

Figure 13: EAT comparison among different L2
candidates

significant research interest. Recently, Wang et al. [8] pro-
posed a selective restore method to mitigate the overhead
brought by read disturbance correction in SLC STT-RAM.
They also added three more flag bits in each cache line to
assist their scheme. Our work shares some similarities with
this one, but our research focuses on the write disturbance
issue in MLC. In [20][21], ternary coding technique is pro-
posed to remove the most error-prone state and trade MLC
capacity for reliability. Wen et al. considered the nonuni-
form ECC design requirement for MLC and advocated a
tri-region mapping strategy to reduce the write pressure on
hard bit lines [22].

6. CONCLUSION
In this paper, we proposed AOS to mitigate the energy

overhead caused by restores in MLC STT-RAM. We first
introduce the concept of RRD, which exploits the number of
memory access, to quantify the timing distance between two
successive reads to the same cache block. We also developed
an RRD predictor consisting of a read sampler and RRD
prediction table to provide trustworthy RRD for each cache
block. Furthermore, upon a write request to an HBL, the
EDR of the corresponding SBL is compared with a thresh-
old value to determine if restores can be postponed or not.
We conducted memory access analysis to adopt a threshold
value with high confidence. Our experimental results show
that AOS effectively reduces both dynamic and overall sys-
tem energy dissipation, and decreases EAT product.

Acknowledgment
This work is supported in part by the US NSF Grant CCF-
1527249, CCF-1337244 and NSF CAREER Award 0953946.

7. REFERENCES
[1] S. H. Kang. Embedded stt-mram for mobile

application: Enabling advanced chip architectures. In
Non-Volatile Memories Workshop, 2010.

[2] X. Bi et al. Unleashing the potential of mlc stt-ram
caches. In ICCAD, 2013.

[3] Y. Zhang et al. Multi-level cell stt-ram: Is it realistic
or just a dream. In ICCAD, 2012.

[4] G. Keramidas et al. Cache replacement based on
reuse-distance prediction. In ICCD, 2007.

[5] P. Petoumenos et al. Instruction-based reuse-distance
prediction for effective cache management. In SAMOS,
2009.

[6] Y. Chen et al. Access scheme of multi-level cell
spin-transfer torque random access memory and its
optimization. In MWSCAS, 2010.

[7] K. C. Chun et al. A scaling roadmap and performance
evalution of in-plane and perpendicular mtj based
stt-mrams for high-density cache memory. In JSSC,
2013.

[8] R. Wang et al. Selective restore: an energy efficient
read disturbance mitigation scheme for future
stt-mram. In DAC, 2015.

[9] J. Wang et al. Optimizing mlc-based stt-ram caches
by dynamic block size reconfiguration. In ICCD, 2014.

[10] A. Jaleel et al. High performance cache replacement
using re-reference interval prediction (rrip). In ACM
SIGARCH Computer Architecture News, 2010.

[11] P. Petoumenos et al. Instruction-based reuse distance
prediction replacement policy. In JWAC-1@ISCA,
2010.

[12] A. Patel et al. Marss: a full system simulator for
multicore x86 cpus. In DAC, 2011.

[13] C. Bienia et al. The parsec benchmark suit:
characterization and architectural implications. In
PACT, 2008.

[14] Predictive technology model (ptm). In
http://ptm.asu.edu/.

[15] X. Dong et al. Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile
memory. In TCAD, 2012.

[16] S. Thoziyoor et al. A comprehensive memory
modeling tool and its application to the design and
analysis of future memory hierarchies. In ISCA, 2008.

[17] B. Bass. A low-pwer, high-performance, 1024-point fft
processor. In JSSC, 1999.

[18] L. Jiang et al. Constructing large and fast multi-level
cell stt-mram based cache for embedded processors. In
DAC, 2012.

[19] P. Chi et al. Using multi-level cell stt-ram for fast and
energy-efficient local checkpointing. In ICCAD, 2014.

[20] W. Wen et al. State-restrict mlc stt-ram designs for
high-reliable high-performance memroy system. In
DAC, 2014.

[21] S. Hong et al. Ternary cache: Three-valued mlc
stt-ram caches. In ICCD, 2014.

[22] W. Wen et al. A holistic tri-region mlc stt-ram design
with combined performance, energy, and reliability
optimizations. In DATE, 2016.

