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Abstract

This paper introduces the task model, instruction set,
(path-based) reasoning scheme, software infrastructure, as
well as the experimental results on a SUN multiprocessing
machine, of a new distributed semantic network system. The
experiments demonstrate significant speedups.

1. Preface

The backbone knowledge representation systems in
such applications as natural language processing and ex-
pert systems have long been implemented as semantic net-
works [2, 6, 1, 13, 15], in which the knowledge entities
are represented by nodes (or vertices), while the edges (or
arcs) are the relations between entities. Most of these sys-
tems support the fundamental path-based inference scheme,
in which, by tracing the arcs between nodes, new knowl-
edge can be derived. Previous and current parallel seman-
tic network systems such as the SNAP [3, 4, 18, 12] and
PARKA [5, 17] use the “marker passing algorithm” [9] as
the inference mechanism. The marker passing algorithm is
a synchronous algorithm and cannot be efficiently imple-
mented on asynchronous (distributed) systems. Besides, in
the marker passing algorithm, the nodes are statically as-
signed to processors. Without applying additional load bal-
ancing algorithm, which causes significant overhead, work-
loads among processors can become extremely unbalanced.

Several factors attribute to the difficulties implementing
a semantic network on distributed systems. First, the seman-
tic network is a naturally fine-grained system, since only a

few instructions are needed for each basic operation. Sec-
ond, the computation structure is so highly irregular and
dynamic that efficient runtime load balancing is necessary.
Third, the heavy communication and random communica-
tion patterns usually make it difficult to achieve communi-
cation efficiency.

The proposed distributed semantic network system, the
TROJAN, uses a combination of task and data parallelism,
a task-based message-driven model, while handling given
queries, as opposed to the pure data parallel schemes used in
other parallel semantic network systems. In the task-based
message-driven model, queries are decomposed into tasks
and then scheduled for execution. Other system support ac-
tivities are also broken down into system tasks. The TRO-
JAN consists of two collaborating components: the host
module and the slave module. The host module interacts
with the user and processes information for the slave mod-
ules, while the slave modules perform task execution. Com-
munication between modules is accomplished by an object-
oriented message packing system. Current implementation
of the TROJAN focuses on the path-based knowledge in-
ferences, using the MPICH-G2, ANSI C, as well as the
flex lexical analyzer and the yacc parser generator. As in-
dicated in the experimental result section, the performance
tests demonstrate promising speedups.

2. Instruction Set and Reasoning of TROJAN

2.1. Instruction Set

Commands in TROJAN are generally categorized into
three groups: (1) network building (e.g. build and as-
sert, etc.), (2) inferencing (e.g. find, findassert,
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etc.) and (3) others (e.g. nodeset operation com-
mands, etc.) that are answered directly inside the host mod-
ule. Commands in groups (1) and (2) usually need to com-
municate with slave PEs. The TROJAN provides three com-
mands, build, assert and add, to construct the seman-
tic network. The syntax of these commands are listed be-
low:

� build: (build �relation nodeset��)

� assert: (assert �relation nodeset�� context-
specifier)

� add: (add �relation nodeset�� context-specifier)

These commands put a node into the network with an
arc labeled relation to each node in the following nodeset,
and returns the newly built node. An attempt to build a cur-
rently existing node will immediately return such an exist-
ing node. build creates an unasserted node unless an as-
serted node exists in the network with a superset of the re-
lations of the new node, in which case the new node is also
asserted. assert is just like build, but creates the node
with assertion. add acts like assert, but in addition trig-
gers forward inference. relation has to be a unit-path and
non converse. Converse relations relation-, which connects
each node of the nodeset to the built node, are constructed
implicitly by the system. (An example is given in 2.2.)

Several (path-based) inference commands are pro-
vided by the TROJAN system, including the find
family (find, findassert, findbase, findcon-
stant, findpattern and findvariable). Details
are elided due to the page limit.

2.2. Path-Based Reasoning

Path-based inference is the fundamental inference mech-
anism of all semantic networks. By tracing the arcs between
nodes, new knowledge can be derived. For example, the
command

(assert member Socrates class human)

defines the concept “Socrates is human”, shown in Fig. 1.
In the system, two base nodes Socrates and human are
generated by the command. The molecular node M1 (index
depending on the current knowledge base state) is generated
by the system, where “!” stands for the “assertion” concept.
Two forward links member and class are defined by the
user, two reverse links member- and class-, indicated
by dash lines, are generated by TROJAN automatically. Hi-
erarchical concepts “human is an animal” and “animal is a
thing” can be constructed similarly. And by following the
links of “subclass-” and “supclass”, derivation can be made
that Socrates is human, an animal and a thing.

In TROJAN, the relation between two nodes can be ei-
ther explicit (direct arc between two nodes), or implicit (an

member

M1!

subclasssubclass

M2!

supclass

member- class- subclass- supclass-

animal

M3!

supclass-subclass-

supclass

thing

class

humanSocrates

Figure 1. TROJAN Hierarchy Example

arc across several intermediate nodes). The implicit rela-
tion is defined by the TROJAN command define-path.
For example, in Fig. 1, the class inference rule can be de-
fined by the following command:

(define-path class (compose class
(kstar (compose subclass- supclass))))

, which indicates that the class relation can be defined by
a direct arc class followed by zero or more occurrences
of combinations of the direct arcs subclass- and sup-
class. Several path definition primitives are defined in the
path-based inference rules. These will be used in Section 3
for defining the parallel computation task units in the sys-
tem.

The TROJAN command find, designed for path-based
inference queries, has the following syntax:

(find �path nodeset��).

This command returns a set of nodes such that each node in
the set has every specified path going from it to at least one
node in the accompanying nodeset. For example, in Fig. 1,
when the command

(find subclass human supclass animal)

is issued, the TROJAN answers M2 since M2 is the only
node with incident edge subclass leading to node hu-
man and edge supclass to animal. When the command

(find subclass (human animal))

is issued, the TROJAN answers (M2 M3) since M2 and M3
each has an edge subclass to either node human or an-
imal.

3. Software Architecture

The host system is composed of the following major
components. The (language front-end) interacts with user
and decomposes the commands into either knowledge or
tasks. All the preprocessing and distributing are carried out
in the command processing module. The object-oriented
packing module is the communication channel between
PEs. When the slave module finishes a query, the answer
messages are then sent back to the host answer processing
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Figure 2. Slave System Architecture

module of the host system to be merged into a final infer-
ence conclusion. Some knowledge is kept in the host knowl-
edge base for simple queries.

The major components comprising the slave system are
as follows. The shared knowledge management module
stores and exchanges knowledge in the shared knowledge
base. The task execution module is the kernel of task execu-
tion. Several sub-modules are embedded in the task execu-
tion module, including the kernel message module, the task
execution engine, and the load balancing module, etc. The
duplicate checking module records the answers that have
been reached to save repeated executions. The slave sched-
uler schedules task execution and swapping. The object-
oriented packing system is similar to that of the host.

Fig. 2 illustrates the software architecture of the slave
system (host system architecture elided).

3.1. Task Model

In the path-based inference, every task carries a start-
ing node N, a path P, and other bookkeeping information.
Yet the task alone cannot solve the TROJAN queries. Un-
like many other parallel systems where tasks are so called
“fire-and-forget” tasks, there are three major components
in the TROJAN task execution model: the tasks, the post
task processes (ptask) and the kernel messages (kmesg).
When a query is issued, the TROJAN decomposes it into
two components: the task, carrying the information for re-
alizing the query; and the ptask, indicating current status
and what needs to be done once the tasks are solved. Dur-
ing the execution of the task, new tasks/ptask might be gen-

erated and solved. In case the task is solved, a kmesg is
sent back to its corresponding ptask. The ptask, triggered by
the kmesg, might generate new tasks or send another kmesg
back to its parent ptask depending on the status.

This task-ptask-kmesg model can be viewed as general-
ized function executions, where the functions are executed
in parallel whenever possible. While a function is called,
the task part is performed. Upon completion, a kmesg con-
taining the answer is returned, and the ptask will decide
whether any further processing of the answer is necessary.
The traditional programming model, which uses a stack as
the supporting mechanism (which is inherently sequential
in terms of stack growth and shrink), is limited to the se-
quential computers. This motivates our design of a model
expressing the function behavior while maintaining the ca-
pability of being parallelized. The formal definitions of the
task, ptask and kmesg are described as below.

Definition 1 (Task)
A task Tk is defined by a tuple of �Pid �P�N� where Pid is
an identification tag which represents where the task comes
from (or the parent ptask id), P is a path and N is a node.

Definition 2 (Post Task Process (ptask))
A post task process (ptask) is defined by the tuple of
�Id�Pid �Act�Ans� where Id is the identification tag for the
ptask itself, Pid is the identification tag for the parent ptask,
Act indicates what kind of job the corresponding task is per-
forming and what kind of action should be performed when
accepting incoming kmesgs, and Ans is the answer nodeset
we got so far. Some of the entries are path symbol-specific
and therefore are not listed here.

Definition 3 (Kernel Message (kmesg))
A Kernel Message (kmesg) is defined as a tuple of
�Id�NS�Aid� where Id is an identification tag (for ptask)
and NS is the body of the message, which is a node-
set in the TROJAN implementation. Aid is an auxiliary data
structure which is used only for the inference of some par-
ticular operations. (RELATIVE-COMPLEMENT and
RANGE-RESTRICT, specifically).

3.2. Task Execution Engine

The task execution module consists of several smaller
components: the kernel message queue, the kernel message
processor, the kernel message receiver, the post task pro-
cess pool, the task execution engine, and some task queues.
Furthermore, the load balancing module is hooked up with
the ptask pool for load balancing among the PEs.

When a query is made by the user, the TROJAN decom-
poses it into tasks. In the mean time, ptasks are spawned
to represent a specific action to take after the answers of
the tasks are generated. At the beginning the tasks and the
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ptasks are located at the Host PE. The task distribution mod-
ule sends the tasks to the slave PEs to be executed by the
slave task execution engine. Executing a task might gen-
erate new tasks and ptasks when the solution needs to be
investigated further or it might generate kernel messages
when a task is solved.

The kernel message receiver acts as a daemon for re-
mote kernel messages, which are placed into the kernel mes-
sage queue. The kernel message processor then dequeues
the messages from the kernel message queue, looks for the
matching ptask from the post task process pool and executes
them. The execution of a ptask might generate new kmesgs,
new tasks, or new ptasks, all being put into proper places to
be picked up and executed again. Meanwhile, the load bal-
ancing module is invoked periodically to balance the load
difference between different PEs. It transmits the ptasks to
the remote PE and places them back in the proper location
when the incoming ptasks are received.

3.2.1. Phase Transition A task in the TROJAN system is
a non-preemptive, indivisible execution unit carrying the in-
formation needed for realizing the queries. A task performs
only one function at a time, but depending on the status
and the action of the task, a task can generate new tasks
performing different functions. It also may produce system
inquiries to other modules such as the knowledge sharing
module and the duplicate checking module.

The life cycle of a task starts from the enqueuing phase
and goes through the following phases until the task is ter-
minated: the knowledge access phase, the execution phase
and the optional duplicate checking phase.

During the enqueuing phase, the task is spawned and al-
located into the task queue. Before any execution can be re-
alized, the system must ensure node N is local. If the node
has been in the local PE already, the task will then change
the status to either the task execution phase or the duplicate
checking phase based on certain criteria. Otherwise the task
enters the knowledge access phase until node N is trans-
ferred from the remote PE and is accessible to the task. The
task in the execution phase will be executed. Instead of be-
ing executed directly, if a task enters the duplicate check-
ing phase, the system will check whether the task has been
solved by other PEs.

3.3. Load Balancing

The migration of ptasks imposes overheads. When mov-
ing a ptask to a remote PE, the dependencies of task-ptask-
kmesgs in a local PE are destroyed. To maintain the depen-
dencies among different objects, some bookkeeping proce-
dure needs to be performed. Also the Pid in each data struc-
ture has to be consistently updated to ensure the coherence.
Another immediate overhead accompanying load balancing
is the introduction of new knowledge faults. The TROJAN

implements a load balancing strategy , the affinity based
scheduling [10], in which a task stays within a specific PE
till completion. This strategy saves a significant amount of
time on network traffic and eliminates possible knowledge
faults.

3.4. Other Slave Modules

Shared Knowledge Management Module
The basic unit in the TROJAN shared-knowledge mod-
ule is a “block” of semantic nodes. Each block con-
tains a certain amount of semantic node information. Since
the path-based inference does not generate new nodes dur-
ing the inference, there is no node writing actions and
the write coherence checking can be saved. This property
greatly simplifies the current design of the shared knowl-
edge module in TROJAN. The knowledge base can be
separated into the private knowledge system, where knowl-
edge has permanent residence, and the cache knowl-
edge system, where knowledge can be swapped out due
to capacity limits. Each knowledge system has two ma-
jor embedded components: the knowledge base, storing
the TROJAN nodes and arcs, and the control data struc-
ture, storing control information for knowledge base ac-
cesses.

Control Modules
Two control modules are related to knowledge ac-
cess, both monitored by the scheduler: the knowledge
task processor (KTP) and the knowledge task receiver
(KTR). The knowledge task processor fetches knowl-
edge tasks from the knowledge task queue (KTQ) and
executes them according to the defined actions. The knowl-
edge task receiver receives the dispatched knowledge tasks
from the system buffer and arranges them into the knowl-
edge task queue.

Duplicate Checking Module
Several components comprise the duplicate checking mod-
ule, including three data receivers: the duplicate query re-
ceiver, the duplicate response receiver and the duplicate
answer register message receiver; four storage data struc-
tures: the duplicate answer register message queue, the
duplicate query task queue, the duplicate answer reposi-
tory, and a duplicate task hashing table, and two execution
modules: the duplicate checking engine and the dupli-
cate checking answer registrant . All the receivers and the
duplicate checking engine are monitored by the sched-
uler and are activated periodically.

Object-Oriented Message Packing Module
Conventional message-passing systems, such as the PVM
or MPI, provide only essential functions to transfer basic
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types of information such as characters, integers, and float-
ing point numbers. Creating a type template in such systems
for dynamic data structures (e.g. linked lists), or compos-
ite data structures, imposes significant message communi-
cations. In addition, the data format conversions for differ-
ent representation systems incur constant overheads. The
object-oriented message packing module (OOMP) needs
the system designer to distinguish the pack/unpack func-
tion calls from the send/receive function calls. A send-
ing buffer and a receiving buffer are maintained. When the
user packs data into the system, the OOMP module trans-
lates it into byte codes and stores them in the sending buffer.
The buffer is flushed only upon the request of the program-
mer. Generic communication functions are then invoked to
transmit the buffer. After receiving the message at the des-
tination PE, the OOMP module stores the data in the
receiving buffer. The destination PE then unpacks and re-
stores the data from the receiving buffer to its original
format.

3.5. Host System

The TROJAN user interface implementation follows
a context-free grammar specified in SNePSUL [16]. The
command processing module receives commands from the
parser, shapes them into proper data structures, dispatches
them to the designated slave PEs and updates the associ-
ated data structures in the host knowledge base. Due to the
page limitation, the readers are referred to a previous arti-
cle [11] on TROJAN for host system details.

4. Experimental Results

The current implementation of TROJAN focuses
on path-based knowledge inferences, using ANSI C,
MPICH-G2, along with the flex lexical analyzer and
the yacc parser generator. MPICH-G2 is a portable im-
plementation of the Message Passing Interfaces (MPI)
supported by the Globus middleware for the Grid envi-
ronments [7, 8, 14]. Tests of individual TROJAN compo-
nents and the overall speedups have been performed on
a SUN Enterprise 4000 server, containing 1GB of mem-
ory and 8 168-MHz UltraSPARC CPUs.

In the experiments using multiple inheritance classifica-
tion trees (every non-leaf node has 4 children and every non-
root node has 2 parents), The query is in the format of

(find (subclass- supclass . . .subclass-
supclass) (Bi1 . . . Bi7 Bi8 ))

The path length is 16 in the test query. The same query
was asked twice to examine the effect of cache knowledge.
In total 50 randomly generated test cases are sent to the sys-
tem to measure the average performance. Fig. 3 and Fig. 4
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show the expected total number of faults in all three sites
and the speedup for each query, respectively.

Figure 5 shows the picture of the average cache hit ra-
tio v.s. speedup, indicating that the more PEs in the system,
the more sensitive the performance is to the hit ratio. The
reason is that the penalties accessing a remote node are rel-
atively low in a system with a smaller number of PEs. When
the number of PEs increases, the penalties become signifi-
cant. A good node allocation strategy is crucial to achieve
a higher hit ratio. The results also indicate that the impact
by knowledge faults are relatively mild when the number of
PEs is low. With more PEs, the hit ratio plays a more cru-
cial factor determining the performance.
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Faults Speedup 2-PE 4-PE 6-PE 8-PE

Yes
Ave. 3.27 8.09 6.66 7.94

Std. Dev. 1.10 5.56 4.22 4.40

No
Ave. 3.52 10.58 14.82 15.25

Std. Dev. 1.08 3.80 7.06 6.53

Table 1. Speedup Distribution
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Table 1 also indicates that as the number of PEs in-
creases, the miss rate also increases. Since the hit ratio is
crucial to the performance, reducing possible data faults be-
comes essential while improving the system performance.
From time to time, the speedups in the experiments are
super linear. While examining the program by the profiler
gprof, such speedups are caused by the dramatic time de-
crease in the task execution module. Further examination
indicates that these speedups are caused by the diminish-
ing number of node location lookups in the shared knowl-
edge module, in both private knowledge and cache knowl-
edge.
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