
0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TC.2015.2513762, IEEE Transactions on Computers.

Open Access (OA) Fee payment processed January 7, 2016. OA authors are assured that they are free to post their articles on their personal
websites, their employers' sites, or their funding agency's sites.

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015

1

Fast Online Diagnosis and Recovery of
Reconfigurable Logic Fabrics using Design Disjunction

Ahmad Alzahrani, Member, IEEE , and Ronald F. DeMara, Senior Member, IEEE

Abstract—Design disjunction is developed to offer a broad coverage, high resolution, and low overhead approach to online diagnosis
and recovery of reconfigurable fabrics. Design disjunction leverages the condensed diagnosability of T logic resources to achieve
self-recovery using partial reconfiguration in O(log T) steps. Reconfiguration is guided by the constructive property of f-disjunctness
which forms O(log T) resource groups at design-time. Resolution of f simultaneous resource faults is shown to be guaranteed when
the resource groups are mutually f -disjunct. This extends run-time fault resilience to a large resource space with certainty for up to f
faults using a decision-free resolution process that also provides a high likelihood of identifying the fault’s location to a fine granularity.
Finally, design disjunction is parameterized to accommodate the low coverage issue of functional testing for which inarticulate tests can
otherwise impair fault isolation. Experimental results for MCNC and ISCAS benchmarks on a Xilinx 7-series field programmable gate
array (FPGA) demonstrate f -diagnosability at the individual slice level with a minimum average isolation accuracy of 96.4% (94.4%) for
f = 1 (f = 2). Results have also demonstrated millisecond order recovery with a minimum increase of 83.6% in fault coverage
compared to N-modular redundancy (NMR) schemes. Recovery is achieved while incurring an average critical path delay impact of
only 1.49% and energy cost roughly comparable to conventional 2-MR approaches.

Index Terms—Reconfigurable logic devices, field programmable gate arrays, autonomous fault handling, fault-tolerant systems,
run-time fault diagnosis and recovery, online test, design space exploration.

F

1 INTRODUCTION

CONTINUED scaling of transistor feature size has ex-
acerbated reliability concerns such as process varia-

tion, aging degradations, latent faults, and temporary fail-
ures in integrated circuits (ICs). Consequently, the need
for IC fault tolerance has received increasing interest over
the last decade. Moreover, the pervasive use of embed-
ded computing systems realized by field-programmable
gate arrays (FPGAs) has elevated the importance of FPGA
availability requirements corresponding to the proportion
of time that their operation can be sustained. A common
requirement is to provide high availability (HA) opera-
tion defined by 99.999% (“five nines”) that correlates to
five minutes of downtime per year, or greater availability
such as 99.999999% (“eight nines”) that correlates to 316
milliseconds of downtime per year [1]. High availability
operation is crucial whenever unavailability could result in
potential harm or inconvenience, violation of a service-level
agreement, or a loss of revenue, mission, and/or safety.

Traditionally, availability requirements can be achieved
through spatial resource redundancy to mask or replace
faulty elements. Availability depends on rapid fault re-
covery to incur minimal downtime via autonomous fault
resolution. As opposed to FPGAs, application-specific inte-
grated circuits (ASICs) use fixed redundancy configurations
which preclude fine-grained resource remapping. Whereas
FPGAs can enable dynamic fine-grained resiliency, a novel
online technique is developed using rapid self-organization
to attain HA objectives.

Reconfigurable hardware’s capacity to self-organize
can fulfill anticipated roles in designing future depend-

• The authors are with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
azahrani@knights.ucf.edu; ronald.demara@ucf.edu).

able hardware systems [2]. At present, the most widely
adopted reconfigurable architectures are SRAM-based FP-
GAs whose capacity can exceed a million logic cells which
can be leveraged to enable resilience. SRAM-based FPGAs
are ubiquitous in application-specific embedded systems,
high performance computing centers as well as safety-
impacting, mission-critical, and commerce-enabling sys-
tems. The FPGA devices within these systems can signifi-
cantly impact the overall system reliability [3]. Fortunately,
run-time partial reconfiguration capabilities of contempo-
rary FPGAs can be utilized to maintain degraded-mode
operation while enabling rapid recovery from a variety of
faults.

Over the last two decades, a significant body of research
has focused on realizing FPGA-based systems that are ro-
bust to permanent and transient failures. Permanent failures
constitute any irreversible damage to the physical resources,
whereas transient failures are short-duration events induced
by external sources such as charged particles [4]. Particle-
induced transient faults, or soft errors, cause single event
upsets (SEUs) which can alter SRAM configuration bits and
lead to a functional failure. Conventional resilience
techniques for soft-errors and single permanent faults are
based on fault-masking via majority voting [5] [6]. Voting
methods such as N-modular redundancy (NMR) incur N-
fold power and area overheads to tolerate temporary and
permanent faults in up to b(N − 1)/2c modules. Techniques
such as re-execution and reconfiguration scrubbing [7] [8]
can provide low overhead recovery for temporary failures.

Alternatively, dynamic remapping of a single design
implementation at the module or logic-tile level can be em-
ployed to deallocate the use of damaged resources [9]. How-
ever, the existing techniques for remapping of FPGA re-
sources at run-time can significantly increase the time com-
plexity of recovery, and thus the downtime. The recovery

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 2

overhead includes run-time remapping entailing on-board
execution of FPGA design processes, such as place and
route (PAR), which are time consuming. A single imple-
mentation of an FPGA-based design can require minutes to
hours using a high-end multicore processor [10]. Although
execution time for remapping can be substantially decreased
using incremental PAR if locations of faulty elements are
known, it is still a difficult computational workload for em-
bedded processing cores [11]. Thus, conventional dynamic
remapping techniques typically require faulty systems to be
taken offline for an undesirable interval of time.

Fig. 1. Objectives of proposed design disjunction approach.

In this paper, a new deterministic design space explo-
ration (DSE) [12] [13] method is used to realize FPGA
fault tolerance that achieves the availability and reliability
objectives shown in Fig. 1. The design space, and thus the
fault-resolution space, need only be explored at design-time
by creating a small library of alternative design configura-
tions (DCs) with f-disjunct resource usage. DCs are created
using the mosaic convergence algorithm developed such
that at least one DC in the library evades any occurrence
up to d resource faults, where d is lower-bounded by f. The
f-disjunction of resources among alternative DCs enables
run-time fault localization by a non-adaptive group test-
ing (NGT) technique. This realizes a novel low overhead
fault localization/fault isolation capability along with rapid
fault recovery from temporary and permanent faults in
reconfigurable fabrics while incurring minimal area, power,
and perturbation to normal system throughput. We show
that the combinatorial properties of f -disjunctness, along
with FPGA dynamic partial reconfiguration, e nable fault
resilience against extensive fault scenarios by reusing a sub-
set of the DCs to ensure continual execution with minimal
recovery time.
Overall, the contributions of this work include:

the first approach to utilize design disjunction for con-
densed diagnostic analysis of reconfigurable hardware,
an explicit fine-grained approach to determine the op-
timal number of DCs at design-time using the property
of f-disjunctness for recovery from multiple logic and
interconnect failures during the system lifetime,
an extension of NGT to overcome the low coverage of
online functional testing, and

improvement in crucial metrics including availability,
provability of recovery, fault coverage, fault isolation
accuracy, and area efficiency.
The remainder of this paper begins with a review of the

related work in Section 2. Section 3 provides an introduction
to group testing and the property of f-disjunctness along
with illustrations. Section 4 discusses design for resource
disjunction using the developed mosaic convergence al-
gorithm. Section 5 explains fault isolation and recovery
schemes for reconfigurable fabrics using design disjunction.
Evaluation results for several case studies are provided and
discussed in Section 6. A comparison between the proposed
work and modular redundancy schemes is presented in
Section 7. Finally, Section 8 presents a brief conclusion.

2 RELATED WORK

For contemporary reconfigurable devices, low-level hard-
ware support for testing can incur a significant area over-
head due to uncertainty in the logic and interconnect usage
of the target applications. In some cases, the goals of testing
have been limited to verifying the collective health of recon-
figurable fabrics, whereas in the case of diagnostic testing,
locations of faulty elements are also identified. Reconfigura-
bility has been leveraged in various ways to enable online
testing strategies which examine correctness throughout the
system lifetime.

Table 1 summarizes features of related approaches along
with the proposed scheme. Previous online diagnostic test
schemes for reconfigurable fabrics [14] [20] provide fine
resolution, although they require that the system be halted
or become unprotected for extended periods before individ-
ual faulty elements can be identified. The ability to rapidly
obtain information about faulty resources is a critical factor
in realizing efficient self-repair. It facilitates fault evasion
whereby faulty resources are avoided, or partially damaged
resources are reassigned to other useful functionalities. On-
line fault localization techniques often consider the struc-
tural heterogeneity of contemporary reconfigurable hard-
ware. Testing and fault isolation schemes for structures such
as programmable logic, interconnect, and RAM have been
developed through the years, based on the nature of each
structure. For example, RAM-based testing has been exten-
sively studied and the well-known MARCH algorithms [21]
have been proven effective for diagnosis of RAM cells by
applying a sequence of tests to each element in succession.
Previous online fault isolation and recovery approaches for
FPGA logic using dynamic reconfiguration h ave r elied on
built-in self-test (BIST) [14] [22]. However, dedicated BIST
structures including test pattern generators (TPGs) and out-
put response analyzers (ORAs) are typically not available
for FPGA platforms [22]. Modern FPGA architectures are
also not entirely scan-ready. Thus, scan chains, TGPs, and
ORAs are frequently implemented directly in the fabric
using look-up tables (LUTs) and shift registers. As a conse-
quence, BIST-inspired methods can increase FPGA resource
requirements by up to 50% [23].

The BIST-based roving STARs test scheme in [14] par-
titions the reconfigurable fabric into tiles, and continuous
online testing is carried out by roving a BISTer from one tile
to another while the resources not used by the BISTer struc-
ture are dynamically reconfigured to maintain availability.

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 3

TABLE 1
Comparison of Design Disjunction with Related Approaches

Approach
Run-time

Fault
Isolation

Resource
Coverage:
Resolution

Provable
Multiple-

fault
Coverage

Error-
tolerant

Fault
Isolation

Recovery Latency
Intrinsic

Wear
Leveling

PAR at
Run-time Advantage

STARs [14] Yes Logic: LUT Yes No Exhaustive BIST
Overhead No Required Resource

Recycling

R3TOS [15] Yes Logic: LUT Yes Yes Exhaustive BIST
Overhead No Required Robust Control

Mechanism

Module Diversity [16] No Logic: CLB No No µs→ ms Yes Unnecessary Effective Aging
Mitigation

Hahanov et al. [17] No Logic: CLB Yes No Routing
Overhead No Required Provable

Coverage

AGT [18] No Logic: slice No No PAR Overhead No Required Intrinsic
Adaptation

Consensus-Based
Evaluation [19] Yes Logic: slice No No PAR Overhead No Required Outlier

Identification
Design Disjunction
(approach herein) Yes Logic: slice &

Interconnect: PIPs Yes Yes µs→ ms Yes Unnecessary Condensed
Diagnosis

Although failures are resolved at a fine r esolution, data
throughput must be suspended to copy state values prior
to each tile movement. Resource recycling is also facilitated;
however, fault isolation and recovery depend on the latency
of BISTers to rove the device before encountering faulty
elements. Another recent BIST-based fault-tolerant FPGA
approach is illustrated by the reliable reconfigurable real-
time operating system (R3TOS) [15] wherein a hardware
microkernel (HWuK) provides a task scheduler, an allocator
to manage FPGA resources for tile placement, and a config-
uration manager which converts commands issued by the
scheduler and allocator into FPGA reconfiguration opera-
tions. To minimize single-point of failure exposures, HWuK
components are realized by an 8-bit PicoBlaze processor
occupying 6 block RAMs (BRAMs) and 500 configurable
logic blocks (CLBs) protected with selective triple modular
redundancy (TMR) and error-correcting code (ECC) bits
whose resources also undergo periodic testing. The impact
of BIST latency is masked by the use of hardware replication
and voting.

To reduce the high complexity and cost of BIST,
application-dependent BIST testing [20] focuses on the sub-
set of resources used to maintain design functionality. Thus,
exhaustive test vectors generated by a TPG and response
analysis carried out by an ORA can be relaxed without con-
tinually engaging a dedicated reconfiguration controller to
carry out the test. The work in [20] also demonstrates an ef-
fective application-dependent diagnosis for FPGA intercon-
nects. Distinct test configurations are applied to modulate
application LUT functionalities and study output patterns to
discern which nets are faulty. These application-dependent
approaches assume the resources undergoing diagnosis pro-
cedures are unavailable during diagnosis. Thus, methods
which eliminate these limitations on availability are sought.

Alternative approaches that eliminate BIST area and
power overheads, referred to as operational testing tech-
niques, conduct functional tests via input data that are
simultaneously used for normal throughput [19]. These
techniques attain availability by relying on run-time in-
puts, computational redundancy, and output comparison
to assess the subset of resources currently used by an
application. Permanent and temporary fault monitoring for
operational testing can be realized using concurrent er-
ror detection (CED) techniques based on duplication with

comparison (DWC) or parity-based methods [24]. DWC
that compares the Hamming distance between the outputs
of two spatially redundant modules is compatible with
recent multi-objective DSE approaches [25] which utilize
a cost function that considers area requirements and re-
source utilization against overhead of reconfiguration time.
In [18], another operational testing method based on adap-
tive group testing (AGT) for diagnosis of reconfigurable
fabrics is described under a single-fault assumption. How-
ever, since the creation of test designs are adaptive based on
outcomes of successive tests, the AGT method is unsuitable
for high availability applications. Similar to iterative logic
array (ILA) and array-based testing methods [26], most
functional testing techniques are mainly used for testing a
group of resources and provide no fault localization at a fine
resolution. In this work, benefits of operational testing are
explored with design disjunction to locate faulty resources
while avoiding BIST overheads.

Other previous design-time approaches for run-time
fault recovery have used genetic algorithms (GAs) [27] to
evolve a pool of best-fit designs that exhibit resilience to
various failures. The evolved designs are used at run-time
to maintain system functionality. Although GAs can succeed
in finding resilient designs, the number of evolved designs
requiring functional evaluation is large, and also being a
probabilistic process does not explicitly guarantee conver-
gence. The work in [17] presents an algebraic method for
devising an optimal remapping strategy for logic blocks at
row and column levels to reduce recovery latency and mini-
mize number of spare rows and columns required to tolerate
a large combination of fault locations. Remapping by inter-
change of device columns and rows is still performed at run-
time, which relies on an independent fault diagnosis process
to locate faulty cells before identifying which resources to
interchange. The consensus-based evaluation (CBE) method
described in [19] generates, at design-time, a diverse pool
of FPGA designs with alternative device resources. These
designs are evaluated against each other using a duplex
arrangement. Statistical clustering is used to identify opera-
tionally correct designs without the assumption of a golden
element. The module diversity approach described in [16]
provides yet another method for generating diverse designs
at design-time for mitigating aging effects at run-time. The

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 4

diverse designs can be deployed according to a scheduling
policy that results in a steady stress distribution across
resources to achieve an extended lifetime. The set of diverse
designs also guarantees fault recovery under a single-fault
assumption for all possible single CLB faults.

Unfortunately, none of the existing approaches demon-
strate provable coverage for multiple faults nor do they
allow the use of diverse designs for diagnostic tests to
locate faulty resources. In this work, we describe an explicit
method for generating the optimal number of DCs that
guarantee recovery from multiple faults at fine granularity
while providing rapid fault isolation. Broader surveys of
recent techniques for fault tolerance, autonomous recov-
ery, and self-healing of FPGA-based systems are presented
in [28], [29], and [30], respectively.

3 GROUP TESTING FOR DIAGNOSIS OF RECON-
FIGURABLE ARCHITECTURES

If a test is used to identify f defectives among T elements,
where f is unknown, then a straightforward, albeit subopti-
mal, procedure is to evaluate each element individually. As-
suming all tests are reliable, then the testing time complexity
becomes O(T). This cost can be considerably reduced by
dividing the T elements into g subsets, or groups. The
collective results after testing each group can be interpreted
to identify the f defectives. The challenge is to sample the
minimum number of groups sufficient to find the defectives.
This is the basic idea behind group testing first introduced
by Dorfman [31] for screening a large number of blood sam-
ples by pooling them together to reduce testing cost. Group
testing has been adapted to diverse applications such as
testing for manufacturing defects, DNA library screening,
coding theory, software testing, and BIST-based diagnosis
in digital systems [32]. Based upon how test groups are
sampled, most group testing techniques can be classified
into adaptive or non-adaptive categories.

3.1 Adaptive Group Testing (AGT)
When using adaptive group testing, complete knowledge of
how groups are sampled before testing begins is not spec-
ified. The groups are constructed i teratively based on each
successive test outcome during the testing procedure. As
testing progresses, the iterative sampling of groups narrows
down the suspect set of faulty resources until defectives are
identified. The binary search (BS) method described in [33]
presents one of the simplest AGT algorithms. At the initial
stage of BS, the set of scan cells to be tested, X, are consid-
ered suspect. The set X is partitioned into two groups, each
of which is collectively tested using two scan chains. The
BS technique is applied recursively to any erroneous group
until faulty cells are singled out. A modified implemen-
tation of this algorithm was first proposed for functional
testing of FPGAs in [18] under a single-fault assumption.
Each test group is a set of resources which implement a
functionally equivalent design. Initially, all resources in the
reconfigurable container are deemed suspect. The test starts
by dividing suspect resources among different functionally
equivalent FPGA designs. The suspect set is narrowed down
to those that implement a fault-affected design. The modi-
fied suspect set is iteratively divided and utilized by a new

generation of test designs. The algorithm terminates when
only a single cell remains in the suspect set, thus identifying
the defective resource. The operational complexity of this
algorithm depends on the maximum number of test designs
allowed in every test generation. Thus, an overriding con-
cern with AGT is the downtime needed to generate new
test designs by repeatedly invoking the design flow which
is infeasible on deployed real-time embedded systems.

3.2 Non-Adaptive Group Testing (NGT)
In the case of non-adaptive group testing, the sampling
procedure for all groups is known apriori to the execution
of tests. An intuitive way to model and describe the prob-
lem of fault isolation in FPGAs using this class of group
testing techniques is through matrix algebra. The following
notations are used throughout the paper:

n

Design matrix Dg×T is a binary matrix indicating the
subset of resources used by each of g DCs. Rows in this
matrix correspond to DCs whereas columns correspond
to resources. An entry ki,j of D matrix is one if resource
j is utilized by DCi, and zero otherwise.
Health vector hT×1 is a binary vector of length T rep-
resenting the health of the T resources, i.e. an entry hj
is one if resource j is defective and zero if resource j is
healthy.
Outcome vector og×1 is a binary vector of length g
containing the error detection outcomes of all g DCs, i.e.
an entry oi is one if an erroneous outcome is detected
while DCi is deployed and zero if DCi sustains correct
operation.
Setψ (v) is the subset of elements in binary vector v
whose entries are one.
ω(v) is the weight of binary vector v, i.e. number of
elements whose entries are one.
Γr is the set of all r-combinations of n elements.

The Outcome Vector, og×1, can be given as follows:

og×1 = Dg×T · hT×1 (1)

The objective is to recover the health vector h given that
both the design matrix and the outcome vector are known.
The health vector can be efficiently recovered if the design
matrix obeys the f-disjunctness property and no more than f
resources are defective [34]. The f-disjunctness property
constrains how alternative groups are overlapped such that
f-diagnosability still holds. It provides an efficient strategy
to distribute each possible subset of resources of size up to f
among a unique subset of DCs. Therefore, defective
resources can be identified by finding the common resources
among faulty DCs. The matrix Dg×T is considered f-disjunct
if and only if for any possible combination of columns, S, of
size f, every column not in S has at least δ row elements
whose entries are one and all entries of the columns S are
zero [35]. This can be expressed as:

∀S ∈ ΓTf ,

g∑
i=1

(
Di,j = 1 ∧

⋃
k∈S

Di,k = 0

)
> δ (2)

where 1 6 j 6 T and j 6∈ S.
The parameter δ represents the number of rows that

satisfy the left side of inequality in eq. (2). We refer to this

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 5

parameter as the disjunction factor. The minimum value of δ
necessary to ensure f-disjunctness is 1 in which all possible
combinations of up to f faulty resources can be identified
provided that all tests are reliable, i.e. each faulty DC will
generate a detectable erroneous outcome. Fig. 2(a) shows a
2-disjunct matrix and a one subset of columns, S, of size 2
that meets the condition given by eq. (2) for δ = 1.

resources

DCs

D10×10 =

1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 0

S = {6, 7}

1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 0

• h =

1
1
1
0
0
0
1
0
1
1

(a)

(b)

test outcomes
pass(0), fail(1)defect defect

c4 c9

Fig. 2. (a) Example of 2-disjunct design matrix. (b) Conven-
tional diagnosis decoder.

The decoding procedure to infer the sparse health vector
assuming reliable testing is illustrated through a binary
comparison between each column vector, c, of the D matrix
and the outcome vector o. If the subset of elements of ck
having value equal to one is fully contained within the
subset of elements of the outcome vector o having value
equal to one, then the resource k must be faulty. Thus, the
health vector can be obtained as follows:

h = {hk | hk =

{
1 if ψ(ck) ⊆ ψ(o)

0 otherwise
, 1 ≤ k ≤ T} (3)

Fig. 2(b) illustrates how the same 2-disjunct matrix is
used to single out the two defective resources, 4 and 9, using
the described decoding method. In this example, the sparse
health vector is given as:

h = (0 0 0 1 0 0 0 0 1 0)T (4)

Although the binary decoder is efficient, t here a re two
main challenges to properly exploit this technique for fault
isolation of reconfigurable hardware. The first challenge is
the well-known limitation of low coverage from functional
testing which can introduce a sampling noise to the binary
decoding method leading to misdiagnosis. Hence, a suspi-
ciousness ranking metric that classifies resources according
to their existence rate in failed DCs is developed instead of
binary decoding methods. Additionally, f-disjunctness for δ
> 1 along with the proposed ranking metric are shown to be
effective for surmounting the low coverage issue of
functional testing as explained in Section 5.2. Since all DCs
implement the same application functionality while utilizing
a disjunct set of T resources, each DC requires the

same resource count. The second challenge is to construct
a constrained f -disjunct design matrix for any given T
and with rows of equal weight dictated by the application
size, R. Available techniques used to construct f -disjunct
matrices stipulate a set of conditions on matrix size and the
row weights which preclude the flexibility needed to meet
design and resource count constraints of operational testing
of reconfigurable fabrics. In this work, a new combinatorial
search algorithm is described to achieve f-disjunctness for
any given design parameters T , R, and δ. In Sections 4 and 5,
solutions to these two challenges are discussed with results
demonstrating feasibility and advantages of the proposed
approach.

4 DESIGN FOR DISJUNCTION ON RECONFIG-
URABLE ARCHITECTURES

Design disjunction realizes a set of f -disjunct DCs, each of
which implements the same application functionality, and
then employs them to locate and evade defective resources
during system lifetime while maintaining optimal availabil-
ity. These DCs are produced prior to the test procedure;
therefore, only partial reconfiguration overhead of existing
DCs is incurred during fault diagnosis and recovery. Fault
tolerance is achieved by run-time reconfiguration to load
one of the bitfiles from the subset of DCs which does not
utilize defective resources. The constructive property of f-
disjunctness is shown to be effective for extracting highly
fault-resilient DCs against logic and interconnect failures.

In this work, FPGA-based fault scenarios are considered
for evaluation of design disjunction since FPGAs are the
prominent form of contemporary reconfigurable hardware.
Modern FPGAs have multiple levels of logic cell granular-
ity. For instance, basic logic elements such as LUTs and
flip-flops of Xilinx FPGAs are organized into logic slices
which are considered the most primitive programmable
logic blocks. As such, design disjunction is examined at
the slice level. Thus, the columns of the design matrix D
correspond to slices while rows represent DCs. We also
focus on logic fault localization. However, the proposed
work can be combined with other application-dependent
interconnect testing such as [20] for fault isolation at the
level of interconnect points.

Assuming an application is synthesized to a minimum
of R slices, then the weight, i.e. the number of non-zero
elements, of every row of the design matrix must equal R.
The problem of constructing f-disjunct matrices has been
increasingly studied within coding theory literature [34].
For the interest of this work, we empirically evaluate the
lower bound on DC count required to reach f-disjunction
using the developed mosaic convergence algorithm. Let the
notation (T ,R,f)-disjunct matrix denote an f-disjunct design
matrix whose rows have exactly R non-zero entries out of T .
Algorithm 1 shows the pseudocode for the proposed mosaic
convergence approach for constructing such a matrix. Start-
ing with an initial row that has R non-zero entries (lines
4-7), each added row represents the best-found row vector
that maximizes the accumulative disjunction ratio (lines 36-
49). The disjunction ratio is defined as follows:

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 6

T
f

Definition 4.1. Disjunction ratio (DR) is the proportion of Γ
elements that satisfy the condition stated in eq. (2).

T
f

The binary coverage matrix λ (line 9) tracks whether each
combination S ∈ Γ has satisfied the condition in eq. (2).
Every added row is initially a T -dimensional row vector v of
weight equals T (line 12). The combinato-rial search for
optimal v, requires two nested sequential loops (lines 17-31)
which examine each non-zero element in v and pick the
element which, if flipped to zero, yields the largest
increment to the disjunction ratio DR. This latter step is
repeated until the weight of the vector v is reduced to R.
Once an optimal row vector is found, the coverage matrix λ
is updated to include the incremental coverage of each row
(lines 36-49). The row-by-row construction of design matrix
D terminates once the DR value reaches its maximum value
of 1 (line 11).

T
f

The complexity of the binary search for each new row is
largely determined by T and the cardinality of set < ⊆ Γ that
have not yet satisfied the condition expressed in eq. (2). The
cardinality of < decreases exponentially as number of rows
in the D matrix increase. For search of the first few rows, the
search space for optimal v is still large, which rapidly
decreases as more rows are added to the D matrix. To
decrease the execution time of the algorithm, one option is to
limit the combinatorial search to a randomly selected subset
of <. This will increase the speed of the construction
algorithm at the expense of obtaining a suboptimal v in each
row iteration. The effect of this suboptimality appears in the
final solution as an increase in g, or number of required DCs
to achieve f-disjunctness. In this work, we utilized
exhaustive combinatorial search to capture the lower bound
on number of DCs needed to achieve the discussed FT
objectives, although search can be relaxed in practice. The
constructed design matrix is then used to define the set of
placement constraints supplied to the design tools to
implement disjunct DCs.

Fig. 3. Required number of DCs vs. resource count for
typical values of f (δ = 1).

The mosaic convergence algorithm was implemented on
an Intel quad-core processor based PC design station. The
number of DCs g required to reach f-disjunctness with
respect to T and f is obtained for δ = 1. Fig. 3 shows collected
g values for f = 1, 2, and 3. The logarithmic

Algorithm 1: Mosaic Convergence Algorithm for Con-
structing (T ,R,f)-disjunct Design Matrix

Procedure construct (T ,R,f)-disjunct matrix
Input: T : Total Number of Resources

R: Required Resources to Implement Application
f : Number of Defects
δ: Disjunction Factor

Output: Design Matrix, D g×T .

1 φ :=
(T
f

)
= T !
f!(T−f)!

2 ε := φ× (T − f) // binary check count
3 DR := 0
4 Generate a random row vector v, s.t.:
length(v) = T and ω(v) = R

5 g := 1 // point to the first row of D
6 Dg := v // insert v as the first row of the design

matrix
7 g := g + 1
8 C := ΓTf // set of all f-combinations out of T
9 λφ×T := [δ]φ×T // initialize binary coverage

matrix entries to δ
10 DR func(v) // call function DR_func to update

DR after inserting the row vector v

11 while (DR 6= 1) do
12 v := [1]1×T // start with a row vector

v s.t. length(v) = ω(v) = T
13 S max := Cz max

14 for each k ∈ S max do
15 vk := 0

16 while (ω(v) 6= R) do
17 max := 0
18 for i := 1 to T do
19 if (vi 6= 0) then
20 t := v
21 y := λz max
22 ti := 0
23 count := 0

24 for each S ∈ C s.t. i ∈ S do
25 for j := 1 to T do
26 if (tj = 1 ∧ yj 6= 0) then
27 yj := yj − 1
28 count := count + 1

29 if (count > max) then
30 top entry index := i
31 max := count

32 vtop entry index := 0

33 Dg := v
34 g := g + 1
35 DR func(v)

// update DR after inserting a new row
36 Function DR func(a)
37 count := 0
38 max := 0
39 for z := 1 to φ do
40 S := Cz
41 if (∀ k ∈ S, ak = 0) then
42 for j := 1 to T s.t. j 6∈ S do
43 if (λz , j 6= 0 ∧ aj = 1) then
44 λz , j := λz , j − 1
45 count := count+ 1

46 if (ω(λz) > max) then
47 z max := z
48 max := ω(λz)

49 DR := DR+
count

ε× δ

trend lines indicate that g grows linearly as resource count
increases exponentially. The advantageous logarithmic de-
pendence of g on resource count T obtained by the mo-
saic convergence procedure is consistent with results from
other probabilistic methods for constructing unconstrained
disjunct matrices [36] [37]. Fig. 3 also shows the non-linear

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 7

increase in g for increasing f. The small number of disjunct
DCs signifies the advantage of design disjunction to lower
testing cost and recovery overhead.

5 DESIGN DISJUNCTION FOR FAULT TOLERANCE

5.1 Fault Diagnosis using Design Disjunction
The binary decoder described in Section 3.2 provides only
binary diagnostic data which can lead to incorrect fault
diagnosis in the presence of inarticulate tests. Instead, a
ranking scheme that assesses resources according to their
existence rate in failed DCs can reveal a more accurate esti-
mate of the failure state of the resources. For each resource,
the proportion of failed DCs that utilize the resource is
computed and compared with other resources. This ratio is
referred to as fault sensing ratio (F SR) and can be expressed
as follows:

FSRi =

∣∣∣∣ g⋃
k=1

Dk,i | Dk,i = 1 ∧ ok = 1

∣∣∣∣
ω(ci)

, 1 ≤ i ≤ T (5)

where ci is the ith column vector of the design matrix D.
A resource with a large F SR has a high likelihood of

being faulty. To illustrate how F SR is obtained, the health
vector h given by the example described in Section 3.2 can
be rewritten using F SR for each cell, as follows, in which
faulty resources get the highest F SR values.

h = (0.3̄ 0.6̄ 0.3̄ 1 0.6̄ 0.6̄ 0.6̄ 0.6̄ 1 0)T

Similarly, the cumulative sum of F SR, denoted as
CF SR, for all resources used by each DC yields a failure
ranking metric for DCs. The CF SR is used to determine
the best operational DC if fault isolation at the design
configuration level is sought.

Fig. 4. Fault diagnosis using the F SR metric.

We first focus on the case of ideal test coverage in
which all fault-affected DCs manifest at least one erroneous
functional output. Fig. 4 illustrates an example of a single

fault isolation case on a reconfigurable partition of size 20 ×
15 = 300 slices for an application mapped to 195 slices. Using
the mosaic convergence procedure in Algorithm 1, 16 DCs
(indexed 1-16) are found sufficient to achieve 1-disjunctness
for δ = 1 in this example. The resource group-ing defined by
a (300, 195, 1)-disjunct design matrix is shown by the dark
blue cells for each DC. Based on fault detection outcomes
after evaluating all the 16 DCs, the F SR value for each slice
is computed. The highest observed F SR reveals the location
of faulty slice as depicted by the F SR heat map.

To examine the quality of fault isolation using the pro-
posed ranking method, the terms isolation accuracy and fault
coverage are defined as follows:
Definition 5.1. Isolation accuracy is the number of non-faulty
resources that have lower FSR values than all defectives,
divided by the total number of resources.
For instance, given a pool of 1,000 resources having two
defects, an isolation accuracy of 95% indicates that b998 ×
95%c = 948 of non-faulty resources score lower F SR values
than the two defects.
Definition 5 .2. F ault c overage i s t he p roportion o f a ll com-
binations of faulty resources of size up to f that attain a
specified isolation accuracy.

2

Fig. 5 shows the required number of DCs, g, to reach
various isolation accuracies and their fault coverage values.
The results also demonstrate how Algorithm 1 progresses
towards the termination criteria, i.e. DR = 100%, as g in-
creases. The resource count T chosen for this analysis equals
1,000 and disjunction parameters f=2(

1,
and

000
)δ =(1

,
.
000

In)
this case, 55 DCs are sufficient for

1
possible fault locations with 100% isolation accuracy. The
value of g can be considerably reduced while maintaining
a high isolation accuracy. A reduction of 36.4% (61.8%) in g
results in a slight decrease in isolation accuracy of 1% (5%).
This tradeoff between isolation accuracy and number of
required tests can be conducted based on system reliability
goals, e.g. the extent sufficient to achieve fast self-repair.
It is important to note again that these simulation results
are collected under the conditions of reliable tests. It is ex-
pected that g is increased to tolerate inarticulate tests while
maintaining equivalent isolation accuracy as demonstrated
in Section 5.2.

Fig. 5. Isolation accuracy vs. g (T = 1000, f = 2, δ = 1).

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 8

5.2 Inarticulate Operational Testing
In the preceding analysis, we have assumed that a test
outcome generated by a fault detection scheme embedded
within each DC is reflective o f t he a ctual h ealth s tate of
used resources. However, this assumption for functional
testing of digital designs cannot be guaranteed for various
reasons. These include low test coverage due to node’s
controllability and observability constraints, common mode
failures, or stuck-at 0 fault conditions in the fault detec-tion
logic. Error-resilient NGT was previously investigated
through probabilistic and theoretical analysis with direct
numerical simulations [37] [38]. In Section 3.2, a discussion
was provided for the classical requirement to obtain f-
disjunction which states that δ must be greater than or equal
1. As δ increases beyond 1, the effect of inarticulate tests on
the decoding procedure can be masked. In the context of
operational testing of reconfigurable hardware, increasing
the disjunction factor δ results in an increased number of
alternative DCs. Since resources are sensitized in a diverse
way as the device is reconfigured to different DCs, diversity
among DCs enables a better collective diagnostic coverage to
attenuate the chance of false test outcomes during individual
tests.

In this work, we study how such an extension affects
fault diagnosis using the proposed ranking scheme. The
described combinatorial construction method given by the
mosaic convergence procedure in Algorithm 1 is also used to
realize design disjunction for δ > 1. Fig. 6 shows the number
of DCs for 1-disjunctness and selected δ values. It is evident
that design disjunction for δ > 1 is achieved at modest linear
increase in DC count g. For instance, the case of 7,000
resources indicates that δ can be increased by an order of
magnitude from δ = 1 to δ = 10 while only roughly tripling
the number of DCs required. In Section 6, we evaluate the
effect of increasing δ on fault diagnosis for various case
studies in which we compare the isolation accuracy under
the low coverage of operational testing.

Fig. 6. DC count for increasing δ (f = 1).

5.3 Fault Recovery using Design Disjunction
The combinatorial characteristics of f -disjunct design ma-
trices add another advantage for design disjunction. The

definition expressed in eq. (2) implies that any f-disjunct set
of DCs should guarantee that for any possible accumulation
of f faulty resources there exists at least one DC whose
resource set does not include a defective. This implication
should not be considered as the upper bound on the number
of recoverable defectives. Since hardware utilization ratio
R/T can increase or decrease the sparsity of design matrix,
it is possible to guarantee fault evasion for larger than f
defectives. The normal probability pdc nf (d) that up to d
defective resources are not used by a DC is given as:

pdc nf (d) =
d∏
k=1

(
1− R

T − k − 1

)
, d > 1 (6)

Thus, recovery coverage (RC), defined by the probability
of recovery for g DCs, can be computed for any accumulated
fault count d as:

RC(d) = 1− [1− pdc nf (d)]
g
, d > 1 (7)

T
d

T
d

In order to examine the recovery behavior of the pro-
posed method, three sets of f-disjunct designs for f = 1, 2,
and 3 were tested against all possible set of fault locations Γ

for varying accumulated fault count d. Fig. 7 compares
simulation results against our model given by eq. (7). Re-
covery coverage on the left vertical axis also indicates the
proportion of Γ combinations of defective(s) that were
successfully evaded by at least one DC. All three disjunct
sets exhibit high fault resilience for fault count d larger than
f.

Fig. 7. Recovery coverage of disjunct DCs (T = 100, R = 30, δ
= 1).

A target recovery rate can be met by choosing the ap-
propriate hardware utilization as indicated in eq. (6). For
practical considerations, the optimal number of DCs for
recovery during the system lifetime can be generated at
design-time and stored in an off-chip flash m emory. The
data in the external flash m emory c an b e p rotected using
hardware redundancy or error correction schemes in addi-
tion to functional verification by CED which i s resident on
the FPGA.

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 9

Fig. 8. Framework of demonstration system.

5.4 Incidental Disjunction for Interconnect Fault Toler-
ance
Contemporary reconfigurable d evices u tilize h undreds of
thousands of routing points. For instance, Xilinx 7-series
FPGAs fabricated in a 28nm process allow over 3, 500 pro-
grammable interconnect points (PIPs) to be defined in each
switch tile of the device. This presents a significant challenge
for run-time interconnect testing and diagnosis. Specialized
functional testing for interconnects based on output pattern
analysis as in [20] and [39] has been shown to be effective
for diagnosis at the net level of a target design. However, a
net in a design can utilize a considerable number of PIPs
spanning multiple switch tiles that can prolong the self-
repair process. Since allocation of interconnect resources is
precipitated by mapping and placement of logic resources, a
design disjunction in the logic fabric has been demonstrated
to also confer significant incidental disjunction in inter-
connect resources. This property effectively extends fault
recovery to routing fabrics as demonstrated in Section 6.2.

6 EVALUATION

6.1 Evaluation Setup
The proposed work is initially evaluated on a set of MCNC
and ISCAS benchmarks through hardware simulations to
show its applicability to a variety of applications. A mod-
ularized AES128 encryption core is selected as a realis-
tic target application for the hardware prototype. The ac-
tual hardware demonstration is performed on the com-
mercial Xilinx KC705 FPGA evaluation board. The KC705
board features: 28nm-based Kintex-7 FPGA, 1 GB DDR3
memory, 128MB linear flash memory, and a joint test
ac-tion group (JTAG) interface. For hardware
simulation, a software-based CED scheme is utilized to
detect failures during simulation. Parity-based and DWC
error detection methods are adopted in the hardware
prototype. For all case studies, Xilinx 7-series FPGAs using
Xilinx design toolsets are used to generate disjunct DCs.

The design flow f or t he e valuation f ramework i s de-
picted in Fig. 8. The flow starts from a conventional design
in a hardware description language using Xilinx’s ISE syn-
thesis tool. The synthesized netlists for target application
are imported to Xilinx’s PlanAhead to generate the physical
implementation of all disjunct DCs. To enable partial recon-
figuration s upport i n t he P lanAhead t ool, a reconfigurable
partition (RP) must be floorplanned s uch t hat i t contains
T resources necessary to realize the disjunct DCs. The RP
is interfaced with the static region (SR) outside the RP

through proxy LUTs. All disjunct DCs must use the same
proxy logic for the target application’s input and output
ports which is possible by locking all port sets with the LOC
constraint. Each DC is defined as a distinct reconfigurable
module (RM) inside the RP. Resource allocation for each RM
is dictated by the design matrix constructed for the target
application according to the design parameters discussed
in Section 4. Resource allocation for each DC is added to
the design flow by defining the placement AREA_GROUP
and CONFIG_PROHIBIT constraints in the user constraints
file (UCF) for each RM. The PlanAhead tool then generates
Xilinx’s native circuit description (NCD) netlist for each RM.

The stuck-at fault (SAF) model is adopted for fault
injection in this evaluation. Fault injection is incorporated
into the flow using Xilinx’s FPGA Editor which can inject
SAF into NCD netlists at any randomly chosen location.
Resource information for generating appropriate fault in-
jection commands for the FPGA Editor tool are extracted
from Xilinx design language (XDL) netlists. For hardware
simulation of each benchmark, a post PAR simulation model
is generated from each NCD netlist before Xilinx’s ISim
simulator is invoked to verify functionality of each DC. To
drive each simulation case, a subset of random inputs gen-
erated from a uniform distribution are used to mimic run-
time operational inputs. It is worth noting that operational
testing using concurrent error detection schemes employs a
functional fault model (FFM) which encompasses SAF and
a wide range of failure modes that can alter application
functionality.

The considered AES encryption core for the hardware
prototype is comprised of non-linear substitution boxes, a
key expansion and addition units, and other logic blocks
for shifting and mixing columns of the state matrix where
input words are arranged. The AES core is decomposed
into eight modules each of which has its own embedded
error detection domain. Fig. 9 shows a block diagram for
the hardware demonstration system on the KC705 FPGA
board. Error detection schemes for the AES modules are
derived mostly from [40]. An embedded MicroBlaze pro-
cessor orchestrates execution flow of fault recovery and di-
agnosis, and constitutes a golden element in this prototype.
Partial reconfiguration (PR) using the internal configuration
access port (ICAP) is utilized for partial reconfiguration
to minimize reconfiguration overhead. Xilinx provides the
AXI HWICAP IP core and a set of basic library functions
supplied with the Xilinx’s software development kit (SDK)

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 10

TABLE 2
Isolation Accuracy Results (δ = 1)
f = 1 f = 2

Isolation Accuracy (%) Isolation Accuracy (%)
Benchmark R T g τmc µ 95% CI T g τmc µ 95% CI

Circuit (ms) lower upper (s) lower upper

alu4 73 144 15 41 96.86 96.07 97.65 198 41 12.74 95.78 93.89 97.67
c880 16 30 10 7 95.80 93.85 97.75 45 25 0.057 95.56 93.54 97.57

misex3 103 198 15 98 91.73 89.28 94.18 286 44 51.7 88.16 84.34 91.99
exp5 22 40 11 9 97.17 96.28 98.07 66 29 0.161 93.42 90.19 96.64
vda 43 84 14 13 98.32 97.15 99.50 119 35 1.97 97.13 95.12 99.15

c6288 139 256 15 211 99.14 98.53 99.75 390 48 174.7 97.01 94.69 99.33
seq 132 252 15 205 91.71 89.69 93.74 385 47 170.3 89.90 86.49 93.32

apex4 70 136 14 31 98.56 97.75 99.37 204 41 14.7 97.40 95.87 98.94
des 146 275 16 262 97.31 96.26 98.35 391 48 179.8 92.67 89.55 95.79

c3540 58 112 14 21 97.66 96.31 99.01 162 38 5.97 96.67 95.16 98.19
average – – – 89.8 96.43 95.11 97.74 – – 61.12 94.37 91.88 96.86

that are used to control partial reconfiguration via the ICAP
at the system level. The advanced extensible interface (AXI)
bus system is used to interface the processor with the ICAP,
memory interfaces, RPs, and other IPs used in the prototype.

Design disjunction is evaluated on the hardware plat-
form using high-resolution image data which reside in the
external DDR3 during the recovery process. A hardware
timer is attached to the developed system bus to accu-
rately capture system throughput and processing time of
fault diagnosis flow. Xilinx’s IPs which form the processing
system (PS) including the MicroBlaze core, memory and
communication interfaces, and ICAP reconfiguration logic,
reside in the SR of the device. Partial reconfiguration is
integrated in this prototype by defining a distinct RP for
each AES module. Disjunct RMs are then defined and added
for each RP. The design flow of the hardware prototype is
extended from the implementation steps of experimental
simulation. The static bitfile for the SR and partial bitfiles
for each RP are obtained from the NCD netlists using the
Xilinx’s BitGen tool. The software module running on the
embedded processor developed for the prototype using
the Xilinx’s SDK is combined with the static bitfile using
Xilinx’s Data2MEM tool before programming the FPGA
board through its JTAG interface. Partial bitfiles for all RPs
are stored in the off-FPGA flash memory chip before the

Fig. 9. Block diagram of hardware demonstration system.

evaluation begins. When partial reconfiguration is required,
the embedded MicroBlaze processor moves each partial
bitstream in the flash memory to the DDR3 memory before
being written by the ICAP.

The evaluation process including resource allocation for
design disjunction, fault injection, and simulation, is carried
out by a Python-based software module that automates
design and simulation tasks by invoking all required Xilinx
tools through external system commands. The Python mod-
ule also parses post PAR design files to extract delays and
build a slice-level netlist using a net connectivity graph with
associated functionality and routing resource information.
This netlist is used to examine the recovery rate in relation
to logic resources and PIPs.

6.2 Design Parameters and Results

T
f

For each MCNC and ISCAS benchmark, two f-disjunct sets
of DCs are generated for f = 1 and f = 2. Table 2 lists the
isolation accuracy results averaged over 1, 000 experimental
runs on all benchmarks for f = 1 and f = 2. Results include
the 95% confidence interval (CI) and the area requirements
indicated by parameters R and T . In this evaluation, T
values are selected such that the area overhead T/R ≈ 2 and
T/R ≈ 3 for f = 1 and f = 2, respectively, to demonstrate
adaptation to various design parameters. The execution time
of the mosaic convergence algorithm, de-noted by τmc, to
generate the (T ,R,f)-disjunct design matrix for each
benchmark is also included. For this evaluation, design
disjunction for each benchmark is realized using δ = 1 to
observe the effect of inarticulate operational testing on fault
isolation. As discussed in Section 4, the execution time of the
mosaic convergence algorithm depends largely on T and
size of Γ . The average execution time of the algorithm for
the application set examined in this evaluation is 89.8 ms
(61.1 s) for f = 1 (f = 2). Table 2 also shows that the average
isolation accuracy over all benchmarks for f = 1 (f = 2) is
96.4% (94.4%). Although the obtained isolation accuracy
results are still promising, it is evident that design
disjunction for δ > 1 is needed to overcome the impact of
low test coverage. Test coverage also depends on the quality
of input test patterns, a higher isolation accuracy can be
achieved if specialized high-coverage test patterns generated
by conventional ATPG tools at design-time are used at run-
time.

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 11

TABLE 3
Isolation Accuracy vs. δ for Selected Benchmarks (f = 1)

misex3 c3540 alu4
Isolation Accuracy (%) Isolation Accuracy (%) Isolation Accuracy (%)

δ g τmc µ 95% CI g τmc µ 95% CI g τmc µ 95% CI
(ms) lower upper (ms) lower upper (ms) lower upper

1 15 98 91.7 89.3 94.2 14 21 97.7 96.3 99.0 15 41 96.9 96.1 97.7
3 25 146 96.4 94.7 98.0 23 43 99.7 99.5 99.9 26 75 99.7 98.4 99.5
5 36 201 97.7 96.0 99.4 33 59 99.8 99.7 100.0 34 101 99.7 99.5 99.9
7 46 281 98.8 97.6 100.0 42 79 99.9 99.8 100.0 44 142 99.8 99.7 100.0
9 55 339 98.9 98.0 99.7 51 123 100.0 99.9 100.0 53 179 100.0 100.0 100.0
11 65 426 99.3 98.5 100.0 – – – – – – – – – –

TABLE 4
Design Parameters for AES Modules

Module R T δ g τmc(ms) Bitstream Size Detection Scheme
32-Bit s-boxes 60 119 3 24 41 Parity-based [40]
Mix Columns & Add Round Key 55 111 3 24 39 57.9 KB
128-bit Rotate/Rcon Logics for Key Expansion 52 102 3 23 32 DWC

Design disjunction for δ > 1 is also evaluated to demon-
strate feasibility to reach optimal fault isolation under inar-
ticulate testing. Table 3 shows how design disjunction for a
moderate increase in disjunction factor δ results in a greater
than 99% isolation accuracy for all selected benchmarks. The
three selected benchmarks include the misex3 benchmark
which gives the worst combined isolation accuracy for f = 1
and f = 2 using δ = 1. Nevertheless, isolation accuracy
exceeding > 99% given by the upper 95% CI is reached using
δ = 5. A diminishing return in improving isolation accuracy
is also observed as δ increases. Thus, the range
16 δ 6 11 can be chosen for an optimal tradeoff between
isolation accuracy and g. A linear dependency of g on δ is
also observed that is consistent with the analysis provided in
Section 5.

Fig. 10 reports fault recovery results for the exhaustive
fault coverage evaluation on logic and PIPs for f = 1 and δ =
1. The design parameters for these benchmarks are similar to
those listed in Table 2. It is evident that design disjunction
allows the ratio of shared PIPs among DCs to be much
lower than that of logic resources. This is attributed to the
PAR mechanism in the FPGA tool and its reaction to the
diverse logic realizations. Also, it translates into an increase
in the likelihood of finding at least one DC that avoids all
faulty resources as confirmed here for logic slices and PIPs.

Fig. 10. Fault recovery coverage (f=1, δ = 1).

To observe the impact of design disjunction on applica-
tion performance, the timing slacks along critical paths of
all DCs are compared to the total slack of baseline design
for each benchmark. The baseline design is the conventional
physical implementation of an application inside its ded-
icated RP without resource constraints. For typical imple-
mentation, PAR algorithms search for the best placement
and routing to meet timing constraints. Total slack s is given
by post PAR timing reports as follows:

s = ttarget − ttotal = ttarget − [tcp − tcps + tcu] (8)

where ttarget is target clock period, ttotal is total delay, tcp
is critical path delay, tcps is clock path skew, and tcu is
clock uncertainty. ttarget is set such that the total slack of
baseline design is 2 ns. Figure 11 shows s and tcp data for
each benchmark. The average increase in tcp compared to
the baseline design is 1.49% and the average decrease in the
ratio of the total slack to the total delay is only 1.78%. It
is also observed that the top-performing DC can be slightly
faster than the baseline design due to the stochastic nature of
placement and routing algorithms which does not guarantee
convergence to the optimal solution.

Fig. 11. Effect of design disjunction on system performance.

Table 4 lists design parameters, execution time to realize the

design matrix, error detection method, and size of partial

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 12

Fig. 12. Execution of isolation phase on an AES module.

bitstream for each distinct AES module shown in Fig. 9.
A failure in any module triggers the embedded processor
to execute diagnosis and recovery service routines. Initially,
transient and permanent failures are undistinguished. Thus,
articulating inputs are re-issued to ascertain if reconfigura-
tion scrubbing can resolve possible SEUs. If discrepancies
persist, then DCs of the respective RP are configured to
the FPGA through the ICAP. Reconfiguration occurs while
using application throughput to stimulate test sequences
and maintain availability. The evaluation window for this
prototype is set to 1, 000 blocks which can be adapted to
maintain a desired throughput rate. If the fault detection sig-
nal is asserted at any time within the evaluation window, the
fault isolation flow will continue by loading a subsequent
DC. The feedback from the fault detection logic is captured
by the processor where diagnostic data are decoded to
identify faulty resources and the optimal resilient DC based
on the ranking scheme described in section 5.1.

Fig. 12(a) and Fig. 12(b) show the outlier behavior for
F SR and CF SR ranking metrics, respectively, for 15 test
cases. For the sake of comparison, F SR and CF SR values
for each test case are normalized from 1 to 10. Each test
case is conducted by first selecting an AES module at
random and then injecting a SAF at a randomly chosen LUT
input. Fig. 12(a) depicts the top 50 resources in ascending
order of FSR for each of the 15 test cases. The defective
resources indicated by the red dots rank the highest in F SR
with a considerable difference to their next lower ranking
resources. The normalized CF SR values for DCs for the
15 test cases depicted in Fig. 12(b) show that faulty DCs
accumulate higher CF SR values. Thus, the DC ranking the
lowest CF SR for each test case is selected as the optimal
fault-resilient candidate DC for recovery.

Fig. 12(c) shows the encryption time of the AES core
during fault-handling routine for a selected test case. The
test procedure is triggered after injecting a SAF at a ran-
domly chosen LUT input in one of the 32-bit s-boxes. At the
beginning, DC14 is deployed during fault occurrence. The
fault recovery procedure reconfigures the device with the
partial bitfile of D C14 to rule out SEUs. Since discrepancies
persist, diagnosis flow c ontinues b y t esting t he remaining

23 DCs. Execution time is given per 100 plaintext blocks. The
encryption core throughput is mainly impacted by the
partial reconfiguration overhead tpr = 4.58 ms and the
latency of post-testing decoding phase td = 6.14 ms. The
entire diagnosis flow completes in a millisecond-order time.
Fault recovery is achieved after the second test using DC2
which can be kept in service to maintain availability during
time-critical events. The fault diagnosis flow can continue as
shown until all DCs are evaluated so that the locations of
damaged resources and DC for recovery are determined.
Since design disjunction is realized using δ = 3 for the
hardware prototype, the inarticulate tests of DC12 and DC19
have no impact on the trends given by F SR and CF SR. The
obtained optimal resilient DC in this test case is DC6 which
is deployed to guarantee sustained recovery.

7 COMPARISON OF DESIGN DISJUNCTION AND
MODULAR REDUNDANCY

Modular redundancy using an NMR method is the most
common form of hardware redundancy to tolerate fail-
ures. NMR methods can be realized using commercially-
available and academic design tools such as Xilinx TMR
(XTMR) and BYU-LANL TMR (BL-TMR), respectively.
NMR employs N replicas and majority voting which masks
failed modules by selecting a majority output. The area and
power overheads of this scheme are approximately (N − 1)-
fold including overheads incurred by voting logic. A single
failure in a module can render that module unusable which
compromises failure recoverability besides pre-determining
resource use. Failure recoverability, denoted by FR, is defined
as the cumulative sum of recovery coverage for all possible
combinations of fault locations. This definition can be ex-
pressed for a given fault count d as:

FR =
T∑
d=1

RC(d) (9)

Let Am be the minimum resource count required to
implement a single module and mf be the number of failed
modules, then recovery coverage for NMR scheme denoted
by RCNMR is computed as follows:

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 13

RCNMR(d) =
|{x ∈ ΓdT s.t. mf 6 b N−12 c}|

|ΓdT |
(10)

For NMR systems where N = 3 and N = 5, RCNMR can
be given as 3·|ΓAmd |/|ΓTd | and

[
10 · |Γ2Am

d | − 15 · |ΓAmd |
]
/|ΓTd |,

respectively. Fig. 13(a) compares the FR of the proposed
work with that of NMR. The area overhead of design
disjunction in this comparison includes the overhead of CED
based on DWC. Both redundancy methods achieve a linear
increase in failure recoverability as more redundant
resources are added; however, design disjunction offers a
higher linear increase. Designing for a higher disjunction
factor δ increases g which proportionately results in a higher
RC as given by eq. (7) and thus improves FR.

Fig. 13. Area efficiency of design disjunction.

As depicted in Fig. 13(a), due to the provision of fine-
grained resource allocation and relocation by design dis-
junction, a higher FR compared to NMR schemes can be
obtained for the same area overhead. For instance, with a
similar area overhead to TMR, design disjunction achieves
83.6% (143.3%) increase in FR over TMR for δ = 1 (δ = 7).
Similarly, design disjunction can provide a comparable FR
to that of TMR using a considerably lower area over-head.
Fig. 13(b) reflects the area efficiency of the proposed work
compared to modular redundancy. Area efficiency is
quantified by the ratio of FR to the total resource count T .
Similar to modular redundancy methods, a diminish-ing
return on FR occurs as more hardware resources are
considered. The resultant area advantage from using design
disjunction is more prominent for larger area overhead. For
the lowest design setting, i.e. f = 1 and δ = 1, design
disjunction still enables a higher FR per area than any NMR
setup included in this analysis. It is also worth noting that
the area advantage of design disjunction can be further
enhanced by using parity-based error detection instead of
DWC.

The proposed approach can be applied at the reconfig-
urable logic block level with a broadened range of design

parameters to meet area and power constraints while main-
taining both adequate fault isolation and recovery.

The area overhead imposed by design disjunction is
roughly limited to T/R, where R includes the resources
required to deploy a CED scheme. Other components such
as the embedded processor and memory controller are often
present in embedded reconfigurable systems, and thus do
not incur an additional area cost. The reliability of these
components falls within the scope of embedded system reli-
ability and can be protected by appropriate techniques [41].
The reconfiguration structure is not limited to ICAP. For
instance, Xilinx has recently introduced processor config-
uration access port (PCAP) interface [42] for ARM-based
systems to write configuration b its. D esign d isjunction is
realized without loss of generality by the regularity and
reconfigurability f eatures o f t he F PGA d evice u sed. Since
these features are ubiquitous in contemporary reconfig-
urable devices, the proposed approach can be highly com-
patible with many FPGA families from different vendors
and other classes of reconfigurable I Cs, s uch a s complex
programmable logic devices (CPLDs).

8 CONCLUSION

Design disjunction offers a mathematically-rooted, parame-
terized, multi-fault isolation and recovery technique for re-
configurable hardware fabrics. Combinatorial construction
methods for disjunction and failure ranking schemes for
fault diagnosis are developed using operational testing tech-
niques. Experimental results for a set of benchmarks on a
Xilinx 7-series FPGA have demonstrated f-diagnosability at
the individual slice level with a minimum average isolation
accuracy of 96.4% (94.4%) for f = 1 (f = 2). An algebraic-
based extension was also developed to tolerate inarticulate
tests and increase isolation accuracy to any level deemed
adequate for successful recovery and repair. Based on these
favorable properties and low costs, design disjunction is
worthy of consideration for autonomous resiliency in recon-
figurable systems demanding high availability.

ACKNOWLEDGMENT

This research was funded by the Ministry of Education of
Saudi Arabia under scholarship grant no. 64923.

REFERENCES

[1] E. Marcus and H. Stern, Blueprints for High Availability. New York,
NY: John Wiley & Sons, Inc., 2003.

[2] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst, H. Hartig, L. Hedrich et al.,
“Design and architectures for dependable embedded systems,” in
Proc. of IEEE 9th Int. Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’11), Taipei, Taiwan, Oct. 2011, pp. 69–78.

[3] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S.
Morgan, B. H. Pratt, H. M. Quinn, and M. J. Wirthlin, “SRAM
FPGA reliability analysis for harsh radiation environments,” IEEE
Trans. Nucl. Sci., vol. 56, no. 6, pp. 3519–3526, Dec. 2009.

[4] C. Constantinescu, “Trends and challenges in VLSI circuit reliabil-
ity,” IEEE Micro, vol. 23, no. 4, pp. 14–19, Sep. 2003.

[5] C. Bolchini, A. Miele, and C. Sandionigi, “A novel design method-
ology for implementing reliability-aware systems on SRAM-based
FPGAs,” IEEE Trans. Comput., vol. 60, no. 12, pp. 1744–1758, Dec.
2011.

[6] C. Carmichael, “Triple module redundancy design techniques for
virtex FPGAs,” Xilinx, Application Note XAPP197(v1.0.1), Jul.
2001.

0018-9340 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2513762, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 2015 14

[7] C. Carmichael and C. W. Tseng, “Correcting single-event upsets in
Virtex-4 FPGA configuration memory,” Xilinx, Application Note
XAPP1088(v1.0), Oct. 2009.

[8] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial
reconfiguration via configuration scrubbing,” in Proc. of IEEE Int.
Conf. on Field Programmable Logic and Applications (FPL’09), Prague,
Czech Republic, Aug./Sep. 2009, pp. 99–104.

[9] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J. McCluskey,
“Reconfigurable architecture for autonomous self-repair,” IEEE
Des. Test. Comput., vol. 21, no. 3, pp. 228–240, Jun. 2004.

[10] Xilinx, “Vivado design suite,” White Paper WP416 (v1.1), Jun.
2012.

[11] W. Zha, “Facilitating FPGA reconfiguration through low-level
manipulation,” Ph.D. dissertation, Virginia Polytechnic Institute
and State University, Blacksburg, VA, Feb. 2014.

[12] C. Bolchini and A. Miele, “Design space exploration for the design
of reliable SRAM-based FPGA systems,” in Proc. of IEEE Int. Symp.
on Defect and Fault Tolerance of VLSI Systems (DFTVS’08), Boston,
MA, Oct. 2008, pp. 332–340.

[13] S. Chakraverty, A. Agarwal, A. Agarwal, A. Kumar, and A. Sikri,
“Design space exploration for high availability drFPGA based
embedded systems,” in Proc. of 1st Int. Conf. on Advanced Machine
Learning Technologies and Applications (AMLTA’12), Cairo, Egypt,
Dec. 2012, pp. 234–243.

[14] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and
V. Verma, “Using roving STARs for on-line testing and diagnosis
of FPGAs in fault-tolerant applications,” in Proc. of IEEE Int. Test
Conf. (ITC’99), Atlantic City, NJ, Sep. 1999, pp. 973–982.

[15] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez,
T. Arslan, and J. Perez, “R3TOS: A novel reliable reconfigurable
real-time operating system for highly adaptive, efficient, and
dependable computing on FPGAs,” IEEE Trans. Comput., vol. 62,
no. 8, pp. 1542–1556, Aug. 2013.

[16] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E.
Imhof, H.-J. Wunderlich, and J. Henkel, “Module diversification:
Fault tolerance and aging mitigation for runtime reconfigurable
architectures,” in Proc. of IEEE Int. Test Conf. (ITC’13), Anaheim,
CA, Sep. 2013, pp. 1–10.

[17] V. Hahanov, S. Galagan, V. Olchovoy, and A. Priymak, “Algebra-
logical repair method for FPGA logic blocks,” in Proc. of IEEE East-
West Design & Test Symp. (EWDTS’10), St. Petersburg, Russia, Sep.
2010, pp. 482–487.

[18] C. A. Sharma, A. Sarvi, A. Alzahrani, and R. F. DeMara, “Self-
healing reconfigurable logic using autonomous group testing,”
Microprocessors and Microsystems, vol. 37, no. 2, pp. 174–184, Mar.
2013.

[19] K. Zhang, R. F. DeMara, and C. A. Sharma, “Consensus-based
evaluation for fault isolation and on-line evolutionary regener-
ation,” in Evolvable Systems: From Biology to Hardware. Berlin,
Germany: Springer, 2005, pp. 12–24.

[20] M. B. Tahoori, “High resolution application specific fault diagnosis
of FPGAs,” IEEE Trans. VLSI Syst., vol. 19, no. 10, pp. 1775–1786,
Oct. 2011.

[21] A. J. Van De Goor, “Using march tests to test SRAMs,” IEEE Des.
Test. Comput., vol. 10, no. 1, pp. 8–14, Mar. 1993.

[22] L. Bauer, C. Braun, M. Imhof, M. Kochte, E. Schneider, H. Zhang,
J. Henkel, and H.-J. Wunderlich, “Test strategies for reliable run-
time reconfigurable architectures,” IEEE Trans. Comput., vol. 62,
no. 8, pp. 1494–1507, Aug. 2013.

[23] M. Renovell, P. Faure, J. M. Portal, J. Figueras, and Y. Zorian, “IS-
FPGA: a new symmetric FPGA architecture with implicit scan,”
in Proc. of IEEE Int. Test Conf. (ITS’01), Baltimore, MD, Oct./Nov.
2001, pp. 924–931.

[24] S. Mitra and E. McCluskey, “Which concurrent error detection
scheme to choose ?” in Proc. of IEEE Int. Test Conf. (ITC’00), Atlantic
City, NJ, Oct. 2000, pp. 985–994.

[25] C. Bolchini, A. Miele, and C. Sandionigi, “Autonomous fault-
tolerant systems onto SRAM-based FPGA platforms,” Journal of
Electronic Testing, vol. 29, no. 6, pp. 779–793, Nov. 2013.

[26] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating
faults in SRAM-based field programmable gate arrays: a survey,”
IEEE Trans. VLSI Syst., vol. 11, no. 3, pp. 386–405, Jun. 2003.

[27] D. Keymeulen, R. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant
evolvable hardware using field-programmable transistor arrays,”
IEEE Trans. Rel., vol. 49, no. 3, pp. 305–316, Sep 2000.

[28] E. A. Stott, N. P. Sedcole, and P. Y. K. Cheung, “Fault tolerance
and reliability in field-programmable gate arrays,” IET Computers
& Digital Techniques, vol. 4, no. 3, pp. 196–210, May 2010.

[29] M. G. Parris, C. A. Sharma, and R. F. DeMara, “Progress in
autonomous fault recovery of field-programmable gate arrays,”
ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 31, Oct. 2011.

[30] A. Seffrin and A. Biedermann, “Cellular-array implementations
of bio-inspired self-healing systems: State of the art and future
perspectives,” in Design Methodologies for Secure Embedded Systems.
Berlin, Germany: Springer, 2011, vol. 78, pp. 151–170.

[31] R. Dorfman, “The detection of defective members of large pop-
ulations,” The Annals of Mathematical Statistics, vol. 14, no. 4, pp.
436–440, Dec. 1943.

[32] A. B. Kahng and S. Reda, “New and improved BIST diagnosis
methods from combinatorial group testing theory,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 3, pp. 533–
543, Mar. 2006.

[33] J. Ghosh-Dastidar and N. A. Touba, “A rapid and scalable diag-
nosis scheme for BIST environments with a large number of scan
chains,” in Proc. of IEEE 18th VLSI Test Symp. (VTS’00), Montreal,
Canada, Apr./May 2000, pp. 79–85.

[34] M. Cheraghchi, “Coding-theoretic methods for sparse recovery,”
in Proc. of IEEE 49th Annu. Allerton Conf. on Communication, Control
and Computing (Allerton’11), Monticello, IL, Sep. 2011, pp. 909–916.

[35] A. J. Macula, “A simple construction of d-disjunct matrices with
certain constant weights,” Discrete Mathematics, vol. 162, no. 1-3,
pp. 311–312, Dec. 1996.

[36] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive
group testing: Explicit bounds and novel algorithms,” in Proc. of
IEEE Int. Symp. on Information Theory (ISIT’12), Jul. 2012, pp. 1837–
1841.

[37] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli, “Group
testing with probabilistic tests: Theory, design and application,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 7057–7067, Oct. 2011.

[38] E. Knill, W. J. Bruno, and D. C. Torney, “Non-adaptive group
testing in the presence of errors,” Discrete Applied Mathematics,
vol. 88, no. 1, pp. 261–290, Nov. 1998.

[39] T. Kumar and F. Lombardi, “A novel heuristic method for
application-dependent testing of a SRAM-based FPGA intercon-
nect,” IEEE Trans. Comput., vol. 62, no. 1, pp. 163–172, Jan. 2013.

[40] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent
structure-independent fault detection schemes for the advanced
encryption standard,” IEEE Trans. Comput., vol. 59, no. 5, pp. 608–
622, May 2010.

[41] H. Kopetz, Real-time systems: design principles for distributed embed-
ded applications, 2nd ed. Berlin, Germany: Springer, Apr. 2011.

[42] C. Kohn, “Partial reconfiguration of a hardware accelerator on
Zynq-7000 all programmable SoC devices,” Xilinx, Application
Note XAPP1088(v1.0), Jan. 2013.

Ahmad Alzahrani earned his B.S. degree in
2002 in Electrical Engineering from Umm Al-
Qura University, Saudi Arabia. He received his
M.S. degree in Computer Engineering from the
University of Arkansas, Fayetteville, in 2009.
Currently, he is pursuing his Ph.D. degree in
Computer Engineering at the University of Cen-
tral Florida. His research interests include Com-
puter Architecture, Fault Tolerance, and Adaptive
Reconfigurable Computing.

Ronald F. DeMara received the Ph.D. degree
in Computer Engineering from the University of
Southern California in 1992. Since 1993, he has
been a full-time faculty member at the Univer-
sity of Central Florida where he is a Professor
and Computer Engineering Program Coordina-
tor. His research interests are in Computer Ar-
chitecture with emphasis on Evolvable and Re-
silient Hardware, on which he has published ap-
proximately 175 articles. He is a Senior Member
of IEEE and has served on the Editorial Boards

of IEEE Transactions on VLSI Systems, ACM Transactions on Embed-
ded Systems, Journal of Circuits, Systems, and Computers, the journal
Microprocessors and Microsystems, various conference program com-
mittees, and is currently an Associate Editor of IEEE Transactions on
Computers. He received the Joseph M. Bidenbach Outstanding Engi-
neering Educator Award from IEEE in 2008.

