

Reactive Rejuvenation of CMOS Logic Paths using Self-Activating Voltage Domains

Rízwan A. Ashraf, Ahmad Al-Zahraní, Navíd Khoshaví, Ramtín Zand, Soheíl Salehí, Arman Roohí, Míngjíe Lín, and Ronald F. DeMara,

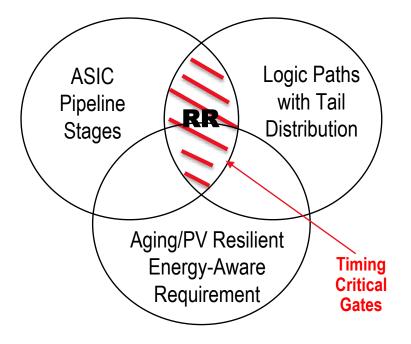
Department of Electrical Engineering and Computer Science University of Central Florida

Web: http://cal.ucf.edu

Reactive Rejuvenation of Voltage Domains for Anti-aging

Reactive Rejuvenation (RR):

 a <u>post-fabrication</u> self-adapting circuit-level approach to mitigate timing degradations.


Research Objective:

 Mitigate *Transistor Aging* due to BTI and HCI thus reducing the energy wastage due to conservative selection of guardbands.

Targeting Aging-critical Elements:

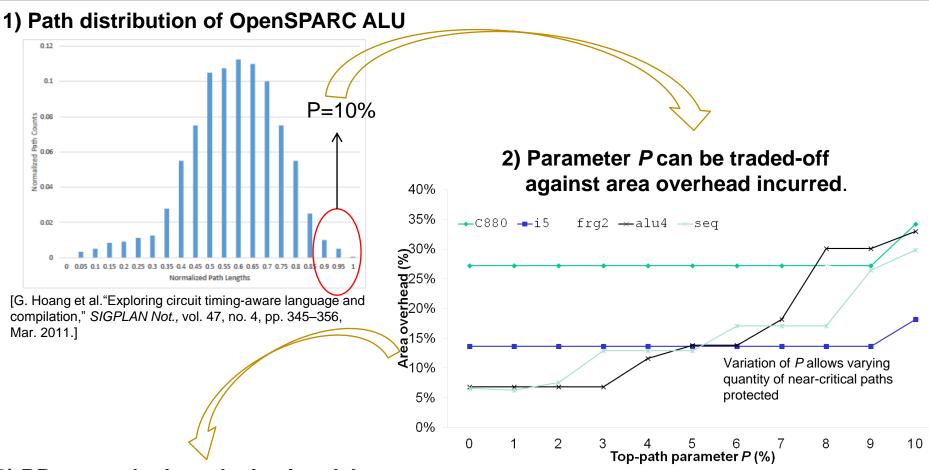
- aging-critical logic portions of the circuit are targeted for protection → minimal overhead
- power-gating is effective in reducing BTI and HCI.
 Switching activity (p) effects the shift in V_{th}

 $\Delta V_{th}(t) \propto (pt)^n$

COMPUTER

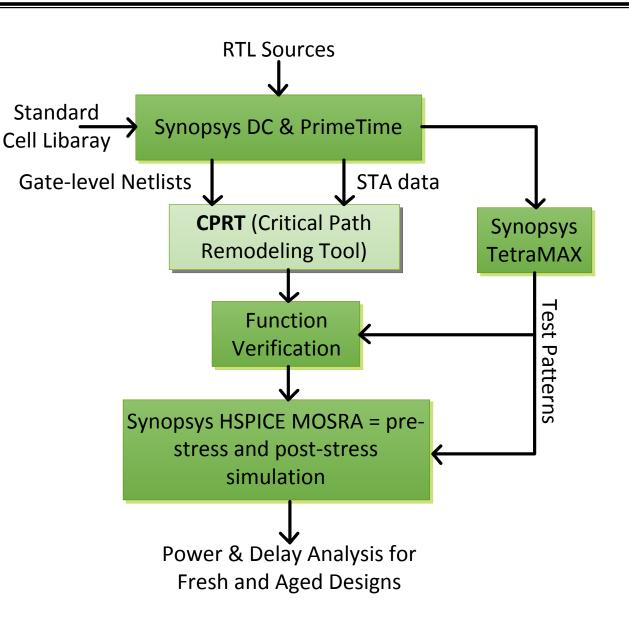
ARCHITECTURE

Need addressed	Approach	Benefit		
Transistor Aging	Power-gating of critical elements	Reduced lifetime delay degradation through stress reduction		
	In-situ timing assessment and autonomous control of Sleep Interval	Avoids the need for complicated modeling of aging degradation at design-time		
Energy Consumption	Reduced voltage guardbands	Low energy requirement with narrower margins for longer periods		
	De-emphasized role of voltage regulators	Circumvent conversion inefficiencies and switching losses		
	Selective Redundancy	Power-gating lowers the leakage energy overheads		


Related Works

	0.001 832036	2003 80 - 3000 T	1079 (1993)	Anna ana	Overheads	1474-174
	Anti-Aging Strategy	Design Re- quirements/ Parameters	Adaptability Characteristics/ Degree	Throughput	Power	Area
SO PLINES	Second and	and the second	Worst-case Design	Concernance -	Second second	
VM, FM	Static Margin	$\frac{\text{MD-RoD}}{\Delta V_{DD}},$ $\Delta F_{nominal}$	None	FM: High	VM: High (Dy- namic & Leak- age)	None
Gate-Sizing	Static Margin	MD-RoD; Ex- tended Std. Lib.; Multi-obj. Opt/ $\Delta\beta_i$, \forall gates i	None	None	Medium (Dy- namic & Leak- age)	Low (Gate-level)
Re-Synthesis	Static Margin	MD-RoD anno- tated Std. Lib.; Aging-aware Synthesis/ $\Delta\beta_i$, $\Delta V_{th,i} \forall$ gates i	None	None	Low-Medium (Dynamic & Leakage)	Low (Gate-level)
			mic Operating Cond	itions		
DVFS	Dynamic Margin	Timing Sensors; Feedback Con- trol $\Delta V_{DD}(t)$, $\Delta F(t)$, $\Delta V_{bb}(t)$	Yes/ Fully Au- tonomous	Low	Medium (Dy- namic & Leak- age)	Medium (On- chip VR & sensors)
SVS	Dynamic Margin	$\frac{\text{MD-RoD}}{\Delta V_{DD}(t} + \Delta t_{step})$	Yes' tstep	None	Medium (Dy- namic & Leak- age)	Medium (On- chip VR)
GNOMO	Static Margin + Power-Gating	$\frac{\text{MD-RoD}}{(V_{DD,g}, t_{idle})}$	None	Medium (Work- load Dependent)	Medium (Dy- namic & Leak- age)	None
			ive Resource Manae	ement	NUMBER OF STREET, STRE	
SD	Proactive Mngt. + Power-Gating	Modular Redun- dancy/ Sleep In- terval	Yes / Sleep Inter- val	None	High (Leakage)	High (Module- level)
ITL schemes	Proactive Mngt. + Power-Gating	Exploit App. Redundancy/ Idle time	Yes / Task Scheduling	Medium (Work- load Dependent)	None	None
RR	Reactive Fine- Grain Mngt. + Power-Gating	Timing Sen- sors; Feedback Control; CPRT/ ERT%	Yes/ Fully Au- tonomous	None	Minimal (Leak- age)	Low (Gate-level & sensors)

Proposed herein


3) RR covers logic paths having delays:

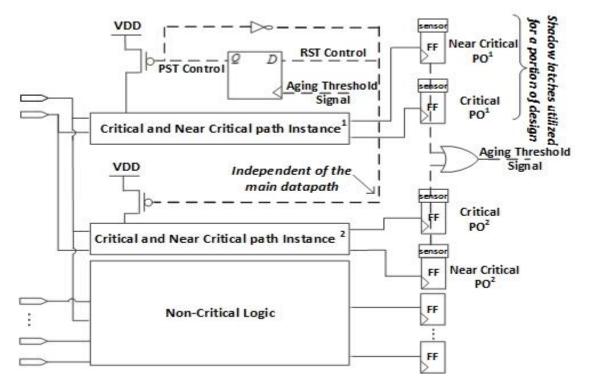
$$[D_{critical}(t) * (100\% - P), D_{critical}(t)]$$

- P is top-path parameter
- based on near critical paths due to aging and/or PV effects
- P=10% used herein

Critical Path Remodeling Tool (CPRT)

COMPUTER

ARCHITECTURE

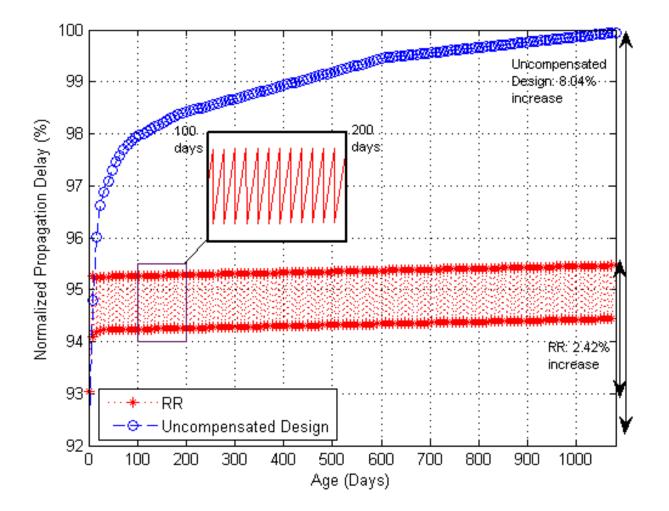

COMPUTER ARCHITECTURE LABORATORY

Need for circuit-level feedback:

 Determination of *sleep interval* at design-time is based on assumptions and may mismatch actual circuit aging.

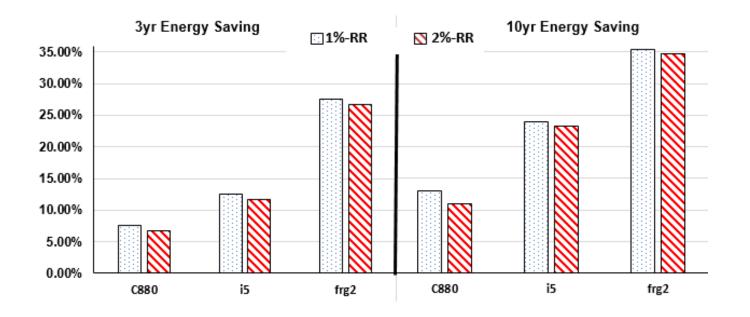
Reactive Rejuvenation (RR):

 Fully autonomous reliable operation with optimal switching interval and minimal design effort.



RR Reduction of Delay Degradation c880

- NanGate Library based on 45nm Predictive Technology Model is used
- Built-in models for BTI and HCI are utilized for HSPICE simulations



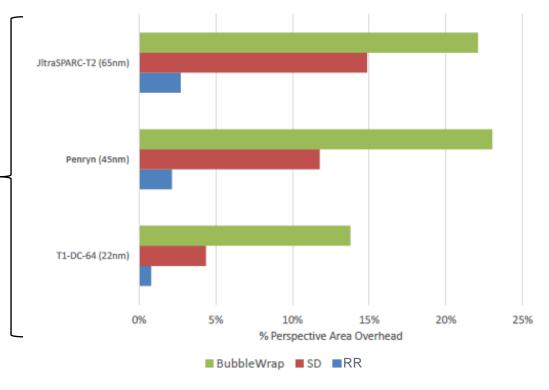
Elastic Recovery Threshold:

 at design-time, supply voltage is set such that delay of circuit is ERT% below desired timing specification. ERT=1% and 2% used.

Reduced guardbands:

 enables energy savings as high as 35.3% and 34.6% for frg2 with ERT of 1% and 2% respectively over 10 years.

Area Overhead w.r.t. Related Works


Case-study:

- 45nm-based Intel Penryn multicore processor.
- Core-area of 46.1%, Uncore-area composed of caches, NoC, etc.

Execution unit:

- 39%, of which 65.5% is occupied by arithmetic units
 - \rightarrow aging-critical portion = 11% of die

- For BubbleWrap: half of the cores are designated as expandable
- For SD: aging-sensitive logic is replicated
- Utilized ALU area overhead with N=2, P=7%

Summary of Approach

- RR provides an adaptive technique for anti-aging using a spatial redundancy and power-gating to enable BTI recovery
- Accurate aging modeling → unnecessary as circuit degradation is determined using operational conditions
- Intrinsic runtime competition among logic domains in the presence of process, voltage and temperature variations
- Favorable energy savings as high as 35.3% using RR are obtained due to reduction of operating voltage through autonomous adaptation of switching interval