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Abstract – This paper presents our approach of introducing 
Machine Learning from an AI perspective.  We present an AI 
course with a Machine Learning component.  We also 
discuss some of the examples and projects we used to 
introduce various search algorithms and show how they can 
be extended into projects that incorporate ML techniques. 
The N-puzzle problem is used as a theme throughout the 
various implementations, from the more conventional search 
algorithms to the implementation of a simple learning 
technique utilizing Explanation-Based Learning.  

I. INTRODUCTION 

While many undergraduate computer science and computer 
engineering programs do not offer a course in Machine 
Learning (ML), a number of them do offer a course in 
Artificial Intelligence (AI) and in some cases require such a 
course.  The course is intended to provide students with 
basic knowledge of the theory and practice of Artificial 
Intelligence as a discipline.   

One of the goals of the field of AI is to provide tools 
and techniques for solving problems that have been difficult 
to solve by other methods. Several of the problems that AI 
deals with involve searching for a solution in a large search 
space, and storing and manipulating significant amounts of 
data.  Hence search methods and formalisms for knowledge 
representation and reasoning are common themes in AI 
problems and therefore are important topics to be covered in 
an AI course.  While several flavors of undergraduate AI 
courses exist with a variety of foci, these topics are present 
in all.  

A common approach to teaching an AI course is to 
include a major component that covers search techniques 
and knowledge representation and reasoning, and then 
provide a short introduction to several sub-fields of AI such 
as natural language processing, vision, robotics, and others. 
However, our experience using this approach has been less 
than ideal.  Given the time limitation, such an introduction to 
several areas of AI is generally brief and presented hastily, 
and in turn does not allow students to get an appreciation of 
any of the fields presented nor does it give any degree of in-
depth coverage of any one area.   

An alternative that we have successfully implemented is 
to cover one area with some degree of depth.  We chose to 
present ML for two main reasons. First, learning is 
becoming an increasingly important area of computer 
science that is playing a major role in a wide range of 
applications.  Second, the coverage of search algorithms in 

an AI course provides an ideal setting allowing us to easily 
expand such coverage to machine learning algorithms. 
Machine learning algorithms also provide excellent 
examples of heuristic approximation algorithms.  The goal is 
to introduce students to the basic concepts and techniques of 
ML, and to allow them to implement a simple learning 
system.   

We will present such an AI course along with the ML 
module.  We will discuss some of the examples and projects 
we used to introduce various search algorithms, and show 
how they can be extended into projects that incorporate ML 
techniques.  The N-puzzle problem is used as a theme 
throughout the various implementations, from the more 
conventional search algorithms to the implementation of a 
simple learning technique utilizing Explanation-Based 
Learning. 

II. AI COURSE OUTLINE

The AI course provides students with basic knowledge of the 
theory and practice of Artificial Intelligence as a discipline 
concerning intelligent agents capable of deciding what to do 
and doing it. The course introduces the fundamental problem 
solving techniques and knowledge representation paradigms 
in AI.   

The beginning of the course covers a brief introduction 
to the LISP programming language.  This is followed by 
problem solving techniques including problem spaces, 
uninformed as well as informed search techniques, and the 
role of heuristics.  Two player games and constraint 
satisfaction problems are covered next along with planning 
techniques.  The course then covers knowledge 
representation schemes including predicate logic, non-
monotonic inference, probabilistic reasoning, production 
systems, semantic nets and frames.  The last part, which in 
other courses typically consists of exposure to several AI 
fields, consists of approximately three weeks of coverage of 
machine learning concepts and algorithms.  Students are also 
expected to write a paper on an AI topic not covered in the 
course and present it in class.  This is their opportunity to 
research an AI area of interest and gain exposure to other AI 
fields.  With the exception of the learning module, the 
course is based on [6].  

The following sections describe the projects assigned in 
class.  The first project is on conceptual search utilizing the 
N-puzzle problem. Its goal is a study of the performances of 
basic search algorithms.  The second project is on 
Explanation-Based Learning (EBL) and its application to the 



 

 

N-puzzle problem. It aims to show the students how EBL 
helps search algorithms generate more efficient solutions.  

III.  SEARCH ALGORITHMS AND THE N-
PUZZLE PROBLEM 

A classic problem, the N-puzzle problem, serves as a good 
application for illustrating conceptual AI search in an 
interesting and motivating way.  In the 8-puzzle version, a 
3×3 board consists of 8 tiles numbered 1 through 8 and an 
empty tile (marked as 0).  One may move any tile into an 
orthogonally adjacent empty square, but may not move 
outside the board or diagonally.  The problem is to find a 
sequence of moves that transforms an initial board 
configuration into a specified goal configuration.  The 
following are examples of an initial and goal configurations: 
 
Initial configuration              Goal configuration 
 
        1    6    2                                 1    2    3                                    
        5    7    3                                 4    5    6                 
        0    4    8                                 7    8    0 
 

The N-puzzle project is divided into several parts 
tackled by students in the following sequence: 
• Implementation of a function which given a state 

(current configuration) generates all new states 
reachable from that state, and its incorporation into a 
conceptual search program. 

• Empirical study of uninformed search algorithms 
(breadth-first, depth-first, depth-limited, iterative 
deepening). 

• Design and implementation of suitable heuristic 
functions for the N-puzzle problem (number of tiles in 
proper places and Manhattan distance among them). 

• Empirical study of performance of informed (best-first) 
search with different heuristic functions. 

• Comparison of performance of informed and 
uninformed search. 

 
Students can do various kinds of experimentation. 

Students are asked to compare the performance of search 
algorithms based on: 
• Size of the search space. 
• Length of the solution an algorithm returns. 
• Number of times an algorithm backtracks. 
• Number of states examined. 
• Elapsed time. 
 

While interesting initial configurations can be given to 
students, we chose to ask students to come up with 
meaningful initial states by starting with the goal state and 
simulating backtracking.  

 
 

A. N-Puzzle and Uninformed Search Algorithms 

Students are given the LISP source code of the depth-first 
and breadth-first searches for the 8-puzzle and 5-puzzle 
problems.  The code is available at the course web site [7].  
Students are then asked to compare the performance of 
depth-first and breadth-first searches. They are advised to 
use the implementation of the 5-puzzle instead of the 8-
puzzle since it has a smaller search space.  By experimenting 
with these algorithms, students see, in the case of breadth-
first search, how quickly they can run out of memory due to 
the large search space associated with the problem (even for 
the 5-puzzle version). 

Students also discover how the depth-first search 
memory requirement is less than for breadth-first search (its 
space complexity is polynomial versus exponential space 
complexity for the breadth-first search). On the other hand, 
depth-first search can lead to a dead-end or continue 
infinitely.  In addition, it is not guaranteed to find a solution 
even if one exists, and if it finds a solution, the solution is 
not guaranteed to be optimal.  However, the polynomial 
space complexity of the depth-first search makes it a 
practical choice in larger applications. Breadth-first search, 
on the other hand, has a large memory requirement since it 
requires the entire search space to be stored in memory.  
However, it is guaranteed to find a solution that is nearest to 
the initial state (the shortest path), if one exists. 

Another uninformed search that students study in this 
project is the depth-limited search. It is a variation of the 
depth-first search, where a maximum depth is set in advance.  
Like depth-first search, it expands along one path at a time, 
but switches to a different path when the preset depth limit is 
reached. Depth-limited search avoids the main problem of 
the depth-first search – following a given path infinitely, 
which makes it complete, but not optimal.  Another variation 
of it, iterative deepening search, is also studied as part of this 
project. 

These exercises provide for an excellent complexity 
analysis and illustrate the tradeoff between time efficiency, 
space efficiency, and quality of the solution found. 

B. N- Puzzle and Informed Search: the Role of 
Heuristics 

As a result of the first part of the project, students discover 
the limitations of uninformed searches, and hence the need 
for domain specific knowledge (heuristics) to guide the 
search.  A good heuristic function can considerably increase 
the quality of the search. It evaluates the promise of each 
possible state and guides the search along the path of the 
most promising states toward a solution.  While a good 
heuristic function helps significantly in the search, it does 
not guarantee an optimal solution. 

Several types of heuristics for the N-puzzle problem are 
presented in class.  Students are given a revised source code 
implementing one of these heuristics, namely the number of 
tiles in place, and are asked to implement the Manhattan 



 

 

distance. Students are asked to do various kinds of 
experimentation and to identify convergences. Finally, 
students are asked to compare the performance of informed 
and uninformed searches, and write a report with their 
findings. 

C. Learning and the N-Puzzle Problem 

Planning algorithms and machine learning techniques are 
important in several areas of AI and hence their in-depth 
coverage is important in such a course.  While at times an 
agent may be able to react immediately, there are times 
where planning and evaluating potential actions is important.  
Learning, therefore, is a particularly important concern when 
building intelligent systems.  In a similar way, computer 
systems and programs are limited by the 
designer/programmer’s limitations.  Learning allows a 
system to adapt and improve its performance based on 
experience.   Such applications are widespread in areas such 
as natural language processing, computer vision, robotics, 
among others.    

A variety of machine learning systems are available for 
students to explore. Mitchell has a neural network computer 
vision project  [5], Dietterich has a hyphenation project 
involving learning to hyphenate English words [1], and 
document (Web page) classification is available at [3], etc. 
In addition, simulations of various machine learning 
algorithms as well as applications of these algorithms are 
also available [2]. 

In our course, students are asked to incorporate 
Explanation-Based Learning (EBL) into the N-puzzle 
problem.  This allows them to better understand the concepts 
of learning, and to see how learning improves the 
performance of search algorithms.  

While the N-puzzle problem may not be the ideal 
domain for EBL, we selected it for several reasons.  First, 
the N-puzzle problem is an interesting and relatively simple 
example to illustrate the concepts of EBL, and how learning 
can help convergence to a solution.  In addition to its use in 
search, EBL is used in another main area covered in the AI 
course, knowledge-based systems, for knowledge base 
refinement.   

The following sections cover the basics of EBL as 
covered in class.  Students are asked to implement the 
concepts learned and apply EBL learning to the N-puzzle 
problem to achieve better performance.   Students see how 
their previous implementations can benefit from 
incorporating machine learning.  

IV.  BASICS OF EXPLANATION-BASED 

LEARNING  

Many learning algorithms (usually considered as inductive 
learning) generalize on the basis of regularities in training 
data. These algorithms are often referred to as similarity 
based, i.e. generalization is primarily determined by the 
syntactical structure of the training examples and the use of 

domain knowledge is limited to specifying the hypothesis 
language and exploring the hierarchy of the attribute values. 
Typically a learning system uses domain knowledge and is 
expected to have some ability to solve problems. Then the 
objective of learning is to improve the system's knowledge 
or system's performance using that knowledge. This task 
could be seen as knowledge reformulation or theory 
revision.  

EBL uses a domain theory to construct an explanation 
of the training example, usually a proof that the example 
logically follows from the theory. Using this proof the 
system filters the noise, selects only the aspects of the 
domain theory relevant to the proof, and organizes the 
training data into a systematic structure. This makes the 
system more efficient in later attempts to deal with the same 
or similar examples. The basic components in EBL, as 
introduced in [4] are the following:  
• Target concept. The task of the learning system is to 

find an effective definition of this concept. Depending 
on the specific application the target concept could be a 
classification rule, theorem to be proven, a plan for 
achieving goal, or heuristic to make a problem solver 
more efficient (e.g. a state space search heuristic). 

• Training example. This is an instance of the target 
concept. For example, this may be a good (efficient) 
solution in a state space search. 

• Domain theory. Usually this is a set of rules and facts 
representing domain knowledge. They are used to 
explain how the training example is an instance of the 
target concept. 

• Operationality criteria. Some means to specify the form 
of the concept definition. In other words this is the 
language of expressing the target concept definition, 
which is usually a part of the language used in the 
domain theory. 

 
In the form outlined above, EBL can be seen as partial 

evaluation. In terms of theorem-proving, this technique is 
also called unfolding, i.e. replacing body goals with the 
bodies of the rules they match, following the order in which 
goals are reduced (depth-first). Hence in its pure form EBL 
doesn't learn anything new, i.e. all the rules inferred belong 
to the deductive closure of the domain theory. This means 
that these rules can be inferred from the theory without using 
the training example at all. The role of the training example 
is only to focus the theorem prover on relevant aspects of the 
problem domain. Therefore EBL is often viewed as a form 
of speed-up learning or knowledge reformulation. 
Consequently EBL can be viewed not as a form of 
generalization, but rather as specialization, because the rule 
produced is more specific than a theory itself (the EBL rule 
is applicable to only one example). All this however does 
not undermine EBL as a Machine Learning approach. There 
are many reasons to support this. Hereafter we discuss the 
one that shows the advantages of EBL as a speed-up 
learning approach. 



 

 

There are small and well defined theories, however 
practically inapplicable. For example, consider the game of 
chess. The rules of chess combined with an ability to 
perform unlimited look-ahead on the board states will allow 
a system to play well. Unfortunately this approach is not 
practically useful. An EBL system, given well chosen 
training examples, will not add anything new to the rules of 
chess playing, but will actually learn some heuristics to 
apply these rules, which might be practically useful. The N-
puzzle domain is another typical example of this approach. 
As the search space is huge, any practical solution requires 
heuristics. And the role of EBL is to learn such heuristics 
from examples of successful searches. 
 

V. EBL IN THE N-PUZZLE DOMAIN 
 
A. Basic idea 
Consider the domain theory of the 8-puzzle problem. It can 
be expressed by a set of facts describing state transitions, 
and a search engine that can be used to find paths between 
initial and goal states. Given a pair of an initial and a goal 
state (a training example), the search algorithm finds the 
shortest path between them (explanation or proof). Then 
applying the EBL techniques, the path is generalized so that 
it can be used later to match other initial states and bring the 
search algorithm directly to the goal state, without the 
resource-consuming exploration of the huge state space of 
the game. With carefully chosen training examples, useful 
rules for typical moves can be learnt and then integrated into 
the search algorithm to achieve better performance.  

B. Game representation 

Hereafter we discuss the 5-puzzle problem. In this 
representation tiles are numbered 1, 2, 3, 4, 5. The empty 
square (no tile) is represented by 0. The state of the game is 
represented by a list of tiles (including 0), where their 
position in the list corresponds to their board position. For 
example (1,2,3,4,5,0) correspond to the following board: 

-------------  
| 1 | 2 | 3 |  
-------------  
| 4 | 5 | 0 |  
-------------  

C. State transitions 

The state transitions are represented by reordering tiles in the 
list. For this purpose we use variables, so that the number of 
transitions that have to be described is minimized. Positions 
are mapped to variables, which hold the actual tile numbers 
as follows:  

--------------------------  
| first | second | third |  
--------------------------  
| fourth| fifth  | sixth |  
--------------------------  

For example, moving the empty tile from position 1 to 
position 2 is represented as transforming state  

   (first,second,third,fourth,fifth,sixth)  
into state  
   (second,first,third,fourth,fifth,sixth), 

where all list elements except for first (which holds the 0) 
can take actual tile numbers form 1 to 5 (all different). Thus, 
this generalized transition represents 5! actual transitions 
between game states.  

Depending on the position of the empty tile (0), we may 
have two or three possible transitions of the type discussed 
above. In LISP, this is implemented as a function, which 
adds the new states in the beginning of the list of current 
states.  For example, the function below extends the currents 
list of states new-list with two new states, which are the 
two possible transitions from state. 
(defun move-1 (state) 
 (setf new-states (cons(append  
    (list (second state))(list (first state))  
    (nthcdr 2 state)) new-states)) 
 (setf new-states (cons(append  
    (list (fourth state))(list (second state)) 
    (list (third state)) (list (first state))  
    (nthcdr 4 state)) new-states))) 

 Here is an example of extending state (0 1 2 3 4 5) by 
using the move-1 function: 
> (setf new-states (list (list 0 1 2 3 4 5))) 
((0 1 2 3 4 5)) 
> (move-1 (list 0 1 2 3 4 5)) 
((3 1 2 0 4 5) (1 0 2 3 4 5) (0 1 2 3 4 5)) 

D. Search algorithm 

Any uninformed search algorithm that is able to find the 
shortest path in a graph can be used here. As the goal of 
EBL is to improve the efficiency, the algorithm can be a 
simple one. Iterative deepening and breadth-first search are 
good choices, because they have high computational 
complexity. Thus after EBL the speed-up would be easily 
measured by the reduction of the size of the path between 
initial and goal states and run time and memory usage. Here 
is an example of solving the 5-puzzle with breadth-first 
search (the print shows the path between start and finish 
found by the algorithm): 
> (setf start ’(4 5 3 0 1 2)) 
> (setf  finish ’(1 2 3 4 5 0)) 
> (breadth-first start finish) 
((4 5 3 0 1 2) (0 5 3 4 1 2) (5 0 3 4 1 2) 
 (5 1 3 4 0 2) (5 1 3 4 2 0) (5 1 0 4 2 3)  
 (5 0 1 4 2 3) (0 5 1 4 2 3) (4 5 1 0 2 3) 
 (4 5 1 2 0 3) (4 0 1 2 5 3) (4 1 0 2 5 3) 
 (4 1 3 2 5 0) (4 1 3 2 0 5) (4 1 3 0 2 5) 
 (0 1 3 4 2 5) (1 0 3 4 2 5) (1 2 3 4 0 5) 
 (1 2 3 4 5 0)) 

E. Training example and target concept 

First we specify a training example, as a pair of start and 
finish states. Let us consider the transition from state (4 5 
3 0 1 2) to (5 1 3 4 2 0). According to the EBL 
principles, the training example is an instance of the target 
concept. So, we have to run the algorithm in order to verify 
that this is a correct training example, i.e. it is an instance of 
a correct target concept: 



> (setf start ’(4 5 3 0 1 2)) 
> (setf finish ’(5 1 3 4 2 0 )) 
> (breadth-first start finish) 
((4 5 3 0 1 2) (0 5 3 4 1 2) (5 0 3 4 1 2) 
 (5 1 3 4 0 2) (5 1 3 4 2 0)) 

F. EBL generalization 

In our setting, EBL generalization is simply substituting 
constants for variables.  Following the representation 
adopted here, we get a new generalized transition from state  
   (first,second,third,fourth,fifth,sixth) 
to state  
   (second,fifth,third,first,sixth,fourth),  
where the following substitutions apply: 
first  = 4 second = 5 third  = 3 
fourth = 0 fifth  = 1 sixth  = 2 

G. Improving the search (in EBL terms: improving the 
domain theory) 

The last step in EBL is to add to new target concept 
definition to the domain theory. In the particular example, 
this means defining a new function that will allow the search 
algorithm to use the new state transition.  In our LISP 
implementation we have to modify the move-4 function in 
order to add the new state to the resulting list. 
(defun move-4 (state) 
 (setf new-states (cons (append  
    (list (second state))(list (fifth state)) 
    (list (third state))(list (first state))  
    (list (sixth state))(list (fourth state)))  
     new-states)) 
 (setf new-states (cons (append  
    (list (fourth state))(list (second state))  
    (list (third state))(list (first state)) 
    (nthcdr 4 state)) new-states)) 
 (setf new-states (cons (append  
    (butlast state 3)(list (fifth state))  
    (list (fourth state))(last state))  
     new-states))) 

It is important to note that the new state transition 
generated by EBL should be used first by the search 
algorithm. We achieve this by adding the new state as a first 
element of the path extension (the new state is added by the 
first setf). 

To preserve the completeness of the algorithm (in EBL 
terms: completeness of the theory), the new transitions 
should not replace the original basic ones (one-tile move). 
Rather, it should be just added, thus expanding the search 
space with new transitions. This is implemented in our 
move-4 function too, as it returns also the state transitions 
based on one-tile moves. 

The newly learned EBL state transition may represent 
useful search heuristics. To achieve this, however, the 
training examples have to be carefully chosen. They should 
represent expert strategies to solve the game or at least 
pieces of such strategies. In fact, our training example was 
chosen with this idea in mind. Thus, the newly learnt 
concept (incorporated in move-4) improves the efficiency of 
the algorithm. This can be shown with the same pair of start 

and finish states that produced a path of 19 states with the 
standard breadth-first search. Now the path has only 13 
states, which means that the new transition is used twice 
during the search. 
> (setf start ’(4 5 3 0 1 2)) 
> (setf  finish ’(1 2 3 4 5 0)) 
> (breadth-first start finish) 
((4 5 3 0 1 2) (5 1 3 4 2 0) (5 1 0 4 2 3) 
 (5 0 1 4 2 3) (0 5 1 4 2 3) (4 5 1 0 2 3) 
 (4 5 1 2 0 3) (4 0 1 2 5 3) (4 1 0 2 5 3) 
 (4 1 3 2 5 0) (4 1 3 2 0 5) (4 1 3 0 2 5) 
 (1 2 3 4 5 0))

H. EBL Project Description 

• Students are asked to identify useful search heuristics
and generate and verify the corresponding EBL training
examples.

• Next, students are asked to perform experiments with
training examples and measure the improvement in
terms of run time and memory requirements. They also
are asked to measure the effect of learning if too many
or bad examples are supplied.

VI. CONCLUSION

We presented our experiences integrating Machine Learning 
techniques into an AI course.  Several projects that students 
worked on throughout the course were presented.  Overall, 
student experiences were very positive.  While covering the 
main AI topics, the course provided students with an 
introduction to and an appreciation of an increasingly 
important area in AI, Machine Learning. Using a unified 
example, the N-puzzle problem, throughout the course 
proved to be helpful and motivating for the students. 
Students saw how simple search programs evolve into more 
interesting ones, and finally into a learning framework with 
interesting theoretical and practical properties.   

REFERENCES 

[1] Diettrich, T., English Words Hyphenation, 
http://cs.oregonstate.edu/~tgd/classes/534/ 

[2] M. Georgiopoulos, J. Castro, A. Wu, R. F. DeMara, E. Gelenbe, A. 
J. Gonzalez, M. Kysilka, and M. Mollaghasemi, “CRCD in Machine 
Learning at the University of Central Florida: Preliminary Experiences,” 
in Proceedings of the Eight Annual Conference on Innovation and 
Technology in Computer Science Education (ITiCSE-2003), pp. 249, 
Thessaloniki, Greece, June 30 – July 2, 2003. http://
www.seecs.ucf.edu/ml/ 

[3] McCallum, A., Document Classification, 
http://www.cs.cmu.edu/~mccallum/bow/rainbow/ 


