
INTRODUCING MACHINE LEARNING FROM AN AI PERSPECTIVE

Ingrid Russell1, Zdravko Markov2, and Neli Zlatareva3

1 Ingrid Russell, University of Hartford, Department of Computer Science, West Hartford, CT 06117, irussell@hartford.edu, 860-768-4191.
2 Zdravko Markov, Central Connecticut State University, Department of Computer Science, New Britain, CT 06050, markovz@ccsu.edu, 860-832-2723
3 Neli Zlatareva, Central Connecticut State University, Department of Computer Science, New Britain, CT 06050, zlatareva@ccsu.edu, 860-832- 2711

Abstract – This paper presents our approach of introducing
Machine Learning from an AI perspective. We present an AI
course with a Machine Learning component. We also
discuss some of the examples and projects we used to
introduce various search algorithms and show how they can
be extended into projects that incorporate ML techniques.
The N-puzzle problem is used as a theme throughout the
various implementations, from the more conventional search
algorithms to the implementation of a simple learning
technique utilizing Explanation-Based Learning.

I. INTRODUCTION

While many undergraduate computer science and computer
engineering programs do not offer a course in Machine
Learning (ML), a number of them do offer a course in
Artificial Intelligence (AI) and in some cases require such a
course. The course is intended to provide students with
basic knowledge of the theory and practice of Artificial
Intelligence as a discipline.

One of the goals of the field of AI is to provide tools
and techniques for solving problems that have been difficult
to solve by other methods. Several of the problems that AI
deals with involve searching for a solution in a large search
space, and storing and manipulating significant amounts of
data. Hence search methods and formalisms for knowledge
representation and reasoning are common themes in AI
problems and therefore are important topics to be covered in
an AI course. While several flavors of undergraduate AI
courses exist with a variety of foci, these topics are present
in all.

A common approach to teaching an AI course is to
include a major component that covers search techniques
and knowledge representation and reasoning, and then
provide a short introduction to several sub-fields of AI such
as natural language processing, vision, robotics, and others.
However, our experience using this approach has been less
than ideal. Given the time limitation, such an introduction to
several areas of AI is generally brief and presented hastily,
and in turn does not allow students to get an appreciation of
any of the fields presented nor does it give any degree of in-
depth coverage of any one area.

An alternative that we have successfully implemented is
to cover one area with some degree of depth. We chose to
present ML for two main reasons. First, learning is
becoming an increasingly important area of computer
science that is playing a major role in a wide range of
applications. Second, the coverage of search algorithms in

an AI course provides an ideal setting allowing us to easily
expand such coverage to machine learning algorithms.
Machine learning algorithms also provide excellent
examples of heuristic approximation algorithms. The goal is
to introduce students to the basic concepts and techniques of
ML, and to allow them to implement a simple learning
system.

We will present such an AI course along with the ML
module. We will discuss some of the examples and projects
we used to introduce various search algorithms, and show
how they can be extended into projects that incorporate ML
techniques. The N-puzzle problem is used as a theme
throughout the various implementations, from the more
conventional search algorithms to the implementation of a
simple learning technique utilizing Explanation-Based
Learning.

II. AI COURSE OUTLINE

The AI course provides students with basic knowledge of the
theory and practice of Artificial Intelligence as a discipline
concerning intelligent agents capable of deciding what to do
and doing it. The course introduces the fundamental problem
solving techniques and knowledge representation paradigms
in AI.

The beginning of the course covers a brief introduction
to the LISP programming language. This is followed by
problem solving techniques including problem spaces,
uninformed as well as informed search techniques, and the
role of heuristics. Two player games and constraint
satisfaction problems are covered next along with planning
techniques. The course then covers knowledge
representation schemes including predicate logic, non-
monotonic inference, probabilistic reasoning, production
systems, semantic nets and frames. The last part, which in
other courses typically consists of exposure to several AI
fields, consists of approximately three weeks of coverage of
machine learning concepts and algorithms. Students are also
expected to write a paper on an AI topic not covered in the
course and present it in class. This is their opportunity to
research an AI area of interest and gain exposure to other AI
fields. With the exception of the learning module, the
course is based on [6].

The following sections describe the projects assigned in
class. The first project is on conceptual search utilizing the
N-puzzle problem. Its goal is a study of the performances of
basic search algorithms. The second project is on
Explanation-Based Learning (EBL) and its application to the

N-puzzle problem. It aims to show the students how EBL
helps search algorithms generate more efficient solutions.

III. SEARCH ALGORITHMS AND THE N-
PUZZLE PROBLEM

A classic problem, the N-puzzle problem, serves as a good
application for illustrating conceptual AI search in an
interesting and motivating way. In the 8-puzzle version, a
3×3 board consists of 8 tiles numbered 1 through 8 and an
empty tile (marked as 0). One may move any tile into an
orthogonally adjacent empty square, but may not move
outside the board or diagonally. The problem is to find a
sequence of moves that transforms an initial board
configuration into a specified goal configuration. The
following are examples of an initial and goal configurations:

Initial configuration Goal configuration

 1 6 2 1 2 3
 5 7 3 4 5 6
 0 4 8 7 8 0

The N-puzzle project is divided into several parts
tackled by students in the following sequence:
• Implementation of a function which given a state

(current configuration) generates all new states
reachable from that state, and its incorporation into a
conceptual search program.

• Empirical study of uninformed search algorithms
(breadth-first, depth-first, depth-limited, iterative
deepening).

• Design and implementation of suitable heuristic
functions for the N-puzzle problem (number of tiles in
proper places and Manhattan distance among them).

• Empirical study of performance of informed (best-first)
search with different heuristic functions.

• Comparison of performance of informed and
uninformed search.

Students can do various kinds of experimentation.

Students are asked to compare the performance of search
algorithms based on:
• Size of the search space.
• Length of the solution an algorithm returns.
• Number of times an algorithm backtracks.
• Number of states examined.
• Elapsed time.

While interesting initial configurations can be given to
students, we chose to ask students to come up with
meaningful initial states by starting with the goal state and
simulating backtracking.

A. N-Puzzle and Uninformed Search Algorithms

Students are given the LISP source code of the depth-first
and breadth-first searches for the 8-puzzle and 5-puzzle
problems. The code is available at the course web site [7].
Students are then asked to compare the performance of
depth-first and breadth-first searches. They are advised to
use the implementation of the 5-puzzle instead of the 8-
puzzle since it has a smaller search space. By experimenting
with these algorithms, students see, in the case of breadth-
first search, how quickly they can run out of memory due to
the large search space associated with the problem (even for
the 5-puzzle version).

Students also discover how the depth-first search
memory requirement is less than for breadth-first search (its
space complexity is polynomial versus exponential space
complexity for the breadth-first search). On the other hand,
depth-first search can lead to a dead-end or continue
infinitely. In addition, it is not guaranteed to find a solution
even if one exists, and if it finds a solution, the solution is
not guaranteed to be optimal. However, the polynomial
space complexity of the depth-first search makes it a
practical choice in larger applications. Breadth-first search,
on the other hand, has a large memory requirement since it
requires the entire search space to be stored in memory.
However, it is guaranteed to find a solution that is nearest to
the initial state (the shortest path), if one exists.

Another uninformed search that students study in this
project is the depth-limited search. It is a variation of the
depth-first search, where a maximum depth is set in advance.
Like depth-first search, it expands along one path at a time,
but switches to a different path when the preset depth limit is
reached. Depth-limited search avoids the main problem of
the depth-first search – following a given path infinitely,
which makes it complete, but not optimal. Another variation
of it, iterative deepening search, is also studied as part of this
project.

These exercises provide for an excellent complexity
analysis and illustrate the tradeoff between time efficiency,
space efficiency, and quality of the solution found.

B. N- Puzzle and Informed Search: the Role of
Heuristics

As a result of the first part of the project, students discover
the limitations of uninformed searches, and hence the need
for domain specific knowledge (heuristics) to guide the
search. A good heuristic function can considerably increase
the quality of the search. It evaluates the promise of each
possible state and guides the search along the path of the
most promising states toward a solution. While a good
heuristic function helps significantly in the search, it does
not guarantee an optimal solution.

Several types of heuristics for the N-puzzle problem are
presented in class. Students are given a revised source code
implementing one of these heuristics, namely the number of
tiles in place, and are asked to implement the Manhattan

distance. Students are asked to do various kinds of
experimentation and to identify convergences. Finally,
students are asked to compare the performance of informed
and uninformed searches, and write a report with their
findings.

C. Learning and the N-Puzzle Problem

Planning algorithms and machine learning techniques are
important in several areas of AI and hence their in-depth
coverage is important in such a course. While at times an
agent may be able to react immediately, there are times
where planning and evaluating potential actions is important.
Learning, therefore, is a particularly important concern when
building intelligent systems. In a similar way, computer
systems and programs are limited by the
designer/programmer’s limitations. Learning allows a
system to adapt and improve its performance based on
experience. Such applications are widespread in areas such
as natural language processing, computer vision, robotics,
among others.

A variety of machine learning systems are available for
students to explore. Mitchell has a neural network computer
vision project [5], Dietterich has a hyphenation project
involving learning to hyphenate English words [1], and
document (Web page) classification is available at [3], etc.
In addition, simulations of various machine learning
algorithms as well as applications of these algorithms are
also available [2].

In our course, students are asked to incorporate
Explanation-Based Learning (EBL) into the N-puzzle
problem. This allows them to better understand the concepts
of learning, and to see how learning improves the
performance of search algorithms.

While the N-puzzle problem may not be the ideal
domain for EBL, we selected it for several reasons. First,
the N-puzzle problem is an interesting and relatively simple
example to illustrate the concepts of EBL, and how learning
can help convergence to a solution. In addition to its use in
search, EBL is used in another main area covered in the AI
course, knowledge-based systems, for knowledge base
refinement.

The following sections cover the basics of EBL as
covered in class. Students are asked to implement the
concepts learned and apply EBL learning to the N-puzzle
problem to achieve better performance. Students see how
their previous implementations can benefit from
incorporating machine learning.

IV. BASICS OF EXPLANATION-BASED

LEARNING

Many learning algorithms (usually considered as inductive
learning) generalize on the basis of regularities in training
data. These algorithms are often referred to as similarity
based, i.e. generalization is primarily determined by the
syntactical structure of the training examples and the use of

domain knowledge is limited to specifying the hypothesis
language and exploring the hierarchy of the attribute values.
Typically a learning system uses domain knowledge and is
expected to have some ability to solve problems. Then the
objective of learning is to improve the system's knowledge
or system's performance using that knowledge. This task
could be seen as knowledge reformulation or theory
revision.

EBL uses a domain theory to construct an explanation
of the training example, usually a proof that the example
logically follows from the theory. Using this proof the
system filters the noise, selects only the aspects of the
domain theory relevant to the proof, and organizes the
training data into a systematic structure. This makes the
system more efficient in later attempts to deal with the same
or similar examples. The basic components in EBL, as
introduced in [4] are the following:
• Target concept. The task of the learning system is to

find an effective definition of this concept. Depending
on the specific application the target concept could be a
classification rule, theorem to be proven, a plan for
achieving goal, or heuristic to make a problem solver
more efficient (e.g. a state space search heuristic).

• Training example. This is an instance of the target
concept. For example, this may be a good (efficient)
solution in a state space search.

• Domain theory. Usually this is a set of rules and facts
representing domain knowledge. They are used to
explain how the training example is an instance of the
target concept.

• Operationality criteria. Some means to specify the form
of the concept definition. In other words this is the
language of expressing the target concept definition,
which is usually a part of the language used in the
domain theory.

In the form outlined above, EBL can be seen as partial

evaluation. In terms of theorem-proving, this technique is
also called unfolding, i.e. replacing body goals with the
bodies of the rules they match, following the order in which
goals are reduced (depth-first). Hence in its pure form EBL
doesn't learn anything new, i.e. all the rules inferred belong
to the deductive closure of the domain theory. This means
that these rules can be inferred from the theory without using
the training example at all. The role of the training example
is only to focus the theorem prover on relevant aspects of the
problem domain. Therefore EBL is often viewed as a form
of speed-up learning or knowledge reformulation.
Consequently EBL can be viewed not as a form of
generalization, but rather as specialization, because the rule
produced is more specific than a theory itself (the EBL rule
is applicable to only one example). All this however does
not undermine EBL as a Machine Learning approach. There
are many reasons to support this. Hereafter we discuss the
one that shows the advantages of EBL as a speed-up
learning approach.

There are small and well defined theories, however
practically inapplicable. For example, consider the game of
chess. The rules of chess combined with an ability to
perform unlimited look-ahead on the board states will allow
a system to play well. Unfortunately this approach is not
practically useful. An EBL system, given well chosen
training examples, will not add anything new to the rules of
chess playing, but will actually learn some heuristics to
apply these rules, which might be practically useful. The N-
puzzle domain is another typical example of this approach.
As the search space is huge, any practical solution requires
heuristics. And the role of EBL is to learn such heuristics
from examples of successful searches.

V. EBL IN THE N-PUZZLE DOMAIN

A. Basic idea
Consider the domain theory of the 8-puzzle problem. It can
be expressed by a set of facts describing state transitions,
and a search engine that can be used to find paths between
initial and goal states. Given a pair of an initial and a goal
state (a training example), the search algorithm finds the
shortest path between them (explanation or proof). Then
applying the EBL techniques, the path is generalized so that
it can be used later to match other initial states and bring the
search algorithm directly to the goal state, without the
resource-consuming exploration of the huge state space of
the game. With carefully chosen training examples, useful
rules for typical moves can be learnt and then integrated into
the search algorithm to achieve better performance.

B. Game representation

Hereafter we discuss the 5-puzzle problem. In this
representation tiles are numbered 1, 2, 3, 4, 5. The empty
square (no tile) is represented by 0. The state of the game is
represented by a list of tiles (including 0), where their
position in the list corresponds to their board position. For
example (1,2,3,4,5,0) correspond to the following board:

| 1 | 2 | 3 |

| 4 | 5 | 0 |

C. State transitions

The state transitions are represented by reordering tiles in the
list. For this purpose we use variables, so that the number of
transitions that have to be described is minimized. Positions
are mapped to variables, which hold the actual tile numbers
as follows:

| first | second | third |

| fourth| fifth | sixth |

For example, moving the empty tile from position 1 to
position 2 is represented as transforming state

 (first,second,third,fourth,fifth,sixth)
into state
 (second,first,third,fourth,fifth,sixth),

where all list elements except for first (which holds the 0)
can take actual tile numbers form 1 to 5 (all different). Thus,
this generalized transition represents 5! actual transitions
between game states.

Depending on the position of the empty tile (0), we may
have two or three possible transitions of the type discussed
above. In LISP, this is implemented as a function, which
adds the new states in the beginning of the list of current
states. For example, the function below extends the currents
list of states new-list with two new states, which are the
two possible transitions from state.
(defun move-1 (state)
 (setf new-states (cons(append
 (list (second state))(list (first state))
 (nthcdr 2 state)) new-states))
 (setf new-states (cons(append
 (list (fourth state))(list (second state))
 (list (third state)) (list (first state))
 (nthcdr 4 state)) new-states)))

 Here is an example of extending state (0 1 2 3 4 5) by
using the move-1 function:
> (setf new-states (list (list 0 1 2 3 4 5)))
((0 1 2 3 4 5))
> (move-1 (list 0 1 2 3 4 5))
((3 1 2 0 4 5) (1 0 2 3 4 5) (0 1 2 3 4 5))

D. Search algorithm

Any uninformed search algorithm that is able to find the
shortest path in a graph can be used here. As the goal of
EBL is to improve the efficiency, the algorithm can be a
simple one. Iterative deepening and breadth-first search are
good choices, because they have high computational
complexity. Thus after EBL the speed-up would be easily
measured by the reduction of the size of the path between
initial and goal states and run time and memory usage. Here
is an example of solving the 5-puzzle with breadth-first
search (the print shows the path between start and finish
found by the algorithm):
> (setf start ’(4 5 3 0 1 2))
> (setf finish ’(1 2 3 4 5 0))
> (breadth-first start finish)
((4 5 3 0 1 2) (0 5 3 4 1 2) (5 0 3 4 1 2)
 (5 1 3 4 0 2) (5 1 3 4 2 0) (5 1 0 4 2 3)
 (5 0 1 4 2 3) (0 5 1 4 2 3) (4 5 1 0 2 3)
 (4 5 1 2 0 3) (4 0 1 2 5 3) (4 1 0 2 5 3)
 (4 1 3 2 5 0) (4 1 3 2 0 5) (4 1 3 0 2 5)
 (0 1 3 4 2 5) (1 0 3 4 2 5) (1 2 3 4 0 5)
 (1 2 3 4 5 0))

E. Training example and target concept

First we specify a training example, as a pair of start and
finish states. Let us consider the transition from state (4 5
3 0 1 2) to (5 1 3 4 2 0). According to the EBL
principles, the training example is an instance of the target
concept. So, we have to run the algorithm in order to verify
that this is a correct training example, i.e. it is an instance of
a correct target concept:

> (setf start ’(4 5 3 0 1 2))
> (setf finish ’(5 1 3 4 2 0))
> (breadth-first start finish)
((4 5 3 0 1 2) (0 5 3 4 1 2) (5 0 3 4 1 2)
 (5 1 3 4 0 2) (5 1 3 4 2 0))

F. EBL generalization

In our setting, EBL generalization is simply substituting
constants for variables. Following the representation
adopted here, we get a new generalized transition from state
 (first,second,third,fourth,fifth,sixth)
to state
 (second,fifth,third,first,sixth,fourth),
where the following substitutions apply:
first = 4 second = 5 third = 3
fourth = 0 fifth = 1 sixth = 2

G. Improving the search (in EBL terms: improving the
domain theory)

The last step in EBL is to add to new target concept
definition to the domain theory. In the particular example,
this means defining a new function that will allow the search
algorithm to use the new state transition. In our LISP
implementation we have to modify the move-4 function in
order to add the new state to the resulting list.
(defun move-4 (state)
 (setf new-states (cons (append
 (list (second state))(list (fifth state))
 (list (third state))(list (first state))
 (list (sixth state))(list (fourth state)))
 new-states))
 (setf new-states (cons (append
 (list (fourth state))(list (second state))
 (list (third state))(list (first state))
 (nthcdr 4 state)) new-states))
 (setf new-states (cons (append
 (butlast state 3)(list (fifth state))
 (list (fourth state))(last state))
 new-states)))

It is important to note that the new state transition
generated by EBL should be used first by the search
algorithm. We achieve this by adding the new state as a first
element of the path extension (the new state is added by the
first setf).

To preserve the completeness of the algorithm (in EBL
terms: completeness of the theory), the new transitions
should not replace the original basic ones (one-tile move).
Rather, it should be just added, thus expanding the search
space with new transitions. This is implemented in our
move-4 function too, as it returns also the state transitions
based on one-tile moves.

The newly learned EBL state transition may represent
useful search heuristics. To achieve this, however, the
training examples have to be carefully chosen. They should
represent expert strategies to solve the game or at least
pieces of such strategies. In fact, our training example was
chosen with this idea in mind. Thus, the newly learnt
concept (incorporated in move-4) improves the efficiency of
the algorithm. This can be shown with the same pair of start

and finish states that produced a path of 19 states with the
standard breadth-first search. Now the path has only 13
states, which means that the new transition is used twice
during the search.
> (setf start ’(4 5 3 0 1 2))
> (setf finish ’(1 2 3 4 5 0))
> (breadth-first start finish)
((4 5 3 0 1 2) (5 1 3 4 2 0) (5 1 0 4 2 3)
 (5 0 1 4 2 3) (0 5 1 4 2 3) (4 5 1 0 2 3)
 (4 5 1 2 0 3) (4 0 1 2 5 3) (4 1 0 2 5 3)
 (4 1 3 2 5 0) (4 1 3 2 0 5) (4 1 3 0 2 5)
 (1 2 3 4 5 0))

H. EBL Project Description

• Students are asked to identify useful search heuristics
and generate and verify the corresponding EBL training
examples.

• Next, students are asked to perform experiments with
training examples and measure the improvement in
terms of run time and memory requirements. They also
are asked to measure the effect of learning if too many
or bad examples are supplied.

VI. CONCLUSION

We presented our experiences integrating Machine Learning
techniques into an AI course. Several projects that students
worked on throughout the course were presented. Overall,
student experiences were very positive. While covering the
main AI topics, the course provided students with an
introduction to and an appreciation of an increasingly
important area in AI, Machine Learning. Using a unified
example, the N-puzzle problem, throughout the course
proved to be helpful and motivating for the students.
Students saw how simple search programs evolve into more
interesting ones, and finally into a learning framework with
interesting theoretical and practical properties.

REFERENCES

[1] Diettrich, T., English Words Hyphenation,
http://cs.oregonstate.edu/~tgd/classes/534/

[2] M. Georgiopoulos, J. Castro, A. Wu, R. F. DeMara, E. Gelenbe, A.
J. Gonzalez, M. Kysilka, and M. Mollaghasemi, “CRCD in Machine
Learning at the University of Central Florida: Preliminary Experiences,”
in Proceedings of the Eight Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE-2003), pp. 249,
Thessaloniki, Greece, June 30 – July 2, 2003. http://
www.seecs.ucf.edu/ml/

[3] McCallum, A., Document Classification,
http://www.cs.cmu.edu/~mccallum/bow/rainbow/

