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Abstract

A novel Parity-Preserving Reversible Gate (PPRG) is developed using Quantum-dot Cellular Automata (QCA)
technology. PPRG enables rich fault-tolerance features, as well as reversibility attributes sought for energy-neutral
computation. Performance of the PPRG design is validated through implementing thirteen standard combinational
Boolean functions of three variables, which demonstrate from 10.7% to 41.9% improvement over the previous gate
counts obtained with other reversible and/or preserving gate designs. Switching and leakage energy dissipation as
low as 0.141 eV and 0.294 eV, for 1.5 Ek energy level are achieved using PPRG, respectively. The utility of PPRG is
leveraged to design a 1-bit full adder with 171 cells occupying only 0.19 µm2 area. Finally, fault detection and isolation
properties are formalized into a concise procedure. PPRG-based circuits capable of self-configuring active recovery for
selected three-variable standard functions are realized using a memoryless method irrespective of garbage outputs.

Index Terms

Quantum-dot cellular automata, reversible logic, parity-preserving, self-checking fault detection methodology, full
adder.

I. Introduction

QUANTUM-DOT CELLULAR AUTOMATA (QCA) has been widely investigated for potential improvements
over transistor-based technologies like Complementary Metal-Oxide-Semiconductor (CMOS). QCA offers

high device density, low power consumption and high switching speed features [1, 2]. Due to these attractive
attributes, quantum gates and circuits have been targeted for their enabling roles toward computational reversibility.
Reversibility in a quantum computing structure is defined as a one-to-one mapping of inputs to outputs, which
leads to low power consumption and error detection ability [3]. It is worth mentioning that the loss of one bit
of information expends greater than or equal to kTln2 joules of energy, where k is Boltzman‘s constant and T the
absolute temperature that the computation is operated [4]. As an example of the considerable previous research
undertaken to construct reversible components based on nanotechnologies including QCA, use of the Bennett clock
mechanism achieves less than kTln2 switching energy dissipation [5-9].

In this paper, we first present a novel parity-preserving reversible gate which is then used to design a fault tolerant
reversible full adder. In our proposed Parity-Preserving Reversible Gate (PPRG), besides the one-to-one mapping
feature of reversibility, the number of 1‘s in the input is equal to that of the output. Therefore, any fault which
causes mismatch in parity can be detected.

This paper is organized as follows. Section II presents review of the QCA and the reversible gates. Section III
develops the functionality of PPRG and then realizes a fault tolerant full adder which is based on it. Section IV
describes a fault detection and isolation methodology for PPRG-based designs. Finally, conclusions are provided in
Section V.

II. Background

A. QCA Review

QCA cells have been realized through several physical implementation methods such as semiconductor [1-2,10],
metal island (metal-dot) [5,10-11], molecular [2,5,43], and nanomagnetic dot [5,10,12]. The first two are the most
promising implementations, due to their high operation speed and integration density. Specifically, semiconductor
QCA cells can be fabricated using existing industrial frameworks. The main difference between the metal dot
and semiconductor QCA implementations is that metal dots are capacitively-coupled, while the quantum dots
are coulombically-coupled in the semiconductor realization. The major challenge of these technologies is their
low operating temperature, while molecular and nanomagnetic implementations can operate in room temperature.
However, molecular integration is relatively complicated, and also it is not compatible with existing technologies for
read and write operations. In contrast, nanomagnetic QCAs have been fabricated and shown proper functionality,
although their performance are significantly lower than semiconductor and metal QCAs.
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Fig. 1: QCA cell with two possible polarizations.

The basic element in QCA is a square archetype QCA cell, which is comprised of four quantum dots and two
identical charges. Each cell has two certain polarization states which is obtained owing to the Coulomb interaction
between the two free electrons in order to reach the maximum distance [1]. Unlike CMOS, QCA encodes binary
data using inter-cell Coulomb repulsion between electrons that forms two stable diagonal positions , i.e. P=-1 and
P=+1, which are assigned to denote a logic “0” and logic “1”, respectively, as shown in Fig. 1 [2].

Additionally, due to the Coulombic effects, binary data passes through a row of cascaded QCA cells which
constitutes a QCA wire. In order for a QCA signal to propagate properly, synchronization and energy restoration
are essential which are obtained by applying a specific four-phased clocking scheme. There are two types of QCA
clocking schemes commonly utilized, the Landauer [4] (high speed) and the Bennett [3] (low power consumption).
Although the Launder clocking suffers from abrupt switching, it can provide the system with two benefits, which
are fine-grained pipelining and high throughput. These have been emphasized in designing QCA circuits. The
Landauer clocking scheme, which is generally used in QCA circuitry includes four distinct zones, Switch, Hold,
Release, and Relax, where each zone is shifted by 90◦ compared to the previous zone, as shown in Fig. 2(a).

Considering clocking strategies in conjunction with circuit design strategies can lead to the concept of physical
reversibility. The connection between logical reversibility and this concept is comprehensively discussed in [41]. If a
logically-reversible QCA system can be implemented by employing physically reversible devices, associated power
dissipation caused by information erasure can become zero. Although, the Launder clocking strategy used in this
paper lends itself to circuits with high throughput and fine-grained pipelining, which are essential for the proposed
highly cascadable gate, it still requires the circuit to be reversible at very fine levels. Adopting a more realistic and
physical clocking strategy, as referred to uni-directional Bennett scheme [41], provides more flexibility in designing
the reversible gates, since only the gate needs to be reversible as opposed to each segment of the gate. However,
this strategy has lower throughput as compared to Launder clocking strategy and incurs a time overhead to the
system. In order to combine the low power advantage of reversible computing with the high throughput advantage
of pipelining, a combination of Bennett clocking and memory storage was proposed as an innovative approach
which has been presented in [42].

The required adiabatic clocking mechanism is produced by CMOS circuits including a metal conductor, and wires
such as nanowire [5] or CNTs [13]. The wires are placed under the QCA structure in the y-plane to generate the
electric field whereas the conductor above the QCA cells spreads in the xy-plane to guide the produced electric
field in z-direction, as shown in Fig. 2(b). The produced clock is then applied to the cells to control the height of
the interdot barrier, either raising or reducing it, between dots within a QCA cell. A QCA cell is polarized due to
the effects of adjacent cells during the Switch phase, and then in the Hold phase, interdot barriers are raised to the
maximum height to maintain its polarization. In the Release phase, the cell moves to unpolarized state by losing its
polarity, due to the reduction in the interdot barrier. Finally, in the Relax phase, the cell is unpolarized with negligible
barrier. Our work is based on the aforementioned clocking mechanism [14]. Due to the QCA synchronization issues,
specific implementation rules such as number of cells in a clock zone or synchronize flows arriving to a gate, must
be considered during the design of a QCA-based circuit. Moreover, each QCA clock zone consist of at least two
cells to preserve its influence on the subsequent clock zone.

Almost all QCA circuits are built based on the fundamental elements, the inverter gate and the Majority Gate
(MG) [1], [2]. Figure 3 depicts widely used QCA designs for the inverter gate and the MGs. For MG designs,
existence of electrostatic repulsion among the electrons of the input cells forces the central cell(s), i.e. device cell, to
the stable polarization and propagate this state to the output cell as an output which is polarized to the majority
polarization of inputs. The 3-input MG, as shown in Fig. 3(b) functions AB + BC + AC (A, B and C are the three
inputs). MG could be also programmed such that it functions as an AND or an OR logic function, if one of the
three inputs is set to -1 or +1, respectively.

Recently, several designs for 5-input MG have been proposed [16-19] as shown in Fig. 3(c). The 5-input MG
outputs “1” if and only if at least three input cells are set to “1”. It functions according to the following equation:

M(A, B, C, D, E) = ABC + ABD + ABE + ACD+

ACE + ADE + BCD + BCE + BDE + CDE
(1)

In similar manner to the 3-input MG, by fixing the polarization of two of the five inputs in the 5-input MG as
logic “0” or logic “1”, a 3-input AND gate or a 3-input OR gate can be achieved, respectively.
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Fig. 2: QCA clocking scheme (a) four-phased clock of the QCA zones, and (b) cross-sectional view.

Fig. 3: Layouts of (a) an inverter, (b) a 3-input majority gate, and (c) a 5-input majority gates.

B. Reversible Gates Overview

Due to the inability of conventional logic gates to restore the inputs from the produced outputs, referred to as
reversibility, and leveraging reversible computing in nanotechnology, i.e. quantum computing, extensive researches
have been studied. The main concept of reversible computing is that during the computation no information is
lost and the total operation is reversible, i.e. the number of inputs is same as the number of outputs which have
mathematically one-to-one mapping.

Commonly-cited reversible gates include Fredkin and Toffoli gates. The Toffoli gate [20] has two control inputs
which are copied the first two inputs to the first two outputs and the third output is controlled by the first two
inputs. The Fredkin gate [21], also known as CSWAP gate, is a universal reversible gate that controlled by the first
input. Here if A=1, the second and third input lines are swapped, otherwise if A=0, then the input lines propagates
to the outputs.

Although reversible logic circuits target energy conservation, the leveraging of conventional methods for detecting
errors using these circuits faces some challenges. Since one of the most widely used method for error detection
is parity checking, parity-preserving reversible gates were sought and introduced [22]. Figure 4 shows the several
schematic of 3-input reversible and preserving gates. As shown in Fig. 4(a)-(f) are reversible gates and Fig. 4(g)-(h)
are preserving fault-tolerant gates. Only Fig. 4(b) illustrates a preserving reversible gate as identified below.

A reversible gate with parity-preserving capability satisfies the following conditions:
(1) Mapping of its inputs to outputs is bijective,
(2) XOR of the inputs produces a result equal to the XOR of the outputs (I1⊕I2⊕...⊕In = O1⊕O2⊕...⊕On).

III. Proposed Parity-Preserving Reversible Gate

In this Section, a QCA-based 3-input, 3-output Parity-Preserving Reversible Gate (PPRG) is proposed using one
2-input XOR gate, two invertors, and two 2-input multiplexers (MUXs). PPRG provides a one-to-one input-output
mapping, i.e. each set of the input signals is exclusively mapped to a unique set of output signals. Thus, the input
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Fig. 4: Block diagram of (a) Toffoli [20], (b) Fredkin [21], (c) Pres [23], (d) QCA1 [6], (e) RUG [24], (f) RM [25], (g) CQCA [26], and (h) t-QCA
[27].

Fig. 5: Proposed Parity-Preserving Reversible Gate (PPRG) (a) schematic and its truth table, (b) quantum representation, (c) layout , and (d)
simulation results.

TABLE I: Gate counts comparison for implementation of 13 standard functions.

Standard functions
CQCA

[26]
t-QCA

[27]
Toffoli

[6]
Peres
[23]

QCA1
[6]

RUG
[24]

RM
[25]

Fredkin
[26]

PPRG
(developed herein)

Reversible/Conservative No/Yes No/Yes Yes/No Yes/No Yes/No Yes/No Yes/No Yes/Yes Yes/Yes
1. F = A.B.C 2 2 2 2 2 3 2 2 2
2. F =A.B 1 1 1 1 1 1 1 1 1

3. F = A.B.C + A.B.C 3 8 3 3 2 2 2 3 2

4. F = A.B.C + A.B.C 6 2 5 4 3 3 3 4 3
5. F =A.B + B.C 2 2 2 2 2 3 2 2 2

6. F = AB + A.B.C 5 6 5 3 3 3 2 5 2

7. F = A.B.C + A.B.C + A.B.C 6 6 6 4 3 3 3 6 3
8. F= A 1 1 1 1 1 1 1 1 1
9. F= A.B + B.C + A.C 1 1 5 4 1 1 5 5 2

10. F=A.B+B.C 3 4 3 3 3 3 1 1 1

11. F= A.B+B.C+A.B.C 6 2 5 1 4 3 2 6 2

12. F= A.B+ A.B 4 1 2 1 2 1 2 2 2

13. F=A.B.C+A.B.C+ A.B.C +A.B.C 3 2 2 3 2 3 2 3 2

Total 43 38 42 32 29 30 28 41 25
Improvement (%) 41.9% 34.2% 40.5% 21.9% 13.8% 16.7% 10.7% 39% -

signal could be extracted by knowing only the output of the gate, which validates the PPRG reversible property.
Figure 5(a) shows the schematic and its related truth table of the PPRG, in which P = A⊕ B, Q = A.C + B.C, and
R = A.C + B.C, where A, B, and C, are inputs and P, Q, and R are outputs of the gate.

To overcome the difficulty of realizing a fault-tolerant reversible gate, our proposed gate is designed in a manner
such that it provides equal parity for each input set and its corresponding output, if parity is the number of ones
in each set. The truth table, shown in Fig. 5(a) demonstrates the parity-preserving feature of the PPRG. Figure 5(b)
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Fig. 6: (a) 2-DW Clocking scheme for the QCA designs [31], and (b) PPRG layout under the 2-DW clocking scheme (PPRG-2DW).

depicts the quantum representation of the PPRG with a quantum cost of seven. The quantum cost of each reversible
gate represents its computational complexity, which is calculated by counting the numbers of primitive gates, such
as NOT, Controlled-V and Controlled-V+ gates [28].

Herein, a robust single-layered wire-crossing approach, proposed in [29], is leveraged to implement the QCA
layout of the PPRG, as shown in Fig. 5(c). Both QCADesigner engines, the bistable approximation and the coherence
vector [30] are utilized to validate functionality of the PPRG. The simulation waveform of proposed PPRG is shown
in Fig. 5(d). It can be seen that the output is generated after a delay of 1 clock cycle (4 clock phases). The inputs
are applied to the PPRG gate at clock phase 0 and the outputs are available at clock phase 4. To consider realistic
clock distribution, the Two-Dimensional Wave (2-DW) clocking scheme proposed in [31] is utilized, as shown in Fig.
6(a). The 2-DW approach comprises an array of identical square-shaped zones, which provides low computation
time while maintaining acceptable implementation complexity. Figure 6(b) depicts the implementation of our PPRG
using 2-DW clocking mechanism (PPRG-2DW) along with the coplanar crossover for wire crossing, which provides
outputs after a delay of 1.75 clock cycles (7 clock phases).

In order to evaluate the PPRG performance in comparison with previously proposed reversible gates, it is
utilized to implement the thirteen standard 3-variable Boolean functions, which can represent all the possible 256
combinational forms of 3-input functions [32]. The number of gates required for different designs to implement
the noted standard functions is listed in Table I. The last row of the table shows the ability of PPRG to synthesis
various logical functions with lower average gate count, which verifies the PPRG better performance in term of
gate count. The same evaluation procedure can be readily achieved for 2-variable Boolean functions, in which the
obtained results show better performance for PPRG-based designs. Since, numbers two and three are prime, we can
implement all n-variable Boolean functions using PPRG by partitioning it into m and p, 2-variable and 3-variable
functions, respectively, where n = 2×m + 3× p. Accordingly, a reduced partitioning level is projected for the large
scale QCA circuits after cascading.

It is worth noting that only the Fredkin gate and our proposed PPRG have both reversibility and parity-preserving
features among all the gates listed in Table I. Hence, a comparison between the Fredkin and PPRG is summarized
in Table II, which shows the superiority of our design in terms of cell count and area, in addition to the average
number of required gates for implementing standard gates which is mentioned beforehand.
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TABLE II: Cost comparison of parity-preserving reversible gates.

Reversible
Gate

# of gates for
Standard Functions

Cell
count

Area
(µm)2

Quantum
cost

Fredkin
[26]

41 191 0.37 5

PPRG 25 171 0.19 7

Improvement +39% +10.5% +48.64% -40%

TABLE III: Leakage and switching energy dissipation results.

leakage energy switching energy
dissipation (eV) dissipation (eV)

Circuits 0.5Ek 1.0Ek 1.5Ek 0.5Ek 1.0Ek 1.5Ek

RM [25] 0.117 0.318 0.534 0.309 0.251 0.205
t-QCA-II [27] 0.067 0.186 0.316 0.227 0.191 0.161
Fredkin [21] 0.101 0.283 0.482 0.213 0.175 0.143

PPRG 0.058 0.168 0.294 0.193 0.166 0.141
PPRG-2DW 0.079 0.251 0.463 0.577 0.512 0.443

A. PPRG Power Analysis

A QCA power dissipation model has been proposed in [33] whereby total power dissipation of a QCA circuit is
divided into two principle components, leakage and switching. Leakage power is the power losses throughout the
clock alternations, from low-to-high or high-to-low, and power losses during the switching period is considered as
switching power [34].

In order to expose the power efficiency of PPRG besides its beneficial structure, a comprehensive power analysis
and comparison among the previously published Fredkin gate [21], RM [25], t-QCA-II [27] and PPRG is performed.
QCAPro tool [33] is utilized as an adequate power estimator tool for estimating the power consumption of the
structures at 2K temperature under three different tunneling energy levels (0.5 Ek, 1.0 Ek, and 1.5 Ek). The power
dissipation map for both PPRG implementations shown in Fig. 5(c) and Fig. 6(b), are illustrated in Fig. 7 and Fig.
8, respectively. Cells with higher power dissipation are distinguished using thermal hotspots with darker colors.

Average leakage and switching energy dissipation of the two different PPRG implementations as well as the
previously proposed gates are listed in Table III. The power analysis results elaborates our PPRG design significant
efficiency in both switching and leakage energy dissipation criteria. As expected, the average energy dissipation of
the PPRG-2DW implementation is higher than PPRG, due to the realistic clocking considerations.

B. PPRG Fault Analysis

The parity-preserving feature of the PPRG could be utilized along with a fault mapping look-up table,
demonstrated in Table IV, to detect the faults occurred in the gate input and output pins. Table IV lists different
test inputs required for fault detection, which can be summarized in a unique test vector, called defect isolation test
vector = {000, 001, 100, 111}.

Herein, the fault isolation process of the PPRG is described through an example. Consider that the input is equal
to “111” and the propagated faulty output is “110” instead of being “010”. In this case, error could be quickly
observed by detecting the parity mismatch between the input parity (Pin = “1′′) and the output parity (Pout = “0′′).
Then, the fault mapping look-up table will be utilized to distinguish both faulty pin and fault type, based on the

Fig. 7: Power dissipation map for the PPRG in Fig. 5(c).
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mapping between test inputs and faulty outputs. As in this example, the look-up table exhibits a stuck at zero fault
in the input pin B.

C. Fault-Tolerant Full Adder based on the Proposed PPRG

The Full Adder (FA) is the basic building block of many arithmetic components. Additionally, complex quantum
computing requires availability of a compatible conservative reversible adder. Thus, several fault-tolerant FAs based
on the reversible gates have been proposed in the literature [35-37].

Figure 9 depicts the schematic and cell layout of our proposed fault tolerant PPRG-based FA. The design leverages
three PPRGs, first gate produces A⊕B, and second and third ones produce Cout and SUM outputs, respectively.
Although conventionally in all reversible gates fan-out is not allowed, due to inherent quasi adiabatic clocking, in
QCA logic gates fan-out is permitted [38]. The following equations express the functionality of proposed PPRG-
based FA using the following gates depicted in Fig. 9:

PPRG1 :

inputA = A, inputB = B, inputC = C

outputP = P1 = A⊕ B

PPRG2 :

inputA = C, inputB = A, inputC = P1

outputQ = Q2 = C.P1 + A.P1 = C.(A⊕ B) + A.(A⊕ B)

= A.B.C + A.B.C + A.B = A.B + B.C + A.C = Cout

PPRG3 :

inputA = P1, inputB = C, inputC = not used

P3 = P1 ⊕ C = A⊕ B⊕ C = SUM

(2)

A comparative performance analysis between our proposed 1-bit QCA FA and existing structures are given in
Table V. Herein, the cost function proposed in [39] is utilized to calculate the overall cost, which is a function of
delay (t), number of QCA gates (G), and number of crossovers (C). Overall cost function is expressed as below:

Cost = (N gate + Cm)× t

Ngate = Nn
MG + Ninv, t = 4× Nclk,

C = l × coplanar crossing cost

(3)

where NMG, Ninv, and Nclk are number of MGs, inverters, and clocks, respectively. The parameter l denotes the
number of layers, i.e. one for single layer and three for multilayer designs. Herein, since all the compared designs
are single layer, l equals 1. It is worth noting that NMG and C have greater effect on complexity, power consumption,
and fabrication difficulty. Therefore, Cost has a quadratic relation with NMG and C, i.e. n=m=2. Thus, the governing
equation for cost calculation of 1-bit FA is FAcost = (N2

MG + Ninv + C2)× t× NRG, where NRG is number of utilized
reversible gates.

Fig. 8: Power dissipation map for the PPRG-2DW in Fig. 6(b).
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Results provided in Table V implies that the overall cost is significantly reduced for our proposed FA. It surpasses
the other investigated designs with the exception of QCA1 [6], which is not a parity-preserving design. Thus,
proposed PPRG-based FA has the lowest overall cost comparing to the most cost-efficient designs using parity-
preserving and reversible gates in their structure.

Fig. 9: The proposed reversible full adder (a) schematic, (b) the related cell layout, and (c) simulation results.

IV. Fault Analysis in PPRG-based Logic Designs

In this Section, inherent characteristics of the proposed PPRG are utilized to introduce an effective fault detection
and isolation approach for PPRG-based logic circuit designs. Herein, two different PPRG-based circuit topologies
are investigated: 1) completely-cascaded arrangement, and 2) partially-cascaded arrangement.

A. Completely-Cascaded Arrangement

Figure 10 shows the structure of the completely-cascaded PPRG-based designs, in which all the three output
terminals of each PPRG is directly connected to the inputs of the subsequent gate. Table VI lists the output states in
a completely-cascaded design according to the eight possible inputs. For instance, the first row of the table describes
that applying a0 as the primary input of the design, will result in obtaining a0 as the level 4 output, i.e. the output
of the fourth cascaded PPRG. Therefore, the period of the primary input propagation in the different output levels
of a completely-cascaded PPRG-based design depends on the primary input, and can be obtained from the last
column of the table. Herein, Table VI is defined as a select matrix to be utilized in the following pseudocode which
describes the algorithm proposed in this paper for fault detection and isolation of the PPRG-based circuits:

TABLE IV: Stuck-at fault mapping Look-Up Table for the PPRG gate.

Fault
suspicious

PIN

Test
Input

“ABC”

Expected
Output
“PQR”

Faulty
Output
“PQR”

Stuck
At

Fault

A
100 111 011 Zero

000 011 111 One

B
111 010 110 Zero

001 001 101 One

C
111 010 000 Zero

000 011 001 One

P
100 111 011 Zero

111 010 110 One

Q
111 010 000 Zero

001 001 011 One

R
100 111 110 Zero

111 010 001 One
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TABLE V: Comparison of fault tolerant full adder deigns.

Reversible
Gate

NMG Ninv C t NRG
Overall

Cost
Cell

count
Area
(µm)2

Fredkin [21] 6 8 5 4 5 1380 955 1.85

Toffoli [20] 4 5 3 4 4 480 672 1.48

QCA1 [6] 3 7 4 2 3 192 438 0.48

RUG [24] 7 11 10 8 2 2560 594 0.92

PPRG 6 6 3 4 3 522 513 0.57

Procedure: Error Detection

1: Maininput ← Convert Primaryinput to a0,...,a7 type
2: ⊲ based on the Maininput select proper row of selection matrix and copy into Test Array
3: Test Array ← selection matrix[Maininput]
4: Design Length← Length (PPRG-based design)
5: ⊲ Number of cascaded PPRGs in design
6: F1 ← Design Length/Length (Test Array)
7: F2 ← Design Length mod Length (Test Array)
8: if Mainoutput == Test Array[F2] then
9: Print ”Fault free!”

10: Break
11: else
12: Print ”Fault detected!”
13: ⊲ Run Error Isolation Procedure.
14: end if
15: end procedure

Procedure: Error Isolation

1: for i← 0; i < F1; i← i + 1 do
2: ⊲ repeat this function F1 times
3: if Output(section[i]) 6= Maininput then
4: Print ”Fault detected in section[i]!”
5: goto 28.
6: end if
7: end for ⊲ No error detected in F1 sections.
8: Print ”Fault detected in section[F1]!”
9: ⊲ Section F1 is the last section in the design.

10: goto 35.
11: Check Section[i] for Fault Isolation operation:

TABLE VI: Stuck-at fault mapping for the PPRG gate.

Primary
Input

Level 1
Output

Level 2
Output

Level 3
Output

Level 4
Output

Max
Level

000 (a0) a3 a5 a6 a0 4

001 (a1) a1 1

002 (a2) a4 a7 a2 3

003 (a3) a5 a6 a0 a3 4

004 (a4) a7 a2 a4 3

005 (a5) a6 a0 a3 a5 4

006 (a6) a0 a3 a5 a6 4

007 (a7) a2 a4 a7 3

Fig. 10: Completely-cascaded PPRG-based design arrangement
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12: for k← 0; k < Length(Test Array); k ← k + 1 do
13: if Parity(PPRG[k]) 6= Parity(Primaryinput) then
14: Print ”Faulty PPRG detected!”
15: Break
16: end if
17: end for
18: Check Section[F1] for Fault Isolation operation:
19: for k← 0; k < F2; k← k + 1 do
20: if Parity(PPRG[k]) 6= Parity(Primaryinput) then
21: Print ”Faulty PPRG detected!”
22: Break
23: end if
24: end for
25: end procedure

Figure 11 describes the above algorithm through an example. Consider the cascaded PPRG-based design in Fig
11(a). If the design is fault free then applying “000” (a0) as the primary input produces a3 as a desired output.
However, if the design is considered as fault suspicious, the Error Detection procedure will be performed.
According to above mentioned procedure, the Design Length, F1 and F2 are equal to five, one and one, respectively.
First, output of the design is compared with the desired output which can be obtained using Test Array which is
a 1× Design Length matrix that is equal to one of the rows of the select matrix. If they are equal then the design is
fault free; otherwise, a fault is detected and Error Isolation procedure will be run. In this procedure, all sections
are searched in order to find the faulty section by using the reversibility attribute of PPRGs. Then, the faulty PPRG
can be detected in the isolated section via utilizing the parity-preserving feature of PPRG. Figure 11(a) and 11(b)
show the fault free and faulty circuits, respectively. The required error detection and isolation steps are readily
demonstrated in Fig. 11(c).

B. Partially-cascaded Arrangement

In this PPRG-based circuit design, there are various connections between input and output terminals of the
PPRGs, which might result in a design that is not completely-cascaded. Additionally, some of the outputs of the
PPRGs might be unused in the structure of the design, which are called Garbage (G) outputs.

In order to make the fault detection and isolation algorithm proposed for the completely-cascaded arrangement
applicable for partially-cascaded PPRG-based designs, MUXs, and interconnections are added to the structure of
the design. The primary design with n PPRGs is combined with 3× (n− 1) MUXs which are placed at the input
terminals of the PPRGs, as shown in Fig. 12. Moreover, a fault flag is provided as the MUX selector control signal
to determine the operating mode of the design. If a fault occurs, the fault flag will be set to “1” and MUXs will
convert the partially-cascaded PPRG design to the completely-cascaded arrangement. Then the error detection and
isolation procedure will be run. Otherwise, fault flag is equal to “0” and the design operates in regular mode. This
topology is affected by overhead from MUXs which can be alleviated by using an ultra-dense MUX design which
is proposed in [40].

Example: Consider Fig. 13(a) realizing a partially-cascaded PPRG-based design which functions F7 = ABC+ABC+
ABC. Assigning Primaryin = “011” then the desirable out is “011”. The fault-free state is shown in Fig. 13(b) in
which fault_flag=“0”. The blue-colored lines shows the interconnections which provides the desired output.
Now assume that the circuit is faulty and the obtained output is equal to “111”. Therefore, fault_flag=“1”
will be equal to “1” as a result of which the design will be converted to a completely-cascaded arrangement.
Interconnections in fault detection operating mode are shown by red lines in Fig. 13(c). Finally, the proposed fault
detection and isolation algorithm will be executed to distinguish the faulty PPRG.

V. Conclusion

Energy-sparing gate designs using emerging technologies allow extensions in beneficial directions by embracing
reversibility and the inclusion of inherent fault observability. In the case of QCA, the availability of appropriate
clocking paradigms enables the utilization of parity-preserving gates. The feasibility of such features lies not only in
the design of the gate itself, but also an efficient corresponding bit-level self-checking methodology. Herein, PRRG
focuses first on achieving high Boolean expressiveness for compact logic realizations. This results in significant
improvements in the design of standard logic functions having three variables reducing average gate count by at
least 10.7% compared to previous designs. The utility of PPRG is further enhanced by its resilient cascadability.
This is evident in the realization of a fault-tolerant reversible 1-bit full adder using 171 QCA cells occupying only
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Fig. 11: Cascaded PPRG-based design, (a) fault-free design, (b) faulty design, and (c) error detection and isolation steps.

Fig. 12: Partially-cascaded PPRG-based design arrangement.

0.19 µm2 area. Beyond previous works, we also emphasize the beneficial role of utilizing PPRGs to yield larger
QCA robust reversible circuits. While the fault detection and isolation methodology based on progressive suspect
reduction as developed herein, provides a concise solution for configurable resiliency, other future extensions such
as syndrome-based error correction could be investigated.
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Fig. 13: (a) Partially-cascaded PPRG-based design, (b) fault-free operating mode which set fault_flag to 0, and (c) faulty operating mode
which means fault_flag equals 1, so the circuit converted to a completely-cascaded arrangement.
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