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ABSTRACT

Detection of malicious activity by insiders, people with legitimate access to 

resources and services, is particularly difficult in a network environment. In this 

research, a novel classification of tampering modes by insiders against Intrusion 

Detection Systems (IDSs) is developed and addressed using distributed processing 

approaches. First, several user capability ranks and tampering points are identified 

to categorize critical exposures. Second, a tampering mode taxonomy including 

spoofing, termination, sidetracking, alteration of internal data, and selective decep­

tion is developed. Third, in response to these tampering modes, the Collaborative 

Object Notification Framework for Insider Defense using Autonomous Network 

Transactions (CONFIDANT) is developed and evaluated.

CONFIDANT employs interlocked mobile agents to reduce single point-of- 

failure exposures and increase barriers against insider tampering. While previ­

ous approaches relied upon monolithic architectures or agent frameworks using a 

centralized control mechanism or common reporting repository, they introduced 

distinct vulnerabilities. These vulnerabilities are identified in a novel hierarchy 

of IDS architectures. CONFIDANT realizes a Distributed Control and Dynamic 

Dispatch (DCDD) architecture using mobile agents for tampering detection, deci­

sion making, and alert signaling. It uses three echelons of agent interaction and 

four autonomous behaviors supporting encapsulation, redundancy, scrambling, and 

mandatory obsolescence.

The Tampering Mode Exposure (TME) metric weighting scheme is developed 

to compare CONFIDANT’S response to that of the existing frameworks Tripwire 

and AIDE. Testing is performed to illustrate the mitigation techniques for each 

tampering mode using the Concordia mobile agent framework. Quantitative as
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well as qualitative metrics are assessed by dispatching Committees Cl of agents 

alj where l < * < 2 , l < j ' < 1 2 t o  perform filesystem scans and provide alarm 

notification. Test results indicate Tripwire’s and AIDE’s vulnerability to tampering 

via Pacing, File Juggling, and Altering Internal Data with TME scores of 65 and 

59, respectively, out of a possible value of 123. CONFIDANT’S DCDD framework 

achieves a score of 103 through mitigation of several exposures with the exception of 

Processor Blockading. These results demonstrate viable approaches for mitigating 

several challenging IDS exposures including many insider tampering risks.
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INTRODUCTION

Need for Secure Networking

In client/server environments, the number of points of entry into the network 

is growing rapidly with the increase in computers and other devices connected. 

Meanwhile, information systems in government and commercial sectors are highly 

interdependent due to connections via local area and wide area networks. While 

interconnection is valuable, increased connectivity introduces many potential av­

enues of attack [1],

Damaging intrusions can occur in a matter of seconds. In the 1980s, it was 

relatively straightforward to determine if an intruder had penetrated a computer 

system and to discover what operations were performed [2], Now intruders hide 

their presence by disabling common services, by installing modified versions of 

system programs, and by modifying audit and log files using techniques that can 

be extremely difficult to trace [3].

Many attacks on computer networks do not hinge on exploits for flawed com­

munication protocols or sophisticated cryptanalysis techniques [4]. The majority 

of security exposures in computer networks are a result of flaws in ordinary pro­

grams, such as text editors or Web servers. These common programs can be used 

by intruders to gain unauthorized access to resources in a computer network. Fre­

quently, security exposures are due to improper configuration of such programs. 

Thus, recent developments in network security have focused on identifying intru­

sions in addition to preventing them.

1
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Intrusion D etection Systems

The goal of an Intrusion Detection System (IDS) is to identify occurrences of 

security breaches capable of compromising the integrity of resources or services. 

An IDS can be an important component of defensive measures protecting computer 

systems from tampering. While intrusion detection should not be considered as a 

complete defense, it can play a significant role in overall network security [3].

Over the past 20 years, numerous research-oriented [5] [1] [6] [7] [8] and publicly- 

available [9] [10] [11] [12] [13] frameworks have been developed to mitigate a variety 

of intrusion exposures. Exposures range from the comparatively benign deploy­

ment of a Trojan horse that resets web browser home pages without permission, up 

through revenge by a system administrator who malevolently alters executables.

ID Goals

Intrusion Detection (ID) aims to positively identify all actual attacks without im­

properly identifying any non-attacks as malicious. Motivations vary for using ID 

technology to detect attacks. Some may be interested in collecting forensic infor­

mation to locate and prosecute intruders. Others may use ID to trigger actions to 

protect computing resources. ID may also be used in order to identify and correct 

existing vulnerabilities [14].

A primary motivation is to provide a secure and reliable computing environ­

ment. A secure computer system is one tha t can be depended upon to behave as 

is expected while protecting resources from unauthorized access [15]. Networked 

systems have varying degrees of vulnerability to different forms of attack. Most 

computer networks employ some degree of access control as a first line of defense 

to protect resources [16]. These access controls strive to ensure that all access is

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



properly authorized before performing the requested action. In that context, an 

IDS provides a tool to monitor both successful and attempted access within the 

network.

Types of Intrusions

Howard and Longstaff [17] have defined terms and a taxonomy to enable the ex­

change and comparison of computer security incident information. They define an 

attack as having five steps:

1. an attacker must use some tool (e.g. text or disk sector editor)

2. to exploit some vulnerability (e.g. program configuration)

3. to perform some action (e.g. authentication)

4. on some target (e.g. filesystem)

5. in order to achieve some unauthorized result (e.g. system resource availability 

for legitimate users or outsiders).

Intrusion detection systems do not provide preventative security measures, but 

rather are used as reactive mechanisms in conjunction with passive information 

assurance processes like firewalls and virtual private networks. In practice, an IDS 

attempts to detect attacks or attack preparations by monitoring either the traffic 

on a computer network, or application and operating system activities. Once 

intrusive behavior is detected, the IDS alerts a security administrator and may 

invoke an automated response such as closing down external communication paths 

or initiating a mechanism to trace the source of an attack.

3
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Information provided by an intrusion detection system can help a security ad­

ministrator to understand which systems were attacked and determine the steps 

performed during the attack. Damage control can be performed on the affected 

systems using this information. For instance, it may be possible to remove software 

planted by the attacker to facilitate later access to the system [18]. File integrity 

verification programs specifically enable a security administrator to determine po­

tential malicious software installed by an attacker. Previous relevant IDSs with 

these types of capabilities are reviewed in detail in Chapter .

Focus on File Integrity Analysis

File Integrity Analyzers are a class of IDSs tha t automatically verify the content of 

security-critical files. Frequently referred to as tripwires, they attem pt to detect if 

files have been modified in unauthorized ways. Once suspicious modifications are 

detected by triggering the tripwire, the analyzer may alert a security administra­

tor or invoke some type of automated response. Alternatively, file analyzers can 

provide guidance for damage control, such as identifying the modified files needing 

to be restored or hooks installed by the attacker to facilitate subsequent access.

File integrity tools use one or more cryptographically-based hash mechanisms 

such as SHA-1 or MD5 [15] to compute a digest checksum for monitored files. 

Digests are subsequently recomputed and then compared against previous values 

to detect if the contents of the file have been modified. Ten of the most widely 

installed file integrity analyzers are reviewed in [19]. One of the most popular is 

commercially marketed under the name Tripwire [9]. It utilizes a policy file under 

the control of an administrator to describe the expected behavior of system and 

data files. The policy file identifies files that are expected to change and the types

4
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of changes permitted to each file in order to preclude the misidentification of antic­

ipated changes as tampering. Upon initial execution, a baseline database is created 

according to the policy file using cryptographic hash functions. Subsequent scan 

operation is illustrated in Figure 1. During scan operation, the policy file contents 

are obtained to determine the monitored system files tha t are to be inspected. 

Hash functions compute a digest checksum for the first specified file. The result 

is compared to the value stored in the baseline database. This process is repeated 

for all policy file entries. Once all specified files have been processed, a report is 

generated containing any discrepancies encountered during operation.

In a networked environment, Tripwire for Servers executes on each node [20]. 

The Tripwire Manager [21] interacts with the Tripwire servers via Secure Socket 

Layer (SSL). This form of centralized policy management enables an administrator 

to define a single policy and distribute it to many similar systems across the enter­

prise. Additionally, file attributes such as owner and access modes are checked for 

inconsistencies. Tools such as AIDE  [12], Veracity [13], and integrit [22] operate 

similarly.

File integrity checking is not a cure to a security problem, but it can help 

determine if files have been altered, removed, or added. In the event of an intrusion, 

this information can decrease the amount of time spent determining what was 

altered. File integrity checking alone will not secure a system but can improve 

overall security capabilities.

From a high-level perspective, an IDS monitors actions in the computing en­

vironment in order to identify possible signs of an attack. Since file integrity 

analyzers may perform periodic inspections, some file integrity frameworks may 

not be considered full-fledged IDSs [23]. Still, they occupy an important role as

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Scan Operation Filesystem

Read
Obtain Policy File

ReadObtain Specifiei 
System File

Policy File

Repeat For 
All Policy 
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To Baseline , Read Baseline
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Generate Report

Figure 1: File Integrity Scan Operation

vital components of an intrusion detection environment. In this dissertation, the 

rationale for concentrating on the file integrity problem includes several compelling 

motives:

•  cryptographically-hashed file integrity verification is the most popular tampering 

detection approach among installed systems,

•  integrity verification approaches can positively detect many foreseen and even some 

unforeseen intrusions,

•  regardless of the initial intrusion pathway, intruders often open a backdoor by 

altering system executables to facilitate future access [24],

•  integrity analyzers can locate altered data so they become second-line targets of 

attack, and

6
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•  rudimentary alterations can defeat most existing file integrity analyzers.

While some file analyzers have taken steps to reduce tampering exposures, 

mitigation of risks from knowledgeable insiders remains as a challenging area. For 

instance, AIDE product literature warns that its own integrity cannot be guaran­

teed as AIDE’s binary and/or baseline database can also be altered. In fact, their 

website warns tha t a hacked version is being maliciously distributed. One alterna­

tive recommended during Tripwire installation is to record the tool’s binary files 

on write-once media. However, media within control of the system administrator 

become vulnerable to exchange. To address these concerns, tools such as Tripwire 

encrypt their baseline and verify its congruence with the policy file used to generate 

it. Tripwire also utilizes SSL communication protocols and triple DES encryption 

for critical transmissions. While these techniques can mitigate some risks, serious 

exposures from insider tampering have remained largely unaddressed.

Insider Tampering Exposures

A malicious action by a legitimate user, referred to as insider tampering, is par­

ticularly challenging to deal with. Insiders such as system administrators have 

broad access to sensitive resources, an extensive understanding of internal proce­

dures, and frequent opportunities to carry out unauthorized use. Thus, attacks 

perpetrated by knowledgeable insiders have the potential to be more devastating 

than those tha t are externally-originated. Moreover, a common tactic of outsiders 

is to obtain limited access, then elevate their privilege to tha t of an administra­

tor with a high capability levels. For this reason, insider risk is recognized as 

an exposure where few useful tools exist and significant exposures receive little 

attention [4] [25] [26].

7
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Within the academic community, the insider problem is recognized as a difficult 

one. Neumann and Porras classify the detection of hitherto unknown attacks as 

very challenging open problems, citing subtle forms of misuse by insiders as a 

particular concern [8]. Recent DoD Workshops have identified the need for insider 

threat models as urgent [25]. In terms of a likely target of tampering within the 

domain of insiders, Axelsson identifies determination of the nature of attacks on 

the intrusion detection components as a fundamental unanswered question [27].

The conventional approaches to dealing with insider tampering are limited. 

They typically require concurrent login from two or more trusted individuals be­

fore granting administrator-level privileges. However, under operational conditions 

one individual may leave his/her station unattended at some point in time after 

simultaneous login. Even if this policy is abided by completely, it is unreason­

able for two administrators with different backgrounds and familiarization levels 

to be fully cognizant of the rationale and implications of each action the other 

undertakes.

New Technologies to Apply

Existing solutions for network security management lack flexibility, adaptability, 

and autonomy. Therefore, it is useful to review the underlying techniques with 

which IDSs are designed and to consider new alternatives. In this context, multi­

agent systems can provide a configurable balance among security requirements 

while maintaining platform flexibility and adaptability.

8
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Agent Overview

The actor model of computation was originally proposed by Hewitt [28]. He de­

fines actors as being self-contained, concurrently interacting entities of a computer 

system that communicate via message passing. Also, actors can be dynamically 

created and the topology of an actor system can change dynamically. Mobile agent 

technologies exemplify an actor paradigm for distributed computing for existing 

client/server platforms. In a mobile agent environment, programs travel between 

hosts in a network as required to achieve their execution requirements.

According to Agha [29], these approaches are formulated around three main 

design objectives:

•  shared and mutable data,

• reconfigurability, and

• inherent concurrency.

Agents are self-contained components of a computing system that communi­

cates by asynchronous message passing, as distributed agents have local clocks that 

may proceed at different rates. Message delivery is guaranteed to provide fairness, 

and an agent can send messages to activate other agents. These capabilities can be 

enhanced by relocating the required code to the platform where the data already 

resides.

Mobile Code Capabilities

Code mobility is the capability to dynamically change the bindings between code 

fragments and the location where they are executed [30]. Code mobility is not a
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new concept as research on distributed operating systems has focused on support 

for the migration of active processes and objects at the operating system level [31]. 

Process migration deals with moving an executing process from one node in a 

network to another. Process and object migration address the issues tha t arise 

when code and state are moved among the hosts of a loosely coupled, small-scale 

distributed system [30]. In this research, a mobile agent is a software component 

tha t is able to move between, and operate in, different execution environments.

Using Agents for ID

Mobile agents can address the capacity, scalability, and efficiency limitations of ex­

isting monolithic IDS architectures. Whenever a new form of unforeseen intrusion 

is identified, a monolithic IDS has to be substantially rebuilt to handle it, which is 

not a straightforward task. Mobile agent systems can be better suited to achieve 

the following desirable characteristics for an IDS [32]:

• run continually with minimal human supervision,

• strive for incurring minimal overhead on the system where it is running,

• be able to adapt to changes in system configuration and use,

• be able to scale to a large number of hosts, and

• provide graceful degradation.

An intrusion detection system using a mobile agent framework can exhibit 

these characteristics. A single agent cannot adequately perform intrusion detec­

tion since its vision is limited to a small portion of the network. Multiple agents

10
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Table 1: Advantages of Using Agents in Intrusion Detection

Configurability
Can be added or removed from a system without 
altering other IDS or OS components
Compatible with heterogeneous networks

Extendability
When a new attack is identified, new agents 
can be developed and added
Easier coordination between interacting components

Efficiency
Communication cost reductions
Hide network latency
Reduce network load
Execute asynchronously and autonomously

R obustness

Can continue to operate in the presence of physical 
or logical modifications to the network environment
Support fault-tolerant behavior
Flexible architecture for distributed computation
Suitable for mitigating insider risks

cooperating with each other, however, can provide powerful IDS capabilities across 

heterogeneous resources.

Since agents are independently running entities, they can be added and re­

moved from a system without altering other components and consequently remove 

the need to restart the IDS [33]. Also, whenever any sign of a new form of a t­

tack is identified, new specialized agents can be developed, added to the system, 

and configured to meet a specific security policy [34], Other advantages of using 

mobile agents in an intrusion detection system [35] are listed in Table 1 where 

Configurability and Extendability can be traded off for Efficiency and Robustness.

CONFIDANT Introduction and Goals

Tampering modes are attack pathways capable of corrupting an ID framework. 

Tampering modes present in network-based file integrity analyzers are introduced 

along with a Collaborative Object Notification Framework for Insider Defense us­

ing Autonomous Network Transactions (CONFIDANT). In agreement with the

11
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meaning of the word confidant as “a most trusted servant,” the CONFIDANT 

framework aims at trusted detection of unauthorized modifications to executable, 

data, and configuration files.

CONFIDANT exemplifies a third-generation agent-based security framework, 

based upon previous experience from the TACH [36] and FICA [37] systems im­

plemented at the University of Central Florida. Design of CONFIDANT is based 

on two major goals:

G oal-1: Reduce single point-of-failure exposures in existing IDS frameworks, and 

G oal-2: Increase barriers against insider tampering.

These goals will be evaluated by:

1. identifying single point-of-failure exposures in IDSs to address Goal-1,

2. developing a taxonomy of insider risks to address Goal-2,

3. designing metrics and experiments to quantify performance against both 

Goal-1 and Goal-2, and

4. comparing performance of the proposed and existing approaches using these 

metrics.

Dissertation Outline

This dissertation focuses on developing a framework using dynamic dispatch and 

distributed control of mobile agents for file integrity verification. Applications and 

program configuration are security exposures in computer networks and can lead to 

unauthorized access. For reasons discussed in Chapter 2, this dissertation focuses
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on insiders, or administrators, who have legitimate access to the system but may 

be abusing their privileges. Contributions made to the field of IDS design and 

insider robustness resulting from this dissertation include a classification of insider 

tampering modes, an IDS architectural taxonomy, a mobile agent approach to ID, 

and a comparative metric evaluation scheme.

Chapter 2 describes user capability classes and IDS architectural vulnerabilities. 

IDS tampering modes are defined and then formalized using an abstracted model 

of sensor, control, and alarm mechanisms. Classes of tampering modes identified 

include Spoofing, Termination, Sidetracking, Altering Internal Data, and Selective 

Deception.

Chapter 3 provides a review of selected intrusion detection systems and file 

integrity frameworks within the context of these tampering modes. Conventional 

file integrity analyzers such as Tripwire and AIDE are addressed. Existing agent- 

based frameworks including AAFID, TACH, and FICA are discussed. A proposed 

architectural taxonomy of IDSs is presented. IDS metrics, including qualitative 

and quantitative measures, are described.

The CONFIDANT agent framework is defined in Chapter 4, including its 

agent’s gateways, behaviors, echelons, and interactions. Agent dispatch and com­

munication functions are defined and then illustrated by example handshaking sce­

narios. The CONFIDANT approach to mitigating the defined tampering modes is 

also developed.

Testing methodology and results are provided in Chapter 5, including perfor­

mance results in the absence of tampering, agent network traversal, and evaluation 

of the defined goals. Test cases for the defined tampering modes and a comparison 

of Tripwire, AIDE, and CONFIDANT responses are included. A weighting scheme

13
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developed to compare IDSs is presented. Chapter 6 provides a results summary 

and outlines future work.

14
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TERMINOLOGY FOR INSIDER RISKS IN  

NETW ORKED ENVIRONM ENTS

It is useful to first identify IDS architectural vulnerabilities and correlate them to 

user capability in order to categorize tampering exposures. Once IDS exposures 

are categorized, a framework can be designed specifically to mitigate each category. 

To attain a robust file integrity framework, it is necessary and sufficient to consider 

those vulnerabilities within the domain of systems administrators or super-users.

Capability-driven Design Flow

Let TM su  denote the set of tampering modes available to super-users, let T M LU 

denote tampering modes of legitimate users without super-user capabilities, and 

let TM o  denote tampering modes of outsiders. By definition, TM su  2  T M lu 

since super-users can perform all operations available to any other legitimate user. 

Likewise, T M LU D TM o  since being a legitimate user does not preclude conducting 

tampering activities available to outsiders. By transitivity, TM su  2  TM o, hence 

tampering modes of super-users subsume vulnerabilities of both legitimate users 

and unauthorized outsiders.

Motivated by this subsumption relationship, a generalizable design flow for 

an agent-based IDS framework can be derived. As depicted in Figure 2, Rank I  

exposures denote only those tampering modes available exclusively to super-users; 

Rank //exposures denote any non-Rank I modes available to legitimate users, but 

not to outsiders; and Rank III  modes denote any exposure that is not a Rank I nor 

Rank II exposure. More formally, let the set of exclusive exposures of Rank x  be

15
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= Ej (Rank I) = T M su

^  =  Eu {Rank II) O =  T M lu

= E m  (Rank III)

Figure 2: Relative Rank of Tampering Modes addressed by CONFIDANT.

denoted by Ex. Thus, E j —  TM su ~ T M m , E u  = T m  ~ T M o , and E j j j  —  TMo- 

Based on these rankings, the required agent behaviors can be developed as follows:

1. identify E i  vulnerabilities,

2. postulate an IDS design against which all identified vulnerabilities are evaluated,

3. repeat step 2 until a design is obtained capable of detecting all identified vulnera­

bilities,

4. identify E u  vulnerabilities,

5. verify the postulated design already meets all E u  vulnerabilities, or if it does not 

then return to step 2,

6. identify E m  vulnerabilities, and

7. verify the postulated design already meets all E m  vulnerabilities, or if it does not 

then return to step 2.

Using this design flow, many agent behaviors that were developed to detect 

only Rank I vulnerabilities were also capable of detecting Rank II and Rank III 

exposures. By focusing the agent development effort on super-user exposures, other 

vulnerabilities can be mitigated without the need to explicitly design mechanisms 

to address the lower rank exposures.
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Clearly, super-users are the most capable adversaries. Thus, a proficient set of 

agent behaviors for mitigating E i vulnerabilities can be powerful enough to address 

E u  and En i  vulnerabilities. By contrast, an agent behavior merely sufficient 

against an outsider is unlikely to be effective against a super-user. Previous IDS 

frameworks have focused on Rank III exposures and then later attempted to retrofit 

coverage for Rank II or perhaps Rank I exposures. However, as described in the 

following sections, CONFIDANT concentrates on addressing E i vulnerabilities of 

insiders. By considering E i vulnerabilities first, a capability hierarchy including 

E u  and E m  exposures is readily achieved.

IDS Architectural Vulnerabilities

The tampering capability classes describe categories of individuals based on ac­

cess to computing resources. Physical tampering points in a computer system 

architecture along with the most general tampering capability at each point are 

listed in Table 2 and illustrated in Figure 3. Tampering by outsiders, denoted 

T M o , without physical access to computing resources can only be performed re­

motely. Thus, TM o  is limited to tampering with network resources. In addition 

to the E m  exposure of tampering over the network, legitimate users are able to 

exploit E n  vulnerabilities including modify local filesystem contents and memory 

locations based on permissions assigned by the administrator. For this reason, 

tampering modes of legitimate users, denoted T M lu , include points TP FS, TPpT, 

TP ic, TP id  in Figure 3. These stand for tampering points at the filesystem, pro­

cess table, IDS code, and IDS data, respectively. Insiders have few restrictions 

on computer resource use. Administrators, unlike the other capability classes, can
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2: Computer System Resource Tampering Points
Tampering

Point Definition
A ssociated Capability  

Class
U ser Apps IDS Apps

TPfs Alteration of filesystem contents t m lu TM su
TPpt Modifying the process table in memory TM lu TM su
TP ic Changing application code while in memory TM lu TM su
T P w Changing application data while in memory TM lu TM su
t p n Tampering from remote network nodes T M o> TM lu , TM su
T P sc Modification of the system clock TM su

tamper with any filesystem resource or memory location as well as modify the 

system clock, shown as TPsc-

In addition to physical tampering points, an IDS can be described in terms of 

sensor, control, and alarm logical components, as illustrated in Figure 4. Sensor 

components gather raw data from the system environment such as the contents 

of files being analyzed. Control mechanisms provide logic and decision-making 

routines to interpret the sensor outputs. Alarm subsystems respond to violations 

by implementing alert conditions. Tampering can occur at the host services and 

devices level, within each logical IDS component, and as input to each component.

IDS Exposures and Tampering Modes

Intrusion exposures have been classified in the literature based on numerous fea­

tures [38]. These include the access pathway of the attacker, the system vulner­

ability exploited, and the procedures or data being targeted [17]. Classifications 

based on the intruder’s intent have also been developed [39], as well as consider­

ation of the intruder’s knowledge level [40]. In this section, a widely-applicable 

classification is defined for exposures facing the IDS itself.
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Table 3: Tampering Modes Under Consideration
ID S

V u ln era b ility
T am p erin g

M o d e
In sta n tia tio n  for 

F ile  In te g r ity  A n a ly s is
Sensor Spoonfeeding Alternate data stream is conveyed dur­

ing file scan
Spoofing Control 
data to:

Sugarcoating Unfavorable cryptographic digest is 
modified to appear as the desired result

Alarm Recanting Fraudulent command is issued to deac­
tivate alert

Sensor Blindfolding Detection mechanism is disabled
Term ination Control 
of:

Commandeering Decision-making process is usurped

Alarm Soundproofing Notification mechanism is eliminated or 
muted

Sensor Blockading Resource usage is forestalled to starve 
access

Sidetracking Control 
of:

Pacing Scan timing reference is corrupted or 
execution priority is overwhelmingly re­
duced

Alarm Scapegoating Attention is diverted to a contrived dis­
traction

Sensor Retroactive Baselining Reference values for digests are modified
Alter inter- Control 
nal data in:

Descoping Exemption is added to policy file to 
exclude scan coverage of unauthorized 
modifications

Alarm Value Jamming Stand-alone process continuously writes 
FALSE into the memory location of sta­
tus indicator

Selective deception File Juggling Target files interchanged before and af­
ter scanning

Tampering modes signify critical vulnerabilities for several reasons. First, their 

targets are the IDS facilities themselves tha t must be relied upon to detect ad­

versarial events. Second, protection for the entire system may be compromised if 

tampering is successful. Third, crucial exposures to insider risk exist because an 

IDS framework is under the direct control of administrators.

An instantiation of each tampering mode for the case of file analyzers is listed 

in Table 3. Each logical IDS subsystem defined previously is vulnerable to spoofing, 

termination, sidetracking, and internal alterations as described by the tampering 

modes identified below.
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Spoofing-based Tampering

Spoofing attacks transmit counterfeit data to mislead the recipient by tampering 

at TPps and T P ic ■ An IDS sensor is vulnerable to spoofing by Spoonfeeding it 

information tha t is not present in the target file. Instead of accessing the file’s 

real contents, an adversarial stream of data is provided in a compulsory manner. 

Data spoonfeeding occurs at and can be realized at the kernel level by hacking I/O  

routines to omit or insert information. Alternatively, a file request from the IDS 

may be redirected to an unmodified copy. When implemented successfully, these 

modifications are disguised by including their changes among those items being 

masked. For example, consider when IDS or kernel files are loaded for execution. 

Initially, suppose hacked versions get referenced. Later, the identical filenames 

may be presented for verification. However, these executables might be hacked to 

redirect any such read requests to the original versions instead. The adversary’s 

capacity to distinguish execute system calls from read  calls enables Spoonfeeding 

when necessary.

IDS control is vulnerable to Sugarcoating of unfavorable reports before evalua­

tion. For instance, suppose tha t unauthorized modifications render an incongruent 

digest for a target file. However, the reports conveyed to decision-making routines 

are altered to provide digests for the unmodified file instead. Even if all intra-IDS 

communication is encrypted and secure, an exposure still exists. Modified IDS 

routines might sugarcoat reports about target files as well as incongruities about 

themselves.

The alarm subsystem is vulnerable to spoofing by Recanting alert notifications. 

For instance, a counterfeit notice to discontinue an alert might be sent ex-post-
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facto, as if the alert was only a false alarm. If the alert is recanted in a timely 

manner, then the alarm may not be properly realized or go unperceived.

Termination-based Tampering

Although more conspicuous, outright termination of IDS mechanisms can facilitate 

potential modes of tampering and are generally performed by process termination 

at TP p t - As listed in Table 3, Blindfolding attempts to exploit this vulnerability. 

By terminating a sensor, the perceptive ability of the IDS may decline. W ith­

out proper safeguards, an IDS adversary might attempt to disable local sensor 

processes to obscure unauthorized file changes.

Termination exposures also include the Commandeering of IDS control. This 

refers to the overriding or bypassing of IDS decision-making operations. Com­

mandeering of the IDS may involve removing critical routines from an executable. 

Hence, when unfavorable information is presented, the logic routines needed to 

detect intrusion are missing. For instance, suppose an IDS routine is stored on 

a host’s hard drive in standard unencrypted executable format. It then becomes 

vulnerable to alteration using a disk sector editor. The critical opcode to bypass 

is the Test_and_Branch instruction selecting the ‘intrusion detected’ branch of the 

code. A discovery testbench that uses a divide-and-conquer approach to replace 

Test_and_Branch instructions and then observe the effect is not an implausible ex­

posure. Sufficiently capable adversaries might also arrange for IDS modifications 

during loading or after the code resides in memory.

Termination-oriented vulnerabilities at the alarm level include Soundproof­

ing techniques. Soundproofing an IDS framework involves muting the alarm to 

preclude end-user notification. This includes terminating the alarm process or
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halting inclusion of culpable entries in a report or database. Likewise, an IDS 

adversary may also disable alarm capability via bypassing of execution. For 

example, suppose the first instruction in an alarm routine is replaced with a 

Return_from_Subroutine opcode. The appropriate location may be listed in a 

symbol table within the executable. It might also be reverse engineered from 

among the Jump_Subroutine destination addresses and known system calls.

Sidetracking-based Tampering

More sophisticated, yet less detectable, tampering modes attem pt to sidetrack the 

IDS. They interfere with file integrity operations through collateral means, such 

as Denial of Service (DoS) attacks against IDS mechanisms. Blockading attempts 

to isolate a sensor from needed access to a target file or device. Some integrity 

frameworks can be blockaded by not relinquishing exclusive non-preemptive privi­

leges. Robust file verification involves taking into account that Blockading attacks 

are plausible against a wide range of IDS operations.

IDS control mechanisms are also vulnerable to sidetracking by Pacing tech­

niques. Pacing alters the execution rate in order to decrease the effectiveness of 

the IDS. A direct way to pace a file analyzer is by increasing the period between 

integrity scans. Similarly, an adversary may attem pt to postpone scanning by 

resetting the time-of-day clock by tampering at T P sc • Implicit means such as 

demoting IDS execution priority can also be problematic. Either approach might 

be sufficient to provide an intruder with an undetected window of access.

At the alarm level, Scapegoating is an IDS tampering mode tha t focuses blame 

on unrelated events. For instance, an alarm may be intentionally triggered for a 

decoy cause in order to camouflage the actual attack. Similarly, a multiple alert
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DoS attack may be launched that overwhelms the alarm’s processing mechanism 

or intended human recipient. Once either of these becomes overloaded, the system 

is potentially exposed to undetected intrusions.

In general, sidetracking-based tampering modes are difficult to mitigate. They 

exploit vulnerabilities whereby file analysis is impaired, yet each IDS component 

remains installed, unmodified, and in operation. This implies mitigation of IDS 

sidetracking will require ancillary techniques beyond the file verification methods 

themselves.

Internal Data Tampering

IDS data structures residing on disk, TP FS, or in memory, TPID, can also be vul­

nerable to tampering. Retroactive Baselining is the after-the-fact modification of 

reference values. For example, integrity checkers create baseline files tha t store the 

digests for the initial state of files. Retroactive Baselining corrupts these reference 

values. The updated baseline may reflect the digests after file modifications were 

made. Corresponding restoration of the baseline’s access descriptors may help 

obscure the changes.

At the control level, an IDS is vulnerable to reductions in its operating scope 

to exclude analysis of malicious events. W ith respect to file analyzers, IDS De­

scoping amounts to excluding integrity verification of unauthorized changes. The 

range of verification may be descoped by tampering with the analyzer’s policy file. 

Policy files are employed by integrity checkers to limit false positives. False posi­

tives correspond to file modifications that are routine, expected a priori, and not 

indicative of any malicious intent. So this tampering mode can involve appending 

entries to the exception list in the policy file. Normally, policy files are maintained
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by the system administrator which introduces a straightforward insider pathway. 

Similarly, there is exposure to the analyzer being spoonfed the adversary’s version 

of the policy file.

W ith respect to alarm mechanisms, an IDS may be vulnerable to Value Jam­

ming. This tampering mode employs an independent adversarial process. This 

high-priority process continually writes FALSE to a status flag maintained in mem­

ory. Through repeated jamming of a status value, it may be feasible to preclude 

sustained establishment of an alert. This underscores need for proper access control 

to memory pageframes for robust IDS operation.

Selective Deception

Selective deception refers to tampering modes that are colloquially known as 

double-dealing. By way of analogy, consider an unscrupulous casino dealer who 

selectively issues playing cards from two decks to defraud the recipient. One prob­

lematic form that impacts file analyzers is File Juggling. Realistically, file integrity 

verifiers can inspect target files only intermittently. So these tools are susceptible 

to tampering at TPps due to the existence of modified data at times other than 

file verification.

Restoration of authentic data immediately prior to scanning might be achieved 

through a File Juggling script. If an adversary is able to detect when a file integrity 

check will occur, then a modified file can be temporarily reverted to its original 

state. Suppose verification is set to occur with a pre-defined interval r . The IDS 

may be susceptible to the File Juggling script shown in Figure 5. Line 1 provides 

access to the modified file 95% of the time, Line 2 restores the unmodified version 

prior to checking, Line 3 waits for the integrity scan to complete, and Line 4
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w h ile d )  {
1
2
3
4

sleep(95 x ;
rename (unmodif ied_version, originaljfilename); 
sleep(5 x jgg);
rename(modif ied.version, original_f ilename);

}
Figure 5: Fixed-Interval File Juggling Script.

restores the modified version. More extensive operation would be necessary to 

restore the original file creation time and owner.

Alternatively, suppose that scans are scheduled at random intervals. Exposure 

to active detection of scanning operations would become a concern. In particular, 

the IDS adversary may replace Line 2 in Figure 5 with (w hile not (exec ("grep 

scan_process < to p " ) ) ) .  This creates a busy waiting loop until the scan_process 

begins executing, at which time files are interchanged. Fine-tuning of the File 

Juggling reaction time can be obtained by tweaking process priorities and resource 

blockades. In other words, a combination exposure exists from File Juggling, Pac­

ing, and Blockading tampering modes. A discussion of exposures in the presence 

of combining individual tampering modes is provided below.

Existing IDSs exhibit a variety of exposures based on mechanism, user’s knowledge, 

and access permissions. As shown in Figure 6, outsiders exhibit exposures of the 

lowest rank, Rank III, and are able to perform only Blockading across the network. 

In addition to Rank III exposures, Legitimate Users can also perform File Juggling 

in certain circumstances. Consider the case of delegating web server administration 

responsibilities to someone who is not the super-user. The webmaster has the 

required access to modify web server configuration. If these configuration files are

Summary
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Spoonfeeding, Sugarcoating 
Recanting, Blindfolding, 
Commandeering, Soundproofing, 
Pacing, Scapegoating, 
Retroactive Baselining, 
Descoping, and 
Value Jam m ing

File Juggling

Blockading

Figure 6: IDS Tampering Mode Rank

monitored as defined by the administrator in the IDS policy data, the webmaster 

has the ability to tamper via File Juggling. The remaining eleven exposures are 

restricted to Rank I, or the super-user level, thus motivating this research.
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EXISTING FILE INTEGRITY FRAM EW ORKS AND  

EVALUATION METRICS

Previous IDS and file integrity frameworks have relied on a client-server architec­

ture to perform tasks ranging from file integrity analysis to user profiling. More 

recent agent-based approaches offer the potential of increased adaptability, reduced 

communication costs, and fault tolerance. The following discussion is restricted to 

file analyzers and multi-agent IDS frameworks.

File integrity tools use cryptographically-based hash mechanisms to compute 

a signature for monitored files. Signatures are subsequently recomputed and com­

pared to previous values in order to detect if a file has been modified. A number 

of the most widely installed file integrity analyzers are reviewed in [19] and [41]. 

The relevant features of a few of them are discussed below.

Conventional File Analyzers

Selected file analysis tools are listed in Table 4. While Tripwire [9] is the most 

popular commercial file integrity analyzer, other commercial and open source al­

ternatives operate similarly. Tripwire utilizes a policy file to describe the expected 

behavior of system and data files, identify files tha t are expected to change, and the 

types of changes permitted to each file. A baseline database is created using hash 

functions according to the policy file as a reference to detect file modifications. 

In a networked environment, Tripwire installed on individual hosts can interact 

with a Tripwire Manager via Secure Socket Layer (SSL) which provides message 

encryption. Tripwire Manager’s form of centralized policy management enables an 

administrator to define a single policy and distribute it to many similar systems
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Table 4: Selected Conventional File Integrity Analyzers
ID S  F ram ew ork  

N a m e A v a ila b ility
E x e c u tio n

M o d e l C o m m en t
Tripwire Commercial and 

Open Source
Client-Server The most popular commercial file 

integrity analyzer
AIDE Open Source Single Host Created as a response to the 

commercialization of Tripwire
integrit Open Source Single Host Designed to be a simple alternative 

to Tripwire and AIDE
Veracity Commercial Client-Server Concentrates on manipulating 

snapshots of directory trees
Nabou Open Source Single Host Can be used as a process monitor

SMART Watch Commercial Single Host Detects changes without relying 
on periodic timers

across the enterprise. Other file analyzers such as AIDE  [12], Veracity [13], and 

integrit [22] operate similarly, although AIDE aims toward removing particular 

limitations in Tripwire, while integrit focuses on essentials. Other existing tools 

exhibit unique features. For instance, Nabou [42] can be used as a process moni­

tor, while SMART Watch [43] detects file system changes in near-real time by not 

using periodic timers.

While some file analyzers have taken steps to reduce tampering exposures, 

mitigation of risks from knowledgeable insiders remains as an evolving area. For 

instance, AIDE product literature warns that its own integrity cannot be guar­

anteed as its binary and/or baseline database can also be altered. In fact, their 

website [12] warns that a hacked version is being maliciously distributed.

As stated previously, some file analyzers have taken steps to reduce tampering 

exposures, but mitigation of insider risk remains a concern. One technique to mit­

igate tampering as recommended by Tripwire is to record binary files on read-only 

media. However, even write-once media within control of the system administrator 

become vulnerable to exchange. To further address these concerns, tools such as 

Tripwire encrypt stored binary data. Tripwire also utilizes SSL communication
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protocols and triple DES encryption for critical transmissions. Yet, these tools are 

still highly subject to several straightforward tampering modes. A complete dis­

cussion of the modes by which tampering can occur are presented in the previous 

section.

Agent-based IDS and File Integrity Approaches

Recently agents have been proposed as a technology to overcome limitations in 

a variety of intrusion detection applications beyond file integrity. Rationale for 

considering agents in an IDS ranges from increased adaptability for new threats to 

reduced communication costs. Since agents are independently executing entities, 

there is the potential tha t new detection capabilities can be added without com­

pletely halting, rebuilding, and restarting the IDS. Other potential advantages are 

described by Jansen [35], and by Kruegel [44] who also identifies downside tradeoffs 

including increased design and operational complexity. Use of mobile code itself 

introduces new security exposures and need for mitigation methods as discussed 

in [45]. Although numerous agent-based IDS frameworks have been proposed or 

constructed, few have aimed at addressing exposures from insider tampering as 

described below.

Agent-based Anomaly Detection

The Autonomous Agents for Intrusion Detection (AAFID) framework [11] devel­

oped at Purdue University is an IDS project employing autonomous agents for data 

collection and analysis. AAFID utilizes agents hosted on network nodes, filters to 

extract pertinent data, transceivers to oversee agent operation, and monitors to 

receive reports from transceivers. These entities are organized into a hierarchical
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architecture with centralized control. While a transceiver may report to multiple 

monitors to provide redundancy, monitors as well as AAFID agents remain at a 

single physical address upon deployment.

Cooperating Security Managers (CSMs) [5] enable individual distributed intru­

sion detection packages to cooperate in performing network intrusion detection 

without relying on centralized control. Each individual CSM detects malicious 

activity on the local host. When suspicious activity is detected, each CSM will 

report any noteworthy activity to the CSM on the host from which the connection 

originated. The local CSM will not notify all networked systems, but rather only 

the system immediately before it in the connection chain.

Other agent-based hierarchical architectures include the Intelligent Agents for 

Intrusion Detection project at Iowa State University [46] with a centralized data 

warehouse at the root, data cleaners at the leaves, and classifier agents in between.

Bernardes and Moreira have proposed a hybrid framework with partially dis­

tributed decision making under the control of a centralized agent manager [34]. 

Agents are deployed to observe behavior of the system and users. Agents com­

municate via messages to advise peers when an action is considered suspect. The 

architecture is structured into four distinct layers. When an agent considers an ac­

tivity to be suspect, an agent with a higher level of specialization for the suspected 

intrusion is activated. Agents then report their findings to a centralized manager.

In these systems, distribution of some aspects of the data collection and decision­

making processes suggests important features to help diffuse some tampering points. 

Yet, whenever agents are managed from a common server, identifiable targets for 

tampering remain. Furthermore, the use of one or more centralized repositories 

leave at least some portion of the network exposed to denial of service attacks.
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Even if an autonomous mobile decision-making agent was to detect a problem, in­

terlocking mechanisms would be necessary to preclude its accidental or malicious 

removal, delay, or spoofing.

Mobile Agents Supporting Remote-Access Detection of Misuse and 

Viruses

The University of Idaho has developed the Hummingbird framework [47] for man­

aging misuse data. Hummingbird agents are neither autonomous nor mobile but 

do illustrate important methods to mitigate tampering such as including validated 

transactions between stationary decision-making centers, redundant data collec­

tors, and use of Kerberos. The project and test cases used focus on cooperative 

intrusion detection if sharing of data is a viable option between distinct hosts across 

an enterprise.

The Tethered Agent and Collective Hive (TACH) concept for remote-access sys­

tem management was defined by Costa [36] at Lockheed Martin in 1998. Figure 

7 shows a high-level view of TACH. The three components of the architecture in­

clude a centralized Hive to keep track of agents and collected data, a Task Manager 

(TM) to assign priority codes and conditions of task execution, and an Agent Reg­

istry (AR) to track fingerprints of agents. Working with Lockheed, the University 

of Central Florida (UCF) designed and developed an Aglet-based [48] framework 

for TACH including mobile agents for virus detection [49] [50] and misuse detec­

tion [51]. Upon deployment by the TM, agents establish communication with the 

Hive, and the AR registers the agent as “live” , then executes tasks as defined by its 

Customized Task Module (CTM). A  CTM is a plug-in tha t allows a standardized 

TACH framework to be more readily customized to new agent behaviors without
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Figure 7: TACH Architecture

the need to modify other components or significantly change the communication 

protocols between agents and the Hive. Limitations of TACH include the use of a 

centralized Hive for agent control and a periodic communication protocol between 

the Hive and agents with time-out detection used to assess status changes. If the 

Hive is disabled then the entire TACH system would be compromised.

File Verification

Based on experience with TACH at UCF, the File Integrity using Cooperating 

Agents (FICA) framework [37] was developed using Concordia mobile agents, MD5 

protocols, and Java APIs. FICA deploys two agent behaviors: an initiator to travel 

to remote nodes to create a baseline and an examiner to compute new digests 

against the original baseline. As with other file integrity analyzers, FICA must 

rely upon write-once media for configuration files and immutable digests. Also, 

since a centralized server for dispatching is employed, serious exposures remain.
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IDS Architecture Taxonomy

Based on the previously described exposures, certain IDS design characteristics 

are utilized by CONFIDANT to meet Goal-1 and Goal-2. For instance, tampering 

complexity increases if functionality is not bound to a physical location. Also, un­

predictable scheduling of IDS events increases the difficulty by which certain events 

can be anticipated and thus prevented, or spoofed by an insider. One technique 

to assist in avoiding a single point-of-failure exposures is to distribute IDS control 

across network nodes so that compromising a single node will not fatally disrupt 

execution on other nodes. Based on these characteristics, the following taxonomy 

of IDS architectures is proposed.

Centralized Control, Static Dispatch Architectures

Centralized Control with Static Dispatch (CCSD) architectures are the most funda­

mental configuration of IDSs. Architectures of this type restrict data and control 

functionality to a single machine and have a static network topology as illustrated 

in Figure 8. An example of this category is any single-host IDS, such as Tripwire 

or AIDE execution on a single machine with a local baseline database. Here the 

single machine controls the IDS and all data remains local to each machine. If 

an intruder is able to compromise the single machine, the IDS can be compro­

mised. An example of a multi-host CCSD IDS is the Tripwire Manager controlling 

multiple instances of Tripwire for Servers.

Distributed Control, Static Dispatch Architectures

In order to overcome limitations in CCSD architectures and provide functionality 

for multiple network nodes, control functionality and data can be distributed across
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a network domain. Distributed Control with Static Dispatch (DCSD) architectures 

are more sophisticated than CCSD due to the inclusion of multiple machines with 

control responsibilities in a distributed network, as shown in Figure 9. IDS control 

is distributed as individual machines are responsible for local computations. The 

dispatch of information is static as a central management database node records 

data served by individual nodes. D ata dispatch is static due to a well-defined net­

work topology and communication between client nodes and the central database. 

If an attacker is able to control the centralized management database, the entire 

IDS can be compromised. It is possible that the distributed management consoles 

are unable to receive accurate signature data and alerts generated by the client 

nodes, so DCSD architectures of this type exhibit a single point-of-failure. Hum­

mingbird is an example of a DCSD architecture as it maintains a database for 

storing misuse data. While CSM does not maintain a misuse database, interaction 

between CSMs on each host is static.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Centralized Database

T30)
1+3

uT3

•  • •
Node 1 Node 2 Node n

Individual Control Responsibilities Localized To Each Node

Figure 9: Distributed Control, Static Dispatch Architecture

Centralized Control, Dynamic Dispatch Architectures

Centralized Control with Dynamic Dispatch (CCDD) architectures have a single 

control module coupled with dynamic data movement. An example of this type of 

architecture is FICA [37] illustrated in Figure 10. In the FICA framework, agents 

are dispatched across the network to collect data and return only the filtered results 

to a single host for processing. This single host serves as the centralized control 

node. Since the agents can be sent to any node in the network at times specified 

by the server during runtime, there is a dynamic dispatch of agents. There is also 

a dynamic dispatch of data as data travels with the agents throughout the network 

domain. As with the previous two types of architectures, a single point-of-failure 

vulnerability exists. When client nodes rely on a single control server, modifications 

to control instructions can alter scan timing and produce erroneous scan results. 

In the case of mobile agents, whenever agents report to a single physical address 

tha t becomes compromised, resources are no longer protected. The hierarchical
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structure of distributed IDS elements such as agents, transceivers, and monitors is 

subject to compromise.

Distributed Control, Dynamic Dispatch Architectures

The final architecture defined is Distributed Control with Dynamic Dispatch (DCDD). 

CONFIDANT exhibits an architecture of this type. This novel architecture class 

diffuses single point-of-failure exposures common to the other architectures by 

distributing control of the IDS, as well as providing a dynamic dispatch of data 

contained in agents. Control and data are distributed across a completely con­

nected network domain. By distributing both data and control functionality, the 

single point-of-failure in other architectures is eliminated.

A hierarchy of the architecture classes defined in this section is given in Figure

11. As shown in the figure, class A is said to subsume class B if the mechanisms 

in class A can perform the operations of those in class B. For instance, when 

FICA (CCDD) either doesn’t  dispatch agents or dispatches agents to the local
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machine, it operates as a CCSD architecture. A DCDD architecture such as CON­

FIDANT can function as a CCDD architecture if agents are required to report to 

a single centralized host. If a DCDD architecture can be realized, then it will pro­

vide a general technique for intrusion detection capable of mitigating additional 

vulnerabilities. Chapter will describe how a DCDD architecture is realized in 

CONFIDANT. To assess the performance of CONFIDANT’S DCDD realization, a 

number of comparative metrics are developed in the following section.

Existing IDS Metrics

Evaluation of Intrusion Detection Systems can be challenging as many objective 

and subjective issues must be considered. An identified intrusion may be an arti­

fact of an older attack or be properly detected, but provide insufficient diagnostic 

information to address the source of intrusion. Accuracy and avoidance of false 

alarms are important considerations due to their increase in severity and adminis­

trator workload.
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Constructing broad, accurate benchmarks is particularly difficult due to the 

complex operating environment of an IDS. Ranum [52] describes the subtle differ­

ence between quantitatively measuring systems against a defined and predictable 

baseline and comparing systems directly to each other. This distinction is impor­

tan t as measuring against a baseline is more difficult to implement while compar­

ative measurements lack repeatability. As a result, IDS testing tends to be either 

comparative or subjective, focusing on the accuracy or the quality of results.

Injection of Synthetic Network Traffic

Synthetic network traffic is often introduced to facilitate IDS evaluation. However, 

injection of synthetic traffic can be counterproductive as flooding the network with 

traffic is not sufficient for IDS performance evaluation. Production networks do 

not carry random traffic unless they are under attack or severely broken [52]. For 

instance, hosts are not subject to invalid frames that do not belong to established 

TCP sessions unless they are being brought under a denial of service attack. An 

evaluation involving a denial of service attack may cause a less rigorous IDS appear 

to perform better than one tha t extensively analyzes packets.

IDSs also respond differently to various types of network traffic, as some network- 

based IDSs evaluate only the header portion of the packet, while others will analyze 

the data portion as well. Synthetic traffic is sufficient for testing network hardware 

throughput, but not for IDS robustness evaluation [53]. Furthermore, hardware 

such as routers and firewalls exhibit a filtering effect on network traffic [52] and thus 

reduce the amount of synthetic traffic observed on associated network segments.

One worthwhile approach is to perform simultaneous tests involving production 

networks and real traffic from the site where the IDS is to be deployed. This
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involves configuring each IDS, then performing simultaneous evaluations. Another 

approach is to generate synthetic loads with standardized payloads. The most 

realistic approach for comparative testing involves a production network running 

attacks to check IDS responses [52]. Evaluations must be performed multiple 

times, as IDS operation in a realistic environment may produce varied results due 

to factors such as the states of the attacking machine [54].

Metric Classes

IDS evaluation involves a combination of both quantitative measurements and 

qualitative attributes. The combination can be either a defined algorithm or expert 

analysis with subjective judgment. Evaluation functions can be more straightfor­

ward to specify than the corresponding process. The process description is impor­

tant to promote repeatability [55]. Requirements for IDS testing can even differ 

between architectures. For instance, in testing real-time systems, emphasis should 

be placed on speed and accuracy. For distributed systems, emphasis should be 

placed on minimizing false negatives while accepting increased false positives.

Quantitative Metrics

The ultimate measure of an IDS is the ability to detect intrusions within a 

reasonable time period. Secondary measures include the number of false positives 

and the ability to correlate data from multiple sources. An approach to accurately 

evaluate complete systems involves a predictable number of attacks coupled with 

measuring results returned by the IDS [52].

A valid detection is referred to as a True Positive Intrusion (TPI) and occurs 

when an alarm is sounded in the presence of an intrusion. A False Positive Intrusion
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Table 5: Intrusion and Alarm Nomenclature
Presence o f Intrusion: I Absence o f Intrusion: ->I

Presence o f Alarm: A True Positive Intrusion False Positive Intrusion
A bsence o f Alarm: -iA False Negative Intrusion True Negative Intrusion

Alarm. Intrusion
TPI

FPI FNI

TNI

Figure 12: Quantitative Metric Relationship

(FPI) occurs when an alarm is triggered, but no intrusion is present. The number 

of false positives can be computed by subtracting the number of correctly detected 

attacks from the number of alarms raised. The absence of an intrusion that is 

correctly identified is referred to as a True Negative Intrusion (TNI) while a False 

Positive Intrusion (FPI) occurs when an alarm is triggered in the absence of an 

intrusion. The relationship between these four numerical measures is in terms of 

the presence or absence of an intrusion, denoted as I  and ->I, vs the presence or 

absence of an alarm, denoted as A  and ->A, is listed in Table 5 and illustrated in 

Figure 12.

Qualitative Metrics

An important consideration when using qualitative metrics for evaluation is the 

IDS class. A particularly complete set of metrics is provided in [53]. The defined
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metrics are divided into three categories: logistical, architectural, and performance. 

Logistical metrics measure IDS manageability including ease of configuration and 

management. Architectural metrics compare how the IDS matches the deployment 

architecture. Selected architectural metrics include adjustable thresholds and sup­

port for multiple sensors. Performance metrics include interaction with firewalls 

and routers and timeliness.

Computation of the weighted overall score for metric class Sj is listed in equa­

tion 1 where j  corresponds to the three metric categories defined previously, i is the 

metric index within the j th  category, nj is the number of metrics within category 

j ,  Uij is the unweighted score for metric i of category j ,  and Wrj is the weight of 

the ij th  metric.

% =  E
j=l,3

(1)

The two methods for measuring each metric are observation analysis and review 

of material such as specifications or white papers. Individual metrics are assigned 

a low, average, or high score and weights are selected according to the intended 

IDS environment. System requirements must be clearly defined in order to define 

appropriate weights. The authors specifically warn that assigned weight values 

will always be subjective, but the method can be applied consistently as long as 

goals are accurately and uniformly defined.

Role of Numerical Measures

Certain defined formal metrics are difficult to observe. For instance, an admin­

istrator may not be aware of an IDS failing to detect an attack, so the number of 

false negative intrusions may be inaccurate. This can be overcome by using known
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traffic with standardized content. It is also possible that a particular classification 

may detect a series of events as a single attack, while another may see several 

attacks [53].

An excessive number of false positives can cause administrators to ignore IDS 

alerts. In order to compensate for a high number of false positives, an IDS that 

ignores actual intrusions will provide a false sense of security [53]. Consider the 

case where an IDS signals an alarm on every monitored operation. The detection 

rate will be 100%, but the number of false positives will be maximal as well [52],

Significance of False Alarms

It is suggested that there is no such thing as a false alarm in terms of computer se­

curity as any alarm contains vulnerability information [56]. While some Computer 

Incident Response Teams request tha t all data be disclosed even in the presence 

of false alarms [57], the number of false alarms can become overwhelming.

Axelsson [58] describes this as the base-rate fallacy problem. The implication of 

the base-rate fallacy is that the limiting factor on IDS performance is the ability to 

suppress false alarms and not the ability to correctly classify behaviors as intrusive. 

Using Bayes’ Rule [59] shown as Equation 2, the probability of an intrusion given 

an alarm, P(I\A),  can be written as shown in Equation 3.

=  P f y b ) P ( m )  P(A)P(E\A)
{ 11 } £2=i P{Ak)P{E\Ak) P(A)P(E\A)  +  P ( ^ A ) P ( E \ ^A )  ( J

p (i \a) = n m m
K 1 '  P(I )P(A\ I )  + P ( ^ I )P ( A\ ^ I )  W
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Marchette [56] provides an example of the base-rate fallacy. Consider an IDS 

tha t monitors 1,000,000 operations where 20 correspond to attacks, or P(I)  = 

i  c k m o o o ~ ^ so consider a detection rate of 99%, P(A\I)  = 0.99, and a false alarm 

rate of 0.1%, P(A\-iI) = 0.001. Using these values gives P(I\A) = 0.019, or about 

2%. This means tha t approximately 1 alarm out of 50 operations is an intrusion. 

W ith a false alarm rate of 0.01%, P(I \A)  = 0.16 or 16%. A false alarm rate of 

0.001% brings P(I\A)  up to 66%.

As the number of false alarms grows, administrators and security officers may 

become inclined to ignore future alarms. Consequently, it is critical that false 

alarms be minimized. In order to keep false alarm levels low, it is important that 

the IDS not introduce elements tha t trigger an alarm based on benign activity [58]. 

State tracking can effectively reduce false positives for network-based IDSs. [52] 

Relevant metrics from clinical medicine [60] [61] applied to IDS environments 

include:

Sensitivity or True Positive Fraction: Probability that an intrusion is identi­

fied when present as given by tFT+JHvI'

Specificity: Probability that a detection does not occur when an intrusion is not 

present as given by FP™PNr

False Positive Fraction: FPFIpFNI =  1 - Specificity.

Positive Likelihood Ratio: Ratio between the probability of a alarm in the 

presence of an intrusion and the probability of an alarm in the absence of an 

intrusion. It can be written
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Negative Likelihood Ratio: Ratio between the probability of the absence of an 

alarm in the presence of an intrusion and the probability of the absence of 

an alarm given the absence of an intrusion.

Positive Predictive Value: Probability that an intrusion occurred when an alarm
'VPTis present. TPI+FPI

Negative Predictive Value: Probability that an intrusion has not occurred when

an alarm is absent. T N I
F N I + T N I

Using the formula for conditional probability [59] in Equation 4, it is shown 

tha t P(A\I)  = sensitivity and tha t P(A\->I) = 1 — specificity in Equations 5 and 6 .

P ( A \ B )  =  (4 )

P{A  n  I) t p i  . . .  ,r .
P(A\I)  = — —r—— =  — :— ——— =  sensitivity (5)v i J T P I  + F N I  j  ’

P ( A l W )  F P I  F P I  + T N I  - T N I  
y 1-1 ' ~  P ( ^ I )  ~  F P I  + T N I  ~  F P I  + T N I

T N I
= 1 "  F P I  +  T N I  = 1 “  SpeClficity (6)

Summary

Conventional and agent-based IDSs exhibit vulnerabilities resulting from their ar­

chitectural implementation as can be measured by their TPI, FPI, TNI, FNI, 

sensitivity, and specificity response to intrusive activity. The reliance on a cen­

tralized control structure in tools such as Tripwire and FICA enables failure or
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tampering tampering at a single point to disable IDS functionality. Frameworks 

without centralized control are vulnerable to tampering due to static data dis­

patch. For instance, modification of the Hummingbird misuse database can cause 

the distributed control modules to produce invalid ID scan results. The CONFI­

DANT DCDD framework is designed to surmount these limitations as defined in 

the following chapter.
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CONFIDANT OPERATIONAL CONCEPT

Existing conventional and agent-based systems do not emphasize mitigation of in­

sider tampering risks nor are their architectures easily adapted to handle them. 

However, CONFIDANT specifically addresses the tampering vulnerabilities listed 

in Table 3 using a distributed control scheme realized with mobile agents [62]. 

Distribution of both data and control helps to mitigate insider tampering and also 

eliminates many single points-of-failure present in existing frameworks. By en­

abling agents to monitor the host file system and compare current and baseline file 

signature values, CONFIDANT is considered an agent-based signature-matching 

system with active network components. Also, since alarms are triggered by 

changes to monitored files, CONFIDANT signals intrusions in a behavior-based [23] 

manner.

CONFIDANT extends the TACH and FICA frameworks based upon the re­

quirements listed in Table 6 . Requirements are listed in order of the progression of 

IDS processing. Requirements R l, R2, and R3 define the required properties of the 

environment in which the agents operate. Requirement R4 dictates the security of 

the agent transactions themselves. These critical requirements involve the integrity 

of the agent execution, the inter-agent communication, and the processing results 

maintained during execution. The corresponding operating assumptions OAl -  

OA4 ensure that CONFIDANT agents are able to verify the correctness of the 

individual hosts on the network as well as other agents. Also, file data obtained 

by agents must be accurate. The listed assumptions are attainable and considered 

modest given the difficult challenges posed by insider risk. While an insider has 

full and direct access to any computer system resource, the stated assumptions 

coupled with use of mobility significantly diminish the ability of any insider to si-
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Table 6 : CONFIDANT Operating Assumptions
Requirem ent O perating Assum ption

Rl: File information obtained by 
agents is legitimate

OAl: Agents have direct disk access to ensure 
accurate file validation

R2: Scan timing is not predictable OA2: Agents perform filesystem locking upon 
arrival

R3: Agents execute in a protected 
environment

OA3: Initial configuration is well-formed and 
completely installed

R4: Agent interactions are robust OA4: Agent transport and communication occur 
via SSL to preclude spoofing

multaneously modify every agent in order to compromise file integrity capabilities 

before an alarm is sounded elsewhere in the network.

The general structure of a CONFIDANT agent is shown in Figure 13. CON­

FIDANT agents contain executable behavior code and a persistent data repository 

to store file integrity data collected while traversing the network. The agent’s 

itinerary can be updated dynamically to determine the agent’s route in realtime to 

help preclude tampering. An agent gateway resides on each physical processor and 

provides services required by the agents including ID, mobility, and communication 

management to mitigate IDS tampering modes as described below.

Towards Insider-Robust Capabilities

Table 7 shows a comparison of related IDSs and illustrates how the CONFIDANT 

framework differs from existing models. For instance, CONFIDANT employs mo­

bile agents with an interlocked handshaking protocol. The Bernardes-Moreira 

framework uses mobile agents, but without communication between agents. Sev­

eral other agent based models dispatch agents, but those agents do not traverse 

the network domain.
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Table 7: Comparison of representative File Integrity and Agent-based IDS Approaches
File Integrity  

Analyzer
/

IDS

Execution
M odel A gent Form

A gent-to-A gent 
Interaction

Single 
Point of 
Failure

Safeguards
Against
Insider

Tam pering
Tripwire, AID E, 
Veracity, integrit

Client-Server N/A N/A Yes No

A A FID Deployed Agent Key-Value Pair None Yes No
Bernardes-M oreira Mobile Agent Aglet Create, Halt Yes No

TACH Deployed Agent Aglet None Yes No
FICA Deployed Agent Concordia 

Java Object
Communicate Yes No

C O N FID A N T Mobile Agent Concordia 
Java Object

Communicate,
Create

No Yes



Table 8 : CONFIDANT Approaches for Tampering Mitigation
Tampering

M ode
M itigation
Approach Description

Spoonfeeding Encapsulation Vulnerable File I/O contained inside agent 
inside agent

Sugarcoating Validated transactions SSL used for messaging and transport
Recanting Interlocks, scrambling Agent transactions are interlocked and 

spatially distributed
Blindfolding Redundancy, 

vulnerability seeding
Known exceptions are intentionally 
inserted to test detection status

Comm andeering Interlocks, scrambling Agent interactions are interlocked, and 
spatially and temporally distributed

Soundproofing Redundancy, interlocks Alarms at each node with interlocked I/O
Blockading Pulse-taking Interlocked file bandwidth monitoring 

and alert mechanism
Pacing Pulse-taking Interlocked CPU throughput monitoring 

and alert mechanism
Scapegoating Redundancy Concurrent tracking via multiple agents
Re-baselining Distinct Inception Data dispatched with agent upon 

configuration
Descoping Mandatory Obsolescence Configure only upon initial startup then 

destroy configuration agents
Value Jam m ing Redundancy, scrambling Agent execution is spatially and 

temporally scrambled
File Juggling Redundancy, scrambling Unpredictable redundant scan scheduling

All of the IDS frameworks described previously have limitations with respect 

to insider tampering and exhibit a single point-of-failure. Tripwire can be compro­

mised by interfering with the database manager. Compromising a transceiver in 

AAFID will remove a portion of the network from the control of the IDS. TACH, 

FICA, and the Bernardes-Moreira framework can be defeated by compromising the 

agent server. The mobile agent approach in CONFIDANT provides an alternative 

to these protocols to mitigate specific vulnerabilities. The mitigation strategy de­

veloped for CONFIDANT for each tampering mode described previously is listed 

in Table 8 .

The CONFIDANT mobile agent framework consists of an agent gateway on 

each monitored host, four agent behaviors, and agent interaction operating in three
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echelons. The agent gateway provides the interface between the agents and services 

on each host on the network as well as the communication mechanism for the agents 

to travel over the network. The behaviors are designed around specific lifespan and 

operation cycles to perform specific functions within the agent framework. Agent 

interactions include communication between individual agents as well as between 

agent groups.

Agent Gateway

The CONFIDANT agent gateway provides the interface between the host services 

and the agents. It also maintains network communication channels for agent dis­

patch to remote nodes and agent interaction. In order to allow agents to travel 

to remote nodes, a gateway must be executing on every monitored host in the 

network. Each gateway, G = {g i , . . .  ,gn}, is a monitored network node.

Each mobile agent gateway:

• creates and disposes of application agents,

• monitors local agents executing on a host,

• receives reports generated by remote agents, and

•  forwards reports generated by local agents to remote gateways.

Tampering at the gateway level remains a potential vulnerability. To maintain 

IDS capability, the gateway needs to be protected from tampering and disabling. 

This is addressed by the assumptions listed in Table 6, and is a topic of current 

research [63] [64] [65]. Disabling a CONFIDANT gateway results in alarm noti­

fication when either an agent attem pts to travel to the gateway or an attem pt is
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Table 9: CONFIDANT Agent Behaviors
Behavior Life span E xecution Cycles Per Gateway V isit

Probe One Execution Cycle Exactly One
Sensor Infinite Exactly One
Beacon Infinite Multiple Based On Time Intervals

W atchdog Infinite Multiple Based On Target Criteria

made to communicate with an agent that was residing on the gateway when it was 

disabled.

Autonomous Behaviors

The mobile agent framework makes use of four distinct types of agents, each defined 

for a specific life span and execution cycle. An agent life span is the duration 

from initial dispatch until execution is complete according to its itinerary. An 

agent execution cycle includes agent-specific processing and related messaging. For 

instance, the execution cycle for an agent tha t computes file MD5 values is simply 

reading a file and calculating the MD5 which occurs once per gateway visit. The 

execution cycle for an agent tha t correlates MD5 values is to receive and process 

a message from a MD5 computation agent. Based on messages received, multiple 

event cycles can occur on a single gateway visit.

Every CONFIDANT agent behavior extends the general agent structure illus­

trated in Figure 13. Individual behaviors are defined in the following subsections 

and summarized in Table 9. Each agent has a specific behavior based on lifespan 

and execution cycles per gateway visit. All agents regardless of behavior, perform 

the same dispatch and communication functions described below.
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Probe

The Probe agent behavior is the most basic type of CONFIDANT agent. Its life 

span is only a single execution cycle. A Probe agent is dispatched to the destination 

gateway, an arrival confirmation message is sent, and the agent is terminated once 

execution is complete. Probe agents are primarily used for sounding alarms and 

sending messages to other remote gateways.

Sensor

Sensor agents, like Probe agents, have a single execution cycle per gateway 

visit, but differ in tha t their life span is perpetual. One role of Sensor agents is to 

inspect for changes to the network topology, such as hosts added or removed from 

the network.

Beacon

Beacon agents have an infinite lifespan and can have multiple execution cycles 

per gateway visit. As the name implies, beacon execution cycles occur at regular 

time intervals. Since Beacon agents report on regular intervals, several cycles may 

occur while the agent resides on a single gateway.

Watchdog

As is the case with Beacon agents, Watchdog agents have an infinite life span 

and multiple execution cycles per gateway visit. Unlike Beacon agents, however, 

Watchdog agents perform execution cycles based on a certain target criteria. For 

instance, a Watchdog agent is used to monitor agent filesystem scan results. When 

a discrepancy is encountered a Watchdog agent dispatches Probe agents to specific 

nodes to sound the alarm.
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Agent Echelons

CONFIDANT agents operate in distinct echelons as shown in Figure 14. In simple 

domains with limited overhead, functionality can be encompassed by Watchdog 

agents to perform filesystem scans and Probe agents to send alarm notification 

to remote gateways. As network complexity and overhead increases, functionality 

can be distributed into distinct functional components as described below.

As shown in Figure 14, the lowest echelon is responsible for surveillance. In 

this level, Sensor agents are dispatched in order to obtaining file signatures and 

information regarding network topology. State detection sensor agents monitor the 

network for changes in gateway status. For instance, if the power is removed from 

a particular host and the gateway becomes unavailable, state detection agents 

will signal the network topology agents to make appropriate itinerary updates 

with other agents. File inspection sensor agents are responsible for visiting agent 

gateways and obtaining file signatures to transmit to the data correlation module.

The middle echelon is the Control level which provides updates for agent 

itineraries as well as performs result collection and correlation. The network topol- 

ogy module is responsible for obtaining network status information from the sensor 

echelon and relaying appropriate updates to the file inspection, data correlation, 

and alarm dispatch modules. The data correlation module receives MD5 signa­

tures from the file inspection module at the sensor echelon. Here data is collected 

and analyzed to provide error information to the alarm dispatch module. Both the 

network topology and data correlation modules utilize the Beacon agent behavior.

The final echelon is the Response level and consists of the alarm dispatch mod­

ule. Watchdog agents are used to collect and distribute alert notification messages 

from the control level to remote gateways. While alarm messages can be sent
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Figure 14: CONFIDANT Echelons

to remote agents, gateways tha t are not currently hosting agents are unable to 

receive messages directly. In order to overcome this limitation, Probe agents are 

dispatched by the alarm dispatch module to transport appropriate alarms. Probe 

agents travel to the remote gateway, reply with an acknowledgment to confirm 

arrival, and perform alarm notification routines. Encapsulation of alarm messages 

within an agent enables alarms to be signaled on any gateway on the monitored 

network.

Reducing the number of false alarms is of particular importance as discussed 

previously. The Network Topology and State Detection modules in Figure 14 axe 

designed specifically to reduce redundant alarms. Consider a subnet of gateways 

tha t are subject to frequent resetting, as in a student computer lab. Once gate­

way termination is detected, agents signal alarms to warn of tampering. State 

Detection agents relay gateway status to Network Topology agents. Messages
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are subsequently transmitted to other agents in order to provide itinerary update 

data. If potential tampering is detected and appropriate alarms triggered, agents 

can omit future scans and reduce the number of alarms.

Agent Interaction

CONFIDANT agents operating across the defined echelons are in frequent com­

munication with each other. Groups of similar agents are divided into committees 

in order to provide coverage of a network domain. A single committee Cl is defined 

as Cl =  {a\ , . . . ,  aln} where i is the committee index and n is the number of agents 

in committee C1. The set of all committees within a monitored network is defined 

as C =  {C1, . . . ,  Cm} =  Uiem Cl where m  is the total number of committees. Ad­

jacent committees share common agents in order to enhance scalability and adapt 

to physical network layout. Due to the overlapping nature of adjacent committees, 

f j iem  C V 0 .

Agents Independent of Committee Interaction

Some agents, specifically Probe agents, are not members of a committee and are 

considered independent. Handshaking interlocks provide assurance tha t messages 

sent to remote agents are received. Independent agents provide robust communica­

tion, particularly alarm messages, to remote gateways that are not hosting agents 

at the time the message is generated.

Independent agents are used to provide robust communication to monitored 

network nodes that are not currently hosting agents. The set of independent 

agents, I  = {a[, . . . ,  a^}, includes all CONFIDANT agents that are not members

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of any committee. An agent j  tha t is a member of committees i and k is denoted 

a*’fe, and has the following properties

•  a f  E C \

•  a f  E Ck, and 

.  a f i l .

Thus, the set of all CONFIDANT agents, A, is defined as A — I  +  IJiem C%.

Interaction Within Committees

An agent committee is a group of related agents that operate across a division 

of the network domain and communicate via broadcast messages to other mem­

bers. Members within a committee are bound to a physical subset, g C G, of the 

monitored network. Table 10 lists eight agent event types. These events are used 

to provide interlocked transactions so tha t agents are aware of both status and 

location of other committee members. Interlocking provides robust agent commu­

nication in order to ensure messages are received by remote committee members 

across the network domain. The ability to monitor remote agents is a requirement 

of the CONFIDANT design goals.

Figure 15 illustrates communication between agents within a committee. Three 

agents are shown. Two agents a\ and a\ from committee C 1 and af from C2. 

Agents can receive messages only from other committee members. Consequently, 

agent aJ, can receive messages from agent a\, but not from agent af.
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Table 10: CONFIDANT Agent Event Types
E v e n t  N a m e D e s c r i p t i o n
A g e n tA r r iv e d Sent when a dispatched agent arrives 

at a remote gateway
A gen tA rrivedA C K Sent to a recently dispatched agent upon receiving 

arrival notification
A g e n tT r a v e lR e q u e s t Sent by an agent to Committee members when 

prepared for dispatch
A g e n tT r a v e lP r o c e e d Response from Committee members when 

dispatch is acknowledged
MD50K Sent upon valid MD5 computation

M D 5Error Sent upon modified MD5 computation
MessageACK Sent to confirm message receipt

A g e n tU n a v a i1 a b le Sent to Committee members when a member 
does not respond to communication

H o s tU n a v a i la b le Sent to Committee members when travel to a 
gateway is prohibited

Figure 15: Agent Communication W ithin A Committee
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L ["
Figure 16: Agent Communication Between Overlapping Committees

Interaction Between Committees

Overlapping committees are used in order to take advantage of physical network 

domain configuration and enhance scalability. Agents within a committee maintain 

peer-to-peer connectivity within their group as illustrated previously. The common 

nodes between adjacent committees enable monitoring of different portions of the 

network.

Figure 16 illustrates communication between agents where one is a member of 

two overlapping committees. In this example, agent a{ is a member of committee 

C 1 and agent af is a member of committee C2. Agent a }’2 is a member of both 

C l and C2 and consequently enables communication between both committees. 

Here agent a\ is unable to communicate directly to agent a2, but both are able to 

communicate with members of the other committee due to the overlapping nature 

of agent a\’2.
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Agent Dispatch and Communication

In order to describe dispatch and communication between agents, dispatch and 

communication terms are defined in Table 11 and functions are defined in Table 12. 

For example, a dispatch operation is denoted by:

alj.dispatch(gk) < delay, Atd > .

Consider a Watchdog agent a\ in the Alarm level creating a Probe agent im­

mediately to dispatch to gateway g2 in order to warn of an file modification. This 

operation is denoted:

a\.spawn(probe, M D hError, g2) < 0, Atd > ■

The operation delay of 0 signifies that the operation is to take place immediately. 

The maximum delay allowed for agent dispatch is defined as A td. All A t terms 

in Table 12 define a waiting period for operation confirmation. In the previous 

example, if an arrival acknowledgment message is not received from the Probe 

agent created by the spawn operation within Atd, an error has occurred and is 

handled accordingly.

Next, consider an agent a\ preparing to travel to a remote gateway by sending 

a travel request message to other members of committee C2 after a 4 second delay. 

The corresponding operation is:

a\.sendmsg(C2, AgentTravelRequest) < 4, A ts > .
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Table 11: CONFIDANT Agent Dispatch and Communication Terms
Term Definition

lis te n e r The listening agent or committee.
msg The message transmitted between agents.

delay
The time between when a particular operation is 
specified and when it is performed.
Delay=0 means to perform the operation immediately.

A t . The waiting period from when a message is sent until a 
confirmation is received.

A tr The time allowed to wait for an expected message 
to be received.

A td The time allowed between agent dispatch and the related 
arrival message.

Table 12: CONFIDANT Agent Dispatch and Communication Functions
Description Definition

Creation of a new agent spawn (6;, msg, g,)< delay, Atd >
Agent travel to remote gateway dispatch(<?j)<delay, Atd >
Transmitting a message with 
no expected response

sendmsg(listener, msg)<delay>

Transmitting a message and 
waiting for a response

sendmsg(listener, msg)<delay, A ts >

Listening for a message receivemsg(sending agent, msg)< A tr >

An example of agent dispatch and communication illustrating use of these def­

initions and functions is provided in below.

CONFIDANT Handshaking Scenarios

At time t <  0, the monitored network is not connected to the outside network. 

All gateways, <& € G, are operating and all agents in committees, C3 e  C, are 

executing. The network is in a safe state and CONFIDANT is operating on all 

monitored nodes. Sensor agents are dispatched in the sensor/inspection layer to 

perform file inspection and state detection operations. Beacon agents are deployed 

in the control layer to correlate responses from the sensor level and provide alert
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data to the response echelon. Watchdog agents in the response echelon await alert 

notification from the control level agents.

At time t = 0, network monitoring commences. File Sensor agents continue 

to traverse the network updating MD5 values for correlation by beacon agents 

in the control layer. While message digests are being collected and correlated, 

State Detection agents traverse the network scanning for any changes in resource 

availability. If a particular gateway is subject to frequent downtime, the itinerary 

of other agents are updated in order to prevent frequent attempts to visit an 

unavailable host. State Detection agents investigate previously unavailable nodes 

in order to update the Network Topology module in the control layer tha t resources 

are again available and to update agent itineraries accordingly.

Agent dispatch and communication is illustrated in Figure 17. In this example 

agent a\ is dispatched to host g2- Committee C 1 agents are notified and respond 

during a\ dispatch. Dispatch and communication use handshaking with acknowl­

edgment to ensure agents are aware of other members of their committee. Each 

agent a\ first sends an intent to travel message and waits for confirmation prior 

to dispatch. Upon arrival on the remote gateway, an arrival message is sent to all 

committee members aj_^. The committee members then respond with an arrival 

acknowledgment message. Dispatch is then complete.

Handshaking is essential to guarantee that CONFIDANT meets Goal-1. Con­

sider agents not maintaining communication with other members of the group. 

If the agents are allowed to occupy the same host at the same time, failure of 

tha t gateway would be a single point-of-failure. Distributing redundant mobile 

agents in multiple interactions and levels ensures that no single agent, behavior, 

interaction, or level is completely responsible for IDS operation. Consider a single
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Agent a\ Other Members of 
Committee C1

a}.sendmsg(C'1, AgentT>avelRequest)<2,As >

Request for 
Travel

C’1.sendmsg(a}, AgentTravelProceed)<0, As >

ai.dispatch(g2)<0, A  ̂>Dispatch

ai.sendmsgfC1, AgentArrived)<0, As >

Acknowledgement 
to maintain robus 
agent travel C1 .sendmsg(a}, AgentArrivedAck) <delay>

Figure 17: Dispatch and Communication Example
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Figure 18: Propagation of Alarm Notification

committee of n agents. Disabling any x < n  agents results in n — x  agents creating 

alarm reports stating that communication has been disrupted. Consequently, a 

successful CONFIDANT adversary would need to tamper with every node in the 

monitored network simultaneously. Additional details are provided in the evalu­

ation of Goal-1 below. In order to provide redundancy, at least n = 2 agents of 

a specified behavior must be dispatched at each level and interaction. The op­

timal number of agents dispatched at any level or interaction is currently being 

assessed as it depends on network characteristics such as topology, latency, and 

size. This redundancy helps ensure that agent termination or node failure does 

not compromise CONFIDANT operation.

If at any point a resource is unavailable or an observed file MD5 value differs 

from the baseline, Beacon agents in the control layer send alert notification to
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listening Watchdog agents in order to notify administrators of the modification. 

Figure 18 illustrates detection of a file modification. A Data Correlation agent, 

a\ determines tha t the obtained MD5 value does not match the expected result. 

An MD5Error message is sent to an Alarm Dispatch agent to propagate the error 

to other nodes. Each message has a subsequent acknowledgment to provide inter­

locking. The error message is relayed directly to other members of committee C 1. 

In this example, gateway g4 is not hosting agents and therefore can’t receive mes­

sages directly. Agent a{ spawns a probe agent after a two-second delay in order to 

transport alarm notification to the remote gateway. These interactions have been 

implemented on the Concordia mobile agent framework.

CONFIDANT Detailed Design

The primary function of CONFIDANT is to perform filesystem scans. Agent 

dataflow is illustrated in Figure 19 using the notation described in [66]. Integrity 

scans are performed by obtaining file contents, computing the file MD5 hash value, 

and comparing that result to the internal baseline data. Upon scan completion, 

the result is sent to other committee members to corroborate the result. Next, 

the agent travel operation commences. Prior to dispatch, the agent will parse the 

internal list of monitored gateways. Once a gateway is selected, the agent will send 

a travel request to committee members in order to maintain communication upon 

arrival at the remote gateway. When the agent arrives at the destination gateway, 

arrival notification is sent to committee members and filesystem scans resume.

Pseudocode for the scan operation is provided in Figure 20. The computeMD5 

function is performed to obtain the MD5 hash value of the monitored file. A 

MD50K event is created if the result matches the baseline. If the file has been

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Occupied
Gateways

Baseline

Update
Available
Gateway
List

Expected
MD5

Select
Available
Gateway

Scan Complete
File Contents

Scan Result 
Acknowledge

Scan
Result

Travel Request Accepted

Request for Travel

File Scan

Arrival on Gateway

Agent TravelFilesystem

Committee
Agents

Figure 19: CONFIDANT Dataflow Diagram

modified, a MD5Error event is created. The event generated as a result of the scan 

is then distributed to other committee members. The name of each committee 

agent is stored locally in an array c a [ l .  .n] along with the name of the gateway 

on which the agent is operating. A f  oreach loop is used to send the scan result to 

each committee member. The agent will then s leep  for A t s to allow committee 

member responses to arrive. Responses are handled asynchronously and stored in 

an array. The responses are then processed to ensure the message was successfully 

conveyed.

In order to maintain agent interlocking, three communication sequences occur 

between distributed committee members as illustrated in Figure 21, as based upon 

the notational conventions in [66]. The first sequence occurs upon file scan com­

pletion. Once the scan is complete, results are sent to committee members. The 

remaining sequences enable committee agents to maintain robust communication
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gateways = g[l..m]; 
committee agents = ca[l..n]; 
responses = r[l..n];

scanresult.setValue(computeMD5(filename)); 
if (scanresult.getValueO == baseline) {

result = new ConfidantEvent(MD50K, scanresult.getValue());
} else {

result = new ConfidantEvent(MD5Error, scanresult.getValue());
}
sendScanResult(result) { 

foreach i in ca[] {
if (ca[i].g != null) { 
sendmsg(ca[i].g, result)
}

}
sleep(delta_ts); 
processResponseO;

>

Figure 20: CONFIDANT Pseudocode for File Scan Operation
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while traveling between remote gateways. Prior to dispatch, an agent will select 

an available gateway and notify committee members of intent to travel. Commit­

tee members respond in order to confirm tha t communication will be maintained 

upon.arrival at the destination gateway. Once confirmation is received, dispatch 

commences. If the remote gateway is unavailable, an alarm is triggered, a new des­

tination gateway is selected, and the interlocking communication process repeats. 

Upon arrival at the remote gateway, arrival notification is sent to committee mem­

bers in order to ensure tha t future messages are transmitted to the correct gateway. 

An alarm may result from any of these three sequence if message acknowledgment 

is not received within A t s or if agent dispatch is not successful within At^.

Pseudocode for the agent dispatch communication sequence is provided in Fig­

ure 22. First, selectG atew ay is called to determine the agent dispatch desti­

nation. A new AgentTravelRequest event is created and sent to committee 

agents as described previously. The notation c a [ i ] . g  represents the gateway 

on which the agent c a [ i]  is operating. A value of n u l l  indicates tha t travel 

or communication for the agent c a [ i]  has failed. Once responses are processed, 

the agent is dispatched to the remote gateway. Upon arrival at the destination, 

sendA rrivalN otif ic a t io n  is called to inform committee agents travel success.

Implementation on Concordia Prototyping Platform

Concordia [67] is a framework for the development and management of mobile 

agent applications which extend to any device supporting Java. A Concordia 

System  is made up of numerous components, each of which are integrated together 

as listed in Table 13. The Concordia Server is the major component, inside which 

the various Concordia Managers reside. A Concordia System must include a Java
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Figure 21: CONFIDANT Operation State Diagram
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gateways = g[l..n]; 
committee agents = ca[l..n]; 
responses = r[l..n];

gateway = selectGatewayO;
destination = new ConfidantEvent(AgentTravelRequest, gateway); 
sendTravelRequest(destination) { 

foreach i in ca[] {
if (ca[i].g != null) { 
sendmsg(ca[i].g, destination)
}

>
sleep(delta_ts); 
processResponseO; 
dispatch(destination); 
sendArrivalNotif icationO ;

Figure 22: CONFIDANT Pseudocode for Agent Dispatch

Virtual Machine (VM),  a Concordia Server, and at least one mobile agent on at 

least one network node.

It is common for a Concordia Server to execute on each node of the network. 

An agent must invoke server methods to initiate transfer in order to travel between 

nodes. Each agent maintains an itinerary used by the server to determine the order 

in which nodes are to be visited and what operation is to be performed at the 

visited nodes. The server contacts the destination node to begin transfer. In order 

to provide a reliable guarantee of transfer, the agent is stored persistently before 

being acknowledged. The agent is queued for execution on the receiving node upon 

completion of the transfer. When execution begins, the agent is restarted on the 

new node according to the method specified in its itinerary. When execution is 

complete, the server again inspects the itinerary to determine the next destination.
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Table 13: Concordia Components
Concordia Server The complete Concordia component running in the 

network comprised of manager components
A gent Manager Communication infrastructure that allows agents to be 

transmitted and also manages the life cycle of the agent
Adm inistrator Manages all of the services provided by Concordia,
Security M anager Responsible for identifying users, authenticating 

agents, protecting server resources and ensuring the 
security and integrity of agents

P ersistence M anager Maintains the state of agents in transit around the network.
Event M anager Handles registration, posting, and notification of 

events to and from agents
Queue Manager Responsible for the scheduling and possibly retrying 

the movement of agents between servers
D irectory Manager Provides naming service in the agent framework
Service Bridge Interface from agents to the services available at 

various machines in the network
A gent Tools Library Provides all the classes needed to develop 

Concordia Mobile Agents

M itigation Techniques

Spoofing-based Tampering

Spoofing occurs when counterfeit data is transmitted to the recipient. Three spoof­

ing attacks are considered. The first is Spoonfeeding sensor information at TP FS 

tha t is not present in the target file. As listed in Table 8 this is mitigated in CON­

FIDANT by encapsulation of the interface between the agents and native services 

on the host. CONFIDANT’S agent gateway enables the agents to access the host 

filesystem directly to mitigate this exposure as described previously.

The second attack considered is Sugarcoating of unfavorable reports. This is 

mitigated in CONFIDANT by using SSL encryption for messaging and transport 

in order to validate all agent communication and transfer. Agents will also perform 

integrity verification on the agent gateway to determine if tampering has occurred 

at the gateway level.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The third spoofing-based attack considered is Recanting of alert notification. 

CONFIDANT mitigates Recanting by enforcing transaction interlocks between 

agents. Agents must remain in constant communication. If agent communication 

is interrupted and handshaking is not maintained, then a suspicious activity has 

occurred which activates an alert.

Termination-based Tampering

Disabling an IDS sensor is called Blindfolding. This is mitigated in CONFIDANT 

by enabling multiple agents to perform similar tasks. Agent a ■ remains in com­

munication with all agents a]_^ in committee C l . If Atr is exceeded then agent 

a] is determined to be missing by not maintaining an appropriate communication 

channel, or if an agent gateway cannot be contacted then an alert is initiated. 

Furthermore, one agent can alter a file in order to verify that other cooperating 

agents are correctly identifying file modifications.

Overriding of IDS decision-making operations, or Commandeering, is mitigated 

in CONFIDANT by distributing all decision-making responsibilities in the form of 

redundant mobile agents. Multiple agents in each committee Cl perform the same 

functionality to mitigate tampering at any single point. Transactions between 

agents within a committee Cl, as well as between overlapping committees, are 

interlocked and are also both spatially and temporally distributed.

Soundproofing an IDS framework involves muting the alarm to preclude end- 

user notification. This is mitigated in CONFIDANT by providing communication 

with multiple agents and by interlocking I/O  via the agent gateway. If messages 

from a remote agent are expected and not received upon the expiration of the A tr 

window, an alert is initiated. Each gateway provides agents with direct access
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to system resources so tha t alert notification is reliably transm itted to the security 

administrator.

Sidetracking-based Tampering

Some frameworks are subject to Blockading, or isolating a sensor from needed ac­

cess to a component or data. CONFIDANT mitigates Blockading by distributing 

the investigating and decision-making responsibilities. If agent throughput is lim­

ited and agents are not able to access either a network node or a service on the host 

within a specified time, the node is considered suspect and an alert is initiated. 

CCSD, CCDD, and DCSD architectures are particularly vulnerable as Blockading 

can be focused on a single point either at the network interface, T P n , or at the 

host process level, TPpr-

Altering execution rates, or Pacing, is mitigated in CONFIDANT by redun­

dancy of agents in committees C \  Multiple committee agents traverse the network 

to analyze files on remote computer systems. Agent actions are based on internal 

timers defined by individual agents and not on the time of day, thus mitigating 

tampering at T P sc■ All agents a* must provide status messages to cooperating 

agents in committee Cl prior to expiration of A t r, or else tampering is suspected.

An example of Scapegoating is triggering an alarm as a decoy in order to hide 

an actual attack. This is mitigated in CONFIDANT by enabling committee Cl 

agents to pursue each simultaneous alert independently so that multiple alerts can 

be processed concurrently.
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Internal Data Tampering

File integrity tools create an initial baseline reference for future file verification. 

Retroactive Baselining modifies the reference values thus corrupting the baseline 

at TP id ■ This is mitigated in CONFIDANT by maintaining baseline data within 

each agent responsible for file integrity verification. When an agent a\ computes 

a cryptographic digest for a file, the result is compared to internal baseline data 

encapsulated within multiple mobile agents and transmitted via events to agents 

in C 1. If the internal data is modified, agent redundancy enables file verification 

to be performed by other agents.

IDS control components are subject to Descoping by tampering with the initial 

policy configuration data. As with Retroactive Baselining, this occurs at T P id . 

This is mitigated in CONFIDANT by including policy information within each 

agent. Agent a{ contains the list of monitored files as defined prior to initial 

dispatch. The internal data is not modified during network traversal. If the policy 

information for a critical file is somehow maliciously altered within a}, redundancy 

of agents in committee C 1 ensures tha t particular file will be inspected by other 

agents. Also, if policy data has been maliciously altered, the absence of messages 

provided by a\ to other members of C1 reflect that a monitored file was not scanned. 

This is detected by agents in C 1 as tampering.

Value Jamming occurs at the alarm level and involves interference with a ma­

licious high-priority process altering the contents of memory. This is mitigated in 

CONFIDANT by enforcing each committee agent to be responsible for maintain­

ing file status information. Multiple agents reside simultaneously on a node at any 

given time, so there is no single memory location tha t serves as a vulnerable status 

flag. Memory locations used for status information can also vary each time an
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agent a*- visits a node due to occupying a different memory location. Since status 

flag memory locations can be both spatially and temporally distributed for each 

agent visitation, CONFIDANT is less vulnerable to tampering by jamming.

Selective Deception

In order for a framework to be subject to tampering at TP fs by File Juggling, 

an adversary must be able to predict that a file integrity scan will occur at time 

tscan as to perform undetected file system modifications. Selective Deception is 

mitigated in CONFIDANT by enabling multiple redundant agents a* operating 

in committee Cl to have a unique itinerary and scheduling parameters. Agent 

visitation does not occur at regular intervals. It is not required for an individual 

CONFIDANT agent to visit every node, but coverage of all nodes is guaranteed 

by the use of multiple agents each with an independent itinerary.
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CONFIDANT EVALUATION

The ultimate goal of an IDS is to alert administrators and security personnel 

to computer system tampering. An IDS is a two-category classifier where the 

presence or absence of an intrusion results in a corresponding presence or absence 

of an alarm. Test cases were developed to evaluate the CONFIDANT intrusion 

response against Goal-1 and Goal-2. A weighted response analysis was then used 

to numerically compare Tripwire, AIDE, and CONFIDANT.

Testing Objectives and Environment

CONFIDANT testing is designed around four objectives:

1. qualitative performance accuracy in the absence of tampering,

2 . agent network performance in the presence of increasing load,

3. Goal-1 specific evaluation in the presence of gateway failure, and

4. Goal-2 specific evaluation of insider tampering resistance to defined tamper­

ing modes.

The CONFIDANT evaluation network is composed of four physical hosts run­

ning a combination of Linux and Windows connected to a single switch. Quan­

titative tests involve a single committee C 1 of Watchdog agents a} traversing the 

network domain. Functionality of all echelons defined previously is encompassed 

by up to two committees.

A single file named conf id a n t . t e s t  is used for MD5 verification testing. Two 

files generated by /dev/urandom on a default Debian Linux install exist to  provide
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Table 14: Numerical measures for the file integrity problem
Num erical M easure D escription
True Positive Intrusion (TPI) Modification of a monitored file followed by an 

appropriate alarm
False Positive Intrusion (FPI) The presence of an alarm when no file modification 

has occurred
True Negative Intrusion (TNI) The absence of both a file modification and an alarm
False Negative Intrusion (FNI) A file modification without an associated alarm
Sensitivity (Sen) Probability that a file modification is identified when 

present
Specificity (Spec) Probability that an alarm is not sounded when a file 

modification is not present ( f p t + t n i  )

both a valid version and a modified version of the file under investigation. The valid 

version, c o n f id a n t-v a l id .te s t ,  represents an unmodified file while the alternate 

version, conf idant-m odif ie d . t e s t ,  represents a file that has been tampered with. 

The MD5 value for valid file is 50alf6525d4ael4ecabfdb2fe8f03e0f while the 

MD5 for the modified data is 0a362a35a204f cc74ab6296f3ff lbb l3 . The appro­

priate file is renamed to c o n f id a n t . te s t  as required for testing described in the 

following sections.

For file integrity analyzers, a file modification is considered an intrusion, so a 

True Positive Intrusion (TPI) result occurs when a file modification is accurately 

detected, while a False Positive Intrusion (FPI) occurs when an alarm is sounded 

in the absence of a file change. Similarly the absence of an alarm following a file 

modification is a False Negative Intrusion (FNI), while the absence of both a file 

modification and alarm is a True Negative Intrusion (TNI). These definitions along 

with others introduced previously are listed in Table 14.

An alarm generated in response to an authorized file modification is a false pos­

itive intrusion. Leveraging the fact tha t any alarm might potentially provide useful 

intrusion information, every file modification encountered by CONFIDANT agents 

tha t is not permitted by the distributed policy data is reported and considered a
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TPI. An alarm generated by an agent a*- upon expiration of A tr due to network 

outages may be considered a FPI if it is the result of benign activity. The presence 

of an alarm generated by such activity is considered to be a TPI, as network or 

gateway failure may be an indication of malicious intent where an insider tries to 

circumvent CONFIDANT agent interactions. In this case, alarms are generated in 

order to notify administrators of the unavailability of network resources.

Tripwire and AIDE are tested in addition to CONFIDANT for comparison. The 

versions tested are Tripwire 2.3.12 and AIDE 0.10 as available in the default Debian 

package repository. Both are configured to verify the integrity of a single file, 

c o n f id a n t. te s t ,  as described previously. Also, both are executed using the cron 

daemon. Tripwire and AIDE, using the default configuration, perform integrity 

scans once daily. This is consistent with the NIST recommendation for file integrity 

scan intervals [68].

Evaluation for Goal-1

CONFIDANT is designed to mitigate any single points of failure by employing 

mobile agents to realize a DCDD architecture. Currently existing IDS frameworks 

described previously exhibit a single point-of-failure by which IDS functionality is 

defeated if, in the worst case, a single network node is tampered with. The AAFID 

architecture documentation even states that a disadvantage of the framework is 

the existence of a single point-of-failure [69].

The agent interaction serves in part to ensure that all agents within a committee 

Cl do not reside on the same host. If at any time committee agents were to reside on 

the same physical host and that particular gateway or associated network transport 

mechanisms were to fail, then CONFIDANT would generate a FNI. For the set A  of
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agents and the set G of gateways, agent interlocking ensures that multiple agents 

do not occupy the same gateway when |A| < |G|. When |A| > |G|, agents are 

allowed to travel to a gateway currently hosting agents if all permissible gateways 

are occupied.

Termination of a gateway is detected by remote agents. If a gateway is hosting 

an agent when terminated, the agent is also terminated thereby disabling some IDS 

capability. Disabling of all agents causes a false negative response as CONFIDANT 

is no longer executing. The following discussion assumes tha t only gateways host­

ing agents are terminated as this is the worst case scenario. Termination of n = | A| 

gateways results in termination of all agents and disabling of CONFIDANT. For 

the case in which each gateway hosts a single agent, consider a committee C 1 of 

agents operating in a network of gateways where |A| =  |G|. Upon agent dispatch, 

one agent will travel to a node currently hosting an agent, thus resulting in one 

gateway hosting 2 agents, another hosting 0 agents, and the remaining |G| — 2 

nodes each hosting a single agent. W ith communication interlocking ensured such 

tha t agents do not congregate to a limited subset of network nodes, n = \A\ — 1 

nodes must be tampered with within time A tr in order to terminate CONFIDANT 

monitoring capabilities. In order for an attacker to force a false negative result from 

CONFIDANT operation, n > \A\ — 1 gateways must be terminated within time 

A tr.

Assume by contradiction tha t disabling n < |A| — 1 gateways will disable 

CONFIDANT operation. In this case, a minimum of (|A| — 1) — n  agents remain 

as some gateways may not have been hosting agents at the time of termination. 

The remaining executing agents will continue IDS operation. In the worst case,
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Figure 23: Agent Response in the Presence of Gateway Failure

no remote agents or gateways are able to be contacted; however, local agents still 

continue to present alarm notification on the local gateways.

A series of tests is performed with agents executing on |G| =  12 logical nodes. 

Operation is verified by monitoring agent messages displayed on the console. Node 

failure is simulated by terminating the agent gateway process. Termination of a 

gateway where agents reside also terminates those agents. The minimum number 

of nodes required for CONFIDANT failure is illustrated in Figure 23.

At time t < 0 all agents reside on unique gateways. Agents are dispatched at 

time t = 0. Here a single agent a\ travels to a gateway hosting another agent a\ as 

described previously in order to prevent deadlock. The first gateway terminated is 

the one hosting a\ and a\. At that point, the remaining |G| — 1 =  11 operational 

gateways are hosting |A| =  |G |—2 =  10 agents. As subsequent gateways fail, agents 

a]?i12 are unable to access terminated members of committee C 1 and are unable 

to travel to a disabled gateway. Each case results in alarm notification from the 

remaining agents. During testing, the observed alert count decreases more rapidly 

than the theoretical alarm count. This is due to approximately one in three agents
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attempting to travel to a terminated gateway not accurately reporting an alarm 

upon the expiration of Atd-

Evaluation for Goal-2

In addition to eliminating a single point-of-failure, CONFIDANT is designed to 

mitigate the defined tampering modes using the techniques described previously. 

Eliminating the single point-of-failure is not only a concern for robust operation, 

but also plays a role in mitigating insider tampering. If a framework has a single 

point-of-failure, tampering at a single node could violate the integrity of the entire 

IDS.

Role of Manageability for Insider Tampering

Manageability is often used as a qualitative measure of IDS operation. While 

it is not the case that an IDS tha t is difficult to administer is robust against 

insider tampering, any IDS tha t is easy to manage is certainly not robust against 

insider tampering. Rather, for an IDS to minimize insider tampering exposures it 

is essential that it not be easily reconfigured. In fact, a centralized management 

console as found in CCSD and CCDD architectures represents a single point-of- 

failure as an insider could tamper with all monitored nodes from a single host. 

Consider the role of Tripwire Manager [21] as a centralized management console 

for Tripwire Servers. Tripwire Manager allows an administrator to distribute policy 

data and apply changes to servers distributed across the network.

The following test cases are designed to illustrate how an insider can make mod­

ifications, some management related, and defeat file integrity verification scans.
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Figure 24: Spoonfeeding and Sugarcoating Tampering Points

Test cases are designed to illustrate how an insider could defeat the existing tools 

Tripwire and AIDE, compared to the CONFIDANT response to the same stimulus.

Testing of Spoofing Tampering Modes

Spoofing tampering modes involve the transmission of counterfeit data to IDS 

components. Spoonfeeding of data occurs at the sensor layer, Sugarcoating of data 

occurs at the control layer, and Recanting occurs at the alarm layer. Figure 24 

illustrates Spoonfeeding and Sugarcoating tampering points. Spoonfeeding occurs 

at TP fs while Sugarcoating occurs at TPic-
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Figure 25: Spoofing Architecture Vulnerability

Test Case: TC-Spoonfeeding

Spoonfeeding data to file integrity sensor components involves the method by 

which file data is obtained. Existing tools obtain filesystem data via queries to the 

operating system. Using data provided by the OS allows tampering at the kernel 

or device driver level. Figure 25 illustrates injecting counterfeit data between the 

hardware and IDS levels.

Due to the separation between IDS functionality and system hardware, Fig­

ure 26 illustrates a Spoofing simulation. A random number generator is used to 

obtain values of 1 or 2. A value of 1 instructs the IDS to scan the valid data 

while 2 causes the IDS to scan the adversarial data stream. The test is performed 

ten times. Four times CONFIDANT scans the file and generates a TPI result. 

Six times it is redirected to the adversarial data and detects the expected MD5 

resulting in a FNI. Spoonfeeding remains a vulnerability in the current version of 

CONFIDANT as filesystem data is obtained via operating system queries.

Accuracy of response is addressed by the assumptions listed in Table 6 . A 

solution is inclusion of CONFIDANT file access routines in the kernel level and 

device driver level and is a topic of future research.
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Figure 26: Spoofing Simulation Methodology

Test Case: TC-Sugarcoating

Most file integrity tools have the sensor and control layer closely coupled as to 

not be subject to tampering by sending false data to the control layer, referred 

to as Sugarcoating. Consider the case of Tripwire and AIDE. Sensor and control 

functions are performed by the same process. Tampering by the transmission of 

counterfeit data to the control layer would either have to be performed prior to the 

scan, which would be Spoonfeeding, or by modifications to the memory location 

used by the running process, which would fall under the alteration of internal 

data tampering modes. In the case where sensor and control layers illustrated in 

Figure 14 are comprised of physically distinct agents, Sugarcoating is mitigated in 

CONFIDANT by agent interlocking described previously.

Test Case: TC-Recanting

Recanting involves issuing counterfeit data to disable alert notification. This 

can exhibit a vulnerability if an alarm is recanted in a timely manner. Recanted 

alarms may not be fully investigated even if the alarm itself was legitimate. The
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tested tools do not have mechanisms to recant alarms. Once Tripwire and AIDE 

email messages arrive, there is no internal method to remove the alarm. It is 

possible for an insider to create an additional message stating tha t scan results are 

in fact valid, or remove the alarm message itself. Such techniques fall under the 

category of altering internal data as discussed below.

CONFIDANT mitigates tampering via Recanting by enforcing interlocking be­

tween agents. Alert messages are distributed to  all committee agents when an 

error is encountered by a single member, so Recanting must be performed at every 

gateway simultaneously. Alarm notification arriving at one gateway, but not at 

others, is a sign of Recanting. Also, any interruption of communication between 

committee members results in an appropriate alarm. If an insider disables network 

connectivity in order to prevent alarm notification from reaching remote gateways, 

A t r will expire causing committee members a*- to report that an agent alk^} is 

unavailable.

Testing of Termination Tampering Modes

Tampering by termination involves the physical disabling of IDS components. 

Blindfolding, Commandeering, and Soundproofing are termination-based tamper­

ing modes.

Test Case: TC-Blindfolding

Blindfolding an IDS involves disabling sensor processes. Since the Tripwire and 

AIDE processes perform sensor and control routines, termination of the scanning 

process is tampering by Blindfolding. The k i l l a l l  utility is used to terminate IDS 

processes. This causes a race condition where if the verification process is able

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to complete operations before the script executes to disable operation, the scan 

will complete successfully. Knowledge of scan times tacan increases the viability 

of Blindfolding as attempted process termination need not occur continuously. 

In order to facilitate testing, scans are performed every minute. Blindfolding of 

CONFIDANT is evaluated by termination of the gateway process.

The cron daemon emails any process execution output as a report to the task 

owner. AIDE generates a specific email alarm response while Tripwire relies on the 

cron generated output. Termination of the Tripwire process provides the following:

run — p a r ts  : / e tc /c r o n .te s t / t r ip w ir e  e x ite d  because of uncaught s ig n a l 9.

An email response is still generated when the Tripwire scan process is termi­

nated, but simply displays an error message in place of the normal scan result. 

Normal AIDE operation results in an email alarm. Termination of the AIDE 

process using the k i l l a l l  utility does not allow the integrity scan to complete. 

Consequently, no email alarm message is generated. Even though there is no 

AIDE-specific response, cron reports:

run —p a r ts  : / e tc /c ro n .te s t /a id e  e x ite d  because of uncaught s ig n a l 9.

In this case, the expected alarm is never observed, but insight into potential 

tampering is provided. One problem is tha t the response is generated by cron 

and not AIDE. It is possible tha t an administrator, by expecting an AIDE-specific 

response, will ignore the cron-generated notification. Since the Tripwire and AIDE 

processes are spawned by cron, another Blindfolding technique is to terminate the
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Table 15: Termination Test Results
Tripwire AID E C O N FID A N T

N o Tampering Cron Output (TPI) AIDE Output (TPI) Alarm (TPI)
Term inate IDS 

Process
Cron Error 

Output (TPI)
Cron Error 

Output (TPI)
Remote 

Alarm (TPI)
Terminate Mail 

Process
Cron Error 

Output (TPI)
Cron Error 

Output (TPI)
Alarm (TPI)

Term inate Cron 
Daem on

No Alarm (FNI) No Alarm (FNI) Alarm (TPI)

Sensitivity 0.725 0.725 1
Specificity 1 1 1

cron daemon. Termination of cron results in the absence of a response. This is 

expected because if the scan is never initiated, no response can be generated.

Termination of the CONFIDANT gateway process results in the expiration of 

Atd during an attempted agent dispatch. If a*- is unable to contact gateway gm, 

alarm notification is sent to other members alk^  of committee C \  where 1 < k < 

\C%\. Similarly, when file integrity scan results are unavailable, as is the case when 

agent a* is terminated, other agents alk^  trigger an alarm upon expiration of A tT.

A random number generator was used to select between the absence of tamper­

ing, termination of the IDS, mail, or cron processes over many tests. Results are 

listed in Table 15. Of the three tested frameworks, CONFIDANT is most resistant 

to Blindfolding as an alarm is generated if a scan cannot be performed. In the best 

case, termination of Tripwire and AIDE processes will report tha t an error has oc­

curred. In the worst case, termination of the cron daemon causes Tripwire and 

AIDE to fail completely. Termination of a CONFIDANT gateway prompts remote 

committee agents to report tha t a resource is unavailable as described previously.

Test Case: TC-Commandeering

Due to sensor and control functions being performed within a single process, 

the testing of Commandeering follows the same steps as Blindfolding, and has the
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same result listed in Table 15. Here again those processes are terminated prior 

to generation of alarms. Tripwire and AIDE either report error messages or have 

no response at all, while CONFIDANT generates an alarm as the scan cannot be 

performed.

Test Case: TC-Soundproofing

Soundproofing involves disabling of alarm components. Tripwire and AIDE 

utilize email for alarm purposes, while CONFIDANT uses communication and 

interlocking between agents to  provide alert information via email. Using the 

k i l l a l l  utility to terminate email response results in a single notification for both 

Tripwire and AIDE. Table 15 lists the response in the presence of disabling email 

services. Since Tripwire utilizes cron for email alarms, termination of email services 

has no effect on response. The response from AIDE, however, does not exist in 

the same manner as described in TC-Blindfolding. The AIDE-specific response 

cannot be generated, and output is handled by cron. Termination of the mail 

process, even when the file under inspection is not modified, results in a message 

provided by cron stating tha t “aide has returned many errors.” Termination of 

cron as described in TC-Blindfolding results in no response of any kind from either 

Tripwire or AIDE.

Since CONFIDANT does not rely on email for alarm notification, disabling of 

email services had no effect on alarm operation. Disabling of alarm components 

involves termination of a gateway on a specified host. Such behavior is recognized 

either by committee members executing on remote nodes or agents tha t attem pt 

to travel to the terminated gateway as described previously.
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Table 16: Blockading and Pacing Test Results
Tampering M ode IDS

Tripwire A ID E C O N FID A N T
Blockading TP delayed 

up to 198s
TP delayed 
up to 193s

TP

Pacing FN FN TP

Testing of Sidetracking Tampering Modes

A key aspect of tampering by Sidetracking is tha t the IDS components themselves 

are unmodified. Tampering by Blockading, Pacing, or Scapegoating do not modify 

the respective sensor, control, or alarm components. Each tampering mode was 

tested, and results for Blockading and Pacing are listed in Table 16. Details are 

described below.

Test Case: TC-Blockading

Tampering via Blockading involves isolating a sensor from needed access to 

a monitored file or device. Tampering point TPps  was utilized for testing by 

physically removing the file. In this case, all tested frameworks detect that the file 

is unavailable with ideal sensitivity.

Another technique is to increase the system load using a high priority process 

at TP pr  in order to prevent the request for a filesystem scan from being serviced. 

Testing involves using the s t r e s s  program [70]. Stress is a tool to impose load 

on a computer system including CPU, I/O , virtual memory, and disk stress. The 

maximum sustained load was approximately 45 as reported by the uptime system 

utility. Table 17 lists the system load and response time of a single test. In this test 

case, system load was gradually increased to the maximum sustained load. During 

this time, Tripwire and AIDE were scheduled to perform scans every minute while 

CONFIDANT agents traversed the network. Additional tests perform similarly.
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Table 17: Blockading System Load and Alarm Delay
Load Tripwire D elay (s) A ID E Delay (s)

0.3 4 3
0.17 2 2
3.04 24 17
6.23 21 14
4.64 7 6
7.41 80 54
13.78 33 25
11.3 7 6
14.93 126 122
23.18 66 63
25.61 11 5
28.68 129 57
34.54 141 120
25.02 198 193
35.26 138 134
46.85 81 77
43.62 21 20
17.12 3 2
6.29 3 2

The results in Table 17 show some discrepancies between increased load and 

increased response time. For instance, upon reaching a load of 7.41, the Tripwire 

report is presented 80 seconds after the expected time. The following report is only 

delayed 25 seconds while under a load of 13.78. This is due to caching coupled with 

the short period between scans. Results do follow the general trend of increased 

delay under increased system load. The greatest delay encountered is 198 seconds 

while under a system load of 25.02.

While Tripwire and AIDE continued to generate reports under loads of 25- 

45, reports arrived out of order. Based upon execution order, AIDE reports are 

expected to appear first followed by Tripwire reports. Delays exceeding 60 seconds 

result in a group of AIDE reports followed by a group of Tripwire reports. Also, 

in approximately 30% of reports generated while the load was above 25, Tripwire 

is unable to complete the scan operation. CONFIDANT agents signal connection

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



alarms as host services could not be accessed in a timely manner under any load 

imposed by s tre s s .

Blockading of IDSs with network components can also be performed by increas­

ing network load to forestall access at T P ^. The benefits of mobile agents described 

in previously include imposing minimal execution overhead, communication cost 

reduction, and a reduced network load compared to traditional client-server tech­

niques. In order to investigate CONFIDANT network performance, agents are 

dispatched in the presence of an increasing network load as described below.

The previous discussion on network load illustrates that care must be taken 

when generating synthetic network traffic for testing network IDSs. Artificially 

generated traffic is not well-suited to test network intrusion detection accuracy, 

but rather is suited to test network hardware. Since the file integrity problem 

is host-based as it focuses on data residing on a local filesystem as opposed to 

traveling over the network, generating synthetic traffic to test throughput and 

latency is valid. The ability to operate in the presence of increasing network load 

as opposed to specific traffic is key.

In order to measure agent network performance, traffic is generated at a defined 

rate while agents traverse the network. Traffic is captured using tcpdump and 

written to a file. The traffic is replayed using tc p re p la y  with the rate parameter, 

- r ,  to specify the rate in megabits per second (Mbps) and the topspeed parameter, 

-R, to  replay the traffic at the maximum rate. Agents obtain the current time on 

the local host, travel to a remote gateway, and return to the local host again 

obtaining the current system time. The difference between times obtained by the 

agent is the total round-trip dispatch and acknowledgment time for the agent to 

travel one hop in the network. Since agent network travel increases the overall
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Table 18: Network Load and Agent Traversal Time
Load Specified  

by tcpreplay  
(M bps)

Load Observed  
by tcp sta t  

(M bps)

Average One-hop  
Round-trip Agent 

Traversal T im e (ms)

M axim um  
Round-trip  

Traversal T im e (ms)
0 1.074652 221.33 0.383
1 1.677341 237.89 0.416
5 5.183018 215.55 0.249
10 9.410184 268.55 0.447
15 14.135512 294.33 0.491
20 18.255930 287.88 0.457
25 21.529032 590.00 3.463

Maximum 27.588796 658.11 3.241

network load, traffic rate is obtained using tcpstat reporting one second intervals. 

For each specified load, an agent performs repeated round-trip cycles, and the 

average traversal time was obtained as listed in Table 18.

As network traffic increases, the ability of agents to traverse the network is 

diminished. Network load up to approximately 20 Mbps results in a traversal time 

between 215 and 300 ms. The travel time increases significantly when load increases 

past 20 Mbps. Figure 27 illustrates the agent traversal time in the presence of 

increasing network load. Agent traversal times are relatively consistent up to a 

network load of 20 Mbps. High network loads greater than 20 Mbps steadily 

increase traversal delays. Under maximum network load of nearly 30 Mbps, agents 

are still able to traverse between gateways in under 700 ms. The interlocking 

nature of CONFIDANT agents requires tha t successful tampering occur at multiple 

gateways. Blockading increases agent dispatch delays and, thus, increases the 

time during which tampering can occur. For a network with n hops between 

the tampered node and the alarm destination, detection of a remote intrusion 

arrives within time S by using an exponential spreading notification scheme where 

S > (700ms) logn.
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Figure 27: Agent Network Performance

CONFIDANT mitigates Blockading by taking network latency into considera­

tion. Agent network performance testing provides accurate estimates of A t  values 

based on the physical network topology and expected load. A delay in excess of 

the appropriate A t  value is a potential sign of tampering as the remote gateway 

may be unreachable. Examples of Blockading network access include DoS attacks 

and physically disabling hardware resources. If an agent is unable to travel to 

the destination gateway prior to the expiration of the Ata time period, an alert is 

generated to inform security or administrative personnel of potential tampering, 

as shown in Figure 28.

Time values in Table 18 are an average value over a large number of iterations. 

The maximum traversal time of any single round-trip dispatch iteration under all 

tested network loads was 3.46 seconds. Based on this performance testing, it can be
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Figure 28: Blockading Timeline

seen tha t A td values should be at least 3.5 seconds to take into consideration agent 

delays due to routine network traffic as shown in Figure 27. It is noteworthy that 

DCDD architectures are less prone to failure caused by network load issues due to 

the lack of dependence on any centralized resource as with other IDS architectures.

Test Case: TC-Pacing

Pacing involves tampering with external timing mechanisms. For tools that 

perform scans at times specified by the system clock, tampering can be performed 

by resetting the system clock. Figure 29 illustrates tampering by Pacing with a 

file integrity scan time of tscan and time intervals r . Initially the time-of-day clock 

and the actual time are the same, more formally t =  t r o D -  When t  enters the 

period t s c a n  — r  <  t r o D  <  t s c a n , the interval immediately preceding the file system 

scan, it is set to txoD =  troD +  2 * r  effectively skipping past the scan. Now the 

actual time appears to be in the interval t s c a n  +  r  < t T O D  < t scan  +  2 * r .  When 

two r  periods have elapsed, t T O D  will be in the interval t T O D  > t acan  +  3 * r . The 

time-of-day clock is then reset to the actual time, t r o D  =  t t o d  ~  2 * r  = t ,  file 

system scan has been bypassed, and the system clock has been restored to the 

actual time.

Tripwire and AIDE scans occur at periodic intervals based on the system clock 

and are consequently vulnerable to Pacing. During Pacing tests, Tripwire and
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Figure 29: Pacing Timeline

AIDE were not able to make a single TPI detection. By employing internal timing 

delay mechanisms, CONFIDANT was able to detect all file modifications with per­

fect sensitivity and specificity and is not vulnerable to Pacing as listed in Table 16.

Test Case: TC-Scapegoating

Triggering alarms with the intent of overwhelming the alarm subsystem is 

Scapegoating. This essentially involves artificially increasing the false alarm count 

in order to divert the attention of security personnel away from the tampering. The 

significance of false alarms in intrusion detection is discussed previously. Scape­

goating can be performed at TP FS by writing multiple alarms to disk or at T P pt 

by creating a process to generate additional alarms as listed in Table 19.

The main concern with Scapegoating is tha t alarm messages must be processed 

by the human administrator to verify their validity. Multiple alarms are generated 

in order to overload the administrator. An advantage tha t all file integrity tools 

have compared to network intrusion detection systems is the number of file scans, 

and consequently the low number of potential alarms should be relatively low. 

A network IDS may evaluate billions of packets each day. Based on the default 

operation, Tripwire and AIDE should produce a single report per day. The presence
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Table 19: Scapegoating Technique Considerations

M ode o f Attack
M essage-Centric Process-Centric

Produce message data 
corresponding to 
additional alarms

Create a process 
to perform 

intrusive activity
Attacker Knowledge Required Format of alarm messages Existence of a vulnerability

Plausibility to  Observer Low to moderate High
Tripwire Susceptibility High High

AID E Susceptibility High High
C O N FID A N T  Susceptibility Low High

of hundreds of alarms, even without consideration for the content of the alarm, is 

a sign of an error at some level and indicates tampering via Scapegoating.

Tripwire and AIDE are subject to tampering via Scapegoating, as the result of 

file integrity scans are provided in email form. Simple text processing can be used 

to insert erroneous messages into a security administrator’s inbox. Appending the 

existing mail file to itself, forming a new file twice as large as the original, can 

increase the number of false alarms exponentially. The current version of CON­

FIDANT employs messages displayed on the local console as well as messages 

transmitted to agents. It is possible to enable a process to present alarm messages 

on gateway consoles, but the complexity is increased due to the distributed and 

multi-agent nature of CONFIDANT. For instance, errors detected by a local agent 

will be relayed to remote agents within the committee, so the absence of corre­

sponding alerts on remote nodes is an indication of Scapegoating. Also, multiple 

committee agents a{ . . .a* visit the node in question so alarms will be confirmed 

by multiple agents. Alarm messages from only one agent a\ without corroboration 

from other agents in committee C x within the specified time window are indicative 

of Scapegoating.

Table 19 lists various technique considerations in message-centric and process- 

centric categories. In order to tamper by Scapegoating, an insider can either
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create a process to generate an alarm or create a process to perform intrusions 

resulting in alarms. Message-centric techniques only require knowledge of alarm 

format while process-centric tampering requires knowledge of an existing vulner­

ability. This helps process-centric techniques to appear to be more convincing 

than message-centric tampering. Due to the reliance on email for alarm notifica­

tion, Tripwire and AIDE are particularly susceptible to message-centric techniques 

while CONFIDANT is not. Since alarm messages are distributed to remote nodes, 

successful Scapegoating in CONFIDANT requires significant additional effort to 

distribute appropriate erroneous alarm messages. Process-centric techniques, how­

ever, perform local intrusions and rely on agent interlocking to distribute alarm 

data to remote gateways. This increases convincingness as alarms are generated 

in response to an actual intrusion.

Testing of Altering Internal Data Tampering Modes

Tampering with internal data involves after-the-fact modification of an IDS com­

ponent that is completely installed and properly configured prior to misuse. Unlike 

previous tampering modes, altering internal data tampering interacts directly with 

the IDS without termination of any of its logical components. Retroactive Baselin­

ing, Descoping, and Value Jamming are the associated tampering modes.

Test Case: TC-Retroactive Baselining

File integrity tools compute a baseline value for monitored files when the host 

is in a safe state for comparison with future integrity scans. Tripwire and AIDE 

store baseline values in a database file. Baseline data in CONFIDANT is internal 

to the mobile agents. Tampering by Retroactive Baselining involves modification
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Table 20: Effort and Outcome Estimates for Tampering via Altering Internal Data
Tampering

M ode
IDS

Tripwire A ID E C O N FID A N T

Retroactive
Baselining

Single operation 
< 5 minutes effort 

10 of 10 resulted in FNI

Single operation 
< 5 minutes effort 

10 of 10 resulted in FNI

Multiple operations 
> 8 hours effort 

10 of 10 TPI detected 
by remote agents

D escoping
Single operation 

< 5 minutes effort 
10 of 10 resulted in FNI

Single operation 
< 5 minutes effort 

10 of 10 resulted in FNI

Multiple operations 
> 8 hours effort 

10 of 10 TPI detected 
by remote agents

Value
Jam m ing

Single operation 
< 5 minutes effort 

10 of 10 resulted in FNI

Single operation 
< 5 minutes effort 

10 of 10 resulted in FNI

Multiple operations 
> 8 hours effort 

untested

of the baseline value. Both Tripwire and AIDE provide mechanisms to reinitialize 

or update the local baseline database. The documentation for each describes an 

—i n i t  parameter to enable an insider to reinitialize the local database and an 

—update flag to allow for differences between existing database and current file 

state to be reconciled.

Tripwire baseline data is stored in the local database file hostnam e. twd. Exe­

cuting the command tripwire -in it will reinitialize the local database to reflect up­

dated hash value of the modified files. Tripwire does require tha t a local passphrase, 

not the administrator password, be entered prior to updating the database facilitat­

ing mitigation of insider risk by differentiating an administrator from an observer. 

W ith updated baseline data, Tripwire is unable to recognize tampering with the 

monitored file. Tripwire documentation states tha t the baseline database should 

be stored on read-only media to mitigate tampering by outsiders. A read-only 

baseline database does not mitigate insider risk as an insider with physical access 

could replace or reconfigure the media. Updating the baseline database results in 

a False Negative Intrusion as modifications are not detected.
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AIDE stores its local database as a ide .db . Executing the command aide  

—update creates a new database, a id e . db . new. Creating the new database, then 

copying it to the default location, is the method used by administrators to re­

flect approved file system changes. If AIDE is installed from a package in Debian 

Linux, the command dpkg-reconf igu re  a ide  will prompt the user to initialize 

the database and copy the new version to the default location. In both cases, 

Retroactive Baselining of Tripwire and AIDE is a system manageability issue. En­

abling administrators to update the baseline database provides the defined method 

to facilitate insider tampering. As with Tripwire, once baseline data is modified in 

AIDE, no valid tampering detections were made and a False Negative Intrusion is 

encountered.

In order to tamper with CONFIDANT agents via Retroactive Baselining, the 

baseline data contained within the agent must be modified while in memory. Due 

to the dynamic nature of CONFIDANT agents, successful tampering requires that 

an attacker must:

• physically locate every agent within a committee across the network,

• determine the baseline memory location in each agent on the local and remote 

hosts, and

•  update the memory location for all agents between message exchange and 

prior to dispatch.

Since the current version of CONFIDANT is written in Java, one technique 

tha t can be employed to modify memory contents is use of the Java debugger jdb. 

Compiling Java bytecodes with the -g  flag and executed with the -debug flag 

enables the Java debugger to connect to the executing JVM using the password
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supplied on execution. Once the debugger is initialized, classes loaded in memory 

can be inspected. While the documentation states that process inspection can 

occur using jdb, tests were unsuccessful. Another technique involves writing to 

the contents of the /p ro c  directory in Unix-based gateways. Tampering using 

these techniques was also unsuccessful.

In order to test the CONFIDANT response to Retroactive Baselining, internal 

modifications are simulated as illustrated in Figure 30. Two agents, a} and a\, 

perform filesystem scans and post an event to agent a\. The baseline value in a\ 

is valid while the value in a\ has been tampered with. The simulation involves 

the modification being present prior to initial dispatch as opposed to altered while 

executing. Both agents a\ and a\ send the message:

sendmsg.(al, M D 5 0 K )

to agent a\ stating tha t the scan result is negative. The internal baseline MD5 value 

is passed as part of the MD50K event. Agent a\ detects a discrepancy between its 

internal baseline and the one from agent a\. An alarm is triggered and dispatched 

to all members of committee C 1. File modification is detected using propagation 

of alarm notification as previously illustrated in Figure 18.

If only a single agent a\ is subjected to tampering, other agents within the 

committee C 1 will detect the baseline discrepancy and generate an alarm. An ad­

versary must simultaneously determine the memory location of every agent within 

a committee on distributed nodes in the monitored network. Testing is simulated 

by having modified baseline data contained within one committee agent upon ini­

tial dispatch. While this agent considers a modified file to be valid, interlocking
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send-msg(C1, MD5Error)
Baseline
MD5=X Baseline

MD5=X

send-msg(a2 , MD50K) 
MD5 =  Y

Baseline
MD5=Y

Figure 30: Agent Interaction in the Presence of Retroactive Baselining

messages between other committee members results in an alarm due to incongruent 

baseline data between committee members.

Test Case: TC-Descoping

Descoping differs from Retroactive Baselining in that integrity scan policy is 

modified as opposed to the scan baseline values. File integrity scan policy data 

specifies the files to be scanned. In order to modify the policy in Tripwire or AIDE, 

the associated configuration file must be edited, then the appropriate command 

executed. Tripwire includes the —u p d ate -p o licy  option specifically to update the 

binary policy file from the text configuration as well as synchronize the baseline 

database with the updated policy data. In AIDE, the configuration file is modified 

to reflect updated policy information, then the —update command used to update 

the database.

In order to modify policy data in Tripwire, a policy database file must first 

be created. This is performed using the command twadmin —c re a te -p o lf  i l e  

tw p o l.tx t , where tw p o l.tx t  is a text file containing policy configuration. The 

database must then be reinitialized using tr ip w ire  —in i t .  Here the user must
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enter the site passphrase. As described in the TC-Retroactive Baselining test case 

for the local passphrase, the site passphrase may not be known, but it is easily 

modified by an insider. While removing an entry from the policy file will prevent 

the file in question from being scanned, the email notification does list the files 

tha t were scanned. A cognizant observer notices that a file to be monitored is 

missing from the scan report, but in the presence a large scan with many entries, 

such information may be overlooked.

Descoping in AIDE is performed by editing the configuration file, a id e .co n f, 

to reflect updated policy data, then reinitializing the database as described for the 

TC-Retroactive Baselining test case. Removing the appropriate entry from the 

configuration file and reinitializing the database prevents the previously monitored 

files from being scanned, and future file modifications are undetected.

As with the baseline data, all CONFIDANT agent policy information is stored 

internally. The same steps required to tamper by Retroactive Baselining are in­

volved to tamper by Descoping with the exception of modifying policy as opposed 

to baseline data. Tripwire and AIDE specifically allow an administrator to recon­

figure baseline and policy information, thereby allowing tampering by an insider. 

CONFIDANT has no such mechanism to update baseline or policy information.

Descoping testing is performed by simulation of modified policy data contained 

within one committee agent upon initial dispatch. The agent with modified policy 

data will omit scan of a monitored file. Remote agents that are expecting scan 

results will generate an alarm if results are unavailable.

In order to test the CONFIDANT response to Descoping, internal modifications 

are simulated as illustrated in Figure 31. Two agents, a\ and a\, perform filesystem 

scans and post an event to agent a\. The baseline value in a\ is valid while the
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1 send-msg(a2) MD50K) 
■";MD5 =  X i—

send-msg(C1, MD5Error)
Baseline
MD5=X Baseline

MD5=X

-Policy Data Removed 
-No Scan Performed 
-No Message Sent

Figure 31: Agent Interaction in the Presence of Descoping

value in a3 is n u ll , as the policy data is modified to omit the scan. Agent a\ sends 

the message:

sendmsg.{a\ , M D bO K )

to agent a\ stating that the scan result is negative. Agent 0 ,3 , however, does not 

send a message as no scan is performed due to removal of policy data. Agent a\ 

expects a scan status message from agent a\. Since no message from a\ is received 

by a\ prior to time A tr expiring, agent a\ sends the message:

sendm sg.(C l , M D bError)

to other members of committee C 1 to acknowledge that tampering has occurred. 

Alarm messages are propagated as previously illustrated in Figure 18.

Test Case: TC-Value Jamming

Value Jamming involves altering internal data in some way so tha t alarms 

are ignored. One technique is to write FALSE to a status location in memory as to
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indefinitely delay alarm notification. A less involved technique specifically for tools 

that employ email as the alarm mechanism is to modify or delete email contents. 

Once Tripwire and AIDE have delivered email messages detailing the result of 

the daily file integrity scan, the email can either be modified to reflect tha t file 

integrity is intact or it can be replaced with a copy of a previous message with 

updated header information. Successful tampering will effectively eliminate any 

alarms.

Value Jamming in CONFIDANT employed the same steps listed in TC-Retroactive 

Baselining to modify memory locations to disable agent messages. Messages in 

CONFIDANT serve as both communication and alarm notification. Disabling of 

alarm messages will also disable communication messages. In this case, the CON­

FIDANT response to Value Jamming is the same as the response for Descoping. In 

TC-Descoping, policy data is removed and a scan message is not received by agent 

a\ prior to the expiration of A tT. When messaging is disabled, A tr will again ex­

pire prior to an expected message being received, thus activating the propagation 

of alarm notification.

Figure 32 illustrates Value Jamming in CONFIDANT by continuously asserting 

an internal memory modification so tha t scan messages always send a MD50K event. 

This is transmitted with the expected MD5 value, even if the internal baseline data 

is invalid. Here agent a\ contains modified baseline data. In the case of Retroactive 

Baselining, this was detected as the MD5 value in the message from a\ does not 

match tha t of a l , so alarms were generated. In this case, the MD5 value passed by 

a\ to 02 is modified to be the same as tha t in a\ even though the internal baseline 

of a\ is invalid.
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send-msg(a2 , MD50K) 
MD5 =  X [—

send-msg(C1, MD50K)
Baseline
MD5=X Baseline

MD5=X

send-msg(a2 , MD50K) 
MD5 =  X

Baseline
MD5=Y

Figure 32: Agent Interaction in the Presence of Value Jamming

Successful Value Jamming in a single agent results in passing valid scan mes­

sages without regard for the results of the scan. This prevents alarm messages from 

being generated. Subsequent gateway visits by other agents in C 1 provided alarm 

notification as they remained unmodified. A successful adversary must simultane­

ously tamper with each agent in committee C 1. Testing of continued modification 

of agents in committee C 1 was unsuccessful. Thus, Value Jamming is mitigated in 

CONFIDANT by employing spatially and temporally distributed agents. Multiple 

agent visits on each gateway utilize a range of memory addresses. Also, multiple 

agents may reside on a gateway simultaneously. These efforts prevent tampering 

by modifying of a single memory location from being successful.

Testing of Selective Deception Tampering Modes

The ability to  accurately predict integrity scan intervals is required to perform 

undetected tampering by File Juggling, as previously illustrated in Figure 5. Con­

sider a scan time of t scan, and a time period r . Once tscan is determined, operations 

can be performed before and after the scan in order to hide tampering. A file in­

tegrity scanner is susceptible to tampering by File Juggling if a pre-scan operation
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at time t scan — t  and post-scan operation at time t scan +  r  can successfully hide file 

modifications.

Test Case: TC-File Juggling

File Juggling is performed by executing pre-scan operations to present filesys­

tem data in the valid state in conjunction with post-scan attack operations. For 

the file integrity problem, these operations are copying valid data to the scan loca­

tion prior to the scan, then replacing it with the modified data after the scan, as 

shown below. Tripwire and AIDE scan times are readily determined by inspection 

of the cron daemon configuration. File Juggling is illustrated in Figure 33. Scans 

are scheduled to occur at time t scani and tscan2. The scan interval, t scan2 - tscani, 

in the default Tripwire and AIDE install is one day. The interval is decreased to 

five minutes for testing purposes. At time tscan — r , the command:

cp con fidan t — v a l id . te s t  c o n f id a n t.te s t

is executed in order to provide the valid file to scan operations. At time t scan + r , 

the command:

cp confidan t — m o d ified .te s t c o n f id a n t.te s t

is executed replacing the valid file with the maliciously altered version. For testing 

purposes, scans are performed every five minutes with the interval r  set at one 

minute. Due to the use of periodic scan intervals coupled with copy operations 

performed before and after the scan, Tripwire and AIDE were unable to detect 

file tampering as the valid file was presented during scan operations. As described
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Expected Data Tampered Data Expected Data

'sc a n \s c a n \ scarii 'scan2 scan2 8can2

Figure 33: Expected and Tampered Data Presented During File Juggling

in the TC-Pacing test case, CONFIDANT does not rely on the system clock for 

timing information and scans are neither regularly scheduled or predictable. CON­

FIDANT was able to detect file modifications with perfect sensitivity. As stated 

previously, it is important that an agent can begin the scan operation and obtain 

filesystem data prior to an operating system context switch. If an attacker can 

monitor a process list, detect process initialization, and perform operations prior 

to the agents obtaining filesystem data, modified data can be replaced with valid 

data prior to MD5 hash computation. This is addressed by the assumptions listed 

in Table 6 .

Valid data is observed by the IDS during the intervals t s c a n  — r < t <  t s c a n  + r. 

During the interval t s c a n i +  r < t  <  t scan2 — t,  filesystem data has been tampered 

with. The probability of the filesystem data being in the expected valid state is:

( t s c a n i  " F t )  ( t s c a n i  "̂) / n \

p " =  — i— ~ t-------------------------------- =  a r ~  ( 7 )bscan 2  bscan\ t-*bscan

while the probability of filesystem data being modified is:
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scan2 scani

scari2 'scani

+  r )  _  A t scan - 2 T  2T

scan scan
1 P v  (8)

Increasing r  decreases the probability of the data being in a modified state. When 

A iScan is set to 24 hours per NIST guidelines, pv = 0.0069 even if the scan takes 

as long as 5 minutes.

TM E W eighting Scheme and IDS Comparison

A metric weighting model called the Tampering Mode Exposure (TME) weighting 

scheme is developed based on the metric evaluation strategy described in [53]. In 

order to compare the frameworks numerically, categories and weights are defined 

and results computed using Equation 9 with j  categories and i = n metrics in 

each category j .  Six categories, j  = 6 , are defined including one for each of 

the five tampering mode classes and a management category adapted from the 

previous metric discussion. The assigned weights and rationale for weight selection 

are listed in Table 21. Weights are given values of 1 to 4 based on the relative 

significance of each metric based on the methodology in [53]. Higher values indicate 

greater capability for management metrics and increased significance of successful 

tampering for tampering mode metric classes.

Unweighted scores are listed in Table 22. Scores are assigned a value of 1, 2, 

or 3 to signify detection failure, a modified result, and correct operation, respec­

tively, for the tampering mode classes. For instance, testing of Selective Deception

s =  E  E  (u<>* w v) (9)
J=1,6 [i=l,n
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Table 21: TME Metric Weighting Scheme
Category Nam e W eight Rationale

Management

Monitoring 4 Security personnel may not re­
main in a single location

Configurability 2 Ease of configuration enables in­
sider tampering

Scalability 2 The test network contains few 
nodes

Spoofing
Spoonfeeding 2 Attack requires intricate 

OS-level modificationSugarcoating 2
Recanting 1 Relies on human administrator 

response

Termination
Blindfolding 3 Trivial attack pathway 

for any insiderCommandeering 3
Soundproofing 3

Sidetracking

Blockading 1 Successful attempts delay accu­
rate results

Pacing 2 Modifying scan timing can pre­
vent scan from occurring

Scapegoating 1 Relies on human administrator 
response

Alter Internal Data

Retroactive Baselining 4 Baseline changes can make tam­
pered data appear to be valid

Descoping 4 Policy changes can make tam­
pered data appear to be valid

Value Jamming 4 Eliminating alarms gives a false 
sense of security

Selective Deception File Juggling 3 Predictable scan timing facili­
tates future tampering
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resulted in Tripwire and AIDE generating false negatives, so they are assigned a 

score of 1. CONFIDANT provided accurate alarm notification and is assigned a 

score of 3. Scores of the management category metrics are assigned based on the 

individual significance of each exposure.

Monitoring specifies the ability to receive alarm notification from multiple lo­

cations. The distributed nature of CONFIDANT provides alarms across the moni­

tored network domain and is assigned a score of 3. AIDE has no network capability 

and is assigned a score of 1. The use of Tripwire Manager allows alarms to be re­

ceived at a central console, thus providing greater monitoring ability than AIDE, 

but not fully distributed as in CONFIDANT.

Configurability as it relates to insider tampering is discussed in the previous 

section. Tripwire and AIDE utilize configuration files that can be modified by an 

administrator and are assigned high scores. A CONFIDANT design consideration 

is to disallow configuration to eliminate certain insider tampering exposures.

Using the weights in Table 21 and the scores in Table 22, a comparison of the 

frameworks can be performed. The weighted results are calculated using Equa­

tion 9 and listed in Table 23. CONFIDANT compares favorably under the TME 

weighted model where Tripwire and AIDE score comparably to each other. The 

scores and weights of the TME model, and the categories it uses, can be adapted 

to evaluate the performance of other IDSs in a similar manner.
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Table 22: TME Unweighted Scores
M etric Tripwire A ID E C O N FID A N T R ationale

Monitoring 2 1 3 Alarm notification on 
multiple nodes

Configurability 3 3 1 Ability to reconfigure once 
deployed

Scalability 2 1 3 Overlapping agents vs 
centralized control

Spoonfeeding 1 1 1 Architectural vulnerability 
in Figures 24 and 25Sugarcoating 1 1 1

Recanting 3 3 3 Administrator response
Blindfolding 2 2 3 Test result listed 

in Table 15Commandeering 2 2 3
Soundproofing 2 2 3

Blockading 2 2 1 Test result listed 
in Table 16Pacing 1 1 3

Scapegoating 2 2 2 Administrator response
Retroactive Baselining 1 1 3 Test result listed 

in Table 20Descoping 1 1 3
Value Jamming 1 1 3

File Juggling 1 1 3 Reliance on system clock

Table 23: Weighted Result
Tripwire AID E C O N FID A N T M axim um

Score 65 59 103 123
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CONCLUSION

Summary of Results

Intrusion detection systems serve to identify security breaches capable of compro­

mising computer system resource or service integrity. File integrity analyzers are 

a subset of host-based intrusion detection systems tha t verify computer filesystem 

data. Table 24 lists the contributions made to fields of IDS design and insider 

robustness resulting from this dissertation. First, a classification of tampering 

modes was identified based on user capability. Then, existing frameworks were in­

spected to identify vulnerabilities resulting in an architectural taxonomy of IDSs. 

In response to the identified vulnerabilities, a mobile agent framework consisting of 

agent behaviors interacting across multiple echelons was designed to mitigate the 

defined exposures. Finally, a comparative metric weighting scheme was designed 

to evaluate the relative performance of CONFIDANT to other frameworks.

Table 24: Contributions of Dissertation
A pplication

Area
Technical
Challenge

Approach
Thken

R esults

User Capability  
and Insider 

Risks

Wide range of 
vulnerabilities in 

existing IDS 
frameworks

Defined fundamental 
tampering points and 
13 tampering modes

A generally-applicable 
classification of insider 

tampering including 
Spoofing and Termination

IDS Design Understanding IDS 
relative capabilities

Defined architectural 
taxonomy of IDSs

CCSD, DCSD, CCDD, 
and DCDD categories

M obile Agent 
Approach 

to  ID

Existing frameworks 
exhibit a single- 

point-of-failure and 
are subject to 
tampering by 

insiders

Defined a framework 
of behaviors and 
agent interaction

Sensor, control, and 
response echelons were 

developed and evaluated

ID M etrics
Need to assess 

relative performance
Developed an 

adaptable weighted 
metric model

TME weighting scheme 
consisting of valued 
scores and weights
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Tampering modes are identified as attacks undertaken to corrupt an intru­

sion detection framework. IDS tampering modes can be divided into five broad 

categories defined as Spoofing, Termination, Sidetracking, Altering Internal Data, 

and Selective Deception. These categories can be further identified as tamper­

ing directed specifically toward IDS sensor, control, and alarm categories. This 

research presents a discussion of tampering modes present in network-based file 

integrity analyzers and introduces CONFIDANT, the Collaborative Object Notifi­

cation Framework for Insider Defense using Autonomous Network Transactions. 

Design of CONFIDANT is based on two goals:

G oal-1: Reduce single point-of-failure exposures in existing IDS frameworks, and 

G oal-2: Increase barriers against insider tampering pathways.

These goals were evaluated by:

1. identifying single point-of-failure exposures in IDSs to address Goal-1,

2. developing a taxonomy of insider risks to address Goal-2,

3. designing metrics, weights, and experiments to quantify performance against 

both Goal-1 and Goal-2, and

4. comparing performance of the proposed and existing approaches using these 

metrics.

Testing was performed to illustrate the defined mitigation techniques. Tripwire 

and AIDE are evaluated in order to compare results with CONFIDANT’S response. 

In the absence of tampering, all frameworks operate correctly. Results from tam­

pering via Recanting, Scapegoating, and to some degree Value Jamming are similar
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among frameworks, as all rely on security administrator reaction to the presented 

alarm notification. Blockading causes all three frameworks to warn tha t resources 

are unavailable. Tripwire and AIDE reports arrive later than expected and out of 

order. Furthermore, termination-based tampering causes Tripwire and AIDE to 

fail completely, while CONFIDANT generates accurate alarm notification. CON­

FIDANT may be subject to tampering if an adversary is able to simultaneously 

modify all agents within a committee across a network domain. Attempts to per­

form such tasks have proven unsuccessful. Across all tampering modes, testing has 

shown, that the CONFIDANT response is at least as accurate as the Tripwire and 

AIDE response to the same stimulus.

Testing has identified critical exposures in Tripwire, AIDE, and CONFIDANT 

as illustrated in Figure 34. Tripwire and AIDE exhibit critical exposures to tamper­

ing at TP sc, T P id , and TP FS. Specifically, they are highly subject to tampering 

via Pacing, all Altering Internal Data tampering modes, and File Juggling. Every 

test case for these tampering modes resulted in a FNI response. CONFIDANT 

exhibits a critical exposure at TP pr  but carries less significance than those for 

Tripwire and AIDE.

Testing of CONFIDANT shows that it is highly subject to Blockading. In 

fact, even under minimal system load, filesystem scans failed, and alarms were 

generated stating tha t the scan could not be performed. All three frameworks 

exhibited a critical exposure to Spoofing based on the evaluation discussion. The 

separation between the operating system layer and the application layer illustrated 

in Figure 25 allows an insider to tamper via Spoofing.

While each framework is subject to certain critical exposures, the severity of 

the associated tampering modes varies, as illustrated in Figure 35. The TME
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Figure 34: Tested IDS Critical Exposures

weights listed in Table 21 are based on tampering mode severity. For instance, 

tampering via Blockading is not as severe as tampering via Pacing. Blockading 

causes results to be delayed while Pacing has the potential to completely bypass 

scan operations. Similarly, Pacing is not as severe as Retroactive Baselining as 

updating the baseline database causes the IDS to interpret all results as valid, 

while configuration and scan timing remains unchanged and therefore undetected. 

Testing has shown that the Altering Internal Data tampering modes can be the 

most severe, while Scapegoating, Blockading, and Recanting are not as detrimental 

nor effective.

Testing also showed the relationship between configurability and robustness 

against insider tampering as illustrated in Figure 36. IDSs that provide configura­

tion and management routines inherently enable insider tampering. This can best
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Figure 35: Relative Tampering Mode Impact
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Figure 36: Configurability vs. Robustness Tradeoffs

be seen by inspection of the test results for the Altering Internal D ata tampering 

modes. Consider Retroactive Baselining in Tripwire as opposed to CONFIDANT. 

Tripwire includes commands to allow an administrator to update baseline data. 

Once the data has been updated with a MD5 of a modified file, subsequent scans 

report tha t the file is valid. CONFIDANT does not have built in management 

routines, and thus an administrator can not easily update the internal baseline 

data. Testing has shown that tampering with one agent a*- in committee Cl results 

in other agents a \ ^  detecting that tampering has occurred.
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CONFIDANT testing has shown it to be effective in mitigating several severe 

insider tampering exposures at the expense of manageability. A distributed design 

is essential for robust operation in the presence of insider tampering as it enforces 

successful tampering to occur at multiple nodes simultaneously. Two major dif­

ficulties with this design include the interlocking of distributed components and 

recovery upon intrusion detection. Agent interlocking is required to ensure that 

components remain distributed. Also, since manageability is sacrificed in order 

to enhance robustness against insider tampering, recovery after alarm notification 

required tha t CONFIDANT be restarted on all nodes. This may not be practical 

for large enterprise installations.

Cascading Tampering Modes

The previous discussion of user capability and the CONFIDANT test cases focus 

on individual tampering modes. Future work includes investigation of cascad­

ing tampering modes. Certain tampering modes may be combined to increase 

IDS tampering exposures. For instance, the susceptibility of an IDS to Selective 

Deception may be increased with resource blockades and high priority processes. 

Tampering by Pacing or Blockading may allow File Juggling to occur as illustrated 

in Figure 37. Successful File Juggling depends on the predictability of scan timing. 

An attacker could first perform Blockading to delay IDS access to filesystem re­

sources and then preform File Juggling resulting in a successful attack. Similarly, 

Pacing can be performed to corrupt the system time by setting the system clock 

to a time when a scan is known to not occur in order to facilitate File Juggling. 

Another example involves tampering via Blockading in order to localize agents to
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Set System Clock

Attack 
Initialization

To Known Safe State

Delay IDS Access
Blockading

File Juggling

Pacing

Attack
Success

To System Resource 

Figure 37: Cascading Tampering Mode Pathway Example

a smaller network domain than defined upon initial dispatch. This may increase 

the exposure to Termination tampering modes.

Future Work

CONFIDANT design and testing assumptions are based on the security of the 

agents. Security of mobile agents is a topic of current research [65] [63] [64], It is 

critical that:

•  deciphering of encrypted communication remains secure at channel end­

points,

•  an agent is able to verify that the gateway being visited has not been tam­

pered with,

•  agents execute at a sufficiently low level to provide direct filesystem access, 

and
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•  filesystem access is obtained immediately upon agent arrival so processes are 

unable to detect tha t a scan is imminent.

Currently, CONFIDANT agents make requests to the operating system for file 

system data. This creates an avenue for tampering via Spoonfeeding as a malicious 

insider could enable kernel or driver functionality to provide false file data during 

scans. Possible techniques to solve this problem include compiling the gateway 

into the kernel or enabling the agents to perform integrity analysis on the gateway 

upon visitation.

Another remaining tampering exposure is that communication must be de­

crypted at endpoints in order to be processed. This provides an insider the ability 

to tamper with data upon arrival. For instance, tampering via Sugarcoating may 

occur between processes or agents on remote nodes. Communication between nodes 

or agents is handled by using SSL [71] for authentication and encryption as well as 

to prevent man-in-the-middle attacks [72]. Secure communication is ensured under 

SSL by strong cryptography. A vulnerability remains, however, in that encrypted 

data must be decrypted prior to use. Once it is decrypted, it becomes a potential 

avenue for tampering and is a future topic of research in secure microprocessor 

hardware [73].

In the current version of CONFIDANT, each agent maintains a list of avail­

able gateways including the location of each committee member. Prior to agent 

dispatch, a random number is generated to select a destination gateway. If the 

selected gateway is occupied, the agent will travel to the next available gateway. 

Future research includes modeling the network as a graph or Markov chain and 

performing statistical coverage testing to determine optimal agent transitions. A
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final topic of future research is to extend CONFIDANT capabilities to perform 

host-based IDS functions in addition to file integrity.
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A PPE N D IX  A 
SAMPLE CONFIDANT AGENT ROUTINES IN JAVA
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import java.io.IOException; 
import j ava.rmi.NoSuchObjectException; 
import java.rmi.RemoteException; 
import java.util.Enumeration; 
import java.util.Random;

import
import
import
import
import
import
import
import
import

COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.
COM.meitca.

concordi
concordi
concordi
concordi
concordi
concordi
concordi
concordi
concordia

Agent;
AgentTransportExcept ion; 
Destination;
Itinerary;
LaunchException; 
ServerUnavailableException; 
event.EventHandlerException; 
event.EventManagerConnection; 
event.EventType;

public class ConfidantAgent extends Agent {
//this file is an illustrative example adapted from 
//the testing examples
//NOTE: the code must be adapted to the physical 
//network topology to run properly
//Also, it has been formatted to fit in this appendix

//the event dispatched within a probe agent for robust 
//communication
private ConfidantEvent probeevent = new ConfidantEventO; 
private String name = null; 
private String eventText = null;
//internal baseline
private String expectedMD5 = M50alf6525d4ael4ecabfdb2fe8f03e0f"; 
private String computedMD5 = null;
//internal policy
private String fileName = "confidant.test"; 
private String destGateway = null;
// the agent carries related classes during travel 
private String[] related = {"MD5Check", "ConfidantEvent"};

private int gnum = 4; //default —  reset by method
//glist is the list of monitored gateways
//Concordia can’t use a multi-dimension array or an array
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//of objects with 2 string elements so 2 arrays are used 
private String[] glistname = new String[gnum]; 
private String[] glistagent = new String[gnum];

private int anum = 2; //default —  reset by method 
//list of committee agents and the gateways on which 
// they reside
private String[] calistname = new String[anum]; 
private String[] calistgateway = new String[anum];

//response arrays to handle messages asynchronously 
//as messages arrive, they are placed into these arrays 
private String[] arrivalresponsemessage = new String [anum]; 
private String[] scanresponsemessage = new String[anum]; 
private String[] dispatchresponsemessage = new String[anum];

//delta times in milliseconds 
private long delta_ts = 4000; 
private long delta_td = 2000; 
private long delta_tr = 8000;

//parameters are handled in the config file parser 
//and agent launcher 
public ConfidantAgent() {

this.setRelatedClasses(related);
}

public void setName(String n) { 
name = n;

>

public String getNameO { 
return name;

>

// This is called by the Concordia Server immediately 
// prior to the agent being transported to its next 
// destination. Its purpose is to perform any cleanup 
// required before the Agent migrates to its next destination, 
public void prepareForTransportO throws 

AgentTransportException {
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System.out.println("ConfidantAgent " + getNameO +
" prepareForTransport");

// code that should go here is in completedTransport 
// due to the reasons described below 

}

// This is called by the Concordia Server when the 
// Agent arrives at its new destination. Its purpose 
// is to perform any initialization required by the 
// Agent when it arrives at a new destination, 
public void completedTransport() throws 

AgentTransportException {
System.out.println("ConfidantAgent " + getNameO +

" completedTransport");

makeEventConnectionsO;

System.out.println("Agent " + getNameO + "Arrived"); 
for (int i=0; i<gnum; i++) {

if (glistname[i].equals(destGateway)) { 
glistagent[i] = getNameO; 
break;

>
}
System.out.println("Sending AgentArrived Event");
ConfidantEvent travelComplete = new ConfidantEvent(); 
travelComplete.setType("AgentArrived"); 
for (int i=0; i<anum; i++) {

travelComplete.setFromAgent(this.getName 0); 
travelComplete.setToAgent(calistname[i]); 
travelComplete.setNote(destGateway); 
postConfidantEvent(travelComplete, calistgateway[i]);

}

delay(delta_ts);
System.out.println("Processing Arrival Response"); 
processArrivalResponseO;

delay(10000); //slow things down to see what is going on 

//the following really should go in prepareForTransport
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// but since Concordia agents hang trying to travel to a 
// disabled gateway without posting an event (exceeding 
// delta_td) dispatch must be handled manually

System.out.printlnCSending AgentTravelRequest Event"); 
ConfidantEvent travelRequest = new ConfidantEventO; 
travelRequest.setType("AgentTravelRequest"); 
for (int i=0; i<anum; i++) {

travelRequest.setFromAgent(this.getName()); 
travelRequest.setToAgent(calistname[i]); 
travelRequest.setNote(null);
postConfidantEvent(travelRequest, calistgateway[i]);

>

delay(delta_ts);
System.out.println("Processing Dispatch Response"); 
processDispatchResponseO;

dispatch();
}

public void dispatch() { 

selectGatewayO ;

ConfidantAgent agent = new ConfidantAgent();
//keep the same name as the creating agent 
agent.setName(this.getNameO) ;
Itinerary itinerary = new ItineraryO; 
itinerary. clearltineraryO ;
Destination destination = new Destination 

("rmi://localhost/" + destGateway, "scan"); 
itinerary.addDestination(destination); 
agent.setltinerary(itinerary); 
agent.setGatewayList(glistname, glistagent);
System.out.println("Launching agent " +

agent.getName() + " to " + destGateway); 
agent.launch();

}

// This is called by the Concordia Server when the
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// Agent completes its Itinerary. Its purpose is to 
// perform any cleanup required after the Agent 
// completes its itinerary, 
public void completedltineraryO throws 

AgentTransportException{
System.out.println("ConfidantAgent " + getNameO +

" completedltinerary");
}

public void launchO {
System.out.println("ConfidantAgent 11 + getNameO 

+ " launching"); 
try {

super.launchO;
} catch (LaunchException e) {

System.out.println("ALARM ------ Error dispatching
agent " + getNameO);

//if there is an error, print out message then 
//call prepareForTransport again 

dispatch();
}

}

public void makeEventConnectionsO {
System.out.printIn("Conf idantAgent 

makeEventHandler"); 
this.makeEventHandlerO;
System.out.println("ConfidantAgent 

makeEventManagerConnection"); 
this.makeEventManagerConnection("localhost");
System.out.println("Conf idantAgent 

registerAHEvents") ; 
this.registerAHEventsO ;

}

public void makeEventHandlerO {
//true is sync, false is async... creates a new thread 
try {

super.makeEventHandler(false);
} catch (EventHandlerException e) {

System.out.println("Error: makeEventHandler "
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+ getNameO); 
e .printStackTraceO ;

public void makeEventManagerConnection(String host) { 
String url = EventManagerConnection.EventManager 

URL(host); 
try {

//true uses a proxy, false makes a direct 
//connection

super.makeEventManagerConnectionCurl, false); 
} catch (NoSuchObjectException e) {

System.out.println("Error: makeEventManager 
Connection " + getNameO);

System.out.println("NoSuchObjectExcept ion"); 
e .printStackTrace();

} catch (RemoteException e) {
System.out.println("Error: makeEventManager 

Connection " + getNameO);
Syst em.out.pr intIn("Remot eExcept i on"); 
e.printStackTraceO;

// Register interest in receiving all events 
// Documentation says we can only register specific 
// events but this doesn’t seem to work, 
public void registerAHEventsO { 

try {
super .registerAHEventsO ;

} catch (RemoteException e) {
System. out. pr intln (" Error: registerAHEvents 

+ getNameO);
System.out.println("RemoteException"); 
e.printStackTraceO ;

} catch (SecurityException e) {
System. out. pr intln (" Error: registerAHEvents 

+ getNameO);
System.out.println("SecurityExcept ion"); 
e .printStackTrace();
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} catch (IOException e) {
Sy stem. out. pr intln ("Error: registerAHEvents "

+ getNameO);
System.out.println("IOException"); 
e.printStackTraceO;

} catch (ServerUnavailableException e) {
System.out.println("Error: registerAHEvents "

+ getNameO);
System.out.println("ServerUnavailableException"); 
e.printStackTraceO;

>
}

public void scanO {
ConfidantEvent scanResult = new ConfidantEvent0; 
computeStuff0; //stores result to computedMD5 
scanResult.setFromAgent(this.getName 0); 
scanResult.setNote(computedMD5); 
if (computedMD5.equals(expectedMD5)) { 

scanResult.setType("MD50K");
} else {

scanResult.setType("MD5Error");
}
for (int i=0; i<anum; i++) {

scanResult.setFromAgent(this.getName()); 
scanResult.setToAgent(calistname[i]); 
scanResult.setNote(null);
postConfidantEvent(scanResult, calistgateway[i]);

}

delay(delta_ts); 
processScanResponseO;

}

public void processScanResponseO { 
for (int i = 0; i < anum; i++) {

//null if there isn't a scan response 
if (scanresponsemessage[i] == null) {

System.out.printIn("ALARM ---- Missing ACK
from Scan Result"); 

break;
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>
}
resetScanResponseO;

}

public void processDispatchResponseO { 
for (int i = 0; i < anum; i++) {

//null if there isn't a dispatch response 
if (dispatchresponsemessage[i] == null) {

System.out.println("ALARM ---- Missing
Response to Dispatch Request"); 

break;
}

}
resetDispatchResponseQ ;

public void processArrivalResponseO { 
for (int i = 0; i < anum; i++) {

//null if there isn't an arrival response 
if (arrivalresponsemessage[i] == null) {

System.out.println("ALARM ---- Missing
Response to Arrival Notification"); 

break;
>

>
resetArrivalResponseO;

}

public void selectGatewayO {
Random rand = new Random();

int ng = Math.abs(rand.nextlnt()°/0gnum);

while ( glistagent[ng] != null) {
ng = Math.abs(rand.nextlnt()%gnum);

>
destGateway = glistname[ng];

}

public void handleEvent(EventType event) {
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if (event instanceof ConfidantEvent) {
handleConf idantEvent((Conf idantEvent)event);

}
else {

handleUnknownEvent(event);
}

public void handleConfidantEvent(ConfidantEvent event) { 
System.out.println("Handling ConfidantEvent");
String responsetype = event.getTypeO; 
if (responsetype.equals("AgentArrived")) {

System.out.printIn("Handling AgentArrived 
Event");

//send ACK
ConfidantEvent ack = new ConfidantEvent(); 
ack.setType("AgentArrivedACK"); 
ack. setFromAgent (this. getNameO);
//return to sender
ack.setToAgent(event.getFromAgent 0); 
ack.setNote(destGateway);
postConfidantEvent(ack, event.getFromAgent0);

} else if (responsetype.equals("AgentArrivedACK")) {
Syst em.out.pr intIn("Handling AgentArr ivedACK 

Event");
//store in array for processing to make sure 

//messages are received for all committee 
// agents

for (int i=0; i<anum; i++) { 
if (calistname[i].equals 

(event.getFromAgent())) {
calistgateway[i] = event.getNote0; 
break;

>
}

} else if (responsetype.equals("AgentTravelRequest")) { 
System.out.println("Handling AgentTravelRequest 

Event");
//send Proceed, wait for notification on new gateway 
ConfidantEvent proceed = new ConfidantEvent(); 
proceed.setType("AgentTravelProceed");
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proceed. setFromAgent (this .getNameO); 
proceed.setToAgent(event.getFromAgent()); 
proceed.setNote(destGateway);
postConfidantEvent(proceed, event.getFromAgent());

> else if (responsetype.equals("AgentTravelProceed")) {
System.out.println("Handling AgentTravelProceed 

Event");
//store in array for processing to make sure 

//dispatch is confirmed by all committee 
//agents

for (int i=0; i<anum; i++) { 
if (calistname[i].equals 

(event.getFromAgentO)) {
dispatchresponsemessage[i] = 

event .getNoteO;
break;

}
>

> else if (responsetype.equals("MD50K")) {
System.out.printlnC'Handling MD50K Event");
//does this result match our baseline?
if ((event.getNoteO) .equals(expectedMD5)) {

System.out.println("MD50K Event and matching 
baseline");

} else {
System.out.println("ALARM ------  MD50K Event

but different baseline");
}

} else if (responsetype.equals("MD5Error")) {
System.out.printlnC'Handling MD5Error Event"); 
//alarm
System.out.println("ALARM ------  MD5 Error detected

by "+ event.getFromAgent0);
} else if (responsetype.equals("AgentUnavailable")) { 

System.out.printlnC'Handling AgentUnavailable 
Event");

//can't contact agent —  alarm
System.out.printIn("ALARM ------  Agent " +

event.getToAgent() + " is missing");
} else if (responsetype.equals("HostUnavailable")) { 

System.out.printlnC'Handling HostUnavailable
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Event");
//can’t contact gateway —  alarm
System.out.println("ALARM ------  Gateway"

+ destGateway + " is unavailable");
} else {

System.out.printlnC'Handling ConfidantEvent of 
Unknown Type"); //shouldn’t ever get here

>

//shouldn’t ever get to this
public void handleUnknownEvent(EventType event) { 

System.out.printlnC'Handling Unknown Event"); 
System.out.printIn("Event ID: " +

event.getEventlDO);
System.out.println("Event Description: " + 

event.getEventDescriptionO);
System.out.println("Event toString: " +

event.toStringO) ;
}

public void postConfidantEvent(ConfidantEvent event, 
String destination) {

//probe agent behavior to do the posting 
ProbeAgent ag = new ProbeAgentO; 
ag.setName("Probe");
Itinerary it = new Itinerary(); 
it. clearltineraryO ;
Destination de = new Destination(destination, 

"probePost"); 
it.addDestination(de); 
ag.setltinerary(it); 
ag.setProbeEvent(event); 
ag.setSendingAgent(this.getName()); 
ag.launchO;

}

public String computeMD5(String filename) {
MD5Check mdc = new MD5Check();
return mdc.computeDigestAsString(filename);

}
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public void computeStuff() {
System.out.printIn("ConfidantAgent " + getNameO 

+ " is computing stuff");
String str = new String(System.getProperty("os.name",

"OS Name not found")); 
if (str.startsWith("Linux")) {

String fn = new String("/home/" + fileName);
System.out.println("Computing MD5 of " + fn); 
computedMD5 = computeMD5(fn);
System.out.println("MD5 of " + fn + " is "

+ computedMD5); 
if (computedMD5.equals(expectedMD5)) {

System.out.println("Hey, they match");
} else {

System.out.println("MD5 signatures don’t match... 
possible tampering");

>
>
else if (str.startsWith("Windows")) {

String fn = new String("c:\\" + fileName);
System.out.println("computing MD5 of " + fn); 
computedMD5 = computeMD5(fn);
System.out.println("MD5 of " + fn + " is "

+ computedMD5); 
if (computedMD5.equals(expectedMD5)) {

System.out.println("Hey, they match");
} else {

System.out.println("MD5 signatures don’t match... 
possible tampering");

>
>
else {

System.out.printlnC'I don’t recognize the OS... 
now what do I do?");

}
System.out.println("ConfidantAgent " + getNameO 

+ " is done computing stuff");
>

public void delay(long time) {
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//time is milliseconds 
try {

Thread.sleep(time);
} catch (InterruptedException e) {

System.out.println("Error: agent couldn’t sleep 
for" + time + "ms"); 

e.printStackTraceO;
}

}

public String printDataO { //toString-like functionality 
StringBuffer sb = new StringBufferO; 
sb.append("Name: " + name + "\n"); 
sb.append("ID: " + toStringO + "\n"); 
sb.append("Itinerary:\n"); 
sb.append("Host: ");
for(Enumeration e = getltineraryO.destinations(); 

e .hasMoreElementsO ; ) {
Destination d = new DestinationO;
d = (Destination)e.nextElementO;
sb.append(d.getDestinationHostO + "\t");

}
sb.append("\n");
sb.append("Funct ion: ");
for (Enumeration e = getltineraryO .destinationsO ; 

e.hasMoreElementsO ; ) {
Destination d = new DestinationO; 
d =  (Destination)e.nextElementO; 
sb.append(d.getMethodNameO + "\t");

}
sb.append("\n"); 
return sb.toStringO;

>

public void setGatewayList(String[] gn, String[] ga) { 
glistname = gn; 
glistagent = ga;

>

public void printGatewayListO { 
for (int i=0; i< gnum; i++) {
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System.out.println("Gateway name: " + glistname[i] 
+ " Agents: " + glistagentti]);

}
}

public void setAgentList(String[] an, String[] ag) { 
calistname = an; 
calistgateway = ag;

}

public void setArrivalResponse(String[] ar) { 
arrivalresponsemessage = ar;

>

public void resetArrivalResponseO {
for (int i = 0; i < anum; i++) {

arrivalresponsemessage[i] = null;
}

>

public void setScanResponse(String[] srm) { 
scanresponsemessage = srm;

>

public void resetScanResponseO {
for (int i = 0; i < anum; i++) {

scanresponsemessage[i] = null;
}

>

public void setDispatchResponse(String[] drm) { 
dispatchresponsemessage = drm;

}

public void resetDispatchResponseO {
for (int i = 0; i < anum; i++) {

dispatchresponsemessage[i] = null;
}

}
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public void setNumberOfAgents(int a) { 
anum = a;

}

public int getNumberOfAgentsO { 
return anum;

>

public void setNumberOfGateways(int g) { 
gnum = g;

}

public int getNumberOfGateways() { 
return gnum;

}

public void setProbeEvent(ConfidantEvent event){ 
probeevent = event;

}

public ConfidantEvent getProbeEventO { 
return probeevent;

>

public void busywaitO {
System.out.println("Agent " + getNameO

+ " performing a busywait for debugging 
purposes"); 

while (true) {
}

}

public void printMsgO {
System.out.println("---------- > printMsg <---

}

public static void main(String argsD) {
Conf idantAgent agent = new Conf idantAgent(); 
agent.setName("ConfidantAgent test agent"); 
Itinerary i = new ItineraryO; 
i.addDestination(new DestinationC'localhost",
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"printData")); 
agent.setltinerary(i); 
agent.launch();
System.exit(0);

}
}

import java.io.IOException;
import j ava.rmi.NoSuchObj ectException;
import j ava.rmi.RemoteException;
import COM.meitca.concordia.Agent;
import COM.meitca.concordia.AgentTransportException;
import COM.meitca.concordia.LaunchException;
import COM.meitca.concordia.ServerUnavailableException;
import COM.meitca.concordia.event.EventException;
import COM.meitca.concordia.event.EventHandlerException;
import COM.meitca.concordia.event.EventManagerConnection;

public class ProbeAgent extends Agent {

private ConfidantEvent probeevent = new ConfidantEvent(); 
private String name = null; 
private String destGateway = null; 
private String destHost = null;
private String[] related = {"MD5Check", "ConfidantEvent"}; 
private String sendingagent = null; 
private String sendinggateway = null;

public ProbeAgent() {
this.setRelatedClasses(related);

}

public void setName(String n) { 
name = n;

public String getNameO { 
return name;

}
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public void setSendingAgent(String sa) { 
sendingagent = sa;

}

public String getSendingAgent() { 
return sendingagent;

}

public void setSendingGateway(String sg) { 
sendinggateway = sg;

}

public String getSendingGatewayO { 
return sendinggateway;

>

public void prepareForTransportO throws
AgentTransportException {

System.out.println("ConfidantAgent " + getNameO 
+ 11 prepareForTransport");

}

public void completedTransportO throws
AgentTransportException {

System.out.println("ConfidantAgent " + getNameO 
+ " completedTransport");

makeEventConnectionsO;

probePostO;
}

public void completedltineraryO throws
AgentTransportException!

System.out.printIn("ConfidantAgent " + getNameO 
+ " completedltinerary");

}

public void makeEventConnectionsO {
System.out.printIn("Conf idantAgent
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makeEventHandler"); 
this.makeEventHandlerO;
System.out.println("Conf idantAgent 

makeEventManagerConnection"); 
this.makeEventManagerConnection("localhost"); 
System.out.println("ConfidantAgent 

registerAHEvents"); 
this.registerAllEventsO;

}

public void makeEventHandler() { 
try {

super.makeEventHandler(false);
} catch (EventHandlerException e) {

System.out.println("Error: makeEventHandler " 
+ getNameO); 

e.printStackTraceO ;
}

}

public void makeEventManagerConnection(String host) { 
String url = EventManagerConnection.

EventManagerURL(host); 
try {

super.makeEventManagerConnection(url, false);
} catch (NoSuchObjectException e) {

System.out.println("Error:
akeEventManagerConnection " + getNameO); 

System.out.println("NoSuchObjectException"); 
e.printStackTraceO;

} catch (RemoteException e) {
System.out.println("Error:

makeEventManagerConnection "+ getNameO); 
System.out.println("RemoteException"); 
e .printStackTrace();

}

public void registerAHEventsO { 
try {

super .registerAHEventsO;
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} catch (RemoteException e) {
System.out.println("Error: registerAHEvents "

+ getNameO);
Sy s t em. out. pr int In (11 Remot eExc ept ion"); 
e.printStackTraceO;

> catch (SecurityException e) {
System, out. println ("Error: registerAHEvents 11 

+ getNameO);
System.out.println("SecurityExcept ion"); 
e.printStackTraceO;

} catch (IOException e) {
System.out.println("Error: registerAHEvents "

+ getNameO);
System.out.println("IOException"); 
e.printStackTraceO ;

} catch (ServerUnavailableException e) {
System.out.println("Error: registerAllEvents "

+ getNameO);
System.out.println("ServerUnavailableExcept ion"); 
e.printStackTraceO;

>
}

public void probePostO { 
try {

postEvent(getProbeEvent());
} catch (RemoteException e) {

System.out.println("Error: postConfidantEvent "
+ getNameO);

System.out.println("RemoteException"); 
e .printStackTrace(System.out);

} catch (SecurityException e) {
System.out.println("Error: postConfidantEvent "

+ getNameO);
System.out.println("SecurityExcept ion"); 
e.printStackTraceO ;

} catch (IOException e) {
System.out.println("Error: postConfidantEvent "

+ getNameO);
System.out.println("IOException"); 
e.printStackTraceO;
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} catch (EventException e) {
System.out.println("Error: postConf idantEvent 

+ getNameO);
System.out.println("EventExcept ion"); 
e.printStackTraceO;

} catch (ServerUnavailableException e) {
System.out.println("Error: postConfidantEvent 

+ getNameO);
System.out.println("ServerUnavailableException 
e .printStackTrace();

}
>

public void launch() {
System.out.println("ConfidantAgent " + getNameO 

+ " launching"); 
try {

super.launch0;
} catch (LaunchException e) {

System.out.println("ALARM ------- Error
dispatching agent " + getNameO);

}
>

public void setProbeEvent(ConfidantEvent event){ 
probeevent = event;

}

public ConfidantEvent getProbeEventO { 
return probeevent;

>
}

import java.io.ByteArrayOutputStream;
import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import j ava.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
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public class MD5Check {

private MessageDigest currentAlgorithm;

public MD5Check() {
setAlgorithm("MD5");

>

public MD5Check(String md) { 
setAlgorithm(md);

}

private void setAlgorithm(String algorithm) { 
try {

currentAlgorithm = MessageDigest. 
getlnstance(algorithm);

} catch (NoSuchAlgorithmException e) { 
System.out.println("Error:

NoSuchAlgorithmException"); 
e .printStackTrace();

}
}

private byte[] loadBytes(String name) { 
FilelnputStream in = null; 
ByteArrayOutputStream buffer = new 

ByteArrayOutputStreamO ; 
int ch; 
try {

in = new FilelnputStream(name); 
while((ch = in.readO) != -1) { 

buffer.write(ch);
>
in. closeO ;

} catch (FileNotFoundException e) {
System.out.println("Error: loadBytes 

FilelnputStream"); 
e.printStackTraceO ;

} catch (IOException el) {
System.out.println("Error: loadBytes
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}

IOException"); 
el.printStackTraceO;

}
return buffer .toByteArrayO;

}

public byte[] computeDigest(String str) { 
currentAlgorithm.reset(); 
currentAlgorithm.update(loadBytes(str)); 
return currentAlgorithm.digest();

>

public String computeDigestAsString(String str) {
String d = 11";
byte [] hash = computeDigest(str); 
for (int i = 0; i < hash.length; i++) { 

int v = hash[i] & OxFF; 
if (v < 16) { 

d += "0";
>
//d += Integer.toString(v, 16).toUpperCaseO + 
d += Integer,toString(v, 16);

>
return d;

>

public static void main(String[] args) {
MD5Check mdc = new MD5Check();
String str = new StringO; 
if (args.length == 1) { 

str = args[0];
> else {

str = "c: Wcldma.log";
}
System.out.println("Digest as byte[]");
System.out.println(mdc.computeDigest(str));
System.out.println("Digest as String");
System.out.println(mdc.computeDigestAsString(str));

>
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A PPE N D IX  B 
SUPPORTING FRAM EW ORK ROUTINES FOR

CONCORDIA
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import java.io.IOException; 
import java.rmi.RemoteException;

import COM.meitca.concordia.Agent; 
import COM.meitca.concordia.AgentListener; 
import COM.meitca.concordia.AgentTransporter; 
import COM.meitca.security.InvalidLicenseException;

//the concordia server handles messaging, the ConfidantServer 
//is used to provide multiple gateways on a single physical 
//machine for testing purposes
public class ConfidantServer implements AgentListener { 

AgentTransporter at;

ConfidantServer(String name) {

System.out.println("Starting ConfidantServer: " + name ); 

try {
at = new AgentTransporter(name, 0);

} catch (RemoteException e) {
System.out.println("Error: AgentTransporter 

RemoteException"); 
e .printStackTrace();

} catch (IOException e) {
System.out.println("Error: AgentTransporter 

IOException"); 
e.printStackTraceO ;

} catch (InvalidLicenseException e) {
System.out.println("Error: AgentTransporter 

InvalidLicenseException"); 
e.printStackTraceO;

>
}

public void handleAgent(Agent argO) {
System.out.println("HandleAgent called with agent: "

+ "Agent");
}
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public static void main(String args[]) {

if (args.length !=1) {
System.out.println("Usage: Conf idantServer 

<TransporterName>");
System.exit(1);

}

ConfidantServer cs = new ConfidantServer(args[0])

}
>

import COM.meitca.concordia.event.*;

public class ConfidantEvent extends EventType {

private String type; 
private String fromagent; 
private String toagent; 
private String note;

public ConfidantEvent() {
super("Conf idantEvent");

>

public ConfidantEvent(String description) { 
super(description);

>

/* valid event types are
* AgentArrived
* AgentArrivedACK
* AgentTravelRequest
* AgentTravelProceed
* MD50K
* MD5Error
* AgentUnavailable
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* HostUnavailable
* /

public void setType(String t) { 
type = t;

}
public String getTypeO { 

return type;
>

public void setFromAgent(String fa) { 
fromagent = fa;

>
public String getFromAgentO { 

return fromagent;
}

public void setToAgent(String ta) { 
toagent = ta;

>
public String getToAgentO { 

return toagent;
>

// the note field is event-context specific 
// for instance: it is the obtained MD5 for 
// scan operations 
public void setNote(String n) { 

note = n;
>
public String getNoteO { 

return note;
}
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