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ABSTRACT 

Compressive Sensing (CS) is a signal processing technique which reduces the number of 

samples taken per frame to decrease energy, storage, and data transmission overheads, as well as 

reducing time taken for data acquisition in time-critical applications. The tradeoff in such an 

approach is increased complexity of signal reconstruction. While several algorithms have been 

developed for CS signal reconstruction, hardware implementation of these algorithms is still an 

area of active research. Prior work has sought to utilize parallelism available in reconstruction 

algorithms to minimize hardware overheads; however, such approaches are limited by the 

underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field 

Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric 

specifically designed for implementation of CS data sampling and signal reconstruction. The 

resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, 

capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving 

square/square root operations required for calculating vector norms, 2) digital functional blocks 

which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-

based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication 

operations. The various functional blocks are connected via a global interconnect and spin-based 

analog-to-digital converters. Simulation results demonstrate significant energy and area benefits 

compared to equivalent CMOS digital implementations for each of the functional blocks used: this 

includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile 

crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless 
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lookup tables, and roughly 97% reduction in transistor count for a multiplier built using 

components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction 

compared to CMOS when used to implement CS reconstruction, in addition to latency 

improvements. 
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CHAPTER ONE: INTRODUCTION1 

Need for Mixed-Signal Reconfigurable Arrays 

 The flexibility offered by reconfigurable fabrics has proven to be useful in signal 

processing applications. For instance, Huang et al. described an FPGA-based scalable architecture 

for computation of Discrete Cosine Transform (DCT) in image-video coding applications [1]. 

FPGAs allow for dynamic partial reconfiguration for zonal coding, i.e., performing DCT on zones 

varying in size from 1×1 to 8×8, as well as reconfigurability in the precision of DCT coefficients. 

It was shown that having this flexibility allows for optimizations which result in significant savings 

in both power and area consumption. 

 While digital-only FPGAs can be convenient for online algorithms requiring dynamic 

reconfiguration [2] and conducting general-purpose computation directly in hardware to avoid 

software overheads [3, 4], computations in the signal processing domain can generally be more 

efficiently solved in the analog domain due to the analog nature of real-world signals [5]. Thus, 

Field Programmable Analog Arrays (FPAAs) have gained attention as analog counterparts to 

FPGAs. It has been shown that analog computation for certain applications can offer orders of 

magnitude improvement in computational energy efficiency at the cost of reduced accuracy [6]. 

Therefore, judicious use of analog and mixed-signal computation may lead to benefits in various 

applications suitable for approximate computation. Mixed-signal arrays have already been used 

                                                 

1© 2020 IEEE. Part of this chapter is reprinted, with permission, from [35].  
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for applications such as low-power temperature sensors and heart-rate alarms for IoT applications 

[7]. 

 Unfortunately, analog systems present many challenges not present in their digital 

counterparts such as limited accuracy, low tolerance to noise and parasitics, and limited 

programmability. As such, analog design automation has been a field of active research, and 

algorithms have been developed for analog synthesis, layout and verification. It has been found 

that using a set of Configurable Analog Blocks (CABs), each with fixed layout, allows for a 

bounded synthesis problem and leads to an Electronic Design Automation (EDA) flow similar to 

that used in digital design [8].  

Compressive Sensing 

 Compressive Sensing (CS) is an emerging signal processing technique that is well-suited 

for analog computation. The objective in CS is to reconstruct a sparse signal, i.e., a signal with 

only a small number of non-zero values in some basis, using sub-Nyquist sampling rates. This 

achieves reduced energy, storage, and data transmission overheads [9, 10], in addition to reducing 

sampling duration in time-sensitive applications such as MRI [11]. CS consists of a sampling 

phase, followed by a reconstruction phase.  

During the sampling phase, measurements on the signal of interest are taken at a specified 

rate and quantization resolution. The objective of the sampling phase is to determine a compressed 

measurement vector, 𝒚𝒚𝜖𝜖ℝ𝑀𝑀, based on the signal vector, 𝒙𝒙𝜖𝜖ℝ𝑁𝑁, where 𝑀𝑀 ≪ 𝑁𝑁. A measurement 

matrix 𝜱𝜱𝜖𝜖ℝ𝑀𝑀×𝑁𝑁 is used to achieve this using the transformation 𝒚𝒚 = 𝜱𝜱𝜱𝜱. Different methods exist 
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for generating the CS measurement matrix: one is by populating the entire matrix using values 

from a Gaussian distribution. Another is by restricting matrix elements to either ‘1’ or ‘0’, and 

simply populating each column of the matrix with a set number of ‘1’s placed at random locations. 

The randomness of the measurement matrix ensures that the signal is uniformly sampled, i.e., no 

one part of the signal is given special consideration. In certain situations, signals may contain a 

specific region of interest: in this case, it is desirable to sample the region of interest at a higher 

rate, and thus a higher column weight (i.e., higher density of ‘1’s) is used for columns 

corresponding to the signal’s region of interest [12]. 

The reconstruction phase of Compressive Sensing entails solving 𝒚𝒚 = 𝜱𝜱𝜱𝜱 to reconstruct 

the signal vector, 𝒙𝒙. Since the matrix 𝜱𝜱 contains more columns than rows, this amounts to solving 

an undetermined system of linear equations with more unknowns than equations, and hence an 

infinite number of solutions. In CS, the solution with lowest sparsity rate, i.e., lowest density of 

nonzero elements, is selected. This amounts to solving the minimization problem: 𝐱𝐱� =

argmin‖𝒙𝒙‖0  s.t. 𝒚𝒚 = 𝜱𝜱𝜱𝜱. Unfortunately, this problem has been shown to be NP-hard and is 

therefore not practical to solve [9]. Thus, it is more common to approach signal reconstruction 

using the basis pursuit problem [10]: 𝐱𝐱� = argmin‖𝒙𝒙‖1  s.t. 𝒚𝒚 = 𝜱𝜱𝜱𝜱 , otherwise known as ℓ1 -

minimization. By shifting focus from the ℓ0 norm to the ℓ1 norm, the problem becomes convex 

and therefore computationally more tractable to solve. The condition for being able to do this is 

known as the Restricted Isometry Property (RIP), i.e., that for any k-sparse vector x,  

‖𝒙𝒙‖𝑝𝑝(1− 𝛿𝛿) ≤ ‖𝜱𝜱𝜱𝜱‖𝑝𝑝 ≤ ‖𝒙𝒙‖𝑝𝑝(1 + 𝛿𝛿)  for some specified p. 
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 In addition to basis pursuit, a wide variety of algorithms with different tradeoffs are 

available for CS reconstruction [13]. One such algorithm which has been heavily targeted by 

hardware designers is Orthogonal Matching Pursuit (OMP). OMP is a greedy algorithm which 

seeks to use a set of k column vectors from the 𝜱𝜱 matrix as a basis to represent y. The challenge is 

to select the right column vectors, and then use this information to reconstruct the original signal 

vector, x. The algorithm works by repeatedly picking columns of 𝜱𝜱 with maximum correlation to 

the remaining part of y. At each iteration, the algorithm solves a least-squares problem to pick an 

optimal solution for x, based on the columns of 𝜱𝜱 which have been picked so far. Based on 𝜱𝜱 and 

x, the algorithm then calculates y and subtracts this from actual y to determine the new residual 

vector before going to the next iteration. For a k-sparse signal, the objective is to attain an exact 

representation of the original signal after k iterations [14, 15]. In reality, the reconstruction will not 

be exact due to unavoidable measurement noise in the sampling process. The precise steps of OMP 

are outlined in Algorithm 1. 
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Spin-Based Computation and Architectural Approaches 

A common issue with FPGAs is errors caused by faults such as process variation and cosmic 

ray interference. Hence, fault tolerance in FPGAs has been a widely-researched area [16-19] and 

has included methods such as evolutionary computation [20, 21], asynchronous logic [22, 23], and 

modular redundancies [24, 25]. Each of these solutions presents significant overheads in terms of 

power and area. This, in addition to challenges relating to CMOS scaling and power consumption, 

has motivated researchers to explore emerging devices as an alternative or complement to CMOS-

based logic. Indeed, emerging devices such as quantum cellular automata (QCA) [26], domain 
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wall nanomagnets [27], and spin-based devices [28, 29] have demonstrated superior performance 

in designs such as full adder and sense amplifier circuits. While several beyond-CMOS alternatives 

currently exist, the focus in this work will be on spin-based devices due to their commercial 

availability and benefits listed below. 

Spin-based devices, specifically Spin Transfer Torque-based Magnetic Tunnel Junctions 

(STT-MTJs), are a form of post-CMOS technology which serve as the basis for Magnetic Random 

Access Memory (MRAM) in addition to having logic capabilities. MTJ’s offer numerous benefits 

such as nonvolatility, near-zero static power consumption, area efficiency, fast read operation, and 

ability to be vertically integrated with CMOS for area efficiency [30]. STT-MTJs consist of two 

ferromagnetic layers, referred to as the fixed and free layers and separated by a thin oxide barrier. 

A bi-directional current passing through the device can change the polarization of the free layer 

magnetization and thus flip the device between the parallel (P) state and the anti-parallel (AP) 

state. The P-state device resistance is given by 𝑅𝑅𝑃𝑃 = 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 while the AP-state resistance is given 

by 𝑅𝑅𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀(1 + 𝑇𝑇𝑇𝑇𝑇𝑇), where:  

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑜𝑜𝑜𝑜
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹×𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝜑𝜑

𝑒𝑒𝑒𝑒𝑒𝑒(1.025𝑡𝑡𝑜𝑜𝑜𝑜�𝜑𝜑)               (1) 

                       𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇0

1+�
𝑉𝑉𝑏𝑏
𝑉𝑉ℎ
�
2            (2) 

with TMR being tunneling magnetoresistance, tox the oxide layer thickness, Factor a material-

dependent parameter which depends on the resistance-area product of the device, Area the surface 

area of the device, 𝜑𝜑 the oxide layer energy barrier height, Vb bias voltage, and Vh the bias voltage 

at which TMR drops to half of its initial value. 
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 In order for an MTJ to switch states, an energy barrier must be overcome. This switching 

process can occur in several ways; however, the two most practical methods are Spin Transfer 

Torque (STT) and Spin Hall Effect (SHE) switching. In STT switching, a spin-polarized current 

passing through the device transfers angular momentum to electrons in the device’s free layer, 

which causes the magnetic moments of these electrons, and hence the free layer magnetization 

direction, to switch. In SHE switching, a charge current passing through a heavy metal base layer 

can induce spin-polarized current to pass through the device, causing switching as before. While 

STT devices are two-terminal with only one read/write path, SHE devices are three-terminal with 

separate read and write paths. Hence, the probability for write disturbance in these devices is lower, 

in addition to lower write latencies [10]. 

 MTJs are also capable of switching stochastically due to thermal noise, if the energy barrier 

is set to a sufficiently low value (≪ 40 kT, where k is Boltzmann’s constant and T is absolute 

temperature). The stochastic switching property has valuable applications when random or non-

deterministic outputs are necessary [10]. While spin-based devices have been researched in 

academia for several years, they are now also gaining commercial ground, with Intel announcing 

the availability of 1T1MTJ MRAM cells in conjunction with their 22-nm FinFET technology [31]. 

MTJs contribute valuable properties such as non-volatility and stochasticity, allowing them to 

be suitable for diverse applications. One application is the fracturable 6-input spin-based look-up 

table, proposed in [32] and upgraded to utilize the Spin Hall Effect [33] and operate 

asynchronously as a Clockless-LUT (C-LUT) design [3]. The C-LUT’s select tree consists of D 

levels of transmission gates, each controlling access to a spin-based memory cell. The memory 
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cells consist of pairs of complementary MTJs for a wide read margin yielding reliable read 

operation. Furthermore, sensing is accomplished through a voltage divider circuit and a pair of 

inverters to amplify the signal, which eliminates the need for an external clock or large sense 

amplifiers. Such a design can be used for combinational logic to implement either one D-input 

Boolean function, or two (D-1)-input Boolean functions in parallel. This design yields an 80% 

reduction on standby power consumption compared to an SRAM-based LUT, which addresses a 

key challenge faced by CMOS designs. 

In addition, the stochastic switching properties of low-energy-barrier MTJs can be used to 

implement a True Random Number Generator (TRNG) to generate an adaptive CS measurement 

matrix [10, 34]. This design is based on a p-bit, which divides the supply voltage VDD between an 

MTJ and NMOS transistor. The MTJ is fabricated to have a low energy barrier (~1 kT) between P 

and AP states, and hence switches due to thermal activation. The p-bit utilizes the voltage in 

between the two devices, which switches stochastically due to the stochastic switching of the MTJ 

device. The p-bit output serves as the input to a D flip-flop, which then generates a random M-bit 

stream, where each bit determines one row of the measurement matrix, for random sampling of 

the input signal. The TRNG used in this design was found to reduce energy consumption per bit 

by 9-fold on average, compared to state-of-the-art TRNGs, in addition to an average area reduction 

of 3-fold [10]. 

To support mixed-signal operation and conversion, an Adaptive Intermittent Quantizer (AIQ) 

is a suitable spintronic circuit. It utilizes the Voltage-Controlled Magnetic Anisotropy (VCMA) 

effect to dynamically control MTJ energy barriers to implement an Analog-to-Digital Converter 
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(ADC) featuring dynamic Sampling Rate/Quantization Resolution (SR/QR) tradeoff [30]. In this 

design, the MTJs are arranged in a resistive-switch-ladder architecture, with the analog signal as 

input. Dynamically controlling the states of the switches and control over the number of active 

devices in the circuit allows the architecture to function at various QRs; in addition, use of an 

asynchronous clock allows the SR to be dynamically set as well. The SR/QR tradeoff is determined 

by the Signal-to-Noise (SNR) ratio of the input signal, e.g., high SNR favors high QR when 

sampling. As expected, this technique allows ADC at fixed bit and energy budgets, and results in 

considerable energy savings overall. Thus, spin-based architectures offer key benefits in power 

and area consumption when compared to CMOS and are promising candidates for next-generation 

reconfigurable fabrics. 

Contributions and Organization of Thesis 

 In this work, a hybrid spin-CMOS Mixed-signal Field Programmable Array (MFPA) is 

proposed for Compressive Sensing applications. The proposed MFPA architecture consists of 

Configurable Analog Blocks (CABs), Configurable Digital Blocks (CDBs) and an MRAM-based 

Nonvolatile Crossbar Array (NVM Xbar) joined by a CMOS-based global interconnect. While CS 

can provide benefits such as reduced data storage and transmission costs, applications such as 

Internet of Things (IoT) devices also require minimal power consumption. Mixed-signal 

computing and spin-based devices are viable approaches for achieving this due to many advantages 

offered by this approach, including:  
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a) intrinsic computation for reduced hardware complexity: time- and power-consuming 

operations such as square root are performed in one cycle using a simple circuit, with no digital-

to-analog conversion needed due to input signals already being analog,  

b) stochasticity for true random number generation: spin-based devices offer a low-energy 

method of achieving random number generation necessary for CS algorithms,  

c) power and area efficiency: spin-based devices do not have leakage power constraints like 

CMOS and furthermore can be integrated vertically with CMOS for reduced area overhead, and 

d) efficient VMM: spin-based devices can be readily integrated into crossbar arrays for single-

cycle Vector-Matrix Multiplication (VMM) operations. Thus, the hypothesis is that the proposed 

design will be capable of performing CS sampling and reconstruction while delivering significant 

energy and area benefits compared to the conventional digital CMOS implementation. 

  The thesis is organized as illustrated by Fig. 1: Chapter 2 reviews related works in the 

fields of reconfigurable arrays and hardware-based CS sampling and reconstruction. Chapter 3 

outlines the specifics of the hardware proposed herein, beginning with an overview of the 

architecture and proceeding to discuss details of the NVM Xbar, CAB and CDB. Each component 

is then simulated and compared with an equivalent digital CMOS design in Chapter 4. Chapter 5 

proceeds to assess the impact of computation errors associated with CAB analog outputs on CS 

reconstruction algorithms. Next, Chapter 6 presents an architecture for implementation of CS 

reconstruction using the proposed fabric, and evaluates the design compared to the digital CMOS 

equivalent. Finally, Chapter 7 concludes the thesis by giving a technical summary, and outlining 

insights gained and future work in the field. 
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Fig. 1: Outline of thesis. Preliminary versions of some of this work appeared as a first author 
publication in the 2019 International Conference on Reconfigurable Computing and FPGAs [35]. 
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CHAPTER TWO: RELATED WORKS2 

Mixed-signal Arrays 

 Schlottmann and Hasler [36] noted that two main hurdles have hindered the widespread 

adaptation of analog computation: the lack of a programmable interface, and the lack of robust 

design tools. The Reconfigurable Analog Signal Processor (RASP) proposed by them was a 

groundbreaking development in FPAAs in that it provided an avenue for programmability of 

analog devices, and was further augmented through an integrated set of high-level tools for system-

level analog design. Since this breakthrough, there has been continued innovation in development 

of mixed-signal reconfigurable arrays, i.e., those containing both analog and digital computation. 

      Wunderlich [5] presented a Field Programmable Mixed Array (FPMA) interleaving both 

analog and digital elements in a Manhattan-routable fabric. Their design consisted of 

Computational Analog Blocks (CABs) as well as Computational Logic Blocks (CLBs) interwoven 

through a global interconnect. The CLBs were comprised of LUTs and D Flip-Flops (D-FFs) while 

the CABs were comprised of elements such as capacitors, transistors, and op-amps. Additionally, 

each block contained a local interconnect consisting of a set of reconfigurable switches. 

George [37] proposed a similar architecture which also integrated a 16-bit microprocessor for 

added computational capability, thus enabling a 1,000-fold improvement in energy efficiency in 

addition to a 100-fold decrease in die area compared to the digital equivalent. Finally, Choi [38] 

proposed an architecture which consisted of three separate arrays of CLBs, Arithmetic Logic Units 

                                                 

2 © 2020 IEEE. Part of this chapter is reprinted, with permission, from [35]. 
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(ALUs) and Time-domain Configurable Analog Blocks (TCABs), with a network of “gluing 

blocks” interfacing the arrays with one another as well as external input/output. TCABs allow for 

dynamic reconfigurability of the analog function being implemented, in contrast to CABs which 

only allow for reconfigurability of interconnects. 

Pyle [39] further built on earlier efforts implementing evolutionary computation on FPGAs [4, 

40, 41] to explore the possibility of analog computation of mathematical functions, specifically, 

the square, square root, cube, and cube root functions. Pyle’s approach was to use a Self-Scaling 

Genetic Algorithm (SSGA) to scale the function parameters to an acceptable range, at which point 

the computations were performed on an analog fabric and refined through a process of Differential 

Digital Correction (DDC), using the Cypress PSoC-5LP chip [39]. This approach was later 

extended to more generalized mathematical functions by Thangavel [42] by extending these 

functions for Puiseux series generalization accommodating negative and fractional exponents as 

power series algebraic expansions.  
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Table 1 summarizes the various approaches provided by the above-mentioned authors and 

provides a comparison to the design proposed herein. 

NVM-Based FPGAs 

      Nonvolatile memories (NVMs), including memristors, Phase Change Memory (PCM), and 

Spin Torque Transfer-based Magnetic Random Access Memory (STT-MRAM) offer several 

advantages to conventional SRAM, including low static power consumption, high area density, 

and non-volatility. Thus, integration of these devices into FPGAs has been a popular research 

interest in recent years. Many works have focused on one of two options: replacing SRAM with 

NVMs as the storage element in look-up tables (LUTs), or replacing SRAM with NVM in routing 

Table 1: Comparison of mixed-signal field-programmable fabrics which are suitable for various signal 
processing tasks. 

Work Routing 
Architecture CAB Elements CDB Elements Highlighted Contributions 

Wunderlich [5] Manhattan 
Operational transconductance 

amplifiers, transistors, capacitors, 
MITEs (multiple input translinear 

elements) 

3-input Basic logic 
element (BLE) 

Integrated analog/digital 
computation 

George  [36] Manhattan w/ 
μProc. Cores 

Operational transconductance 
amplifiers, transistors, multipliers 

4-input Basic logic 
element (BLE) 

Integrated microprocessor with 
CABs/CLBs 

Choi [37] Separate TCAB/ 
ALU/CLB arrays 

Time configurable analog blocks 
(TCABs) 

4-input programmable 
LUT Programmability using TCABs 

Schlottmann [35] Crossbar Operational transconductance 
amplifiers, transistors N/A Dynamically reconfigurable 

FPAA 
M-FPA 

(proposed herein) Crossbar Amplifiers, transistors, capacitors, 
low-/high-barrier MTJs 

6-input Fracturable 
C-LUT 

Spin-based FPA with NVM 
crossbar for CS applications 
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elements such as switching blocks (SBs) and connection blocks (CBs) [43, 44]. Fig. 2 gives a 

summary of selected works relating to NVM integration in FPGAs. 

      Cong [44] proposed using memristive crossbar arrays to implement switching blocks in the 

FPGA fabric. In this scheme, memristors and metal wires are stacked on top of CMOS access 

transistors to reduce area overhead. The authors determined that this optimization reduced the SB 

area overhead to negligible amounts, as opposed to CMOS-based SBs which consume 10% - 50% 

of the FPGA area. Specifically, a 96% reduction in area, 55% improvement in performance, and 

79% reduction in power was attained. Similar results were reported by Huang [45] and Tang [46], 

among other authors. 

      Moreover, Liauw [47] was first to propose using memristors to replace SRAM in LUTs. Park 

[43] extended this idea to bring memristors and SRAM together to build hybrid FPGAs consisting 

of alternating SRAM-based and NVM-based LUTs. Such hardware allows for both power and 

performance optimization by placing SRAM-based logic blocks (superior in speed) on the critical 

path of an application, while using NVM-based logic blocks (superior in power consumption) 

elsewhere. Indeed, the placement algorithm developed by the authors around this idea attained a 

22% average reduction in power consumption on the benchmarks tested, with only negligible 

increase in critical path delay. 

      In addition to memristors, STT-MRAM can be used as an NVM alternative which offers 

advantages in speed, endurance, and density. Paul [48] proposed CLBs with MTJs replacing 

SRAM cells, which could then be further improved using Shannon decomposition-based power 

gating. He found a 48% reduction in area, 22% delay improvement, and 16% power reduction 
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compared to an equivalent CMOS design. Jo [49] proposed an 8-input MRAM-based LUT which 

attained 74% read power improvement compared to CMOS. Finally, Kim [50] designed a CAD 

tool for MRAM-based nonvolatile LUTs to address programmability issues that come with 

emerging technologies. 

      PCM is a further NVM possibility, offering high performance, scalability, and high density. 

PCM also allows for 3D die stacking, which can further enhance density, as well as performance, 

by shortening wire lengths, and power, by reducing parasitic capacitance of wires. In addition, 

PCM allows for implementation of Multi-Level Cells (MLCs) which can hold multiple bits within 

one device by programming multiple levels of resistances. Chen [51] found significant benefits in 

area, leakage power, and read energy by using MLC-PCM to replace SRAM in LUTs and routing 

blocks in an FPGA employing a 3D die-stacked architecture. Gaillardon [52] achieved similar 

results using PCM-based LUTs. Huang [53] further researched improving PCM retention time and 

leakage power, which are two major weaknesses of the technology. By using 0-V biasing during 

normal FPGA operation, he was able to reduce active leakage power to 1.19 nW and extend 

retention time to 10 years. 
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Fig. 2: Summary of selected previous approaches to beyond-CMOS NVM integration in 
reconfigurable fabrics 

Hardware for Implementation of CS Sampling 

      Implementing CS sampling and reconstruction in hardware present unique challenges. 

Sampling requires the use of a random number generator, which is traditionally implemented using 

a Linear Feedback Shift Register (LFSR) that can present significant power and area overheads 

[10]. Moreover, CS sampling requires a VMM operation which can be costly when dealing with 

large sample sizes. Potential solutions to these challenges include use of a deterministic 

measurement matrix and use of memristor crossbar arrays for VMM operations. Finally, 

approximate computing approaches can be used to alleviate power and area overheads. Fig. 3 

provides a summary of these challenges and solutions. 
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      Fardad [54] published a paper outlining the use of deterministic measurement matrices in CS. 

His method was based on a parity check matrix based on hyperplanes in Euclidean geometry. 

Specifically, for prime p and two integers m > 1 and s > 0, an m-dimensional Euclidean geometry 

over the Galois field GF(ps) can be defined. A 𝜇𝜇-dimensional subspace of the vector space of all 

m-tuples in this geometry is called a 𝜇𝜇-flat. Choosing two different values of 𝜇𝜇, i.e., 𝜇𝜇1 and 𝜇𝜇2, a 

matrix H can be defined with elements hij = 1 if and only if the ith 𝜇𝜇2-flat contains the jth 𝜇𝜇1-flat 

(where 𝜇𝜇2  > 𝜇𝜇1). This determines a deterministic, sparse, binary matrix. In CS reconstruction 

applications, the authors compared this to a Gaussian matrix and observed similar performance in 

terms of percentage of perfect signal reconstructions. In addition to avoiding overheads associated 

with random number generation, the authors noted a two-order-of-magnitude reduction in power 

consumption when using this matrix for signal reconstruction using OMP, versus the conventional 

technique of using a Gaussian matrix. 

      Leitner [55] proposed a different method of accomplishing CS sampling via a deterministic, 

sparse, binary measurement matrix, in the context of image sensors. Their method involves 

splitting the image pixels into sets of 𝑁𝑁
𝑀𝑀

+ 𝑂𝑂𝑂𝑂 neighboring pixels, where N is the image size, M the 

number of measurements taken, and OL the size of the overlap between adjacent pixel sets. In this 

context, each measurement is determined by summing the values of all of the neighboring pixels 

in its corresponding group. The elements of the measurement matrix are hence given by: 

𝜙𝜙𝑖𝑖𝑖𝑖 = �1    𝑖𝑖𝑖𝑖 1 +  (𝑖𝑖 − 1)𝑁𝑁
𝑀𝑀

≤ 𝑗𝑗 ≤ 𝑖𝑖𝑖𝑖
𝑀𝑀

+ 𝑂𝑂𝑂𝑂 
0                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (3) 
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      It is observed that while this matrix does not satisfy the RIP property, it does provide 

incoherence with the Inverse Discrete Cosine Transform (IDCT) basis. As such, this matrix works 

well with low-frequency images, but fails with high-frequency images. Specifically, the authors 

compared the peak signal-to-noise ratio (PSNR) of natural images reconstructed using the 

proposed matrix and a Gaussian matrix, using the technique of ℓ1 -minimization. The results 

indicated that the proposed matrix outperformed the Gaussian matrix by 3.7 dB, on average. Signal 

reconstruction using the proposed matrix failed when using an artificial image comprised of 

alternating black and white pixels, though such an image would rarely appear in practice. The 

authors noted significant energy savings for an image sensor using this approach, when compared 

to previous works relying on LFSRs. 

      Finally, Jafari [56] proposed constructing a deterministic measurement matrix simply by 

choosing rows from the identity matrix, in the context of a wearable chip for seizure detection. 

Their results indicated a two-order-of-magnitude reduction in both latency and dynamic power 

consumption, compared to an equivalent system using LFSR to generate random matrices. 

            In contrast to the above techniques employing deterministic measurement matrices, 

Massoud [57] proposed using memristors to store the measurement matrix, taking advantage of 

their nonvolatility as memory devices, and hybrid logic-memory capabilities. In this approach, the 

authors proposed using LFSRs to program each memristor to one of two values, which would then 

act as multiplexers to modulate the input signal. Hence, the memristors were effectively being used 

to store a binary measurement matrix. The authors observed sufficient reconstruction accuracy 
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using this approach, and cited potential benefits involving chip area, resilience to jitter, and 

hardware complexity. 

      Qian [58] built upon this work by introducing memristor crossbar arrays for VMM operations 

during CS sampling. In contrast to Massoud’s approach of using LFSRs to generate random values, 

Qian proposed relying on the process variation inherent in memristor filament lengths to generate 

randomness. Due to the physical model of a memristor, consisting of a filament growing under 

certain connections to establish an electrical connection between two electrodes, randomness in 

filament length can result in randomness in device state under identical conditions. The authors 

observed that signal reconstruction using ℓ1-minimization yields similar PSNRs to that of using a 

Gaussian matrix, while eliminating expensive hardware such as LFSRs and multiply-accumulate 

units for digital VMM. 

      Finally, Kadiyala [59] proposed using approximate computation to reduce power and area 

overheads during the sampling stage. Their work was built upon two methods: probabilistic 

pruning and probabilistic logic minimization. Probabilistic pruning refers to removing elements of 

a circuit which do not make a large difference in the accuracy of the output data, whereas 

probabilistic logic minimization refers to flipping bits of certain output states to minimize the logic 

overhead. The authors found that when these techniques are applied to the multiply-accumulate 

units involved in the VMM architecture of CS sampling, a 54% reduction in power and 43% 

reduction in area can be attained at the cost of 1 dB reduction in PSNR. 
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Fig. 3: Summary of challenges and potential solutions relating to hardware implementation of 
Compressive Sensing. Each of the listed challenges is addressed by MFPA, as discussed in Chapter 
1. 

Hardware for Implementation of CS Reconstruction 

      Implementing reconstruction using OMP or any other algorithm presents challenges related to 

hardware complexity and power and area overheads. Approaches to addressing these issues have 

included maximizing parallelism inherent in the reconstruction algorithms, using memristive 

crossbar arrays to reduce hardware complexity, and once again using approximate computing to 

reduce power and area overheads at the cost of accuracy. These approaches are summarized in Fig. 

3 and explained in more detail below. 

      Maximizing parallelization in the reconstruction approach has been a common theme in the 

literature. Septimus and Steinberg [9] were among the first to propose such an implementation. 

Their approach was to use an array of multipliers to accomplish the set of vector-matrix and vector- 
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vector multiplications in Step 2 of Algorithm 1 in parallel. They made use of the Moore-Penrose 

pseudo-inverse, defined as 𝜱𝜱𝒊𝒊
† = (𝜱𝜱𝒊𝒊

𝑻𝑻𝜱𝜱𝒊𝒊)−𝟏𝟏𝜱𝜱𝒊𝒊
𝑻𝑻, whereby the matrix inversion problem in Step 

5 was reduced to that of inverting the symmetric matrix, 𝑪𝑪 = 𝜱𝜱𝒊𝒊
𝑻𝑻𝜱𝜱𝒊𝒊. This inversion could then be 

performed in a computationally efficient way by using the technique of Alternative Cholesky  

Decomposition to express C in the form 𝑪𝑪 = 𝑳𝑳𝑳𝑳𝑳𝑳𝑻𝑻, where L is a lower triangular matrix and D is 

a diagonal matrix. These computations are then performed using the same hardware used for Step 

2. 

Stanislaus and Mohsenin [14] significantly improved the performance of Algorithm 1 by 

modifying it to use a thresholding process to remove certain columns of 𝜱𝜱𝒊𝒊  based on relative 

magnitude of the dot product. Their architecture involved separate hardware cores to perform the 

two optimization problems involved in the algorithm. Rabah [15] used the same algorithm and 

computation approach as [9]; however, they designed a four-stage architecture aimed at 

maximizing the utilization of parallelism as well as reuse of hardware. Their architecture consisted 

of 1) inner product and comparator unit, 2) Cholesky inversion unit, 3) residual computation unit, 

and 4) reconstructed signal computation unit. This approach yielded an improvement in 

performance for large-signal analysis, compared to previous works. Finally, Ren [60] proposed a 

parallel CS FPGA-based architecture consisting of configurable processing elements, including 

both a scalar core supporting scalar comparison,  addition, accumulation, and division, and a 

separate core for vector operations. The authors found a speedup of 41x in their implementation 

compared to the execution time observed on a CPU. All of the implementations discussed in this 
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section rely on purely-digital computation via FPGAs: Xilinx Virtex-5 components were used in 

[9] and [14], while Xilinx Virtex-6 was used in [15] and Kintex-7 was used in [60]. 

In contrast to the above approaches relying on parallelization, Liu [61] proposed using 

memristors for computationally efficient reconstruction in the presence of noise. Their idea was to 

reformulate the ℓ1-minimization problem using the alternating directions method of multipliers 

(ADMM). ADMM allows one to solve the ℓ1-minimization problem by following an iterative 

algorithm consisting of three steps: two steps involve only simple vector operations, while the 

other step can be solved through vector-matrix multiplication. Using a memristor crossbar array 

to conduct vector-matrix multiplication operations yields O(1) complexity for that step for 

matrices having ranks not exceeding the size of the array, while the complexity of the rest of the 

algorithm is O(n). This yields an overall complexity of O(n) for the noisy CS problem, compared 

to a complexity of O(n3.5) using alternative approaches such as second-order cone program. 

Le Gallo [62] took a similar approach of using memristive PCM arrays, which were used to 

implement both CS sampling and reconstruction. An Approximate Message Passing (AMP) 

algorithm was used for reconstruction, which consists of VMM operations as well as simple vector 

operations. Similar to Liu, the crossbar array was used to implement the VMM to achieve an 

overall complexity of O(n). In addition, due to the crossbar’s property of only requiring read 

operations during the multiplication, and eliminating the need for multiply-accumulate units, a 

98% reduction in dynamic power consumption was observed compared to an equivalent FPGA 

design. 
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Kulkarni and Mohsenin [63] took yet a different approach to improving the performance of CS 

reconstruction. Beginning with the OMP algorithm, they introduced modifications to improve 

performance at the cost of accuracy. One modification proposed by them was the thresholding 

technique OMP algorithm (tOMP), which introduces a column reduction phase before the counter 

is incremented at each step of the algorithm. The column reduction phase is a thresholding 

technique which eliminates p columns from the column set Φi’ at each iteration of the algorithm, 

corresponding to the least significant elements of the index set, Λi. The result is a reduction in 

complexity in the VMM operations, with (n – kp)m multiplications being required at the kth 

iteration during Step 2 of Algorithm 1. An alternate modification to the OMP algorithm proposed 

by the authors is gradient descent OMP (GDOMP), where the least squares minimization operation 

in Step 5 of Algorithm 1 is replaced by a stochastic gradient descent minimization. Thus, tOMP 

and GDOMP seek to reduce hardware complexity at two distinct stages of the OMP algorithm. 

GDOMP and tOMP result in energy improvements of 5% and 23% over OMP, respectively. 

In addition, tOMP results in a 27% reduction in reconstruction time, and GDOMP takes 33% less 

area, compared to OMP. Bellasi [64] took a parallel approach through their modified OMP 

algorithm, which introduces a rounding stage at each iteration to reinforce integer-valued results. 

Finally, Bortolotti [65] proposed approximate computing at the hardware level in the context of 

wearable health monitoring devices. To address the memory power wall so critical to wearable 

electronics, the authors proposed storing the CS measurement matrix using low-VDD SRAM cells, 

at the cost of higher probabilities of bit flips, after which a proximal gradient descent algorithm is 

used for reconstruction. Due to the robust nature of CS reconstruction, the authors observed that 
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they were able to reduce VDD down to 0.6 V while retaining a near-100% recovery probability and 

attaining a 60% reduction in power consumption. 

Summary 

      While FPGAs have traditionally been CMOS-based digital devices comprised of CLBs using 

LUTs to implement logic functions, there have been two parallel directions of research into 

changing this architecture. The first aims at introducing analog computation into reconfigurable 

fabrics by the addition of CABs in addition to CLBs. This allows for efficiency in applications 

such as signal processing which are most efficiently carried out in the analog domain. The second 

research direction seeks to replace SRAM cells comprising FPGA LUTs and routing architecture 

by NVM equivalents. This brings several benefits compared to CMOS, especially in terms of area 

overhead and static power consumption. 

     CS is one application well-suited for FPGAs. In the sampling phase, CS challenges the 

underlying hardware to rapidly generate random numbers and carry out VMM while maintaining 

area and overheads suitable for wearable and IoT devices. Solutions taken towards these problems 

have included using a deterministic measurement matrix to avoid costs associated with random 

number generation, as well as carrying out VMM using NVM crossbar arrays to reduce the power 

and delay costs associated with a sequence of multiply-accumulate operations. On the 

reconstruction side, the underlying hardware is challenged to implement a suitable reconstruction 

algorithm while maintaining an acceptable level of power and area overhead as well as hardware 

complexity. Solutions here have included maximizing parallelism in hardware, utilizing 
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approximate computing to minimize power and area overheads, and again using NVM crossbar 

arrays to reduce overheads associated with VMM.  
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 CHAPTER THREE: MFPA PLATFORM3 

 Herein, a device-level-to-architecture-level approach is proposed to integrate front-end 

signal processing within a low-footprint reconfigurable fabric that enables mixed-signal 

processing. This approach advances hybrid spin/CMOS Mixed-signal Field Programmable Arrays 

(MFPAs), which enable high-throughput on-chip Compressive Sensing via established algorithms 

for signal reconstruction. Mixed-signal techniques combined with in-memory computation geared 

to the demands of Compressive Sensing will be combined in a field-programmable and run-time 

adaptable platform. 

     As shown in Fig. 4, the MFPA architecture entails a circuit and register-level design so that an 

MFPA slice acquires analog signals and then performs CS sampling and reconstruction via In-

Memory Computing (IMC) using reduced precision/dynamic range. IMC approaches extend 

related works, such as Rabah’s architecture [15] consisting of separate processing elements (PEs) 

and memory elements (MEs). The proposed architecture develops analog computable memories, 

or analog computing arrays, where instead of storing the analog values to be used by external 

computing elements, IMC is utilized. This cross-cutting beyond von Neumann architecture 

explores the use of dense emerging NVM arrays to perform VMM necessary for execution of CS 

signal reconstruction algorithms such as OMP.  

Low energy barrier MTJs are used as compact TRNGs for generation of the CS measurement 

matrix, as justified within previously-published work [10]. The proposed MFPA is composed of 

                                                 

3 © 2020 IEEE. Part of this chapter is reprinted, with permission, from [35]. 
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two types of Functional Blocks (FBs): Configurable Digital Blocks (CDBs) and Configurable  

Analog Blocks (CABs), similar to CABs and CLBs used in previous CMOS-based FPMAs [5, 37]. 

These FBs are connected via the embedded NVM Crossbar Arrays which perform VMM. 

Furthermore, within the CDBs the recently-published MTJ-based Look-Up Table (LUT) [3] is 

used to implement Boolean functions via IMC. Additionally, hybrid spin-CMOS ADCs [66] are 

used within CABs. 

Thus, MTJs are investigated for selected processing roles to simultaneously reduce area and 

energy requirements while providing stochasticity and non-volatility needed by the OMP 

 

(a)                                                                            (b) 

 

(c) 

Fig. 4: (a) Single-slice organization for proposed MFPA architecture, (b) MFPA routing and switch 
interconnect design, and (c) Hybrid spin/charge device realization as configurable blocks within 

the MFPA fabric 

High-barrier
MTJ 
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algorithm. MFPAs can advance a unified platform on a single die accommodating a continuum of 

information conversion losses and costs targeting CS applications. Design of such a mixed-signal 

reconfigurable fabric can enable feasible hardware approaches that can execute CS algorithms 

more efficiently than digital FPGA-based or CPU-based implementations, which can then be 

extended to low-energy miniaturization for IoT sensing applications. The parallelism enabled by 

the fabric is reaily applicable to other areas as well, such as artificial intelligence [67]. 

NVM Crossbar 

The proposed MFPA architecture utilizes a 50 × 50 Global Interconnect Crossbar (GIC) as 

well as 50 × 50 NVM crossbar arrays connecting the analog and digital blocks. The NVM crossbar 

arrays consist of deterministic bit cells, along with probabilistic low-energy barrier p-bits to realize 

energy- and area-efficient implementation of CS applications. 

As previously mentioned, p-bits enable true random number generation based on thermally 

unstable MTJs. In this design, the probabilistic behavior of the device is tunable. This approach 

requires just a single p-bit and a D-FF to quantize the output to a 1 or 0. Whereas the tunable 

stochastic voltage range of p-bits is only ±50 mV, a current-summation approach is used to 

perform the matrix multiplication of the input vector with the weight matrix that corresponds to 

the measurement matrix of the CS algorithm. By utilizing a collection of programmable resistive 

elements for each weight with a fixed read current, the voltage applied to a p-bit can be tuned, 
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which in turn adjusts the probability of reading a 1 or 0. Therein, MTJ devices with a high energy 

barrier, such as 40 kT, maintain the CS matrix data in a non-volatile manner, as Fig. 5 shows.  

     The MFPA crossbar operates by applying inputs to either the rows or columns and reading the 

resulting node states, which allows the MFPA to efficiently realize CS applications. Fig. 5 depicts 

a possible implementation of the NVM Crossbar. MTJs are the targeted devices for adjusting the 

voltage applied to the input of the output p-bit device given a fixed current. According to detailed 

analysis, a write voltage with ±50mV range can provide the desired probabilistic switching 

behavior. The positive and negative voltage range is achieved through connecting one of the write 

terminals to a fixed voltage of 50mV, while the other terminal can alter from 0V to VIN-MAX = 

100mV. The read current, IREAD, is defined based on the size of the array, as elaborated in Equation 

4:  

 
 

    

 
Fig. 5: MFPA NVM Crossbar consisting of 8 MTJs per cell for In-Memory Computing, where 
red signals show the configuration flow, the blue signals depict the path for populating the 
measurement matrix and green signals illustrate the path for VMM operation 
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𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝐼𝐼𝐼𝐼−𝑀𝑀𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 

 (4)  

where RMTJ is the MTJ resistance in the anti-parallel state, and VIN-MAX is the maximum input 

voltage allowed to ensure the designed probabilistic behavior for the p-bit device. The total power 

consumption of the array during the read process can be calculated using Equation 5:  

                                      𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑉𝑉𝐷𝐷𝐷𝐷 ×  𝑁𝑁𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶     (5) 

Within this array, the input voltage range only depends on the TMR value of the MTJ, as 

expressed by Equation 6: 

 𝑉𝑉𝐼𝐼𝐼𝐼−𝑀𝑀𝑀𝑀𝑀𝑀
1+𝑇𝑇𝑇𝑇𝑇𝑇

< 𝑉𝑉𝐼𝐼𝐼𝐼 < 𝑉𝑉𝐼𝐼𝐼𝐼−𝑀𝑀𝑀𝑀𝑀𝑀    (6) 

so that the total read energy consumption of the array is determined by 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ×

𝑇𝑇𝑆𝑆𝑆𝑆 where TSW is the switching time of the p-bit device, which is on the order of 10 ps based on 

simulation results. However, TSW is lower than the time required for MOS transistor switching, so 

the energy consumption is limited by the circuit clock frequency.  

Configurable Digital Blocks (CDBs) 

Fig. 6(a) shows the proposed CDB design, similar to the architecture proposed by Wunderlich 

et al. [5]. Each CDB takes N inputs and produces M outputs. The building block of the CDB is the 

C-LUT, as described in Chapter 1 and shown in Fig. 6(b). Each C-LUT can provide two 5-input 

Boolean logic functions or one 6-input function. Consequently, each C-LUT contains 26 = 64 

memory cells. The CDB is able to interface with the analog inputs/outputs of the NVM Crossbar 
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through analog-digital and digital-analog conversion. Herein, the aforementioned spin-based AIQ 

is used for signal conversion while the C-LUT is configured to realize a LUT-based encoder [30]. 

 
 
 

Fig. 6: (a) MFPA CDB structure and (b) C-LUT circuit components utilized for CDB logic 
select/retrieval [3] 
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Configurable Analog Blocks (CABs) 

The proposed CAB design is shown in Fig. 7(a). The CAB elements include four Operational 

Transconductance Amplifiers (OTAs), four PMOS/NMOS transistors, four capacitors, and both 

high energy barrier and low energy barrier MTJs. The CAB utilizes local interconnect dimensions 

of 50 × 25. Local routing interconnects are programmed to configure CABs to implement functions 

such as square/square root, which are complex to implement digitally yet necessary for many CS 

reconstruction algorithms, e.g., for computation of vector norm. These functions can be 

implemented based on an analog multiplier circuit using the configuration shown in Fig. 7(b).  
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Fig. 7: (a) MFPA CAB structure and (b) configuration of an analog multiplier circuit using 
CAB elements 
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CHAPTER FOUR:  ENERGY AND DELAY PERFORMANCE OF MFPA 

COMPONENTS4 

The HSPICE circuit simulator is used to validate the functionality of the C-LUT using the 14 

nm Technology FinFET Predictive Model (PTM) libraries [68], the STT-MRAM model developed 

by Kim et al. in [69], the VCMA-STT-MRAM model developed by Kang et al. in [70], and the p-

bit model developed by Camsari et al. in [71] to validate the functionality of the CDB and CAB 

elements used in the proposed MFPA. Previous hardware-based CS implementations have 

included stochastic CMOS [72] and hybrid CMOS-memristor designs [73], as well as CMOS 

FPGAs for signal reconstruction [9, 14, 15]. For instance, reconstruction time using a CMOS 

FPGA was found to be 24 µs in comparison to 68 ms using a CPU implementation and 37.6 ms 

on a GPU [9]. However, CMOS-based designs suffer from significant area and leakage power 

overheads, as well as limited quality of randomness from linear feedback shift registers (LFSRs), 

in comparison to emerging device TRNG approaches [10]. 

NVM Crossbar 

      To estimate the energy reduction of the present approach over a pure-CMOS approach, the 

necessary CMOS elements required to implement a 100 × 25 single-cycle parallel weighted sum 

operation using 8-bit weights are considered, which is comparable to the computation performed 

                                                 

4 © 2020 IEEE. Part of this chapter is reprinted, with permission, from [35]. 
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within the analog array of a 100 × 25 matrix. Each weight would require eight SRAM cells to store 

the 8-bit weight as well as eight AND gates and eight 1-bit Full Adders to multiply the input bit 

with the weight. This yields a total of 20,000 SRAM cells consuming 1,050 pJ in-total [74], along 

with 20,000 Full Adders consuming 106 pJ [75, 76] in aggregate, and 20,000 AND gates 

consuming roughly 21 pJ collectively. Thus, a grand total of 1,177pJ per operation is consumed 

by the CMOS-only design, which is roughly 5-fold more energy for computation than in the 

proposed MFPA’s NVM Crossbar. Additionally, a spin-based approach offers non-volatility, as 

opposed to volatile SRAM cells. Moreover, the CMOS-only approach requires 640,287 transistors, 

while the MFPA utilizes just 20,000 MTJ devices each having an access transistor, which achieves 

a ~26-fold device reduction contributing considerable area savings per the results listed in Table 

2.  

CDB 

      Simulation results indicate that the average read energy consumption of the C-LUT is 21.9 fJ 

while the write energy consumption of the C-LUT is 155.2 fJ. Additionally, according to the 

results, the C-LUT achieves more than 80% standby power consumption reduction while providing 

around 25% reduced area footprint compared to a CMOS-based LUT.  

Table 2: Comparison of energy needed for VMM in CMOS crossbar vs. proposed 
NVM crossbar. 

Array Size CMOS X-bar Energy NVM X-bar Energy Energy Improvement 

100×25 1,177 pJ 240 pJ ~5X 
200×50 4,708 pJ 968 pJ ~4.8X 

400×100 18,832 pJ 3840 pJ ~4.9X 
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CAB 

      The CABs are used to implement circuits for computing square/square root operations used in 

CS reconstruction algorithms, such as for calculating vector norm. In addition, an inverse square 

root circuit can also be implemented as a common operation in both CS sampling (i.e., normalizing 

the measurement matrix using the norm) and CS reconstruction. Fig. 7(b) shows the circuit used. 

This circuit consists of three stages: the first stage is a logarithmic amplifier, with output voltage 

𝑉𝑉1 given by:  

𝑉𝑉1 = −𝑛𝑛1𝑉𝑉𝑇𝑇𝑙𝑙𝑙𝑙 �
𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅𝐼𝐼𝑠𝑠1

�    (7) 

where 𝑉𝑉𝑇𝑇  is thermal voltage, 𝑅𝑅  is the resistance used in that stage, 𝐼𝐼𝑠𝑠1  is the diode saturation 

current, and 𝑛𝑛1 is the diode ideality factor, given by: 𝑛𝑛1 = 𝑟𝑟𝑠𝑠1𝐼𝐼𝑠𝑠1
𝑉𝑉𝑇𝑇

 with 𝑟𝑟𝑠𝑠1 being diode saturation 

resistance. The second stage is an analog adder, with output voltage 𝑉𝑉2 given in terms of the input 

𝑉𝑉1 as 𝑉𝑉2 = −2𝑉𝑉1. Finally, the third stage is an anti-log amplifier with output voltage given in terms 

of input voltage 𝑉𝑉2 as:  

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑅𝑅𝐼𝐼𝑠𝑠2𝑒𝑒
𝑉𝑉2

𝑛𝑛2𝑉𝑉𝑇𝑇.                          (8) 

Overall, it is simple to see that the output of this circuit is given by: 

    𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑅𝑅𝐼𝐼𝑠𝑠2
(𝑅𝑅𝐼𝐼𝑠𝑠1)2𝑛𝑛1/𝑛𝑛2

(𝑉𝑉𝑖𝑖𝑖𝑖)2𝑛𝑛1/𝑛𝑛2.  (9) 

According to this theory, the circuit shown in Fig. 4(b) can be used to implement any positive 

power function of the input voltage by modifying the diode characteristics in the input/output 

stages. Furthermore, by inserting a standard inverting amplifier before the final exponentiation, 

the circuit output becomes:  
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𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑅𝑅𝐼𝐼𝑠𝑠2
(𝑅𝑅𝐼𝐼𝑠𝑠1)2𝑛𝑛1/𝑛𝑛2

(𝑉𝑉𝑖𝑖𝑖𝑖)−2𝑛𝑛1/𝑛𝑛2  (10) 

in which case any inverse power function can be implemented as well. 

This circuit was simulated in HSPICE using the 14 nm PTM LSTP transistor library [36], 

with parameters modified to achieve squaring and square root operations. Finally, an inverting 

amplifier was inserted before the final stage to achieve inverse square root operations as well. The 

results of these simulations are listed in Table 3 for the squaring circuit, Table 4 for the square root 

circuit, and Table 5 for the inverse square root circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Data for analog squaring circuit. 

VDD  0.8 V 

Input range 0.2 V – 0.6 V 

Output range 0.02 V – 0.18 V 

Computation Time 3.5 ns 

Average Power 126 µW  

Average Error 1.2% 

Max Error 6.0% 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Data for analog square root circuit. 

VDD  0.8 V 

Input range 0.2 V – 0.6 V 

Output range 0.20 V – 0.34 V 

Computation Time 6.4 ns 

Average Power 122 µW  

Average Error 0.7% 

Max Error 2.4% 

 

Table 5: Data for analog inverse square root circuit. 

VDD  0.8 V 

Input range 0.2 V – 0.6 V 

Output range 1.3 – 2.3 mV 

Computation Time 3.0 ns 

Average Power 166 µW  

Average Error 0.4% 

Max Error 1.6% 
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The result for the squaring circuit can be compared to an approximate 8-bit digital 

multiplier, proposed in earlier work [77]. The digital multiplier, operating at a 

𝑙𝑙𝑙𝑙𝑙𝑙2(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = -6 (i.e., average error of roughly 1.6%, slightly worse 

than the proposed analog design), delivered average power consumption of 126 µW while 

consisting of approximately 245 logic gates (i.e., roughly 980 transistors) while the proposed 

analog design consists of only 30 transistors. Thus, the squaring circuit produced herein produces 

slightly better error than the approximate digital multiplier, while delivering a 97% reduction in 

transistor count. 
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 CHAPTER FIVE: ASSESSMENT OF ERROR TOLERANCE 

Due to CS reconstruction being intrinsically lossy, it seems as though a small amount of 

computational error would not cause significant degradation in reconstruction performance, as 

long as the error is within a reasonable threshold below that seen in typical measurement noise 

(e.g., within 10%). This has been one of the primary motivations behind using approximate analog 

computation for performing difficult operations such as square and square root. While the 

computation errors obtained with these functions is within reasonable bounds, it is worth 

determining the impact on different CS reconstruction algorithms.  

In this chapter, three commonly-used algorithms are implemented: OMP, Compressive 

Sampling Matching Pursuit (CoSaMP), and Approximate Message Passing (AMP). In each case, 

50 random signals are generated using MATLAB, in addition to a Gaussian measurement matrix 

with normalized columns. CS parameters used are n = 1000, k = 100, and m between 200 and 500. 

For each value of m, the average reconstruction error seen amongst the 50 tested signals is 

recorded, where reconstruction error (in dB) is computed as: 𝑒𝑒 = 20 log ‖𝒙𝒙�−𝒙𝒙‖‖𝒙𝒙‖
 with 𝒙𝒙 being the 

original signal and 𝒙𝒙� being the reconstructed signal. 

Data obtained in this way is compared between two trials: Trial 1 uses exact computation, 

while Trial 2 uses approximations when computing square and square root operations. This 

includes computation of square and square root for normalization of the CS measurement matrix 

during the sampling phase. Errors are injected by multiplying squared values by a Gaussian 

random variable with mean 1 and standard deviation of 0.02, and multiplying square roots by a 

Gaussian random variable with mean 1 and standard deviation of 0.01. These distributions are 



42 

 

meant to approximate the error data reported in Table 3 and Table 4, respectively. Comparing the 

reconstruction errors in this way allows for a direct assessment of the impact delivered by using 

CABs for approximate computation. 

OMP 

 The OMP Algorithm has already been presented in the introduction and discussed 

extensively in thesis. While the OMP algorithm does not include explicit square and square root 

computations, these operations are necessary for normalization of the CS measurement matrix 

before the reconstruction phase can commence. Based on the errors introduced into these 

operations, Fig. 8 shows the error data obtained. 
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Fig. 8: Reconstruction error using OMP 

 It is seen from the graph that reconstruction error between trials using exact and 

approximate computation is usually negligible, except in the case when 300 measurements are 

taken. However, if a certain level of error (e.g., -60 dB) is expected, then the minimum number of 

measurements will be the same in both cases. 
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CoSaMP 

 The CoSaMP algorithm presents optimizations over OMP to allow for greater robustness 

over measurement noise. The algorithm is presented as Algorithm 2 below [78]: 

 

While the working principle of CoSaMP is similar to OMP (picking columns from Φ most closely 

correlated with r, and using these columns to perform least squares minimization to estimate the 

signal), CoSaMP picks multiple columns fromΦ  at each iteration as an effort to still pick the most 

closely-correlated column at every step, even if this correlation has been degraded due to 

measurement noise. CoSaMP results are shown in Fig. 9 below. 
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Fig. 9: Reconstruction error using CoSaMP 

 Like OMP, CoSaMP does not explicitly require square and square root operations, and 

only relies on these operations to normalize the measurement matrix during the sampling phase. 

As with OMP, deviations in measurement error when using CABs for approximate computing are 

negligible. 

AMP 

 While OMP and CoSaMP belong to the class of greedy reconstruction algorithms, AMP is 

a soft thresholding algorithm designed for fast convergence [79]. The algorithm is presented as 

Algorithm 3 below: 
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In this notation, sign(a)max(|a| - θ, 0) refers to element-wise vector operations, where the constant 

value θ is applied to each element. The function sign(x) is defined to be +1 for x > 0 and -1 for x 

< 0. Unlike OMP or CoSaMP, AMP uses less matrix multiplication operations and does not require 

a least squares minimization operation. Thus, AMP is known for relatively fast convergence [79]. 

Moreover, AMP requires explicit calculation of square and square root in each iteration. The error 

analysis for approximate computation was performed for AMP, as for the previous algorithms, 

with results presented in Fig. 10. Despite the explicit reliance on square and square root operations, 

AMP also shows negligible impact from approximating these operations. 
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Fig. 10: Reconstruction error using AMP 

 Table 6 lists the value of mc, i.e., the minimum number of measurements necessary to attain 

a reconstruction error less than -60 dB using exact versus approximate square and square root 

operations (given to within 5 measurements). The table demonstrates no need to increase number 

of measurements for OMP and CoSaMP, with AMP needing 2.5% more measurements to attain 

the same measurement error. Thus, the overall conclusion is that the approximation error presented 

by the CABs has minimal impact on CS reconstruction accuracy and performance of the MFPA.   
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Table 6: Minimum number of measurements needed for -60 dB error, 
using exact and approximate square/square root operations. 

 
Algorithm mc (exact) mc (approximate) 

OMP 390 390 

CoSaMP 370 370 

AMP 395 405 
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 CHAPTER SIX: FABRIC-BASED CS REALIZATION 

Sampling Architecture 

As outlined in Chapter 1, Compressive Sensing (CS) requires a measurement matrix, 𝜱𝜱, which 

multiplies the signal vector x to yield the compressed measurement vector, y. Often the signal 

vector will contain a region of interest (RoI) sampled at a higher rate than the rest of the signal. To 

accomplish this, the columns in 𝜱𝜱 which coincide with the RoI should have a higher concentration 

of nonzero elements than the other columns. As proposed by Salehi et al. [10] the measurement 

matrix can be generated using a spin-based crossbar architecture as shown in Fig. 5. In this 

approach, p-bits located at the top of each column are used to populate their respective columns. 

The input voltage to the p-bit at each column allows for tunable stochasticity of the output which 

can be utilized to generate the CS measurement matrix adaptively according to the signal 

characteristics such as noise, sparsity rate, and region of interest. The p-bit enables a tunable 

TRNG, in which higher input voltage yields a higher probability of nonzero values being 

generated. The p-bit output is amplified via a CMOS inverter and fed into a power-gated D-FF to 

generate a digital output string, and these values are written into the measurement matrix row-by-

row, i.e., one row per clock cycle. As shown in Fig. 5, the red lines show the configuration flow, 

the blue lines depict the path for populating the measurement matrix and the green lines illustrate 

the path for the VMM operation. 
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Reconstruction Architecture 

After the measurement matrix is generated, and values are stored in the NVM array, any 

algorithm can be used for signal reconstruction. For the purposes of this chapter, Algorithm 3 

(AMP) will be used. In this example, the CS parameters assumed are n = 256 and m = 64. Thus,  

the size of Φ is 256 × 64, vectors y and r have length 64, and vectors 𝒙𝒙� and a have length 256. 

Furthermore, digital operations are carried out using 5-bit precision. Four types of digital 

operations are carried out: a Type-I operation computes a 5-bit value based on two input 

operands (i.e., 10 input bits); scalar multiplication is an example of this type of operation. Since 

the LUTs available only take 6 inputs, each output bit requires 2 LUTs. Thus, a total of 10 LUTs 

is required for this operation.  

A Type-II operation computes a 5-bit output based on a single input, an example of 

which is absolute value. In this operation, only one LUT is required per output bit and hence a 

total of 5 LUTs is needed. A Type-III operation computes a 1-bit output based on a single input; 

an example of this is the sign function. For this operation, only 1 LUT is needed. Finally, a Type-

IV operation takes in a vector (in this case, 𝒙𝒙�𝑖𝑖) and calculates the zero-norm of this vector. This 

operation, working over several cycles, must take in all 256 components of this vector and output 

8 bits of data, representing the number of non-zero components. This takes a total of 256 × 8 = 

2048 LUT operations.   

The AMP algorithm first requires calculating the thresholding parameter, 

θ = �𝒓𝒓𝑖𝑖−1�/√𝑚𝑚. This operation is first approached using 64 CAB arrays, which compute θ in 

two cycles: one to compute the 64 squaring operations necessary for the norm in parallel, and a 
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second to take the square root of the sum of these operations and also compute 1/√𝑚𝑚. Next, the 

ADC converts both �𝒓𝒓𝑖𝑖−1� and 1/√𝑚𝑚 to digital values, which are then multiplied using 10 LUTs 

provided by 2 CDBs to produce θ.  

AMP next requires computation of vector a, which is done in parallel with 

θ. Computation of vector a requires a 256 × 64 VMM operation, i.e., 𝜱𝜱𝑇𝑇𝒓𝒓𝑖𝑖−1, which can be 

carried out in one cycle using the NVM crossbar array. Another cycle is taken to carry out the 

vector addition, 𝒙𝒙�𝑖𝑖−1+𝜱𝜱𝑇𝑇𝒓𝒓𝑖𝑖−1, after which the results are converted from analog to digital to 

output a digital representation of vector a.  

Next, a and θ are fed into an array of 320 CDBs which compute 𝒙𝒙�𝑖𝑖 using the formula  

𝒙𝒙�𝑖𝑖 = sign(𝒂𝒂) max(abs(𝒂𝒂) – θ, 0), which is a series of element-wise operations on vectors of size 

256. Since the CDB array provides 320 × 8 = 2560 LUTs, Type-I operations requiring 256 × 10 

= 2560 LUTs can be carried out in 1 cycle. Once the CDB array computes 𝒙𝒙�𝑖𝑖 and 𝑏𝑏𝑖𝑖 = �𝒙𝒙�𝑖𝑖�
0

/𝑚𝑚, 

the results are converted to analog and fed into the 256 × 64 crossbar array to determine 𝒓𝒓𝑖𝑖 using 

the formula 𝒓𝒓𝑖𝑖 = 𝐲𝐲 –  𝜱𝜱𝒙𝒙�𝑖𝑖 + 𝑏𝑏𝑖𝑖𝒓𝒓𝑖𝑖−1. The flow for this architecture is shown in Fig. 11. 

 The hardware energy costs associated with executing the operations shown in Fig. 11 are 

listed in Table 7. The table summarizes the amount of energy per unit area required for crossbar 

operations using both NVM and CMOS, based on information reported earlier in Table 2. Data for 

analog operations is based on Tables 3 – 5, and data for LUT and ADC operations is from previous 

publications, as referenced in the table. 
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Fig. 11: Hardware architecture for AMP reconstruction 

 

Next, Table 8 lists each of the operations completed by the architecture of Fig. 11 to estimate 

the amount of energy consumed in one cycle. The table compares the energy consumed by this 

architecture with the energy consumed by an equivalent CMOS-based digital architecture, which 

uses SRAM-based LUTs in place of CAB/CDB arrays, and CMOS-based crossbar arrays in place 

of the proposed NVM crossbar. The calculations are based on the following assumptions: a) square 

root in digital can be accomplished in 12 cycles, as previously reported in the literature [80], b) 

1/m is computed by squaring the previously-computed 1/√𝑚𝑚  result, and c) DAC and ADC 

operations take roughly the same amount of energy per bit. These calculations neglect the energy 

savings due to the reduced static leakage offered by C-LUTs. 
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Table 7: MFPA energy costs. 

Operation Energy Cost (pJ) 
NVM crossbar operation per unit cell 0.096 

CMOS crossbar operation per unit cell 0.48 

Analog squaring 0.441 

Analog square root 0.781 

Analog inverse square root 0.498 

5-bit MRAM LUT operation [3] 0.00858 

5-bit SRAM LUT operation [3] 0.00253 

5-bit ADC [30] 0.534 

 

 The results demonstrate that the vast majority of energy taken by the architecture in Fig. 

11 is consumed by the crossbars implementing VMM. Due to the NVM crossbar being roughly 5 

times as energy efficient as its CMOS counterpart, the total energy consumed by the algorithm 

turns out to be roughly 4.4 times less using the proposed hardware versus the digital CMOS 

equivalent. 
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Table 8: Energy for AMP. 

Operation Hardware 
Unit 

MFPA Energy 
Cost (pJ) 

Digital CMOS Energy 
Cost (pJ) 

Square each component of 𝒓𝒓𝑖𝑖−1. CAB 28.2 1.6 

Compute square root to obtain �𝒓𝒓𝑖𝑖−1�. CAB 0.8 0.2 

1/√𝑚𝑚 CAB 0.5 0.2 

Convert �𝒓𝒓𝑖𝑖−1� and 1/√𝑚𝑚 to digital. ADC 1.1 N/A 

θ = �𝒓𝒓𝑖𝑖−1�/√𝑚𝑚 CDB 0.1 0.03 

𝒂𝒂 = 𝒙𝒙�𝑖𝑖−1+𝜱𝜱𝑇𝑇𝒓𝒓𝑖𝑖−1 X-Bar 1572.9 7863.3 

Convert a to digital ADC 136.7 N/A 

sign(𝒂𝒂) CDB 2.2 0.6 

abs(𝒂𝒂) CDB 11.0 3.2 

abs(𝒂𝒂) – θ CDB 22.0 6.5 

max(abs(𝒂𝒂) – θ, 0) CDB 11.0 3.2 

𝒙𝒙�𝑖𝑖 = sign(𝒂𝒂) max(abs(𝒂𝒂) – θ, 0) CDB 22.0 6.5 

�𝒙𝒙�𝑖𝑖�0 CDB 17.6 5.2 

1/m CDB 0.1 0.03 

𝑏𝑏𝑖𝑖 = �𝒙𝒙�𝑖𝑖�0/𝑚𝑚 CDB 0.1 0.03 

Convert 𝑏𝑏𝑖𝑖 and 𝒙𝒙�𝑖𝑖 to analog. DAC 137.2 N/A 

𝒓𝒓𝑖𝑖 = 𝐲𝐲 –  𝜱𝜱𝒙𝒙�𝑖𝑖 + 𝑏𝑏𝑖𝑖𝒓𝒓𝑖𝑖−1 X-Bar 1579.0 7895.0 

Total  3542.5 15,785.6 
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Further Benefits 

While Table 8 shows that the CAB square and square root operations consume more energy 

than equivalent CMOS implementations, this result can be improved by upgrading the speed of 

op-amps included with the CABs. Simulation results in Tables 3 – 5 assumed op-amps operating 

at a slew rate of roughly 150 V/µs. If high-speed op-amps, with slew rate > 1000 V/µs, are used 

instead, then the delay associated with these operations will decrease, resulting in lower energy 

consumption if power remains unchanged. Furthermore, even at current speeds, CABs allow for 

single-cycle computation of functions such as square root. For an algorithm such as AMP where 

such a computation is a bottleneck, use of the CABs can allow for significant reductions in total 

computation time of these functions (i.e., two cycles taken for computation and analog-to-digital 

conversion, versus 12 cycles taken by a digital circuit [80]). Finally, CABs allow for 

computation using only 40 transistors, versus thousands of transistors consumed by a LUT 

implementation, resulting in considerable area savings even though some of these area benefits 

are lost due to ADC. These area savings are in addition to the 97% area reduction associated with 

the NVM crossbars, and 25% reduced area footprint of C-LUTs (both compared to CMOS).   
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CHAPTER SEVEN: CONCLUSIONS 

Technical Summary and Insights 

 A Mixed-signal Field Programmable Array (MFPA) was proposed as a solution to energy 

and area limitations associated with CS in applications such as IoT devices. Motivated by earlier 

work attempting to mitigate the power, area, and complexity requirements of CS sampling and 

reconstruction algorithms through approaches such as approximate computing and NVM crossbar-

based VMM, a hybrid architecture was proposed where CS sampling is performed using an NVM 

crossbar, and reconstruction is then split between the crossbar, Computational Analog Blocks 

(CABs) and Computational Digital Blocks (CDBs). In this approach, all VMM operations are done 

using the crossbar, functions such as square and square root which would take several cycles to 

implement digitally are approximately computed in analog, and all other operations are computed 

digitally using spin-based Clockless Lookup Tables (C-LUTs).  

 The NVM crossbar array contains hardware for true random number generation, which is 

convenient for efficiently generating the CS measurement matrix. Afterwards, the same hardware 

is used for VMM in the CS sampling stage. Moreover, the NVM array features logic-in-memory 

properties which eliminates overheads associated with data movement, and can be reconfigured to 

any size for adaptability to a variety of sampling rates and quantization resolutions. Each CAB 

within the MFPA fabric can realize one analog multiplier/square unit, which can also be adapted 

to compute square root and inverse square root. Meanwhile, each CDB can realize eight 6-input 

fracturable LUTs sufficient to implement operations such as scalar multiplication. 
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Simulation results with 14 nm CMOS and STT-based 2-terminal spintronic device libraries 

indicate that the NVM crossbar allows for a roughly 5× reduction in energy and 32× reduction in 

transistor count, compared to CMOS. CABs allow for implementation of an approximate analog 

multiplier circuit featuring 32× reduction in transistor count compared to CMOS, as well as single-

cycle implementations of functions which take many cycles to compute digitally. Finally, CDBs 

feature 25% reduction in area footprint and 80% reduction in static power consumption compared 

to CMOS. 

To determine the feasibility of the proposed design in implementing CS reconstruction, 

first the error generated by the CABs was injected into three common CS reconstruction algorithms 

to assess the impact of this error on the results. In all three cases, the impact of the approximation 

error was determined to be negligible, i.e., it had minimal impact on the amount of measurements 

necessary to achieve a set reconstruction error of -60 dB. 

Finally, a full architecture was proposed specifically for implementation of CS 

reconstruction using Approximate Message Passing (AMP). Estimated results indicated a roughly 

4.4× reduction in energy usage compared to CMOS, in addition to expected delay reductions by 

using CABs, and area savings due to significantly reduced transistor count as compared to CMOS. 

The thesis flow is summarized in Fig. 12. 

          Chapter 3          Chapter 4         Chapter 5       Chapter 6 

 

 

Fig. 12: Logical organization of this thesis 

Propose MFPA Evaluate MFPA 
component-wise 

Evaluate impact 
of MFPA error 

Evaluate MFPA 
on algorithm scale 
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Technical insights gained from the work presented herein are summarized below: 

• Analog computation can offer significant benefits in terms of latency and area, 

compared to traditional digital computation.  

• Spin-based architectures offer sizable reductions in area due to their ability to be 

fabricated vertically onto silicon. 

• Spin-based architectures provide significant benefits in terms of energy 

consumption, compared to CMOS. 

• CS reconstruction algorithms are insensitive to small computation errors. Hence, 

schemes leveraging approximate computation for area/power mitigation are 

effective for CS. 

• The vast majority of energy consumed during CS reconstruction is taken by VMM 

operations (about 89% of total energy for the simulation presented in Chapter 6). 

The second most energy is taken by ADC/DAC operations (7.8% of total energy). 

Thus, the following insights are gained: 

o Any approach aiming to minimize CS energy consumption should primarily 

target VMM operations. 

o While analog computation does introduce extra overheads related to 

ADC/DAC, these overheads are tolerable since they are significantly less 

than energy reductions that can be attained through more efficient VMM.  
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Scope and Limitations 

 The obvious limitation of this work is the inability to fabricate the proposed fabric. Thus, 

all results presented in Chapter 4 are strictly simulation-based and hence uncertain in regards to 

how well they will transfer over to a fabricated chip. Moreover, the algorithm-level results 

presented in Chapter 6 are crude estimates due to the fact that no CAD tool is yet available for the 

proposed fabric and hence the results had to be computed by hand. While these factors can affect 

the accuracy of the results presented, the size of the estimated energy and area gaps between the 

proposed fabric and the CMOS equivalent are promising, and indeed suggest that going to the next 

step of developing specialized MFPA CAD tools or even developing a fabricated product may be 

worthwhile.   

Future Work 

 The advantages of mixed-signal processing, approximate computation, and NVM-based 

architectures are promising and open doors for several interesting research questions, including: 

• How would the performance of the proposed NVM crossbar array change if the 

NVM device were changed to RRAM or PCM? What would be the tradeoffs and 

how would the issue of sneak currents factor into this? 

• Given the tolerance to approximate computing, what is the optimal bit resolution to 

use for the digital computations? 
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• Which CS reconstruction algorithm benefits most from this type of mixed-signal 

architecture? For example, would OMP, more heavy in VMM operations, benefit 

more from this architecture than AMP? 

• How tolerant is the MFPA architecture to process variations in each of the 

underlying components? 

While in the current stage performance better than CMOS-based digital computation has been 

shown, the above questions must be answered before the design can be proven optimal. Only at 

this point will the cost of device fabrication be justified. 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

APPENDIX: COPYRIGHT PERMISSIONS 

 

 

 



62 

 

 



63 

 

REFERENCES 

[1] J. Huang, M. Parris, J. Lee, and R. F. Demara, "Scalable FPGA-based architecture for DCT 

computation using dynamic partial reconfiguration," ACM Transactions on Embedded 

Computing Systems, vol. 9, no. 1, p. 9, 2009. 

[2] H. Tan and R. F. DeMara, "A multilayer framework supporting autonomous run-time 

partial reconfiguration," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 16, no. 5, pp. 504-516, 2008. 

[3]  S. Salehi, R. Zand, and R. F. DeMara, "Clockless Spin-based Look-Up Tables with Wide 

Read Margin," in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019: 

ACM, pp. 363-366.  

[4] R. A. Ashraf and R. F. DeMara, "Scalable FPGA refurbishment using netlist-driven 

evolutionary algorithms," IEEE Transactions on Computers, vol. 62, no. 8, pp. 1526-1541, 

2013. 

[5] R. B. Wunderlich, F. Adil, and P. Hasler, "Floating gate-based field programmable mixed-

signal array," IEEE Transactions on Very Large Scale Integration Systems, vol. 21, no. 8, 

pp. 1496-1505, 2012. 

[6] Y. Huang, "Hybrid Analog-Digital Co-Processing for Scientific Computation," Columbia 

University, 2018.  



64 

 

[7]  B. Rumberg and D. W. Graham, "A low-power field-programmable analog array for 

wireless sensing," in Sixteenth International Symposium on Quality Electronic Design, 

2015: IEEE, pp. 542-546.  

[8] J. C. Kemerling, R. Greenwell, and B. Bharath, "Analog-and mixed-signal fabrics," 

Proceedings of the IEEE, vol. 103, no. 7, pp. 1087-1101, 2015. 

[9]  A. Septimus and R. Steinberg, "Compressive sampling hardware reconstruction," in 

Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010: IEEE, 

pp. 3316-3319.  

[10]  S. Salehi, A. Zaeemzadeh, A. Tatulian, N. Rahnavard, and R. F. DeMara, "MRAM-based 

Stochastic Oscillators for Adaptive Non-Uniform Sampling of Sparse Signals in IoT 

Applications," in Symposium on VLSI Circuits, 2019.  

[11]  R. Chartrand, "Fast algorithms for nonconvex compressive sensing: MRI reconstruction 

from very few data," in 2009 IEEE International Symposium on Biomedical Imaging: 

From Nano to Macro, 2009: IEEE, pp. 262-265.  

[12]  A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, "Adaptive non-uniform compressive 

sampling for time-varying signals," in 2017 51st Annual Conference on Information 

Sciences and Systems (CISS), 2017: IEEE, pp. 1-6.  

[13] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, "A review of sparse recovery 

algorithms," IEEE Access, vol. 7, pp. 1300-1322, 2018. 



65 

 

[14]  J. L. Stanislaus and T. Mohsenin, "Low-complexity FPGA implementation of compressive 

sensing reconstruction," in 2013 International Conference on Computing, Networking and 

Communications (ICNC), 2013: IEEE, pp. 671-675.  

[15] H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, and P. K. Meher, "FPGA 

implementation of orthogonal matching pursuit for compressive sensing reconstruction," 

IEEE Transactions on very large scale integration Systems, vol. 23, no. 10, pp. 2209-2220, 

2014. 

[16] M. G. Parris, C. A. Sharma, and R. F. Demara, "Progress in autonomous fault recovery of 

field programmable gate arrays," ACM Computing Surveys (CSUR), vol. 43, no. 4, pp. 1-

30, 2011. 

[17]  R. F. DeMara and K. Zhang, "Autonomous FPGA fault handling through competitive 

runtime reconfiguration," in 2005 NASA/DoD Conference on Evolvable Hardware 

(EH'05), 2005: IEEE, pp. 109-116.  

[18] R. F. Demara, "Runtime-competitive fault handling for reconfigurable logic devices," ed: 

Google Patents, 2008. 

[19] R. F. DeMara, K. Zhang, and C. A. Sharma, "Autonomic fault-handling and refurbishment 

using throughput-driven assessment," Applied Soft Computing, vol. 11, no. 2, pp. 1588-

1599, 2011. 

[20]  J. Lohn, G. Larchev, and R. DeMara, "Evolutionary fault recovery in a Virtex FPGA using 

a representation that incorporates routing," in Proceedings International Parallel and 

Distributed Processing Symposium, 2003: IEEE, p. 8 pp.  



66 

 

[21]  K. Zhang, R. F. DeMara, and C. A. Sharma, "Consensus-based evaluation for fault 

isolation and on-line evolutionary regeneration," in International Conference on Evolvable 

Systems, 2005: Springer, pp. 12-24.  

[22] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, "Optimization of NULL 

convention self-timed circuits," Integration, vol. 37, no. 3, pp. 135-165, 2004. 

[23] W. Kuang, P. Zhao, J. S. Yuan, and R. F. DeMara, "Design of asynchronous circuits for 

high soft error tolerance in deep submicrometer CMOS circuits," IEEE transactions on 

very large scale integration (VLSI) systems, vol. 18, no. 3, pp. 410-422, 2009. 

[24]  K. Zhang, G. Bedette, and R. F. DeMara, "Triple modular redundancy with standby 

(TMRSB) supporting dynamic resource reconfiguration," in 2006 IEEE Autotestcon, 2006: 

IEEE, pp. 690-696.  

[25] R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara, "Sustainable modular adaptive 

redundancy technique emphasizing partial reconfiguration for reduced power 

consumption," International Journal of Reconfigurable Computing, vol. 2011, 2011. 

[26] A. Roohi, R. F. DeMara, and N. Khoshavi, "Design and evaluation of an ultra-area-efficient 

fault-tolerant QCA full adder," Microelectronics Journal, vol. 46, no. 6, pp. 531-542, 2015. 

[27] A. Roohi, R. Zand, and R. F. DeMara, "A tunable majority gate-based full adder using 

current-induced domain wall nanomagnets," IEEE Transactions on Magnetics, vol. 52, no. 

8, pp. 1-7, 2016. 



67 

 

[28] A. Roohi, R. Zand, D. Fan, and R. F. DeMara, "Voltage-based concatenatable full adder 

using spin hall effect switching," IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 36, no. 12, pp. 2134-2138, 2017. 

[29] S. Salehi, D. Fan, and R. F. Demara, "Survey of STT-MRAM cell design strategies: 

Taxonomy and sense amplifier tradeoffs for resiliency," ACM Journal on Emerging 

Technologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1-16, 2017. 

[30] S. Salehi, M. B. Mashhadi, A. Zaeemzadeh, N. Rahnavard, and R. F. DeMara, "Energy-

Aware Adaptive Rate and Resolution Sampling of Spectrally Sparse Signals Leveraging 

VCMA-MTJ Devices," IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, vol. 8, no. 4, pp. 679-692, 2018. 

[31]  L. Wei et al., "13.3 A 7Mb STT-MRAM in 22FFL FinFET Technology with 4ns Read 

Sensing Time at 0.9 V Using Write-Verify-Write Scheme and Offset-Cancellation Sensing 

Technique," in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019: 

IEEE, pp. 214-216.  

[32] R. Zand, A. Roohi, S. Salehi, and R. F. DeMara, "Scalable adaptive spintronic 

reconfigurable logic using area-matched MTJ design," IEEE Transactions on Circuits and 

Systems II: Express Briefs, vol. 63, no. 7, pp. 678-682, 2016. 

[33] R. Zand, A. Roohi, D. Fan, and R. F. DeMara, "Energy-efficient nonvolatile reconfigurable 

logic using spin hall effect-based lookup tables," IEEE Transactions on Nanotechnology, 

vol. 16, no. 1, pp. 32-43, 2016. 



68 

 

[34]  S. Salehi, R. Zand, A. Zaeemzadeh, N. Rahnavard, and R. F. DeMara, "AQuRate: MRAM-

based Stochastic Oscillator for Adaptive Quantization Rate Sampling of Sparse Signals," 

in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019: ACM, pp. 359-362.  

[35]  A. Tatulian, S. Salehi, and R. F. DeMara, "Mixed-Signal Spin/Charge Reconfigurable 

Array for Energy-Aware Compressive Signal Processing," in 2019 International 

Conference on ReConFigurable Computing and FPGAs (ReConFig), 2019: IEEE, pp. 1-

8.  

[36]  C. Schlottmann and P. Hasler, "FPAA empowering cooperative analog-digital signal 

processing," in 2012 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2012: IEEE, pp. 5301-5304.  

[37] S. George et al., "A programmable and configurable mixed-mode FPAA SoC," IEEE 

Transactions on Very Large Scale Integration Systems, vol. 24, no. 6, pp. 2253-2261, 2016. 

[38] Y. Choi, Y. Lee, S.-H. Baek, S.-J. Lee, and J. Kim, "CHIMERA: A Field-Programmable 

Mixed-Signal IC With Time-Domain Configurable Analog Blocks," IEEE Journal of 

Solid-State Circuits, vol. 53, no. 2, pp. 431-444, 2017. 

[39]  S. D. Pyle, V. Thangavel, S. M. Williams, and R. F. DeMara, "Self-Scaling Evolution of 

analog computation circuits with digital accuracy refinement," in 2015 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2015: IEEE, pp. 1-8.  

[40]  R. S. Oreifej, R. N. Al-Haddad, H. Tan, and R. F. DeMara, "Layered approach to intrinsic 

evolvable hardware using direct bitstream manipulation of Virtex II Pro devices," in 2007 



69 

 

International Conference on Field Programmable Logic and Applications, 2007: IEEE, 

pp. 299-304.  

[41]  R. S. Oreifej, C. A. Sharma, and R. F. DeMara, "Expediting GA-based evolution using 

group testing techniques for reconfigurable hardware," in 2006 IEEE International 

Conference on Reconfigurable Computing and FPGA's (ReConFig 2006), 2006: IEEE, pp. 

1-8.  

[42] V. Thangavel, Z.-X. Song, and R. F. DeMara, "Intrinsic evolution of truncated Puiseux 

series on a mixed-signal field-programmable soc," IEEE Access, vol. 4, pp. 2863-2872, 

2016. 

[43] S. Park, J. Kim, and S. Yoon, "Energy-aware Placement for SRAM-NVM Hybrid FPGAs." 

[44] J. Cong and B. Xiao, "FPGA-RPI: A novel FPGA architecture with RRAM-based 

programmable interconnects," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 22, no. 4, pp. 864-877, 2013. 

[45] K. Huang, R. Zhao, W. He, and Y. Lian, "High-density and high-reliability nonvolatile 

field-programmable gate array with stacked 1D2R RRAM array," IEEE Transactions on 

Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 139-150, 2015. 

[46]  X. Tang, P.-E. Gaillardon, and G. De Micheli, "A high-performance low-power near-Vt 

RRAM-based FPGA," in 2014 International Conference on Field-Programmable 

Technology (FPT), 2014: IEEE, pp. 207-214.  



70 

 

[47]  Y. Y. Liauw, Z. Zhang, W. Kim, A. El Gamal, and S. S. Wong, "Nonvolatile 3D-FPGA 

with monolithically stacked RRAM-based configuration memory," in 2012 IEEE 

International Solid-State Circuits Conference, 2012: IEEE, pp. 406-408.  

[48]  S. Paul, S. Mukhopadhyay, and S. Bhunia, "Hybrid CMOS-STTRAM non-volatile FPGA: 

Design challenges and optimization approaches," in 2008 IEEE/ACM International 

Conference on Computer-Aided Design, 2008: IEEE, pp. 589-592.  

[49]  K. Jo, K. Cho, and H. Yoon, "Variation-tolerant and low power look-up table (LUT) using 

spin-torque transfer magnetic RAM for non-volatile field programmable gate array 

(FPGA)," in 2016 International SoC Design Conference (ISOCC), 2016: IEEE, pp. 101-

102.  

[50]  J. Kim, K. T. Kim, and E.-Y. Chung, "CAD Tool Flow for Variation-Tolerant Non-

Volatile STT-MRAM LUT based FPGA," in Proceedings of the 2018 7th International 

Conference on Software and Computer Applications, 2018: ACM, pp. 312-316.  

[51]  Y. Chen, J. Zhao, and Y. Xie, "3D-NonFAR: Three-dimensional non-volatile FPGA 

architecture using phase change memory," in Proceedings of the 16th ACM/IEEE 

international symposium on Low power electronics and design, 2010, pp. 55-60.  

[52]  P.-E. Gaillardon et al., "Phase-change-memory-based storage elements for configurable 

logic," in 2010 International Conference on Field-Programmable Technology, 2010: 

IEEE, pp. 17-20.  

[53] K. Huang, Y. Ha, R. Zhao, A. Kumar, and Y. Lian, "A low active leakage and high 

reliability phase change memory (PCM) based non-volatile FPGA storage element," IEEE 



71 

 

Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp. 2605-2613, 

2014. 

[54] M. Fardad, S. M. Sayedi, and E. Yazdian, "A Low-Complexity Hardware for Deterministic 

Compressive Sensing Reconstruction," IEEE Transactions on Circuits and Systems I: 

Regular Papers, vol. 65, no. 10, pp. 3349-3361, 2018. 

[55] S. Leitner, H. Wang, and S. Tragoudas, "Design of scalable hardware-efficient 

compressive sensing image sensors," IEEE Sensors Journal, vol. 18, no. 2, pp. 641-651, 

2017. 

[56]  A. Jafari, A. Page, C. Sagedy, E. Smith, and T. Mohsenin, "A low power seizure detection 

processor based on direct use of compressively-sensed data and employing a deterministic 

random matrix," in 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), 

2015: IEEE, pp. 1-4.  

[57]  Y. Massoud, F. Xiong, and S. Smaili, "A memristor-based random modulator for 

compressive sensing systems," in 2012 IEEE International Symposium on Circuits and 

Systems, 2012: IEEE, pp. 2445-2448.  

[58] F. Qian, Y. Gong, G. Huang, M. Anwar, and L. Wang, "Exploiting memristors for 

compressive sampling of sensory signals," IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 26, no. 12, pp. 2737-2748, 2018. 

[59]  S. P. Kadiyala, V. K. Pudi, and S.-K. Lam, "Approximate compressed sensing for 

hardware-efficient image compression," in 2017 30th IEEE International System-on-Chip 

Conference (SOCC), 2017: IEEE, pp. 340-345.  



72 

 

[60]  F. Ren, R. Dorrace, W. Xu, and D. Marković, "A single-precision compressive sensing 

signal reconstruction engine on FPGAs," in 2013 23rd International Conference on Field 

programmable Logic and Applications, 2013: IEEE, pp. 1-4.  

[61]  S. Liu, A. Ren, Y. Wang, and P. K. Varshney, "Ultra-fast robust compressive sensing 

based on memristor crossbars," in 2017 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2017: IEEE, pp. 1133-1137.  

[62] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, "Compressed 

sensing with approximate message passing using in-memory computing," IEEE 

Transactions on Electron Devices, vol. 65, no. 10, pp. 4304-4312, 2018. 

[63] A. Kulkarni and T. Mohsenin, "Low overhead architectures for OMP compressive sensing 

reconstruction algorithm," IEEE Transactions on Circuits and Systems I: Regular Papers, 

vol. 64, no. 6, pp. 1468-1480, 2017. 

[64] D. Bellasi, M. Crescentini, D. Cristaudo, A. Romani, M. Tartagni, and L. Benini, "A 

Broadband Multi-Mode Compressive Sensing Current Sensor SoC in 0.16$\mu $ m 

CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 

105-118, 2018. 

[65]  D. Bortolotti et al., "Approximate compressed sensing: ultra-low power biosignal 

processing via aggressive voltage scaling on a hybrid memory multi-core processor," in 

Proceedings of the 2014 international symposium on Low power electronics and design, 

2014: ACM, pp. 45-50.  



73 

 

[66] S. Salehi and R. F. DeMara, "SLIM-ADC: Spin-based Logic-In-Memory Analog to Digital 

Converter leveraging SHE-enabled Domain Wall Motion devices," Microelectronics 

Journal, vol. 81, pp. 137-143, 2018. 

[67] R. F. DeMara and D. I. Moldovan, "The SNAP-1 parallel AI prototype," IEEE 

Transactions on Parallel and Distributed Systems, vol. 4, no. 8, pp. 841-854, 1993. 

[68] "22nm Predictive Technology Model (PTM)." http://ptm.asu.edu/ (accessed March 2, 

2020). 

[69]  J. Kim, A. Chen, B. Behin-Aein, S. Kumar, J.-P. Wang, and C. H. Kim, "A technology-

agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability 

studies," in 2015 IEEE custom integrated circuits conference (CICC), 2015: IEEE, pp. 1-

4.  

[70] W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, "Modeling and exploration of the 

voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-

speed MRAM applications," IEEE Transactions on Nanotechnology, vol. 16, no. 3, pp. 

387-395, 2017. 

[71] K. Y. Camsari, S. Salahuddin, and S. Datta, "Implementing p-bits with embedded MTJ," 

IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767-1770, 2017. 

[72] Y. Oike and A. El Gamal, "CMOS image sensor with per-column ΣΔ ADC and 

programmable compressed sensing," IEEE Journal of Solid-State Circuits, vol. 48, no. 1, 

pp. 318-328, 2012. 

http://ptm.asu.edu/


74 

 

[73]  F. Qian, Y. Gong, G. Huang, K. Ahi, M. Anwar, and L. Wang, "A memristor-based 

compressive sensing architecture," in 2016 IEEE/ACM International Symposium on 

Nanoscale Architectures (NANOARCH), 2016: IEEE, pp. 109-114.  

[74]  A. Biswas and A. P. Chandrakasan, "A 0.36 V 128Kb 6T SRAM with energy-efficient 

dynamic body-biasing and output data prediction in 28nm FDSOI," in ESSCIRC 

Conference 2016: 42nd European Solid-State Circuits Conference, 2016: IEEE, pp. 433-

436.  

[75] I. Hassoune, D. Flandre, and I. O'Connor, "ULPFA: A new efficient design of a power-

aware full adder," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, 

no. 8, pp. 2066-2074, 2008. 

[76] A. T. Mahani and P. Keshavarzian, "A novel energy-efficient and high speed full adder 

using CNTFET," Microelectronics Journal, vol. 61, pp. 79-88, 2017. 

[77] H. Jiang, C. Liu, F. Lombardi, and J. Han, "Low-power approximate unsigned multipliers 

with configurable error recovery," IEEE Transactions on Circuits and Systems I: Regular 

Papers, vol. 66, no. 1, pp. 189-202, 2018. 

[78]  J. Lu, H. Zhang, and H. Meng, "Novel hardware architecture of sparse recovery based on 

FPGAs," in 2010 2nd International Conference on Signal Processing Systems, 2010, vol. 

1: IEEE, pp. V1-302-V1-306.  

[79]  L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, "High-speed compressed 

sensing reconstruction on FPGA using OMP and AMP," in 2012 19th IEEE International 

Conference on Electronics, Circuits, and Systems (ICECS 2012), 2012: IEEE, pp. 53-56.  



75 

 

[80]  A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and D. Bhattacharjee, "A fast FPGA based 

architecture for computation of square root and inverse square root," in 2017 Devices for 

Integrated Circuit (DevIC), 2017: IEEE, pp. 383-387.  

 


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Need for Mixed-Signal Reconfigurable Arrays
	Compressive Sensing
	Spin-Based Computation and Architectural Approaches
	Contributions and Organization of Thesis

	CHAPTER TWO: RELATED WORKS
	Mixed-signal Arrays
	NVM-Based FPGAs
	Hardware for Implementation of CS Sampling
	Hardware for Implementation of CS Reconstruction
	Summary

	CHAPTER THREE: MFPA PLATFORM
	NVM Crossbar
	Configurable Digital Blocks (CDBs)
	Configurable Analog Blocks (CABs)

	CHAPTER FOUR:  ENERGY AND DELAY PERFORMANCE OF MFPA COMPONENTS
	NVM Crossbar
	CDB
	CAB

	CHAPTER FIVE: ASSESSMENT OF ERROR TOLERANCE
	OMP
	CoSaMP
	AMP

	CHAPTER SIX: FABRIC-BASED CS REALIZATION
	Sampling Architecture
	Reconstruction Architecture
	Further Benefits

	CHAPTER SEVEN: CONCLUSIONS
	Technical Summary and Insights
	Scope and Limitations
	Future Work

	APPENDIX: COPYRIGHT PERMISSIONS
	REFERENCES

