

AN ADAPTIVE MODULAR REDUNDANCY TECHNIQUE TO SELF-

REGULATE AVAILABILITY, AREA, AND ENERGY CONSUMPTION IN

MISSION-CRITICAL APPLICATIONS

by

RAWAD N. AL-HADDAD
B.S. JORDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, 2003

M.S. UNIVERSITY OF CENTRAL FLORIDA, 2008

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2011

Major Professor: Ronald F. DeMara

ii

© 2011 Rawad N. Al-Haddad

iii

 ABSTRACT

As reconfigurable devices‟ capacities and the complexity of applications that use them increase,

the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable

Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system

is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety

of self-regulating properties to control availability, energy consumption, and area used, in

dynamically-changing environments that require high degree of adaptation. The hardware layer

is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-

repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The

software layer supervises the organic activities within the FPGA and extends the self-healing

capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage

the benefits of dynamic Partial Reconfiguration (PR).

A SMART prototype is evaluated using a Sobel edge detection application. This prototype is

shown to provide sustainability for stressful occurrences of transient and permanent fault

injection procedures while still reducing energy consumption and area requirements. An Organic

Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while

maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable

hardware.

A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to

compare SMART‟s availability to industry-standard Triple Modular Technique (TMR)

iv

techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired

from publically available sources, the results indicate that availability is significantly enhanced

by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh

environments, SMART is shown to improve system availability from 36.02% with lengthy repair

techniques to 98.84% with fast ones. This value increases to “five nines” (99.9998%) under

relatively more favorable conditions.

Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by

the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is

the recommended technique, with power savings ranging from 22% to 29%, and area savings

ranging from 17% to 24%, while still maintaining the same level of availability.

v

To my wife, Reem.

To my father, mother, and brother.

vi

ACKNOWLEDGMENTS

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA)

under contract #W31P4Q-08-C-0168.

vii

TABLE OF CONTENTS

LIST OF FIGURES ..x

LIST OF TABLES ... xii

CHAPTER 1: INTRODUCTION ...1

1.1. Need for Autonomous Repair in Mission Critical Applications1

1.2. Advantages of Reconfigurable Logic to Support Fault-Tolerance2

1.3. Contributions of the Dissertation..7

1.3.1. Design and Implementation of SMART ...7

1.3.2. Autonomous Fault-Tolerance Technique to Improve Availability....................... 10

1.3.3. Evaluating Self-Regulation of Availability, Area, and Energy 13

CHAPTER 2: RELATED WORK .. 15

2.1. Device Technology Related Work ... 15

2.1.1. Role of Reconfigurable Devices in Space Mission-Critical Applications 15

2.1.2. Failure Modes and Their Effects .. 17

2.2. Application Related Work ... 21

2.2.1. Fault Tolerance in Reconfigurable Devices .. 21

2.2.2. Organic Computing Approaches .. 25

2.2.3. Genetic Algorithm Techniques ... 28

2.2.3.1. Standard GA Techniques .. 28

2.2.3.2. Parallel GA Techniques .. 33

CHAPTER 3: SMART DESIGN OBJECTIVES ... 36

3.1. Exploit Reconfigurability to Realize Adaptive Level of Redundancy 36

viii

3.2. Develop Organically Amenable Hard-Fault Repair Techniques 39

3.3. Implement SMART and Evaluate it Using Widely Accepted Metrics......................... 42

CHAPTER 4: A SMART ARCHITECTURE FOR MISSION-CRITICAL SYSTEMS 45

4.1. RARS Hardware Layer .. 46

4.1.1. Motivation as a Hybrid of Approaches ... 47

4.1.2. Architecture and Components .. 49

4.1.3. Range of Possible Configurations ... 51

4.2. Organic Fault-Tolerance Software Management Layer .. 54

4.2.1. Architecture and Components .. 56

4.2.2. Scrubbing and Amorphous Spares .. 57

4.2.3. Organic GA Repair Technique ... 59

4.2.3.1. Direct Bitstream Evolution ... 59

4.2.3.2. Intrinsic Fitness Evaluation .. 62

4.2.3.3. Model-Free Fitness Function .. 62

4.2.3.4. OGA Design and Implementation... 64

4.3. Fault-Handling Handshaking-Based Communication Protocol 68

4.4. Dynamic Partial Reconfiguration ... 71

4.5. The Repair Cycle and Self-x Properties.. 74

CHAPTER 5: EXPERIMENTS AND RESULTS ... 79

5.1. Experimental Configuration: Edge Detection Application .. 79

5.2. Use Case Results ... 85

5.3. The Relationship between RARS and the OGA ... 94

CHAPTER 6: AVAILABILITY, AREA, AND POWER EVALUATION METRCIS........... 97

6.1. Semi-Hypothetical Use Cases .. 98

ix

6.1.1. Soft-Fault Rate ... 99

6.1.2. Soft-Fault Repair Rate.. 99

6.1.3. Hard-Fault Rate.. 100

6.1.4. Hard-Fault Repair Rate .. 100

6.2. Availability Analysis Using Markov Models.. 102

6.2.1. Markov Configuration .. 105

6.2.2. Availability Evaluation Metric Results ... 106

6.3. Area and Power Comparison to industry-standard Techniques 116

6.3.1. Experimental Setup .. 118

6.3.2. Experimental Results ... 123

CHAPTER 7: CONCLUSION .. 136

7.1. Technical Summary ... 136

7.2. Future Work .. 138

APPENDIX: COMMUNICATION PROTOCOL MESSAGES... 140

REFERENCES ... 150

x

LIST OF FIGURES

Figure 1: High-level Operational View of SMART Repair Methods .. 13

Figure 2: Genetic Algorithm Flow Chart ... 30

Figure 3: SMART Top-level Hardware and Software Architecture .. 46

Figure 4: Reconfigurable Adaptive Redundancy System (RARS) .. 51

Figure 5: Java Applet GUI Indicating Instantaneous RARS Status .. 55

Figure 6: Mapping from LUT Coordinates to CBS Offset Representation 61

Figure 7: OGA Intrinsic Evolution Platform .. 66

Figure 8: Class Diagram of the Communication Module in the Software Layer 71

Figure 9: FPGA Layout for FE1, FE2, FE3, and RARS ... 74

Figure 10: System Self-x Properties Flow Diagram ... 76

Figure 11: Xilinx Dual-Layered Video Starter Kit ... 79

Figure 12: SMART Use Case System Architecture ... 81

Figure 13: Use Case Physical Design using Xilinx VSK Platform ... 84

Figure 14: Original and Edge-detected Images under Different RARS Configurations 88

Figure 15: OGA Best and Average Fitness Results .. 91

Figure 16: Holistic Experiment Demonstrating the Interaction between RARS and OGA 96

Figure 17: Markov State-Transition Diagram of RARS ... 104

Figure 18: Functional Model of the CTMC Experiments ... 105

xi

Figure 19: Cumulative Downtime under the Nine Use Cases ... 111

Figure 20: Availability under the Nine Use Cases.. 113

Figure 21: Percentage of Time in Each State under the Nine Use Cases................................... 114

Figure 22: Operational Phases Distribution under the Nine Use Cases 116

Figure 23: Component Differences between RARS and TMR ... 117

Figure 24: Custom TMR-Insertion Flow Based on Integrated BL-TMR and Xilinx Flows 120

Figure 25: RARS Area Overhead Relative to Twenty Eight Benchmarks 127

Figure 26: RARS Power Overhead Relative to Twenty Eight Benchmarks 131

Figure 27: RARS Area and Power Savings Relative to the Top Two Benchmarks 132

xii

LIST OF TABLES

Table 1: Mission-Critical Space Applications Employing FPGA Devices 17

Table 2: Comparison between SMART and Other Prominent Fault-Tolerance Approaches 23

Table 3: Successful Applications of IGA ... 35

Table 4: System Goals, Motivations, and Impacts ... 36

Table 5: System Modules Implementation Details ... 43

Table 6: Possible Values of the Voter Report .. 50

Table 7: DIP Switch Assignment in RARS Prototype .. 83

Table 8: LED Assignment in RARS Prototype .. 83

Table 9: Fitness and Timing Information for Twenty GA Runs ... 90

Table 10: OGA Parameters used in Experiments ... 91

Table 11: Comparison between SMART and Other Edge Detection Evolution Techniques 93

Table 12: OGA Results for Various Numbers of Hard Faults .. 101

Table 13: Fault and Repair Values of the Nine Use Cases ... 102

Table 14: Average of Cumulative Time in State for the Nine Use Cases 107

Table 15: Standard Error (alpha=0.05) of Cumulative Time in State for the Nine Use Cases ... 107

Table 16: Overhead Analysis Quantities Definition ... 117

Table 17: 28 BL-TMR Triplicated Edge Detector Benchmarks ... 124

xiii

Table 18: Area Results of the Twenty Eight Benchmarks .. 125

Table 19: Area Results of RARS Sub-Modules ... 126

Table 20: RARS Area Savings over Benchamrk Five for Different TS1 Values 126

Table 21: Power Results (in mWatt) for the Twenty Eight Benchmarks................................... 128

Table 22: Power Results for RARS Sub-Modules .. 129

Table 23: RARS Power Savings over Design Twenty Two for Different TS1 Values 130

Table 24: Combining Availability, Area, and Power Results ... 135

1

CHAPTER 1: INTRODUCTION

In this chapter, the significance of the problem will be defined and a solution framework will be

presented. Moreover, the contributions of the dissertation will be highlighted, emphasizing the

innovation and novelty in SMART as a fault-tolerance technique targeting reconfigurable

devices in mission-critical applications.

1.1. Need for Autonomous Repair in Mission Critical Applications

Current high-performance processing systems frequently consist of heterogeneous processor

cores or subsystems that depend on one another in nontrivial ways. Each subsystem is itself a

multi-component system with diverse capabilities. The organization of these subsystems is

typically static; it is determined with great care at design time and optimized for a particular

mode of operation. This design strategy is appropriate for systems that are accessible for repair

when their components fail. However, systems which are unreachable once deployed present a

different set of challenges. In these systems, the failure of a single component may result in

large-scale inefficiency or even complete mission failure.

Therefore, electronic systems operating in demanding environments require increased capability

for autonomous fault tolerance and self-adaptation, especially as system complexities and

interdependencies increase. Hence, the goal of Organic Computing (OC) techniques [1, 2] is to

create systems capable of adaptive and fault-tolerant behaviors. The OC paradigm is compatible

with biologically-inspired computing concepts that emphasize the so-called "self-x properties"

2

which emerge at the system-level and represent life-like properties such as self-configuration,

self-reorganization, and self-healing [2, 3]. These properties must be maintained in an

autonomous fashion yet be sufficiently constrained to avoid the emergence of undesirable

behaviors.

Complex digital systems that are able to operate autonomously for long periods of time without

external repair are essential for reducing the risk involved in mission-critical applications, such

as space, deep-sea, manned and unmanned avionic missions, and deployments to remote or

perilous terrestrial areas. For instance, a military or commercial satellite that cannot recover from

a hardware failure becomes orbiting space junk or must be replaced, thereby incurring great

economic costs and negative societal impact. In contrast, a sustainable self-aware satellite would

offer increased dependability and extended lifetime. Organic computing is one of the most

promising approaches to realizing such dependable systems.

1.2. Advantages of Reconfigurable Logic to Support Fault-Tolerance

The OC paradigm is seldom tied to a particular platform or implementation, which makes it

relatively broad in its impact and unrestricted with respect to any specific research or industrial

context. Nonetheless, the immense flexibility of reconfigurable hardware devices makes them

especially suited to hosting OC applications [4]. The fact that SRAM-based FPGAs can be

dynamically reconfigured has made them a popular hardware platform for numerous OC systems

[4, 5].

3

Several external environmental or internally-driven performance demands may require a change

in the configuration of a multi-component system to maintain functionality and throughput

throughout an extended mission [6]. For instance, a fault may occur in an individual component,

which must then be replaced, refurbished to some degree, or otherwise bypassed. Although one

could hypothesize that routine hardware failures would be a likely trigger for configuration

change, other mission-level considerations, such as a storage device reaching its capacity or the

environment deviating from expectation, could be handled similarly. In either case, existing

modules must be reconfigured; SRAM-based FPGA devices facilitate this flexibility by enabling

dynamic device reconfiguration.

SRAM FPGAs represent ideal platforms for hosting organic computing hardware

implementations due to their ability to reconfigure a system at any time to adapt to events that

necessitate a change in the hardware, such as fault-occurrence or changes in mission

requirements. The following reasons justify our selection of reconfigurable devices to host

SMART:

1. Reconfigurable hardware allows fast, in situ reconfiguration of a hardware device. This

characteristic has been utilized in SMART to circumvent faulty resources in the hardware

by maintaining collections of Amorphous Spares (AS), which are pre-seeded bitstream

files that represent the same functionality of the circuit, though with different

implementations or area constraints. Once errors are detected, these AS can be

downloaded and tested individually to determine if any of them do not make use of the

4

faulty resource on the fabric. This approach is not possible on Application Specific

Integrated Circuits (ASIC) due to the fixed nature of their hardware fabric.

2. Dynamic PR allows for the reconfiguration of faulty components while the system is kept

online. This method can be coupled with hardware redundancy such that the repair

process can operate on the faulty part of the system, while other redundant parts continue

in a normal operation mode to drive the system output. SMART employs this technique

to provide efficient repair so that the system can continue to provide the highest possible

performance while being repaired.

3. Time-multiplexing of different applications on the same FPGA greatly benefits organic

systems, which normally require adaptive and flexible design practices, such as changing

the functionality of the hardware during certain stages of the mission to support another

application or other operational modes. Different bitstreams for different applications can

be stored and downloaded whenever the mission demands their use.

4. Reconfiguration capability facilitates organic repair through evolutionary algorithms.

Reconfigurability allows for testing the fitness of individuals on the hardware, and also

enables direct evolution of the most compact presentation of the circuit, which is the

Configuration Bit Stream (CBS) that stores the logic and routing configuration of the user

circuit. Both Intrinsic fitness evaluation and direct CBS evolution are not possible in

ASIC because the hardware logic and routing cannot be changed after fabrication. The

5

OGA that we implement in this work has many properties that are made possible due to

the reconfigurability of the underlying hardware, as discussed in Section 4.2.3

5. Reconfigurable systems based on FPGAs also have the option to integrate flexible soft-

core processors such as Microblaze on the same fabric with the application hardware,

which provides an opportunity to implement a complete SoC application. High-end

FPGA boards are also equipped with embedded cores such as PowerPC that interface

with the FPGA and control its reconfigurability via the Internal Configuration Access

Port (ICAP).

6. A multitude of computing and memory resources such as High-Speed Digital Signal

Processing (DSP) blocks operating at high speeds, block RAMs, FIFOs, and other built-

in hardware logic are available on today‟s FPGAs to provide many options for a broad

range of applications and accelerated implementations of commonly used image

processing, arithmetic, communication, and encryption applications

7. Reconfigurable logic provides the option to change the clock frequency for a select part

of the fabric at run time through the use of the built-in Digital Clock Manager (DCM)

block. Therefore, an OC system can optimize the power usage for an application to meet

mission requirements.

Despite of all the aforementioned advantages, using FPGA devices rather than their ASIC

counterparts in mission-critical applications is a double-edged sword. On the one hand, they

allow the support of self-x capabilities through reconfiguration. On the other hand, such

6

capabilities can introduce new fault vulnerabilities to the hardware. Transient faults, which

commonly occur as a Single Event Upset (SEU) [7] are a primary source of concern when

deploying SRAM-based devices in mission-critical applications such as space applications [8].

SEUs can occur when a charged particle impacts the silicon substrate with enough energy to

incur either a transient pulse in a combinational logic or a state flip in a sequential circuit. The

former is only articulated if a state storage component, such as a Flip-Flop, is affected by the

transient signal. Hence, the effect of SEU on combinational logic in ASICs could vanish without

any repairs. On the other hand, SEUs hitting memory cells are more likely to cause damage

because they flip the state of a stored bit, which affects the system until the relevant Flip-Flop is

loaded with a new correct value.

In SRAM-based FPGAs, where even the combinational logic is implemented using SRAM Look-

Up Tables (LUTs), SEUs gain amplified importance as every SEU is a state-flip that can affect

both the sequential and the combinational logic. To this end, space-qualified versions of SRAM-

based FPGAs are commercially available for mitigating SEUs at the circuit level such as Xilinx‟s

QPro [6], Indeed, a new field of research that targets fault tolerance in reconfigurable platforms

has emerged [6] to take advantage of the inherent reconfigurability of FPGAs. In conjunction

with the use of high reliability components, mission-critical applications can benefit from PR to

survive the various sources of failures that might affect reconfigurable resources.

7

1.3. Contributions of the Dissertation

In this dissertation, we introduce SMART, a novel fault-tolerance technique exhibiting many

advantages over the manufacturer‟s current standardized fault handling method, which is the

Triple Modular Redundancy (TMR) Technique. SMART provides Adaptive Modular

Redundancy (AMR), in contrast to the fixed one in TMR, by exploiting the reconfigurability

property of the FPGA devices [9]. Moreover, SMART provides handling for hard-faults which

are seldom considered in self-repair techniques due to their supposed rareness. We demonstrate

via standard evaluation metrics and actual reported fault rates that hard-fault repair is needed to

provide sustainable mission operations in harsh environments. Moreover, not just that SMART

provides improved availability; it does it in a resource-aware fashion by optimizing energy

consumption and area usage.

1.3.1. Design and Implementation of SMART

In this work, we present the design and implementation of SMART, a two-layered sustainable

autonomic architecture for fault handling. The autonomous hardware layer is implemented on a

Virtex-4 Xilinx XC4VSX35 FPGA device [10], while the software layer is intended to be on a

PowerPC embedded core with ICAP interface to the FPGA device to download different CBSs

for repair purposes. In this work, in order to facilitate testing and verification, the software layer

resides on a host PC that is connected to the FPGA via a Xilinx parallel cable IV. SMART is

inspired by the OC paradigm, and thus the emergence of self-x properties is observed at the

system level after assembling the individual parts into a single, integrated, fault-tolerant system.

8

 The hardware layer implements a decentralized observer/controller processing loop to adjust the

configuration of the system based on real-time mission information. It accomplishes this task

using a novel general-purpose redundancy scheme called RARS [11] which does not have a

predetermined number of redundant modules like other fixed redundancy schemes commonly

found in the literature such as Duplex, TMR, and pair-and-spare. [12, 13]. Instead, RARS can

reconfigure its components at run-time to provide the appropriate level of redundancy that

matches the mission status. The distributed controller function in RARS, which is called the

Autonomic Element (AE), monitors the status of the redundant parts that implement the user

application, called the Functional Elements (FEs), and collects the reports from various sensors

to make decisions about which configuration to select. Having multiple RARS modules

facilitates the decentralization of the organic layer while reducing single points of failure.

RARS is a resource-conservative adaptive redundancy architecture that is only reconfigured to a

high power/area configuration when multiple instances of the FE are needed to identify, mask, or

repair faults. Other approaches like TMR run in triplex mode even when faults are not present,

consuming three times the simplex configuration resources only to provide fault-tolerance during

brief intervals of the mission lifetime during which the system is subject to faults. RARS saving

benefits will be shown analytically and experimentally in Chapter 6.

Still, the fault-tolerance of RARS is restricted by the limited capacity of the available hardware

to support alternative routing and/or logic for faulty parts. Therefore, a monitoring and

refurbishment layer that resides above the hardware layer serves two purposes. The first is to

collect the hardware status reports and render them into a human-readable format so that system

9

operators can monitor the deployed system and interact with it. The second is to provide active

repair in the event of faults, either via scrubbing [13], which involves rewriting the configuration

memory with a fault-free CBS to correct any SEU occurrences in the configuration logic, or via a

dynamic refurbishment process for permanent faults using Evolvable Hardware (EHW)

approaches [14] . The evolutionary approach employed in this work is a novel Genetic

Algorithm (GA) that implements design practices suiting the organic nature of the system and

thus is referred to as an Organic GA (OGA). The software layer reads the performance and status

of RARS and triggers the refurbishment procedures whenever the redundancy degree of RARS is

not adequate to mask the faults.

The two layers are connected via Xilinx Parallel Cable that connects between a standard Joint

Test Action Group (JTAG) [15] port on the FPGA and the parallel port on the host PC. On the

FPGA, the JTAG communicates with RARS via the General-Purpose Native JTAG Tester

(GNAT) [15] platform. The messages themselves are communicated using a special

communication protocol that was designed specifically for this system. This communication link

carries messages between the two layers as part of the fault-tolerance algorithm and also

transmits the CBS to reconfigure parts of the system as needed.

Dynamic PR is adopted to improve two aspects of the organic repair. First, it significantly

reduces the configuration time as compared to the full bitstream configuration approach due to

the small size of the bitstream. Second, it allows the system to remain online while its faulty

parts are being reconfigured; this helps increase the availability of the system by enabling it to

maintain functionality even during repair. Dynamic PR is used in two stages of the repair cycle.

10

It is first used in the scrubbing stage when the AS are repetitively configured on the FPGA

searching for a spare that exclude the faulty resource, and second, it is used by the OGA when

candidate solutions are reconfigured on the FPGA for fitness evaluation.

In this work, we implement the well-known Sobel edge detection [16] application on the

hardware layer to illustrate the organic self-healing, self-configuring, and self-monitoring

capabilities of RARS. In addition, we implement the software layer and connect it to the circuit

on the FPGA through the JTAG port. This layer is shown to successfully monitor and supervise

the organic hardware layer and also performs evolutionary refurbishment of faulty modules.

After combining all modules into one integrated fault-tolerant platform, we scrutinized the

system behavior while processing a real-time video stream under various fault scenarios. The

hardware layer demonstrated emergent self-monitoring and self-reorganization properties that

allowed the system to sustain even in the presence of successive faults. When the number of

faults exceeded the capabilities of the hardware layer, the higher-level software layer augmented

the response through self-reconfiguration and self-healing.

1.3.2. Autonomous Fault-Tolerance Technique to Improve Availability

Figure 1 depicts the high-level view of SMART‟s repair methods and the various events that

trigger their executions. The central state of SMART operation is the fault-free operation (1) that

requires only RARS‟s self-monitoring techniques to detect the occurrence of faults. An SEU can

impact the FPGA resources and cause a single bit flip in one of the LUTs. This LUT may fall

11

either on the data path of the application, i.e., a user register that stores an intermediate

calculation value, or on the logic path, i.e., an LUT that is programmed to implement the

intended circuit functionality. SEUs that affect LUTs in the user logic can be overwritten by

subsequent operations without any repair interventions. This type of fault is classified as

transient, and normally fades away in the regular execution cycle. The transient effect can be

masked with redundancy techniques (2) until the fault is corrected.

However, if the soft fault affects an LUT in the reconfigurable logic, then the bit flip will remain

manifested until the unlikely event of another SEU impacting the exact same location. A bit flip

in the logic path can be more harmful to the application because it changes the truth-table content

of the affected LUT and thus alters the behavior of the circuit. This type of SEUs cannot be

ameliorated in subsequent operations because the affected element is not written by the user

application; thus, it must be explicitly re-written by reloading the correct CBS via scrubbing (3).

Next, consider if radiation leads to pathways for electro-migration and accelerated aging effects

[17]. This type of Local Permanent Damage (LPD) can be modeled as a stuck-at fault at one of

the LUT inputs. Unfortunately, scrubbing techniques that rewrite the CBS contents will at best

give up after a number of retries or at worst may usurp the mission, taking the device offline to

repeatedly attempt to overwrite a permanent fault. In that case, a permanent fault handling

technique is required to circumvent the stuck-at faulty resource and thus repair the user

application.

12

The self-configuration of spares via AS (4), aims to avoid the faulty resource by consecutively

reconfiguring the faulty FE with design-time pre-seeded bitfiles, each of which exclusively

avoids a set of LUTs in the physical FE area. By doing so, SMART searches the set of spares for

one spare that can hide the fault by not using the broken LUT. Carrying spares is a common

technique for fault-tolerance due to its simplicity and quickness, it is limited though to the

number of carried spares, and cannot actually adapt at run-time to handle fault-scenarios that

were not accounted for at design-time when the spares where configured.

As a remedy, SMART adds one last-resort repair mechanism that is invoked when all other

techniques fail to repair faults. This technique is the evolutionary OGA (5) repair that is not

restricted by the number of spares or any other design-time considerations. Instead, it can

heuristically search for alternative circuits that can bypass the faulty resource and thus produce

the expected output. Such technique can sometimes be slow or unpredictable, but the fact that it

is delayed to the very end of the repair cycle makes it a much better alternative to conceding to

downgraded level of operation.

13

(1)

Fault-Free Operation

(RARS)

(3)

Scrubbing

(SMART)

Soft fault in user logic

(Transient Fault)

(2)

Redundancy

(RARS)

Voting

Soft fault in

configuration logic

Flipped CBS

bit is

corrected

(4)

Amorphous

Resources

(SMART)

Hard fault in

configuration logic

Available

spares can

hide the fault
(5)

OGA

(SMART)

No available

spares to

hide the fault

Refurbishment through

evolutionary repair

Figure 1: High-level Operational View of SMART Repair Methods

1.3.3. Evaluating Self-Regulation of Availability, Area, and Energy

The first evaluation metric that we perform is reliability assessment of SMART compared to

conventional TMR and scrubbing techniques that choose to ignore hard faults handling due to

their rareness. To accomplish this, we model RARS as a Continuous-time Markov Chain

(CTMC), providing transition probabilities of soft and hard fault rates based on publically

available fault-measurement data, and soft and hard repair rates based on experimental results of

SMART prototype. We present a full factorial experiment with nine levels based on three levels

of each MTTF and MTTR of the hard faults, where each experiments consists of Monte Carlo

simulations for the fault and repair levels to calculate various reliability and availability metrics

14

that can help shedding light on the significance of hard fault repair in fault-tolerance systems.

Details on availability analysis using CTMC can be found in section 6.2.2.

After we experimentally established the benefits of SMART on the availability of mission-

critical systems in space applications, we shifted the focus to assessing SMART‟s power and

area considerations as a real engineering platform. For that, we used the standard BYU-LANL

Triple Modular Redundancy (BL-TMR) [18] toolset to create triplicated designs of the image

processing Sobel edge detector use case that we evaluated SMART against. The BL-TMR tool is

a Java-based project that relies on the platform-independent Electronic Design Interchange

Format (EDIF) [18] files to automatically insert redundancy, such as duplication and triplication,

into digital designs. We chose four voter insertion options times seven voter insertion algorithms

to design twenty eight BL-TMR triplicated edge detectors benchmarks. We used Xilinx mapping

reports to extract the area overhead of each benchmark, and Xilinx Power Analyzer (XPA) [19]

tool to calculate the dynamic power of the benchmarks. We then compared the twenty eight

benchmarks to RARS in term of power and area to demonstrate the benefits of utilizing PR in

FPGA-based fault-tolerance applications. The experimental setup and results are documented in

section 6.3.2.

15

CHAPTER 2: RELATED WORK

In this chapter, we present literature survey for previous works of the dissertation. The previous

work is classified into technology related work and application related work, where the former

deals with reconfigurable devices and their susceptibility to faults, while the latter focuses on the

various fault-tolerance methods and their applications.

2.1. Device Technology Related Work

2.1.1. Role of Reconfigurable Devices in Space Mission-Critical Applications

Hardware devices are commonly viewed as fixed-functionality devices as they are rendered for

specific application at fabrication time and cannot be changed after that. However, the main

benefit of FPGA devices is reconfigurability, as the fabrication will only create a programmable

platform that can be configured -and often reconfigured- by the end user, to realize various

functionalities at runtime.

FPGAs are seas of programmable logic blocks that are highly interconnected through other

programmable hierarchal communication switches. FPGAs can be made of anti-fuse technology,

which allows single device programming, or SRAM cells that allows any number of device

programming operations [6]. The focus of this dissertation is on SRAM-FPGAs because

SMART relies on the reconfigurability feature to realize fault-tolerance with reduced power and

area overhead.

16

SRAM-FPGA devices allow both logic and interconnect to be programmed by downloading a

CBS that represents the desired circuit functionality. The generation of the CBS is normally

automated through the usage of software tools, like Xilinx ISE pack [20], that read the design in

schematic or Hardware Definition Languages (HDL) formats, and then transform the design into

native bitfiles to program the target devices. Thus, FPGAs are considered a suitable platform for

prototyping because they can be instantly programmed with the desired hardware functionality

without going through the complicated, lengthy, process of fabrication in ASICs.

Therefore, FPGA Devices have been widely used in space mission-critical applications for

different purposes. For example, Europa mission [21] designers intend to use FPGA devices as a

prototyping platform during the development phase, then based on a specially-designed flow, the

prototype will be implemented on radiation-hardened ASIC devices for the actual mission

deployment. Other missions will use FPGA devices in the actual deployment, whereas others are

intended to test SRAM-FPGA resilience to SEU‟s. Table 1 shows a list of actual space missions

that utilize FPGAs in their operations, along with the deployment timeframe, and the intended

use of the FPGAs. The various mission reported in the table demonstrate the important role of

FPGA devices in such domain, and thus justify the direction toward fault-tolerance in FPGA in

research and industry.

17

Table 1: Mission-Critical Space Applications Employing FPGA Devices

Satellite Name
Year

Deployed
Application

FedSat (Australia -

CRCSS) [22]

2002 Remote Sensing: Control Logic, Classifier, Predictor, Encoder.

Contains Actel FPGA for pre-filtering, Xilinx FPGA for data

acquisition and synchronizations, another Xilinx FPGA device

for data decoding.

Cibola (USA-Los

Alamos) [23]

2007 Nine Xilinx Virtex FPGA devices used for sensor-processing

and SEU studies (soft faults monitoring and mitigation)

SmartSat-1 (Japan –

NICT) [24]

2008 Seven XC2VP4 Xilinx FPGAs implementing

Modulation/demodulation function (2 kbps -2 Mbps)

Space-Based

Reconfigurable

Supercomputer [25]

Future Xilinx Virtex-4, Atmel AT697 radiation-hardened, SPARC

processor. Supercomputers that can achieve 1,000 GOPs, weigh

40 pounds, and consume only 80 watts

Venus Express [26] 2005-

2012

Two radiation-hardened Xilinx Virtex-1 FPGA devices to

implement Venus Monitoring Camera (VMC).

NASA New Dawn [26] 2007-
2015

Improved on Framing Cameras (VMC) that was used in Venus

Mars Rover (JPL) [27] Many Xilinx Virtex FPGA has been used in DC motor controller in the

rover

 Europa [21] 2020-

2029

FPGAs are used in prototyping, then the final design will be

implemented on Rad-Hard ASIC devices for the actual mission

ARTEMIS

Reconfigurable Payload

Processor (Responsive

Space Missions) [28]

Many RA-RCC (Reconfigurable Computers) using 3 Virtex-4

(V4LX160) FPGAs

2.1.2. Failure Modes and Their Effects

Using FPGA devices comes at the expense of increased fault rate compared to ASIC-based

devices. In the space environment, SRAM-based FPGAs can be affected by either radiation-

induced or aging-related faults [29]. Radiation-induced faults can be either non-destructive

(soft) or destructive (hard). Aging Faults on the other hand are almost always destructive, which

means that the fault cannot be recovered by rewriting the CBS. Regardless of the fault types, the

application should be prepared to autonomously recover from the faults due to the limited human

intervention in space missions. This section will provide taxonomy of the various fault types that

can affect FPGA devices in space, and the common methods of dealing with them.

18

Radiation can cause one of the following two failure modes in FPFA devices [30]:

1- Single Event Effect (SEE): Effect caused by single energetic sub-atomic particle strike,

this is a random event that does not directly depend on cumulative effects. SEEs can

result in two type of faults:

a. Non-destructive SEU: This is a state-flip of an SRAM cell that is caused by the

SEE [7]. It is non-destructive in the sense that the flipped bit can be restored by

rewriting the cell‟s content with the correct value. SEUs can happen in the

configuration logic or the user logic. The configuration logic is what defines the

FPGA circuit behavior; the only way to correct SEUs in this logic is to rewrite the

flipped cell with a new value via scrubbing. However, SEUs in the user logic fall

on the datapath, and thus can be corrected by subsequent writes to the same user

register.

b. Destructive Single Event Latch-up (SEL): Occurs when an energetic charged

particle causes excessive supply power to destruct the memory cell [30]. This

destruction is permanent and cannot be restored by rewriting the CBS like in the

previous SEU case.

2- Total Ionizing Dose (TID): Cumulative damage caused by protons and electrons hitting

the silicon substrate for long times. TIDs are almost always destructive.

19

To Summarize, radiation can cause destructive faults through TID faults or SEEs that get

manifested as SELs. More commonly, radiation will cause non-destructive SEEs in the forms of

SEUs.

Numerous fault-tolerance systems in the literature have neglected permanent fault handling in

FPGA devices [31]. The reason behind this choice is that many resources in research and

industry have claimed that Xilinx SRAM-based FPGAs are immune to radiation-induced

destructive hard faults. No SEL was reported during experiments when SRAM-based FPGAs

were exposed to the maximum tested Linear Energy Transfer (LET) of tens of MeV cm
2
/mg

[29]. Xilinx Virtex family was also found immune against TID effect of up to 300 krad in [32].

Moreover, The introduction of epitaxial CMOS fabrication process in Virtex devices resulted in

TID immunity of >100 krad and SEL immunity of LET > 120 MeV cm
2
/mg [33].

Therefore, conventional fault-tolerance approaches targeting SRAM-based FPGA devices in

space applications have disregarded hard-faults tolerance [31]. Instead, they focused on

mitigating SEU faults in the data path using redundancy techniques, such as TMR, to mask the

transient effect of the user registers bit flips [34], and implementing scrubbing techniques to

overwrite SEUs in the configuration logic [35]. Xilinx devices have shown high tolerance to SEL

and TID, thus SEU remains as the main concern in space-mission that use FPGA devices [33].

Nonetheless, in this work, we contradict the aforementioned mainstream hypothesis by asserting

that permanent faults cannot be ignored in mission-critical applications because of the following

reasons:

20

1. With the continuous effort to shrink the feature size in VLSI devices, the impact of aging-

related (wear out) faults such as Time-Dependent Dielectric Breakdown (TDDB) will

significantly increase to levels that cannot be ignored [36]. TDDB depends on the

operating temperature of the device, and the gate oxide thickness that shrinks with

smaller process technologies. The charge trapped in the thin oxide layer keeps increasing

until it reaches the threshold of breakdown; this effect is imminent for aggressively

scaled technologies operating in thermally stressful environments. The resulting fault is

destructive, meaning that the SRAM cell cannot be reconfigured to amend the fault

effect.

2. Local Permanent Damage (LPD) is reported by [17] due to SELs or SEUs that cannot be

corrected without system reset. This type of LPDs is manifested as hard faults in systems

that cannot tolerate full system restart.

3. Radiation testing is not guaranteed to exactly replicate space environment. Also no FPGA

has been tested for more than 15 years, whereas space mission can go for more than that

[17]

4. Xilinx publicly reports that TDDB can start to happen in as little as 3 years in an XC3S

4000/5000 90-nm SRAM-based FPGA devices under a temperature of 125C [37].

5. Recently published work reported TDDB impacting 10% of total LUTs every year [36]

in aggressive thermal conditions, based on Xilinx data referenced above. Other recently

21

published work reported TDDB MTTF of 476 days for a 2206-slice circuit on 150nm

technology [29].

Therefore, we believe that it is not the best engineering practice to blindly ignore hard faults

especially in multi-million mission-critical applications that needs to be equipped with inherent

tolerance to any type of destructive events. Thus, we present the design and implementation of a

generic autonomous fault-tolerance system that can handle both soft and hard faults, followed by

evaluation metrics to demonstrate the benefits of such system compared to conventional TMR

and scrubbing systems, in term of availability, power, and area

2.2. Application Related Work

This section surveys previous researches that present various fault-tolerance methods, successful

prototypes and implementations of OC systems, and the application of GA as a repair method.

2.2.1. Fault Tolerance in Reconfigurable Devices

FPGAs are popular platforms for reconfigurable computing applications especially pertaining to

the field of embedded systems [38]. Run-time partial reconfiguration has many advantages, such

as time-multiplexing different functionality designs to save power and resources without losing

the basic functionality of the application [39, 40], and supporting adaptive architectures that

scales based on resources availability and mission requirements to achieve improved algorithm

performance while reducing power consumption [41].

22

The ability to perform partial reconfiguration for local and remote system has opened new

domains in fault-tolerant hardware designs, especially for space applications [6]. These

applications are susceptible to faults due to the harsh operating environments along with

difficult, if not impossible, human intervention. Thus, runtime partial reconfiguration has been

successfully utilized to autonomously repair faulty systems, and compensate for the absence of

human intervention.

One of the most common techniques for mitigating unwanted configuration memory changes is

scrubbing [17, 42]. Scrubbing involves overwriting of the configuration memory at periodic

intervals with a configuration that is known to be fault-free. Moreover, this process can be

augmented by reading back the configuration memory and comparing it with a configuration that

is known to be good to isolate the erroneous frame(s) so that they can be re-written using PR.

Scrubbing techniques fail when the stored configuration is damaged or when the fault is caused

by permanent hardware resource failures, in which case more elaborate repair techniques

targeting permanent faults are needed, such as the evolutionary repair algorithm presented in [15]

and in this work.

Table 2 presents a comparison between SMART and other prominent fault-tolerance techniques.

All surveyed techniques, except conventional TMR, employ some form of fault recovery

mechanism to restore the original fault-free system status. TMR is a passive technique which

employs spatial voting to mask the faults. The area and power overhead for the TMR approach is

three times the area and power overhead associated with a single module (OFE) plus the overhead

associated with the voting logic (OV).

23

Table 2: Comparison between SMART and Other Prominent Fault-Tolerance Approaches

Approach
Fault Handling

Method

Fault Detection Resource Coverage
Power overhead

Area cost Latency
Hard

faults

Logic

Comparator

TMR Spatial Voting Negligible No Yes No 3*OFE + OV

Vigander

[14]

Spatial voting and

offline evolutionary

refurbishment

Negligible No Yes No 3*OFE + OV + OGA

Lach [43]

Design-time fine

grain redundancy

based reconfiguration

Not

addressed
No Yes

Not

addressed

Fault detection

mechanism is not

addressed

STARS

[44]
Online BIST

Depends

on

geometry

of device

Yes Yes Yes

OFE +

Reconfiguration

controller

Garvie [17]
Spatial Voting and

online (1+1) ES
Negligible Yes Yes No 3*OFE + OV + OGA

Keymeulen

[45]

Design-time

population based

fault insensitive

designs

Not

addressed
No Yes

Not

addressed

Fault detection

mechanism is not

addressed

SMART

Adaptive

redundancy,

diversity-based

configurations, OGA

Negligible Yes Yes No

Analyzed in Section

6.3

Vigander [14] presents an offline genetic algorithm refurbishment technique to handle hard

faults. All the modules are simulated with faults representing a worst-case scenario, and the

evolution-based refurbishment is performed on all three modules for recovery. The overhead

associated with the GA based repair is represented as OGA. This cost can be used to include all

GA based control mechanisms, and the spare resource allocated for the GA-based refurbishment.

Lach [43] on the other hand presents a technique based on design-time allocation of fine-grain

spares at the Configurable Logic Blocks (CLB) level. One CLB is allocated as spare for a design-

time defined group of CLBs, and multiple configurations are generated such that one fault can be

tolerated in each group. Average Area overhead of the chosen benchmarks is 5.4%, which is

24

considerably less than the TMR. This scheme however does not include any fault detection

mechanism.

STARS [44] employs run-time Built-In Self Testing (BIST) by roving across the FPGA fabric.

This technique covers fault detection, isolation and repair with minimal application area

overhead. Dynamic PR has also been used in this approach to facilitate downloading the tested

regions onto the fabric. Still, the time to detect a fault can be quiet high and as much as 8.5M

erroneous outputs may be produced before being able to detect the fault [46]. Further, the fault

detection process employs continuous reconfiguration and thus incurs huge power overhead, and

potentially causes performance degradation due to clock stoppage, even when the system is fault-

free.

Garvie [17] employs spatial TMR for masking the fault and an evolutionary strategy to refurbish

the identified faulty module. The power and area overhead of this technique can be essentially

considered same as that of TMR. The work concludes that hard-fault tolerance is essential for

fault-tolerance of FPGA devices in harsh-environment deployments.

Keymeulen [45] introduces an evolutionary-based method to generate a population of individuals

at design time that are resilient to a set of predetermined type of faults according to the planned

mission. This design-time process is tested by employing the design-time generated

configurations to overcome the expected fault pattern at run-time. This scheme requires

accommodating all possible faults at design-time.

25

2.2.2. Organic Computing Approaches

Related works in the literature have explored techniques useful for the development of an OC

system from various theoretical and practical perspectives. A frequent focus among these has

been the design of OC architectures and development methodologies for systems with the

potential to exhibit increased reliability and sustainability.

For example, in [47], the run-time reliability of System-on-a-Chip (SoC) architectures was

evaluated. The objective was to design SoCs that can adapt to environmental changes and

unpredictable failure scenarios by introducing dynamic reliability, power management, and

security tradeoffs. The implementation included five-stage RISC pipeline architecture with

globally-accessible error counters in fixed time intervals. This technique addressed self-

monitoring in SoC applications with redundant parts; we expand on this by presenting a novel

OC system that not only provides self-monitoring capability, but also self-repair and self-

adaptation for increased reliability yet with reduced power consumption than conventional

redundancy techniques.

In [48], an Observer/Controller architecture was developed to provide a generic template to

design control architectures for OC systems without extension to a hardware prototype

implementation. This organic framework mainly targeted self-organization in a simulated

environment and recommended thorough empirical studies of OC systems in different

application domains. We extend on these concepts and investigate more self-x properties in real-

life application of an edge detection circuit running in error-prone environments.

26

In [49], an organic computing paradigm called “marching-pixels” targeting future CMOS camera

chips is presented. This paradigm relies on a massive fine-grain processor array to autonomously

execute image pre-processing tasks, such as center detection and the tracking of moving objects.

The organic concept stems from the fact that each pixel that falls on the detection path (e.g.,

edge, center, moving object, and so on) can be the origin or birth of a virtual organic object,

which can then travel through a grid of identical PEs where it may die or join other pixels. The

C-based simulator used to demonstrate “marching-pixels” confirmed the emergence of self-

organization and self-healing in software simulated CMOS environment.

In [5], the role of middleware that acts between the hardware system and the application software

is discussed for OC systems based on dynamically reconfigurable FPGAs. A scalable data flow-

driven virtual machine (SDVM) is introduced. It is able to schedule parallel computing

assignments to a set of reconfigurable and heterogeneous processing elements on a FPGA. The

middleware is also able to dynamically balance the workload of the entire system in order to

optimize power management and cope with faults. To demonstrate the advantages of SDVM, the

Romberg numerical integration algorithm is implemented on the FPGA where the soft cores are

used as processing elements. The results show the speedups achieved by executing the task on a

variable number of processing elements as allocated by the middleware; a comparison is

conducted with respect to sequential execution. Furthermore, self-organization and self-

optimization are investigated in the experimental work, with less emphasize on self-repair due to

the nature of the application. SMART on the other hand targets hardware sustainability in

mission critical applications; with the main emphasize being self-repair and self-optimization of

power consumption.

27

In robotic applications a control architecture for a robot based on organic computing principles is

presented in [50]. Decentralized control is shown to achieve the global objective of movement

for a six-legged platform. The platform is also able to manage the failure of a node through its

local rules and demonstrate sustainability in a mechanical environment.

More generally, in [51], Digital on-demand Computing Organism (DoDOrg) targeting real-time

systems is presented. The system model is based on biological principles to achieve the desired

self-x properties; it is divided into processing cells representing human cell analogs, middleware

control representing organ analogs, and high-level control representing brain analog. The system

is based on heterogeneous mix of computing elements, including standard elements such as

CPUs and reconfigurable cells. The work presents an approach to organic computing that shows

many of its desired self-x properties along with power management demonstrated using a robot-

controller example. While the viability of this system is shown in a simulated environment, the

transfer to a real robot system is sought in a later phase. In our work, we aspire from and extend

on the significant self-x properties demonstrated in DoDOrg robot simulation by using an actual

FPGA implementation of edge detection circuit, where the OC paradigm demonstrates power-

conservative fault-tolerance through adaptive redundancy and software monitoring and

refurbishment of the reconfigurable logic.

In an attempt to practically realize DoDOrg on FPGAs, a framework to achieve a decentralized

configuration and power management scheme is shown in [4]. This work considers FPGAs as

the most viable computing platform for OC systems due to the enormous benefits of

reconfigurability. However, the work identifies the centralized nature of the FPGA‟s ICAP as the

28

main contradiction to the crucial decentralized requirement of OC systems. Therefore, a platform

in which each computing node can autonomously and independently request its reconfiguration

through the ICAP is presented. Similarly, power consumption is managed individually by each

node at run-time to attain the desired virtual decentralization of the ICAP. Though this work does

not present a complete implementation of an OC system, it does point toward the idea that

FPGAs can serve as a viable computing platform for these systems. In the experimental setup,

each computing node is autonomously and independently able to request its reconfiguration

through the ICAP. Similarly, power consumption is managed individually by each node at run-

time.

2.2.3. Genetic Algorithm Techniques

Evolutionary Algorithms are a family of intelligent, heuristic, search algorithms that are inspired

by the Darwinian theory of natural evolution. Darwin‟s famous theory about the natural selection

of the fittest individuals and the recombination of their genetic material to produce yet better

individuals is imitated in the evolutionary algorithms.

2.2.3.1.Standard GA Techniques

One of the widely used types of evolutionary algorithms is the Genetic Algorithm (GA). GA is an

adaptive heuristic search based on initial set of individuals, called population; the selection

process favors a subset of this population that shows better fitness according to a predefined

function called the fitness function. This function must accurately quantify what a good solution

29

is for the problem in hand. Each individual is encoded into a genetic representation of the

solution, called chromosome, which contain one or many blocks, each called a gene, which

encodes a single physical trait of the individual. Once the fittest individuals in a generation are

selected based on their fitness function, a set of genetic operators are applied on them to produce

different chromosomes that might yield better solutions. The Genetic operators vary in their

nature and usage, but two of them are used in almost all GA implementations, namely crossover

and mutation.

Crossover is the recombination of genetic material to produce new chromosomes; the content of

the genetic material is preserved, but only shuffled probabilistically hoping that this reshuffling

could lead to the juxtaposition of some genes in such a way to increase the fitness of the

offspring. Mutation on the other hand, is a probabilistic change in the chromosome to introduce

new traits, this is similar to mutations in nature which produces better or worse individuals, but

under any case, the selection pressure can pick the useful mutations and ignore the harmful ones

by measuring the mutation impact on each individual.

Once the selected individuals are genetically operated, they get replaced into the population and

another round of the algorithm is executed. In general, this approach is shown to converge into

better fit solutions, based on the exploitation of the selection process and the exploration of the

genetic operators.

Figure 2 depicts the GA process in a flow chart. The power of GA comes from the contradicting

forces of exploitation and exploration [52]; the GA exploits the best solutions by picking them in

30

the selection process which favors the fittest individuals, then explores these selected solutions

by recombining their genetic material and introducing limited randomness into them, in order to

produce more diversity into the population.

Generation of initial population

Selection of the fittest

individuals

Fitness evaluation based on

the fitness function

Recombination of selected

individuals (Crossover)

Mutation of selected

individuals

Placement of offspring into

new generation

Termination criteria

met?

N
O

Get solution

Selection Process: GA’s

way of exploiting the fit

individuals in the search

process

GA operators: Exploring

new solutions derived form

the best individuals in the

population

YES

Figure 2: Genetic Algorithm Flow Chart

31

There are two paradigms for implementing GA in reconfigurable applications: Extrinsic

evolution via functional models that abstract the physical aspects of the real device, and intrinsic

evolution on the actual devices. It is evident that extrinsic approaches simplify the evolution

process as they operate on software models of the FPGAs.

For applications like fault handling in deep space missions, not all fault types can be readily

accommodated by software models. Additionally, abstracting the physical aspects of the target

device complicates rendering the final designs into actual on-board circuits, for instance,

limitations such as routability of the design cannot be ensured until the final stages of the

configuration process. For these reasons, intrinsic evolution can provide a direct approach to

realizing physical designs for a specific FPGA device.

Several previous research efforts have addressed intrinsic evolution. A successful attempt on

Field Programmable Transistor Array (FPTA) chips was implemented by [53]. FPTAs are

transistor-level programmable devices configured by controlling the status of programmable

switches interconnecting array of transistors. The work proposed new ideas for long-term

hardware reliability using evolvable hardware techniques via an evolutionary design tool, called

EHWPack, which facilitates intrinsic evolution by incorporating PGAPack genetic engine with

Labview test-bed running on UNIX workstation. Digital XNOR Gate on two connected FPTA

boards was intrinsically evolved.

Miller [54] addressed the importance of direct evolution on the Xilinx 6216 FPGA devices; the

research explored the effect of the device physical constraints on evolving digital circuits. A

32

mapping between the representation genotype and the device phenotype was proposed, however,

no implementation details were presented.

In [55], a Multilayer Runtime Reconfiguration Architecture (MRRA) framework illustrates the

concept of a communication and reconfiguration interface with an embedded System-on-Chip

(SoC). This modular architecture has a hierarchical framework to support different functionalities

as each functional layer can do its job independently of other working layers. It provides the

logic, translation and reconfiguration layers with standardized interfaces for communication

between these layers and the FPGA-based SoC. The bitstream was directly manipulated to

efficiently realize different logic by modifying the content and/or reallocating the LUTs.

SMART uses an enhanced version of MRRA based intrinsic evolution platform and introduces

direct bitstream manipulation for Xilinx Virtex 4 devices as compared to Xilinx Virtex II Pro

devices.

In this work, we test SMART using Sobel edge-detection algorithm on reconfigurable logic.

There are various applications of edge-detection with main emphasis on identifying boundaries

in an image; it is used for object recognition and quality monitoring in industrial applications,

medical imaging applications such as magnetic resonance imaging (MRI) , Ultrasound [56] and

it is used for satellite imaging applications [57]. Numerous efforts have been made to accelerate

this computationally expensive algorithm on specialized hardware using conventional design

techniques [58-61]. Research has also been done on designing edge-detectors using evolutionary

techniques [56, 62, 63]. A comparison between SMART edge-detection evolution results and the

other edge-detection evolution techniques is shown in Table 11.

33

2.2.3.2.Parallel GA Techniques

Traditional GA techniques have demonstrated outstanding capabilities in solving complex

optimization problem since their introduction back in the 1970‟s. However, engineering and

scientific applications have increasingly grown in complexity and criticality, demanding better

solutions yet within strict optimization constraints such as time, cost, and power. For that, the

research community targeted improving the GA performance in order to suit the nature of these

complex mission critical applications. The most noticeable effort to improve on the SGA is the

introduction of Parallel Genetic Algorithms (PGA).

PGA adopts a divide-and-conquer approach to split the problems into pieces and thus exploits

multiple processors to enhance the convergence time [64]. Among the many PGA subclasses that

have emerged, Island-Based Genetic Algorithm (IGA) has been heavily studied and implemented

in various scholar and practical domains.

IGA consists of several semi-isolated islands or demes, each of which hosts an independent GA

implementation that runs in parallel with other demes‟ GAs. The islands exchange individuals

from time to time in an effort to increase the chance of finding a better global solution. The IGA

can apply global parameters, such as mutation rate, crossover rate, population size, to all islands

or vary them across islands. IGA introduces new set of parameters such as the number of islands,

the island topology, the migration rate, and the migration policy. Even though IGA appears to be

a straight juxtaposition of many simple GA runs, the emergent behavior caused by speciation and

migration entirely suits the organic theme of the OGA that we presented in this work.

34

The benefits of the IGA are many; some of them are listed below:

1- Understandability and Inherent Technical Support: IGA is the most popular approach

among all PGA types [64]. This is partly attributed to the relative ease of this approach

and its compatibility with the coarse-grain parallel computing paradigm.

2- Speedup and Quality of Solution: Many research efforts have shown the advantage of

using IGA over SGA and other Parallel GA approaches [65-73]

3- More Diversified Population: Spatial distribution of individuals across multiple islands

and allowing them to interact only through limited migrations will effectively reduce the

chance that the best individuals take over the population rapidly and direct the GA toward

local optima in the early stages of the search [74]

4- Closer Analogy to Natural Evolution: Although not necessarily an advantage, some

advocates of the biological inspiration of computation algorithms believe that IGA

represents a closer analogy to natural evolution, where the population is seldom a

panmictic one; there are usually many niches that evolve separately and occasionally

exchange individuals. [75]

5- Scalability and parallel-computation suitability: The effectiveness of IGA comes from the

fact that the inter-process communication is minimal and only limited to the migration

phase. Other Parallel GA paradigms, like a master-slave GA that distributes the selection

knowledge [76], require heavy communication between the nodes in order to pick the

35

fittest among the entire population, this is not a problem in IGA as the selection process

is limited to each island‟s subpopulation, the only time inter-process communication

happens is when the individuals migrate, an event that sparsely occur in a traditional

IGA (1% of population every 1 generation is a common choice [72])

6- Linearly separable problems and multi-objective optimization: The fact that

subpopulations are evolved independently causes different islands to climb different

peaks in the search space, provided that the migration rate is not too high to cause

premature convergence for all islands. This finding amplifies the importance of IGA as it

makes it a good candidate for achieving multi-objective optimizations, which are widely

encountered in many scientific and engineering fields [77]

Examples of successful applications of IGA are shown in Table 3 below.

Table 3: Successful Applications of IGA

Application Reference

Database search using PGA [78]

Nuclear reactor optimization [70] [69]

Travelling Salesman [79]

Royal Road functions (R1-R4) [72]

DeJong test suites [67], Goldberg, Korb, and Deb‟s ugly 3-bit deceptive problem

[71], and the zero-one knapsack problem [68].

[66]

Total of eight functions:

Four functions (IM1-IM4) are specially created to test properties of IGA; three of

them require that islands cooperate to find a good solution.

The remaining four are standard multimodal test functions, which are:

Rosenbrock, Schwefel, Astrigin, and Griewangk.

[80]

Optimal design of elastic flywheels [81]

Optimization fine spatial grid of water pipes for groundwater remediation (pump-

and-treat technology)

[82]

Training a Recurrent Artificial Neural Network (RANN). [83]

36

CHAPTER 3: SMART DESIGN OBJECTIVES

In this section, we present the major design objectives of SMART. Each of these objectives,

listed in Table 4, is analyzed in terms of motivation and how it has been approached in other

studies; we then show the design decisions that each goal has prompted and how these decisions

were manifested in the actual system design.

Table 4: System Goals, Motivations, and Impacts

Objective Motivation Impact on Design

Exploit

Reconfigurability to
Realize Adaptive Level

of Redundancy

tradeoff between reliability and overhead,

Incorporate run-time info in redundancy
decisions, make use of the reconfigurability of

the FPGA as an adaptation technique

RARS, Dynamic PR

Develop Organically

Amenable Hard-Fault

Repair Techniques

Account for hard-fault possibilities in space

missions, Exploit reconfigurability to advance

organic behavior, Utilize Evolutionary

Algorithms in the OC domain.

OGA, decoding Virtex-

4 CBS, AS, efficient

use of Xilinx Tools

Implement SMART and

Evaluate it Using Widely

Accepted Metrics

Discover and Mitigate difficulties in

implementing real OCs, provide test-bed for

future research, properly evaluate SMART

against standard metrics

Sobel edge detector,

JTAG, GNAT, Verilog,

JAVA GUI, CTMC,

BL-TMR

3.1. Exploit Reconfigurability to Realize Adaptive Level of Redundancy

Traditional reliability techniques often rely on the concept of redundancy. Redundancy is the

addition of resources, time and/or information beyond what is actually needed for normal system

operation in order to maintain functionality and performance when faults occur. The tradeoff

between overhead and reliability in redundant systems has been the focal interest of many

research efforts in the past few decades [6]. Consequently, many redundancy schemes have

emerged to support different reliability requirements. Some of the influential redundancy

schemes are as follows.

37

1. TMR: This is a passive redundancy scheme that masks faults as they occur without

isolating the faulty parts. TMR consists of three functionally-identical modules that

perform the same task in tandem and a voter that outputs the majority vote of the three

modules [84]. If one module fails, the other two can still overrule its erroneous output

and maintain correct overall TMR output.

2. Duplex Configuration: Consists of two functional modules and a discrepancy detector

that keeps track of any discrepancy between the outputs of the modules. The system

should be able to tolerate a period of degraded operation until the fault is isolated and

recovered by other means.

3. Stand-by Sparing. In this system, one module drives the system operation, while the

others are hot spares in an idle state that are ready to be called into action. Cold spares, in

contrast, are kept shut down and thus do not consume power, but they do incur some

delay upon activation before they are able to replace the faulty module.

The tradeoff in all of these fault-handling systems is between increased system dependability and

the overhead associated with maintaining redundant parts. For instance, duplex systems maintain

one redundant element but cannot mask faults on the fly. Adding one module to a duplex system

makes it capable of masking faults via TMR techniques at the expense of extra area, power, and

cost. This compromise is usually hard to achieve at design time. Thus, a mission-level analysis is

used to determine appropriate tradeoffs.

38

In addition, mission-critical applications are impacted by many parameters, some of which can

only be decided at run time. For example, an edge detector circuit is of extreme importance when

it is operating on a critical video stream, for example, of a moving object in a surveillance

recording; in these cases, it is usually necessary to quickly mask any faults that might occur

because any loss of detection capabilities is intolerable and can affect the overall mission

objectives. However, if the same edge detector is operating on a still scene in a surveillance

recording, then it might be possible for the system to tolerate some degradation in the output

because the generated image can still be analyzed later or simply omitted due to the lack of

action in the scene. TMR may be a wise choice in the former case, whereas a duplex

configuration might be a better option in the latter. This scenario is an example of a system that

shows changing reliability needs at different mission stages.

Whereas many other studies have constant redundancy level in their systems at design time [12,

34, 85-87], we sought an adaptive solution by deferring the decision regarding which level of

redundancy to support until the run time. Thus, the choice can be enhanced by mission-related

information and status to make it an efficient compromise between the desired reliability and the

associated overhead in terms of cost, size, power, and area. To facilitate this approach, we

implanted RARS with various innate levels of redundancy from which the AE can select at run

time based on the mission status and the desired reliability level.

39

3.2. Develop Organically Amenable Hard-Fault Repair Techniques

OC research is usually more concerned about spotting and controlling the emergence of self-x

properties than emphasizing the underlying platforms and implementation details. Therefore, one

should question whether FPGAs are suitable platforms for hosting organic computing systems,

and if so, to what extent. We believe that these are fundamental questions that must be answered

to assert the validity of choosing FPGAs as the hosting platform for an OC system.

In Section 1.2, we listed seven reasons that justify the selection of FPGAs as a hosting platform

for SMART. Mainly, due to the ability to change the hardware realization of the system at any

point of time, we were able to add and remove hardware components to adapt for changing

mission requirements and fault scenarios, this feature would not be attainable on a fixed

hardware device like ASICs.

Guarding mission-critical systems against faults has been a major research and industry focus in

the past few decades [6]. Nevertheless, the extreme majority of these efforts have overlooked

hard-fault repair on the basis that new technological advancements have produced device

technologies that are immune to radiation-induced faults [33], overlooking the increased impact

of device scaling toward smaller technology nodes (sub 90nm) on the aging-related failure

modes. We have listed five reasons in Section 2.1.2 to rationalize our choice of considering hard

faults in SMART‟s repair techniques.

Therefore, a key SMART design objective is to exploit the reconfigurability feature of FPGA to

implement organically-amenable hard-fault repair techniques that can help extending the

40

operational lifetime of mission-critical systems. These two techniques are the Amorphous Spares

(AS) and the Organic GA (OGA).

The AS concept stems from the fact that a spare for FPGA circuit implementation is nothing but

a reasonably-sized bitstream file, this is in contrast to carrying an actual hard spare that occupies

space and require dedicated swapping mechanism to replace faulty parts. AS on the other hand

only requires re-implementing the same hardware design by using different area constraints per

intended spare. The ability of PowerPC embedded processor to reconfigure the FPGA using the

ICAP makes the swapping mechanism a software-driven process. The next stage of AS is to

allow dynamic relocation of the bitstream to avoid suspected faulty resources in the FPGA

during the mission runtime.

The second organic technique to deal with hard-faults is the OGA. The GA is a non-deterministic

heuristic search that can lead to slow and partial convergence. In order to make SMART GA an

organically-amenable one, we narrowed down three aspects that stand in the way of

implementing a GA that is appropriate for an organic system comprised of reconfigurable

devices. These three aspects are fitness evaluation, genetic representation, and design of fitness

function. We devised solutions that can help realize the organic GA objective as follows.

1. Genetic representation: The process of encoding the physical traits of the application

(phenotype) into digital representations (genotype), and vice versa: decoding back the

digital representations into physical form. This selection can complicate the evolution

process as it is needed every time an individual is evaluated. The genetic operators are

41

applied in a computer program that requires string or integer representation of the

individuals (called chromosomes), but the intrinsic fitness evaluation requires the

individual to be implemented as a physical circuit on the FPGA. SMART uses direct

bitstream evolution to solve this problem, where the most compact and innate

representation of the circuit, the CBS, is directly evolved by the OGA. This process is

described in details in Section 4.2.3.2.

2. Fitness evaluation: This is the process of measuring the fitness of the evolved individual.

The common technique is to model the hardware device and use the software model to

evaluate the fitness, this is called extrinsic fitness evaluation [14]. This method poses risk

of imprecise modeling especially with the complexities of capturing timing and physical

constraints. Relying on simulators of the hardware rather than the hardware itself is a

risky approach for mission-critical systems because the evolved solution in not

guaranteed to fit on the actual hardware. Thus, the OGA utilizes intrinsic fitness

evaluation method that employs the actual hardware in measuring the fitness of the

individuals. This technique will be described in Section 4.2.3.2.

3. Fitness function: GAs are inspired by Charles Darwin‟s theory of natural selection, which

is usually reduced to the motto “survival of the fittest”. In reality, nature is capable of

determining the fitness of individuals by assessing their success in reaching natural

resources, evading predators, and ultimately mating and reproducing. However, in

artificial evolution, determining the “fitness” of individuals is normally done using a

fitness function that measures the desired traits of the evolved individuals and quantifies

42

them into numerical values. Having a representative fitness function is of great

importance to the GA success. In addition, it impacts the portability of the GA to other

problem domains. For instance, a fitness function to quantify the adherence of a frame to

certain edge-detection criteria will not fit a GA that aims to reduce noise in a

communication channel. Therefore, the OGA is equipped with a model-free, application-

independent fitness function that relies on measuring the deviation between any evolved

individual and a known-to-be-good one. More details about the OGA‟s discrepancy-

based fitness function is presented in Section 4.2.3.3

3.3. Implement SMART and Evaluate it Using Widely Accepted Metrics

In this work, not only we develop and oversee an approach to promote self-repair with reduced

power consumption compared to traditional approaches, but we also synthesize the solution and

evaluate its performance in a realistic application running on intrinsic hardware configuration.

The ever-increasing complexities of computing systems require new original design paradigms.

Organic computing is one paradigm that restrains this complexity by allowing more freedom to

the system to improvise solutions at run time. The inherent authority of the system over its own

operation is usually manifested by the emergence of properties at the system level that can hardly

be noticed at the component level. These properties may be useful or harmful to the system's

operation. The design goal of any OC system is to subdue the emergence of harmful properties

while promoting helpful ones. The controlled emergence of life-like, self-x properties is what

distinguishes OCs from other design paradigms. Rather than manually providing all alternative

43

execution paths at design time, the system is equipped with innate capability to actuate desired

configurations based on the sensory information that it acquires, making it capable of adapting to

handle many execution scenarios.

Whereas many OCs in literature were either conceptually prototyped or limitedly simulated,

SMART has been fully implemented and its benefits are demonstrated quantitatively in action

[88]. To place the system into a real-life context, we implemented real-time video edge detection

using a 2-D gradient-based Sobel edge detection algorithm. Table 5 shows the different modules

in the system along with the underlying technology that is used to implement them. The details

on each module are presented in Section 5.1.

Table 5: System Modules Implementation Details

Module Implementation Platform

Organic layer ML402 mother board (lower board of Xilinx Video Starter Kit) with

Virtex-4 FPGA (XCV4SX35)

Video

capturing/buffering

Video IO Daughter Card (VIODC)

(Upper board of Xilinx Video Starter Kit) with Virtex-2 PRO FPGA

XCV2P7

HW-SW connection JTAG from FPGA side

Xilinx Parallel port host PC

GNAT to interface with the FEs

Comm. Manager Multi-threaded C++ application

Human Interface

Module (HIM)

C++ encoder/decoder that accesses the file system

Software monitor Java-based application (Figure 5)

Application Sobel edge detector (Verilog)

GA engine C++ based Standard GA [15]

OGA interface C-based API (MRRA) [55]

Moreover, the experimental work has been expanded to evaluate SMART‟s advantages against

widely-accepted benchmarks. First, the availability of SMART and the industry standard TMR

44

techniques were simulated through CTMC under the conditions of nine realistic space mission

use cases. All used numbers and parameters were acquired from either public resources or

experimental results of SMART operation. The simulation‟s merit was to abandon analytical and

steady-state reliability results in order to attain practical prediction of the nine use cases. The

results of these simulations are presented in Section 6.2.

Finally, whereas many works in the literature evaluated their systems against an assumed TMR

overhead of three times the FE overhead plus the voter overhead, we opted to employ special

tools to insert triplication in a design while maintaining efficient power, area, availability, and

timing standards. We used BL-TMR [18] tools to generate optimized triplicated FEs, in order to

gain more precise and unbiased comparison to SMART. The details of the evaluation methods

that were used are listed in Section 6.3.

45

CHAPTER 4: A SMART ARCHITECTURE FOR MISSION-CRITICAL

SYSTEMS

Figure 3 depicts the detailed architecture of the lab prototype of SMART. In this prototype, the

software-based repair layer is implemented on a host PC to aid in experiments and validation.

The deployment system is intended to have the software components implemented in an

embedded PowerPC processor that comes with many commercially-available Xilinx FPGA

boards.

The lower half of the figure shows the organic hardware layer where one or more FPGA boards

can be accommodated in the system, each of which has one or more RARS module(s). The

RARS modules are connected via a dispatcher module, which facilitates the communication with

the software layer. This communication takes place through a JTAG interface on the FPGA side

to a parallel port on the host PC side via a Xilinx parallel cable. The software layer

communicates with the hardware through a multi-threaded communication manager, which is

responsible for abstracting all hardware complexities and providing messages to the various

software components. These components include the Human Interface Module (HIM), which

converts the binary message into human-readable text files, and vice versa. They also include the

repair modules, which are the scrubber and the OGA repair that will be thoroughly described in

upcoming sections.

46

Board-1

Virtex-4 FPGA

JTAG

...

Parallel

Cable

Dispatcher

(GNAT)

Board-n

Virtex-4 FPGA

…
Control

AE

FE-1

FE-2

FE-3

Status

FE-1

FE-2

FE-3

AE

Control

Status

Software

Hardware

RARS #1 RARS #n
Dispatcher

(GNAT)

Virtex-4 FPGA

…
Control

AE

FE-1

FE-2

FE-3

Status

FE-1

FE-2

FE-3

AE

Control

Status

RARS #1 RARS #n

Status/Control

JTAG

Parallel Port

Communication Manager

Driver

In
b

o
x

O
u

tb
o

x

Human Module Interface (HIM)

M
e

s
s

a
g

e

E
n

c
o

d
e

r
M

e
s

s
a

g
e

D
e

c
o

d
e

r

Human

To

Organic

Organic

To

Human

File System

Java Applet

GUI (Monitor

and contol)

To Other Applications

From Other Applications

Scrubber

Xilinx

IMPACT

Amorphous Spares

(AS)

Config

Contoller

OGA

Engine

Chromosome

Manipulator

Multilayer Runtime

Reconfiguration

Architecture

(MRRA)

OGA Repair
OGA Controller

Monitor

Figure 3: SMART Top-level Hardware and Software Architecture

4.1. RARS Hardware Layer

The hardware layer consists of one or more RARSs and dispatchers configured on one or more

FPGA boards. The RARS module comprises the smallest integrated unit in the hardware

platform; it consists of one AE and three identical FEs. The AE is application-independent; it

contains the logic that drives the organic behavior by actively reorganizing the available FEs. On

the other hand, the FEs represents the application-dependent user implementation of the desired

functionality. Therefore, the FEs are the only modules that need to be modified for the system to

support new applications.

47

Having three FEs in each RARS module illustrates the common practice of employing a TMR

configuration in redundancy-based fault-tolerant systems. Nonetheless, there is no loss of

generality which prevents RARS from accommodating FEs for any .

One straightforward approach is to initially enable two FEs while the third is kept offline as a

cold spare. Upon finding a discrepancy between the two outputs in the duplex mode, the AE

switches to the TMR mode of operation by placing the standby third FE online and activating a

voting scheme among the three FEs to obtain the correct output and hence masks single-fault.

While the duplex mode has the shortcoming of expending clock cycles from the instant it detects

a fault until the correct functional output is regained, it reduces the required dynamic power

compared to a conventional TMR in the no-fault scenario. Moreover, the fact that the standby FE

is normally offline makes its resources available for use for any other purpose.

4.1.1. Motivation as a Hybrid of Approaches

TMR requires three functionally-identical modules that perform the same task in tandem and a

voter that outputs the majority vote of the three modules [84]. Meanwhile, Concurrent Error

Detection (CED) [89] approaches rely on a duplex configuration and discrepancy detection

among the output bits of the redundant modules. Both TMR and CED can increase reliability

using Stand-by Sparing approaches whereby hot spares are kept in an idle state and thus are

ready to be called into action once required. Cold spares, in contrast, are kept shut down and thus

do not consume power, but incur delay before they are able to replace faulty modules.

48

As described in SMART Design Objective 1: Exploit Reconfigurability to Realize Adaptive

Level of Redundancy, the tradeoff in all of these approaches is between increased system

reliability and increased resource consumption. Running in TMR means increased chances of

keeping the system healthy, but it also consumes approximately triple the area and the power.

Moreover, we hypothesize that fixing the redundancy level at design-time can be challenging as

the mission engineers do not have complete knowledge of the mission trajectory and the various

dynamic parameters than can impact it. Some missions can go smoothly for 99.99% of the time,

only requiring high degree of redundancy in the remaining 0.01% due to a probabilistic event

that may or may not have occurred in other similar missions. Such uncertainty complicates

design-time decisions, and in mission-critical applications that are highly valued due to their

scientific and social impact, the wise decision can be often to increase redundancy to be prepared

for any events, even the unlikely ones. Thus, RARS promotes run-time adaptive redundancy

techniques, taking advantage of the inherit reconfigurability property of the underlying FPGA

devices. The initiative of growing and shrinking the number of spares on demand is the focal

contribution of RARS.

In addition, the fault recovery decision is not a black-and-white one, if the FPGA board is hit by

a strong radiation or thermal flux such that two functional modules of a particular TMR are

partially damaged. Assuming the third one is in a better state, it might be more useful to shut

down the two fault modules and operate on simplex configuration, saving energy and electrical

stress during a critical stage of the mission, and eliminating the possibility of the other two,

faulty, modules to overrule the healthy one when they both agree on an erroneous output. A

49

simple operational mode might serve the mission purpose better than a TMR, something that

cannot be entirely predicted during design time, but can only be wished for when certain

conditions are met during the mission runtime.

For that reason, we wanted the organic hardware layer of SMART to be as flexible and dynamic

as possible; the more flexible RARS is, the more options SMART will have during mission run-

time. RARS is a generic fault-tolerant module that can operate in Simplex, Duplex, and TMR

configurations; there are three Functional Elements (FEs) and one Autonomic Element (AE), the

AE is a controller for the fault tolerant behavior that is completely independent from the FEs,

which are solely in charge of accomplishing the functional requirements of the mission.

4.1.2. Architecture and Components

The proposed RARS architecture is shown in Figure 4. The functional input is delivered directly

to the three FEs for evaluation. The outputs of the FEs are then sent to the AE to be processed by

the following five modules:

1. Discrepancy Sensor (DS): This component uses the three FE outputs to detect

discrepancies between any pair of enabled FEs. This module is only activated when

RARS is running in the duplex mode; otherwise, it is disabled to conserve energy.

2. Voter. The voter module performs bitwise voting among the three FE outputs and

produces the majority vote. It also generates a report that conveys any of the condition

50

codes listed in Table 6. The voter is enabled only in the TMR mode and otherwise is

disabled to save power and resources.

Table 6: Possible Values of the Voter Report

Voter report Description

000 No discrepancy among the three FEs

001 FE1 is discrepant from the other two FEs

010 FE2 is discrepant from the other two FEs

100 FE3 is discrepant from the other two FEs

111 All FEs are discrepant (m-bit, m>1)

101 Voter is disabled

3. Output Actuator (OA): This module performs a 4x1 multiplexer function. The inputs

come from the outputs of FE1, FE2, FE3, and the voter. The selection lines come from

the Redundancy Controller (will be described shortly), while the output drives the overall

system‟s functional output. This module signifies the flexibility of the AE compared to

other fixed redundancy techniques, because RARS can select from all of the simplex

configurations in addition to the majority vote output.

4. Performance Monitor (PM): This module samples the DS and the voter report to provide

reports that reflect the aggregate performance of the system. The PM is periodically

polled by the software layer during repairs to acquire system performance to convey the

fitness value of the evaluated individuals.

5. Redundancy Controller (RC). This is the core element in the AE; it is responsible for the

unit awareness and for sending status reports and receiving control signals to or from the

software layer. In SMART, the RC is a Finite State Machine (FSM) that encodes all

possible system configurations. The inputs to this state machine are the reports from the

51

various modules, such as the DS, voter, and the PM. The output drives the “Enable”

signals for all the modules and the selection lines for the OA. Moreover, this module

contains the communication logic of the dispatcher and the input and output buffers that

store the incoming and outgoing messages.

Reconfigurable Adaptive Redundancy System (RARS)

Autonomic Element (AE)

Functional

Element (FE-1)

Functional

Element (FE-2)

Functional

Element (FE-3)

Output 1

Output 2

Output 3

Output

Actuator

Discrepancy

Sensor

Voter

Redundancy

Controller

Enable FE-1
Enable FE-2
Enable FE-3

Select

To/From

 Dispatcher

Functional

Input

Functional

Output

Enable

Discrepancy

Report

Voter

Report

Enable

Performance

Monitor

Voting

Result

Enable
Performance

Figure 4: Reconfigurable Adaptive Redundancy System (RARS)

4.1.3. Range of Possible Configurations

To obtain adaptive levels of redundancy, RARS uses real-time performance feedback based on

the mission objectives to dynamically reorganize its modules into one of the following

configurations.

52

1. Simplex. The RC disables two FEs, the DS, and the voter. The OA propagates the

enabled FE output. This configuration allows highest energy conservation if that is a

priority. It is also practical during non-critical stages of missions. The simplex

configuration can also be enabled during repair in a pair-and-spare scheme.

2. Duplex. The DS is enabled to inform the RC in the event of output disagreement between

the two enabled FEs. The OA is set to one of the enabled FEs. This configuration is only

used for applications that can tolerate temporary degradation in output quality until the

RC takes further repair action. The system can run in duplex mode while repairing a

faulty module in order to detect additional faults in the online modules.

3. TMR: The voter and all FEs are enabled, whereas the OA propagates the voter output.

Only the DS can be disabled as the voter report is able to convey all needed information.

The system can maintain 100% correct throughput in the TMR mode even if one module

is faulty. Even with the existence of multiple faults, design diversity and compensating

module faults [13] can still assist in generating a correct vote. The TMR configuration is

utilized in this platform when the system is repairing a faulty FE because it can maintain

a fully functional system while the FE is repaired. This is made possible by dynamic PR,

which keeps the system online while performing repair.

4. Hybrid Mode. Many temporal configurations can be supported by RARS. For instance,

an application can run in simplex mode but switch to duplex periodically to detect

discrepancies. Another usage example might be an application that has a duplex

53

reliability requirement except during certain stages of the mission, where it can switch to

TMR in order to meet reliability needs. Downgrading is also possible based on reliability

needs, while the arrangement of FEs can be dynamically reconfigured back to the original

configuration once the operating behavior has changed accordingly.

A key consideration in RARS is that reconfiguration adds minimal additional component to

functional critical path. The design attempts to promote the fact that if faults occur outside the

FEs logic, only the recovery is impacted, not the FEs functionality. Therefore, we can apply the

RARS concept recursively if needed to provide coverage for faults in the AE. Nonetheless,

reconfiguration capability needs to remain intact for recovery by reconfiguration to remain

viable, and also the voter logic should remain intact, as in conventional TMR approach, to

guarantee that the correct vote is propagated as the functional output.

Assuming that the AE voting core is an unbreakable voting element will indeed add a single-

failure point to the fault-tolerant system. However, this risk is alleviated by the fact that the voter

element of the AE has much lower area than the FEs, meaning that the probability of fault hitting

the voter element is reduced accordingly. The FEs in the experimental use case of the edge

detector have a total size of approximately 1800 LUTs, compared to the voter element of

approximately 100 LUTs. This means that the probability that a fault happens in the voter is 5%

of the probability of a fault to hit the FEs logic. This value is still high enough to be neglected in

mission critical applications, a successful approach to handle golden elements is random pairings

and temporal voting that have been successfully demonstrated in [90]. Moreover, The FEs are

expected to considerably increase in area for real complex applications, the voter is not expected

54

to scale with the same degree, further reducing the chance of broken golden element compared to

the functional elements.

4.2. Organic Fault-Tolerance Software Management Layer

The software layer controls the higher-level throughput of the system by monitoring the

performance and enabling active repair when the performance dips below an acceptable level as

specified by the mission requirements. The software layer serves two main purposes:

The first purpose is to provide an interface to monitor and control the hardware. To that end, a

Java applet GUI has been created to depict the hardware status schematically and show the status

of each component. The applet is shown in Figure 5, it shows the following information:

1. FE Status: online, offline, faulty, fault-free, or under repair.

2. AE Configuration: simplex, duplex, or TMR.

3. Performance level: the number of reported discrepancies divided by the total number of

evaluations.

4. Log of the transmitted messages: The communicated messages are recorded as a paper-

trail of hardware status changes.

55

Figure 5: Java Applet GUI Indicating Instantaneous RARS Status

The second purpose of the software layer is to enable higher-level autonomous recovery

techniques. First, the scrubbing technique rewrites the CBS to the FPGA in order to fix any SEU

in the configuration logic. Second, the AS are consecutively reconfigured on the FPGA until the

faulty element is excluded from the logic path, as a way to quickly evade resources hit with hard-

faults when a proper spars is available. Last, we have demonstrated in our experimental work

that we are able to recover simulated hard-fault by means of OGA. The fitness function was set

to be the instantaneous performance level of RARS over a recent window of inputs.

56

4.2.1. Architecture and Components

The top half of Figure 3 shows the architecture of the software layer. The Communication

Manager (CM) is a multi-threaded C++ module that acts as the parallel port driver to

communicated messages with the hardware. HIM converts the binary messages in the CM

queues into human-readable messages that are stored in a predefined directory on the file system,

and vice versa. The Message Decoder consults the communication protocol opcode table and

generates text files representation of the messages. For example, this decoded message illustrates

the status of FE #2 in RARS #1 as being online and fault-free:

MSG_NAME: FE_STATUS_REPORT

MSG_CODE: 3

AE_ID: 1

FE_ID: 2

STATUS: 1 (ONLINE AND FAULT-FREE)

Any application that complies with the protocol message format can communicate with the

hardware layer. The encoder periodically polls for message files stored in a predefined directory,

encodes them into binary representation, and stores them in the inbox queue of the CM in order

to be sent to the organic hardware. This platform provides a bi-directional communication link

between the organic hardware and any user application that needs to monitor and/or control it. A

Graphical User Interface (GUI) was constructed to display hardware status. The GUI is

dynamically updated based on the customizable message exchange frequency.

The scrubber and the GA repair modules can be seen to the right of the CM in Figure 3. These

modules are described in detail in the next two sections. Both of them can reconfigure the FPGA

57

by executing batch files that invoke the Xilinx iMPACT tool [20] to perform partial device

reconfiguration using the parallel Cable IV.

4.2.2. Scrubbing and Amorphous Spares

The RARS-centric techniques are sufficient to recover from transient faults in the user logic.

SEUs in the configuration logic and hard faults cannot be indefinitely masked by redundancy

because any further faults can shift the voting results toward the faulty FEs. Thus, in such cases,

RARS will signal to the software layer of SMART to intervene and help fixing this type of

persistent faults.

SMART begins by assuming that the persistent fault is caused by an SEU in the configuration

logic (soft fault) that caused the flipping of one or more LUT bit(s). SMART handles this via

scrubbing the bitfile to correct the impact of the SEU and thus restore the correct funct ional

operation of the circuit. Scrubbing entails fetching the CBS from an off-chip ROM via PowerPC

APIs, reconfiguring the faulty FE via the ICAP, reading back the freshly downloaded bitfile to

compare it to the ROM-based golden image, and finally monitoring the discrepancy for a

sufficient number of evaluations to ensure that the fault is indeed corrected by scrubbing.

If the fault is not corrected by simple CBS scrubbing, SMART concludes that it is caused by a

hard fault that requires extra repair effort. It starts by repetitively configuring a set of design-time

generated spares that have different area constraints to guarantee the avoidance of each and every

LUT in at least one of the spares. This will ensure that each faulty LUT can be avoided by, at

58

least, one available spare. These spares are called amorphous because they have the same

hardware design which can be constrained by the Xilinx tools to avoid certain LUTs, meaning

that the spare generation effort is minimal.

The AS generation is accomplished via the Xilinx PROHIBIT constraint in the Xilinx User

Constraint File (UCF) [20]. The PROHIBIT constraint allows the designer to specify a set of

LUTs that should be avoided during the placement stage of the bitfile creation process. For

example, the following constraint will exclude all slices in the range between locations (0, 33)

and (13, 33):

CONFIG PROHIBIT= SLICE_X0Y33:SLICE_X13Y33

The same HDL entry is used to generate multiple configuration bitfiles, each with different UCF

settings that exclusively prohibit the use of a set of slices. When a fault occurs, the scrubber

successively downloads the bitfiles to the FPGA and searches for a configuration that prohibits

the use the faulty LUT, in which case the fault will be corrected throughout a window of

evaluations. If none of the AS was able to hide the erroneous output, perhaps because there is

more than one faulty LUT in the FE that cannot be excluded by any spare, the scrubber ceases to

be efficient and will consequently request the intervention of the OGA repair.

The scrubber is the first line of recovery from faults that cannot be handled by RARS

reorganization techniques. SMART relies on lazy scrubbing [17] such that only the discrepant

FE in a TMR configuration is partially reconfigured while the system remains online; the other

two fault-free FEs, along with the voter, guarantee that the system can maintain correct overall

59

output while the faulty FE is being scrubbed. A tile-based reconfiguration approach for fault-

tolerance is covered in details in [43].

4.2.3. Organic GA Repair Technique

SMART‟s autonomous fault-tolerance method installs OGA as an integral part of the repair

cycle because it offers hard-faults active repair that is independent of the number of carried

spares. However, the GA is a nondeterministic process than can affect the flexibility of SMART

if not designed efficiently. Thus, three properties that can enhance the efficiency of the GA for

an organic system were addressed.

4.2.3.1.Direct Bitstream Evolution

 Genetic representation is the process of mapping from the visible traits of the application (i.e.,

phenotypes) to the genetic coding of the chromosomes (i.e., genotypes), and vice versa. The

Phenotype to Genotype Mapping (PTGM) is performed only once during the design stage of the

GA, and it requires special care to capture the building blocks that the GA needs to evolve in

order to achieve the desired solutions [91]. The Genotype to Phenotype Mapping (GTPM), on the

other hand, is applied every time the individual fitness is evaluated to transform chromosomes

into physical individuals that can be evaluated by the GA.

This two-way mapping can be a source of errors and complications if the distance between the

genetic encoding and the phenotypic realization is large. For instance, if the GA evolves the

HDL code of the FE to repair its circuit realization on the FPGA, then every time the

60

chromosome is evaluated, it must undergo synthesis, mapping, Placement and Routing (PAR),

bitfile generation, and FPGA reconfiguration, which is a huge overhead to endure for every

evaluation. For that reason, we designed OGA to use direct bitstream evolution, whereby the

chromosome is selected to be the FPGA raw bitfile. This selection puts the burden of PTGM on

the FPGA vendors (Xilinx in this work) and abridges GTP to a mere Xilinx iMPACT run to

download the CBS onto the FPGA.

Direct evolution of a bitstream depends upon details about the LUT mapping between the CBS

and the actual device. It is required to manipulate the encoding of the bitfile to be able to apply

genetic operators like crossover and mutation to the relevant sections of the long bit array. This

overhead is still considered feasible given the vast advantages of direct CBS evolution in term of

increased performance and reduced mapping effort. In order to directly manipulate the CBS, it is

necessary to decode its bits to understand how to locate and modify specific LUTs and thus

change the behavior of the resulting circuit. To that end, we extended the Virtex-2 approach that

we previously developed in [15] to perform direct bitstream evolution on Virtex-4 devices.

The CBS contains the LUT content that is evolved by the OGA in addition to other information

like routing, checksums, and header information such as the device signature and the time of

bitfile creation. We implemented an LUT mapping module, as shown in Figure 6, to map the

location of LUT_X_Y, where X and Y are valid coordinates inside the evolved FE, to the correct

offset in the CBS file. This mapping is not entirely documented in any of Xilinx application

notes; rather, it was discovered through repetitive trial-and-error experiments.

61

Configuration Bitstream

X1 Y1 X2 Y1 X3 Y1

X1 Y2 X2 Y2 X3 Y2

LUT mapping

Evolved FE

LUT Coordinates (X,Y)

CBS Offset

Figure 6: Mapping from LUT Coordinates to CBS Offset Representation

Each experiment aimed to discover the mapping between one of the LUT coordinates and the

corresponding bit offset in the CBS file. This was accomplished by viewing the Native Circuit

Description (NCD) file using the visual Xilinx FPGA editor tool [20] and negating the content of

one known LUT. The NCD files before and after the negations were used to generate bitfiles

with the same bit generation (bitgen) options [20]. The two resulting CBSs were then compared

using a hex comparator. The 16-bit LUT content could be readily identified by monitoring the

inverted bits between the two hex files, other differences resulting from header and time stamps

were usually located at the beginning of the bitfiles and thus promptly discarded. After many

trials, one can infer a relation between the XY of the LUTs and their offsets in the file, or rather

store a lookup table that contains all of the used LUTs along with their corresponding offset in

the CBS file, to assist in the mapping.

62

4.2.3.2.Intrinsic Fitness Evaluation

There are two methods to measure the fitness of the evolved individual. The common approach

is extrinsic evaluation [14] , which operates on a software model of the FPGA device. This

abstraction simplifies the experiments and can be tuned more dynamically. However, the

resulting representation has to undergo mapping and PAR on the target FPGA at deployment

time. This step imposes risk of incompatibility between the device's physical constraints and the

software model that was used in simulation, thereby possibly leading to incorrect solutions.

Instead, the OGA performs intrinsic fitness evaluation [14], whereby the hardware itself is used

to measure the fitness of the evolved individuals. All of the device‟s physical constraints are

considered during the process, and even the output is measured from the FPGA device while

processing the functional inputs of the application.

Therefore, the system can remain online during fitness evaluation, provided that there are

redundant parts to compensate for the evolved individual. Intrinsic evaluation requires that the

evolved circuit is configured into the FPGA device each time the fitness is measured. This

process is made feasible because of the direct bitstream feature of OGA, which means that the

GTPM requires only a Xilinx iMPACT device configuration to place the circuit on the FPGA.

4.2.3.3.Model-Free Fitness Function

 An accurate fitness function is a critical factor in designing an efficient GA because it

determines the shape of the problem landscape that the GA will search [91]. This process can be

extremely complicated in real-life engineering problems because it requires capturing all the

63

attributes that distinguish a good solution from other ones. In addition, it is highly dependent on

the problem domain, because what is good for one particular purpose does not usually fit other

purposes.

Because SMART is intended to be a generic platform that fits any application domain, the OGA

employs a novel, application-independent, model-free fitness function that can be ported to other

applications with minimal effort. This was made possible because of the robust design of RARS,

which enables run-time discrepancy detection between the evolved FE and other redundant,

fault-free one(s). The model-free fitness function quantifies the fitness of the evaluated FE by

counting the number of discrepancies between its output and other fault-free FE‟s. The number

of discrepancies over a window of evaluations is stored in the PM, and is reported back by the

RC to the OGA engine using a performance report message. This value quantifies the deviation

between the evaluated individual‟s fitness and the ideal one, where low values indicate fitter

individuals. Therefore, the GA becomes a minimization optimizer for this value.

It is important to note that this model-free fitness functions is only possible when the goal is to

repair a faulty circuit when there is another redundant circuit on the FPGA that can produce the

same functionality. This condition does not pose any limitation on redundancy-based fault-

tolerant systems because the redundant parts are activated anyway in order to maintain correct

functional output. The OGA takes advantage of that and implements the model-free fitness

function. Future work might consider adding a customizable layer of application-dependent

fitness evaluation knowledge to aid in even faster convergence.

64

4.2.3.4.OGA Design and Implementation

The OGA platform consists of the following modules [15]:

1. GA Engine: This is a C++ application that implements a customizable, Standard Genetic

Algorithm (SGA). This module is platform-independent; it encapsulates the

implementation of the SGA, including the population data structures, the functionality for

selection and replacement, and other standard GA operators such as mutation and

crossover.

2. Chromosome Manipulator: This is a C-based library that abstracts the underlying

hardware from the perspective of the OGA engine. It provides hardware-independent

abstraction of the genetic operators so that they can be executed with regard to the LUT

boundaries in the long CBS string.

3. MRRA: This is a set of APIs that facilitates communication with the target FPGA device

[55]. This module handles direct bitstream manipulation and decoding and includes the

LUT mapping module that is depicted in Figure 6.

4. Bitstream File: PR bitstream file that represents the FE design. It is generated beforehand

using the Xilinx tools. The format and content of this file are identified through repetitive

trial-and-error experiments to map the contents and location of the bits to the physical

LUT locations in the FE.

65

Figure 7 shows the complete OGA platform. The OGA engine relies on the chromosome

manipulator to perform platform-independent mutation and crossover operations. It also reads

the fitness values from the CM, which in turn acquires them directly from the hardware via the

communication protocol messages. The MRRA module operates directly on the bitstream using

the LUT mapping module shown in Figure 6, and then invokes a batch file that runs the

iMPACT tool, which performs boundary-scan device-chain initialization and then programs the

chip. All communication proceeds via the parallel port from the host PC side to the JTAG port

from the FPGA side.

66

OGA Engine

Chromosome

Manipulator

MRRA

EvaluateInput()

PerfromMutation()

PerformCrossover()

Get/SetLUTConfig()

Send()/Receive()

DownloadDesign() Read()

Write()

iMPACT

Parallel

Cable

Communication

Manager

Configure()

GetFitness()

FitnessValue

SendMessage()

ReceiveMessage()

JTAG

GNAT

SerialToParallel()

ParallelToSerial()

FE
Send()

Receive()

Virtex-4

Host PC

Bitstream

File

Figure 7: OGA Intrinsic Evolution Platform

The OGA creates the initial population based on the PR bitfile that was used to configure the

original faulty FE. It generates a copy of the bitfile for each individual in the initial population,

67

and then randomizes its LUT bits to promote genetic diversity that should lead to more

innovative solutions.

After that, each individual‟s fitness is evaluated intrinsically by downloading its bitfile to the

FPGA using iMPACT. The OGA engine then requests the fitness value of the evaluated

individual using a PERFORMANCE_REQUEST message that is sent to RARS through the

JTAG-GNAT interface. The RC reads the PM counters, which are updated periodically based on

the actual run-time functional inputs that the FEs process, it then formulates

PERFORMANCE_REPORT as a reply message and sends it back to the GA engine.

After evaluating the fitness of all individuals, the OGA selects the individuals that will

participate in the creation of the next generation using tournament selection of size 2 (value was

set based on preliminary runs aimed to locate the most promising GA parameters for the

experimental work). The selected individuals are then mated to create the offspring using single-

point crossover and conventional bit-flip mutation operation. Both operators are executed on the

raw bitfile as mandated by the direct bitstream evolution premise. The mapping between the

LUT coordinates and its actual location in the bitfile is abstracted using the LUT mapping

module that was demonstrated in Figure 6 to map FE XY coordinates to the actual offset of the

evolved LUTs location in the bitfile.

Finally, the newly created offspring is assigned to the population of the next generation and the

OGA repeats the same steps over and over until an adequate solution is found, which in our

experiments was defined as realizing no discrepancies at all between the evolved individual and

68

the fault-free ones over a predefined window of readings. This termination criterion can be

relaxed for more complex applications or ones that require faster repair time at the expense of the

fitness of the final solution.

4.3. Fault-Handling Handshaking-Based Communication Protocol

The communication protocol consists of two components. The first is the hardware component

that resides on the FPGA board and includes the standard JTAG interface serial port and the

GNAT platform [15] , which is configured on the device to support input and output operations

with the AE. The second component is the software, which runs on a host PC that is connected to

the FPGA. The AE sends messages to the Dispatcher, which is then polled by the CM from the

software layer via the JTAG interface. On the other way around, binary-encoded messages are

shifted from the CM to the Dispatcher via JTAG and then routed to the destination AE or

broadcasted to all AEs. The messages are 16 bits in width, with a Xilinx Parallel Cable IV

download rate of 5 Mbps [92], the communication link can theoretically handle up to 300,000

messages per second.

The JTAG boundary scan interface (IEEE 1149.1) is implemented on the non-reconfigurable

area of the Xilinx Virtex devices. The interface offers half-duplex serial communication between

the user circuit on the FPGA and the host PC. The GNAT component is implemented on the

reconfigurable area of the chip to connect the JTAG boundary scan with the user circuit to

provide bi-directional communication channel. The communication protocol relies on

handshaking to acknowledge received messages and request new ones. The protocol also

69

specifies a 16-bit packet format with 5 bits reserved for the opcode, thus supporting up to 32

message types, while the remaining fields are used for AE and FE addressing, and other purposes

like performance readings and component status. The messages defined in the protocol along

with their field specifications are listed in the Appendix: Communication Protocol Messages.

The class diagram of the software communication layer is shown in Figure 8. Special care was

taken to design the CM to enhance availability and graceful degradation. These objectives were

mandated by the fact that the system is designed for mission-critical applications. Hence, multi-

threading and non-blocking calls were extensively employed in the design to support these non-

functional requirements. Multi-threading was adopted such that every active communication is

held over its own thread. This design prevents blocking the controller class, thereby making it

available to serve any other incoming calls. For example, if the connection object informs the

communication controller object that there is a new message that requires processing, the

communication controller opens a separate thread to handle the message, leaving the main object

free to engage in any other operation.

The AE allocates inbox and outbox queues to respectively store incoming and outgoing message;

in addition, it continues to poll the head of the inbox queue periodically to search for new

messages. Once the AE finds one, it decodes the opcode field to extract the message type and

then forms a response message to serve the request, placing it at the end of the outbox queue to

be processed later by the software layer.

70

The communication protocol relies on handshaking to acknowledge received messages and

request new ones. Examples of the messages that flow from the software to the hardware are as

follows.

1- FE_STATUS_REQUEST solicits the status of a particular FE (RARS_Index.FE_Index).

2- AE_STATUS_REQUEST solicits the status of a particular AE (RARS_ Index.AE_

Index).

3- PERFORMANCE_REQUEST asks a particular RARS to report back the values of the

Performance Counter (PC).

The respective responses of the hardware to these messages are as follows.

1- FE_STATUS_REPORT reports FE status (such as online healthy, online faulty, offline,

and so on).

2- AE_STATUS_REPORT reports AE status (such as Simplex, Duplex, Voter, and so on).

3- PERFORMANCE_REPORT reports the PC value.

71

+Connect()

+Disconnect()

+SendData(in Data : string)

+ReceiveData(in Data : string)

-Type

Connection

+DetectFPGADevice()

-PortIdentifier

-PortConfiguration

USBConnection

+Listen()

-ServerHost

-ServerPort

SocketConnection

+Connect(in ConnectionID : int)

+SendMessage(in Message : string)

+ReceiveMessage(in Message : string)

-Retry()

-Connection : Connection

-NumberOfConnectionRetries

-PeriodBetweenRetries

CommunicationController

* 1

+Start()

+Stop()

-Interval

-Listeners

Timer

TimerListener

+WriteToLog()

-ID

-Type

-Source

-Destination

-Content

-TimeStamp

-Priority

Message

1

*

+ReadConfiguration()

-OrganicConfiguration

AEManager

+ReadSettings()

-CognitiveSettings

ASManager

+ReadSettings()

+PerformRefurbishment()

+GetRefurbishmentResults()

-RefurbishmentSettings

-ConfigurationFiles

RMManager

+DispatchMessage()

-ModuleManagers

Dispatcher1

1

+Start()

+ReadSettings()

+FormatMessage()

+PushIntoInbox(in Message)

-PopFromInbox() : Message

-PushIntoOubox(in Message)

+PopFromOutbox() : Message

-ClearInbox()

-ClearOutbox()

-InboxQueue

-OutboxQueue

ModuleManager

11

1

1

Figure 8: Class Diagram of the Communication Module in the Software Layer

4.4. Dynamic Partial Reconfiguration

SMART relies on the repetitive reconfiguration of the FPGA to achieve active repair via

scrubbing and intrinsic evolution. Dynamic PR was successfully introduced into the RARS

hardware in order to reduce repair time. Introducing dynamic PR into this design, the faulty FEs

72

could be reconfigured in 1.8% of the time originally required to reconfigure the entire system.

This improvement becomes extremely important during the repair process, considering that the

OGA may require thousands of evaluations to evolve an adequate solution. This approach also

has the added advantage of keeping the system online during bitstream downloading.

Early Access Partial Reconfiguration (EAPR) design flow [93] was used to achieve dynamic PR

capabilities. This flow requires a strict design routine that does not follow the conventional

single-pass of synthesis, mapping, and PAR. Instead, it requires the design to have an explicit

modular structure such that the PR modules are singled out at the top-level module. These

modules are called Partial Reconfigurable Modules (PRM), whereas the region of the fabric to

be reconfigured is defined as a Partial Reconfigurable Region (PRR). PRMs define the

functionality of each PRR. All other logic in the design is referred to as static logic. All resources

required for an FE must be confined within a PRR.

To connect each FE with the surrounding logic, a special interface is required, known as a Bus

Macro (BM). BMs are special structures that are implemented with the help of CLB in which

pre-configured LUTs are used to transfer signals between the static logic and the reconfigurable

region. A group of LUTs in one CLB is placed on the PRR side, and another group of LUTs in

another CLB is placed on the static side. This two-CLB macro can provide a communication

bandwidth of up to 8 bits. BMs are made available by Xilinx to compensate for the old

alternative of using hard-wired tri-state buffers, which have been used with earlier PR design

flows and are known to present strict constraints on the communication bandwidth due to the

73

limited number of buffers available on the fabric. The BMs are uni-directional structures and can

be placed on all sides of a PRR.

The other factor to consider in the PR process is the configuration frame size of the target device.

For Xilinx Virtex 4 FPGAs, a frame is 16 CLBs long and one CLB wide. The time to reconfigure

a functional element depends on the bitstream size, which is proportional to the number of

frames. The resource allocated to each FE is the same because the three elements are functionally

and physically identical. The total number of configurable logic blocks allocated to each FE is

112. Each FE requires seven logic configuration frames to be loaded for its partial

reconfiguration.

The introduction of partial reconfiguration reduced the size of the bitstream considerably and

thus improved the reconfiguration time for the FEs. The full bitstream size is 1.7 MB, and it

takes 2.61 seconds to fully download using the Parallel Cable IV. However, the partial bitstream

is 31 KB and requires only 48 milliseconds to configure. This improvement becomes extremely

important during the repair process, considering that the GA may require thousands of

evaluations to evolve an adequate solution. In addition, the PRR can be reconfigured while the

system is running. Therefore, considering that the system will be running in the TMR mode,

under the assumption of a single-fault scenario, the system can still maintain 100% performance

while undergoing repairs.

Figure 9 shows a snapshot of each of the three PRRs along with the static, top-level full design

of the RARS. The placement of the PRR and the BMs was achieved with the help of the Xilinx

74

PlanAhead tool [93] . All of the clock signals BUFGs, I/O signals, BMs, and DCMs were

defined in the top-level module. A user constraint file was assigned to the top-level module that

contained all of the I/O pin constraints, the range of all of the PRRs using the AREA_GROUP

constraint, and the location of all of the bus macros.

Figure 9: FPGA Layout for FE1, FE2, FE3, and RARS

4.5. The Repair Cycle and Self-x Properties

The controlled emergence of self-x properties is what distinguishes OCs from other design

paradigms [48]. Rather than providing all alternative execution paths at design time, the system

is equipped with innate capability to actuate different configurations based on run-time sensory

information, making it adaptive to various execution scenarios.

Figure 10 shows the repair cycle that the system executes in order to maintain the highest

possible correct throughput. The flow diagram is partitioned into three black-framed boxes to

signify the observed organic self-x properties that emerge upon executing each repair stage.

75

The left side of the diagram shows the organic repair that is implemented on the FPGA device.

The prominent observed self-x properties are self-monitoring and self-organization. The self-

monitoring property is manifested by the system‟s self-awareness of any discrepancy that results

from one or more faulty FE(s) through the use of different sensors, enhanced with self-diagnosis

of the exact faulty FE through monitoring the discrepancies of the output lines. The first repair

action the system takes upon detecting faults is reorganizing the components of the system to

mask the fault. The self-organization property emerges through adjusting the redundancy

configuration in order to hide the effect of hardware failures. The example in Figure 10 shows a

Duplex-TMR-Duplex reorganization scenario, but other reorganization sequences can be applied

to meet the desired reliability levels as mandated by the mission requirements.

When the degree of the faults exceeds the inherent redundancy capacity of RARS, SMART

triggers a different repair cycle that demonstrates another organic activity, namely, self-

configuration. The self-configuration property emerges through successive lazy-scrubbing [17]

attempts, which begins by rewriting the same CBS to eliminate SEUs in the configuration logic.

Then, if the fault is caused by a stuck-at hard-fault, scrubbing proceeds to reconfiguring the

FPGA with a set of pre-seeded amorphous spares that have different area constraints to

potentially introduce an FE that does not utilize the faulty LUT.

Finally, if self-configuration fails to bypass the faulty element(s), the system initiates a more

elaborate refurbishment cycle that relies on OGA. This evolutionary repair introduces self-

healing property at the system-level, which is characterized by the system‟s ability to actively

recover from more catastrophic fault scenarios by searching for innovative solutions using

76

evolutionary approaches. Self-healing is not limited by the degree of redundancy nor the number

of amorphous spares, which makes it a compelling option for complex fault scenarios. However,

SMART makes OGA the last resort in the repair sequence due to its long repair time.

Self-Monitoring

Self-Organization

Self-Configuration

Self-Healing

Duplex

“no fault”

100%

Throughput

AE detects faulty FE

Triggers watchdog

timer

Triplex

“one faulty FE”

100%

Throughput

Discrepancy?

Transient fault

cleared

Watchdog

expired?

Initiate

Self-Configuration

Triplex

“FEx under repair”

100% Throughput

Repaired?

GA-Based

Repair

Recovery

Paths

Recovery

Paths

No Fault

Fault

N
o

Yes

N
o

Amorphous

Spares (AS)

More

Spares

No

Yes

Download bitfile to FPGA

via JTAG (Partial Reconfig)

Read Performance

JTAG-GNAT communication

Repaired?N
o Initiate

Self-Healing

Recovery

Paths

Yes

Download bitfile to FPGA via

JTAG (Partial Reconfig)

Read fitness

JTAG-GNAT communication

Yes

Yes

No

FPGA Software

New

Generation

?

Create New

Generation

(Selection,

GA

Operators,

Replacement)

N
o

Yes

JTAG

Recovery

Paths

Recovery Path Self-x Transition
Partial

Reconfiguration
Fitness Reading

More

Figure 10: System Self-x Properties Flow Diagram

77

In SMART, failures in the reconfiguration logic will only cause the loss of the software-based

fault-tolerance features, that is, scrubbing and OGA. However, the inherent organic hardware of

RARS will remain intact to switch among the available Simplex, Duplex and Triplex

configurations. This graceful degradation property means that the system will become, at worst,

a TMR system if the parallel/serial interface fails.

Complete handling of failures in reconfiguration logic in FPGA devices is beyond the scope of

this work, we relied on proven solutions provided by Xilinx, the main manufacturer of FPGA

chips, to deal with this type of faults [94]. Moreover, the same techniques used in handling faults

in the data path can be extended to the reconfiguration logic. One prominent approach in dealing

with this kind of faults using redundancy can be found in [95].

Virtex-4 FPGAs are fully characterized for Single-Event Functional Interrupts (SEFI), which are

SEEs that result in device-wide operation interrupts such as power on reset, configuration

circuitry, frame address register used extensively in the reconfiguration process, and some other

global signals that affect reconfiguration logic and device functionality. Xilinx states that pulsing

the PROG signal will result in correcting any of the aforementioned SEFIs [94].

More catastrophic faults, such as hard faults affecting the ICAP, can be recovered using

redundancy techniques presented in [95]. This technique protects the ICAP logic in a similar

fashion to any other user application logic. First, by having TMR inserted in the ICAP circuit

using BL-TMR tools to correct faulty configuration on the fly. Second, by scrubbing the ICAP

interface in case an SEU is suspected in the configuration logic. These techniques can be used to

78

prevent the parallel/serial configuration interfaces from becoming a single point of failure in

SMART.

79

CHAPTER 5: EXPERIMENTS AND RESULTS

Using the Xilinx Video Starter Kit (VSK) FPGA board shown in Figure 11 [96] and the other

technologies listed in Table 4, the benefits of SMART are demonstrated quantitatively using a

2D gradient-base Sobel edge detection algorithm.

Figure 11: Xilinx Dual-Layered Video Starter Kit

5.1. Experimental Configuration: Edge Detection Application

In this work, we implement a popular edge detection algorithm to demonstrate the capabilities of

SMART. There are various applications for edge detection, as it involves identifying boundaries

in an image. Thus, it can be employed for object recognition and quality monitoring in industrial

80

applications, medical imaging applications, such as Magnetic Resonance Imaging (MRI) and

ultrasound imaging [56], and satellite imaging applications [57]. Numerous efforts have been

made to design edge detectors using evolutionary techniques [56, 63]; we compare our GA

performance against those techniques in Table 11.

Figure 12 shows SMART application architecture where a continuous video stream provides the

functional input to the circuit. The video is transmitted via either the Video Graphic Array (VGA)

or the Digital Video Interface (DVI) output ports on the host PC to the VGA-In or DVI-In,

respectively, on the upper board of the Xilinx VSK, the Video IO Daughter Card (VIODC) [96].

In this system, we used the VGA ports on both ends, but nothing prevents the system from

running on a DVI interface because of the versatility of the AD9887A dual interface on the

VOIDC. Indeed, this IC offers both an analog and a digital receiver integrated on a single chip.

The AD9887 has a parallel digital bus interface with the FPGA for video data and an I2C control

bus for configuration. The captured frames are buffered into the Block RAM (BRAM) of the

Virtex-II Pro XCV2P7 FPGA on VIODC. The frames are continuously written on the BRAMs;

if the video feed stops then the last captured frame is used for all pixel operations until the feed is

resumed.

81

GNAT

VSK Board

RARS

AEFE-2

FE-3

FE-1
J

T

A

G

VGA-OutVGA-In

VGA Driver

Edge-Detected Video Stream

Video Feed

(PC running a video)

Original Video Stream

Host PC

Status/Control

Software

Layer

Original

Video

Monitor

Edge-

Detected

Viedo

AD9887 IC

Input Buffer

(BRAM)

XCV4SX35 FPGA

XCV2P7

FPGA

Sequencer

Output

Buffer

(BRAM)

Status/Control

VGA out

Bus

Macro

Bus

Macro

Bus

Macro

Bus

Macros

Bus

Macros

Bus

Macros

Figure 12: SMART Use Case System Architecture

A sequencer module handles memory scanning and synchronization and sends the pixel data

through the Xilinx Generic Interface (XGI) connector [96]. This connector is a 64-bit bus which

connects between the lower board, referred to as the ML402 motherboard, and the upper VIODC

board. It uses a simple synchronous interface running at 100 MHz to send data and control

information between the two boards.

A goal achieved in the prototype is application-independence. That is, any other application can

be implemented by designing new logic in the FEs and by tuning the clock-division ratio in the

DCM to match the frequencies of the AE and the FEs.

82

Applications that are known to be more tolerant to errors than other kinds of design, such as

Signal processing applications, will tend to ameliorate the impact of erroneous behavior.

However, the metric reported in our results is actual data path bitwise discrepancies of the

output. The fitness function did not rely on any kind of pixel averaging or gradient-based

operators to quantify image quality into fitness values. This discrepancy-based metric on a pixel-

by-pixel basis makes this approach applicable for non digital signal processing applications with

no loss of generality.

On the ML402 motherboard, the enabled FEs in RARS process the video feed and provide the

output to the AE. Based on the current configuration of the system, the AE produces the overall

output and stores it into the XCV4SX35 BRAMs. In fact, it stores both the original and the edge-

detected video stream for demonstration purposes. The BRAMs are continuously scanned by a

VGA driver that is implemented on the same FPGA to generate the VSCAN, HSCAN, and RGB

values for the VGA-Out interface. The VGA-out is connected to another monitor that shows both

the original and edge–detected video streams. Any error in the edge detection can be clearly

spotted on this monitor, as shown in Figure 14.

The three FEs and the AE are connected to the host PC that runs the organic software layer. This

PC is tied to a monitor that displays the real-time status of the organic layer using the GUI Java

applet. The status and control signals are passed between the FEs/AE on one side and the

BSCAN/JTAG on the other side. The organic layer and the FEs (i.e., the Sobel edge detector)

were implemented using Verilog HDL and synthesized into FPGA bitfiles using the Xilinx ISE

9.1 software packs [20]

83

The DIP switches beneath the LCD screen on the ML402 FPGA board were used to simulate

stuck-at faults in the data path to test the ability of RARS to switch configurations in order to

mask faults immediately. One of the switches was also used to enable or disable the organic

repair capabilities (i.e., AE Enable), as shown in Table 7. Nine LEDs were used to show the

status of various modules of the design. Three of them reflect the status of the voter report shown

in Table 6, whereas the other six show the status of the FEs, with two LEDs per FE, as shown in

Table 8.

Table 7: DIP Switch Assignment in RARS Prototype

DIP-Switch Purpose

1 AE Enable to control organic capabilities

2 Stuck-at fault injected in FE1

3 Stuck-at fault injected in FE2

4 Stuck-at fault injected in FE3

Table 8: LED Assignment in RARS Prototype

LED 1 LED 2 FE status

OFF OFF Offline and faulty

OFF ON Offline

ON OFF Online and faulty

ON ON Online

It is imperative to mention that the fault simulation accomplished via the dip switches is only for

the SEUs or stuck-at faults in the data path. This was done by masking the enabled dip switch

logical value with one bit of the pixels input of the edge detector to affect the data signals. This

kind of error should be repaired instantly by the hardware through the embedded configurations

of RARS. However, in order to simulate the stuck-at faults in the configuration logic, we had to

actually alter the value of one or more of the LUT contents. We accomplished this by using the

FPGA editor to manually alter the content of one LUT in the NCD file in schematic view. Both

84

types of fault simulation were used to test the system repair cycle in Figure 10 and to test the

intrinsic OGA repair as shown below.

PLB BUS

PowerPC
UART

Terminal Program

System

ACE

ICAP

AE
VGA

Driver

ConfigBlockRAM

Compact Flash

start length

reset clock

dataB

addrB

dataA weA

ce_ICAP

we_ICAP

busy_ICAP

din_ICAP

Out_ICAP

addrA

FE
BUS

Macro

BUS

Macro

FE
BUS

Macro

BUS

Macro

FE

BUS

Macr

o

BUS

Macro

ML402

MOTHERBOARD

XCV4SX35 FPGA

`

VGA-

In

Input

Image

Buffer

(BRAM)

on

XCV2P7

FPGA

AD9887

IC
Video

Input

VIDEO IO

DAUGHTER

CARD

64-bit

VIOBUS

VGA-

Out

Video

Output

Output

Image Buffer

(BRAM) on

XCV4SX35

FPGA

Figure 13: Use Case Physical Design using Xilinx VSK Platform

The PC and JTAG prototype is only meant as a testing environment for SMART. The

convenience and performance of using a PC to run the GA APIs and the communication

applications have greatly reduced development time and validation effort. However, deploying

the host PC with SMART will actually eliminate any benefit for such system, either from power

or reliability points of view. Therefore, we believe that the system will not realize its original

design goals unless it is deployed on a PowerPC processor that comes embedded within the

majority of the high-end Xilinx FPGA boards. Many successful PowerPC deployment efforts for

fault-tolerant systems have been reported in literature, especially ones that employ evolutionary

repair techniques.

In [97], the design and implementation of an intrinsic evolution system is presented. The system

relies on online evaluation of fitness, i.e. using the functional input of the circuit in runtime. The

85

GA was implemented in C (similar to OGA in this work), and was embedded on PowerPC 405

embedded processor on a Virtex-II device. Another approach is reported in [98] where a

PowerPC-based intrinsic GA and a workstation-based extrinsic GA are compared in term of the

fitness evaluation time. The intrinsic GA evolves image recognition system was implemented on

a PowerPC residing on a Virtex-II Pro FPGA, it was shown that it achieved fitness evaluation

speed comparable to software fitness evaluation that was run on a workstation operating on 30-

times the frequency of the PowerPC. One might consider using the soft-core that can be

configured on the FPGA, like Microblaze, to achieve similar goals. However, as [99]

demonstrates, soft cores will consume huge number of LUTs and would consume much more

power, they are also vulnerable to the same radiation effects that can affect other logic on the

board, making them far less appealing approach for fault-tolerant system implementations.

Finally, the ability of IBM PowerPC to process C/C++ code [100] mitigates the risk of porting

SMART into on-board implementation as all the GA and communication APIs in SMART are

based on ANSI/ISO standard, the only difference being the need to interface with the ICAP

rather than the parallel IV cable, which is completely supported by the PowerPC APIs [100].

5.2. Use Case Results

The following scenarios were tested successfully, these scenarios simulate a stuck-at fault at a

given FE using dip-switches on the FPGA board to demonstrate the system‟s ability to

autonomously detect, isolate, and repair the fault.

Scenario 1: Fault injection when the AE is disabled:

86

1. The system runs in duplex mode, where two FEs are running the edge-detection

algorithm and the third one is in „cold standby‟ (inactive) mode.

2. DIP-switch 1 is OFF, indicating that the AE is disabled and will not be able to monitor

faults in the FEs

3. DIP-switch 2 (FE-1 fault injection) is turned ON. The edge detected image starts to show

faulty pixels and degradation in the quality of the image. Voter report is always ON-OFF-

ON, indicating that the voter is disabled (That is because the AE is inactive)

Scenario-2: Fault injection when the AE is enabled:

1. The system runs in duplex mode, where two FEs are running the edge-detection

algorithm and the third one is in „cold standby‟ (inactive) mode.

2. DIP-switch 1 is ON, indicating that the AE is enabled and should be able to monitor

faults in the FEs

3. DIP-switch 2 (FE-1 fault injection) is turned ON. The edge detected image shows NO

faulty pixels and the quality of the image remains the same, this is due to the AE

intervention which can be summarized as follow:

a. AE detects discrepancy in FE1. FE1 status becomes (Online and faulty)

b. AE enables FE3 and change its status from Offline to Online.

87

c. AE enables the voter, the discrepancy report changes from (Voter disabled) to

(FE1 discrepant)

d. The output is taken from the majority vote and hence shows no degradation in the

performance

Scenario-3: Recovering the injected fault causes the system to shift to Duplex mode again.

1. Starting from Scenario-2 output: a Triplex system in which FE1 is faulty.

2. DIP-switch 2 (FE-1 fault injection) is turned OFF again, indicating that the fault is

recovered.

3. The voter report LEDs change from (FE1 discrepant) to (No discrepancy).

4. After 5-second window without any discrepant readings, the AE realizes that the fault is

recovered and the TMR mode is not needed anymore, it disables FE3 (status changes

from Online to Offline) and the Voter (status changes from No discrepancy to Voter

disabled).

Figure 14 (a) shows the sample input satellite image of urban buildings having industrial factory

fans along with the fault-free result of real-time processing of that image using the Sobel edge

detection algorithm. Figure 14 (b) depicts the scenario of single-fault in the data path that can be

simulated using switches 2, 3, or 4 as defined in Table 7. Upon the detection of the discrepancy

caused by the fault, the RARS switches to the TMR configuration, thereby allowing the system

88

to maintain 100% of its fault-free throughput. Hence there is no degradation in quality as

compared to the fault-free scenario. Figure 14 (c) depicts the impact of another stuck-at fault at a

different FE, in which case system performance drops, as can be seen from the degraded edge-

detected image. When the software monitoring layer initiates the refurbishment of one of the

faulty FEs through PR, the system regains 100% performance, as shown in Figure 14 (d). Thus,

the application throughput is restored using hardware identification of resource capabilities and

autonomous refurbishment.

Figure 14 (a): Fault-free Scenario

Figure 14 (b): single-fault Scenario

Figure 14 (c): Two faulty FEs Scenario

Figure 14 (d): After-repair scenario

Figure 14: Original and Edge-detected Images under Different RARS Configurations

89

The intrinsic bitstream evolution targeted eight LUTs in the entire FE design. These LUTs were

selected after investigating the different impacts that each LUT selection might have on overall

system performance. Based on preliminary experiments, we were able to extract the critical

LUTs [85] that are highly influential for the performance of the Edge Detector circuit.

The average fitness and best fitness values per generation averaged over 20 runs, along with the

standard deviation for both values are shown in Figure 9. The maximum fitness value is 2,047

(), which means that out of 2,047 discrepancy reading, the evolved FE does not show any

discrepancy when its output is compared to the other configured fault-free FE outputs.

The maximum fitness value in this work is 2047; this value does not actually denote the number

of possible output combinations as in most conventional circuit evolution approaches. Instead, it

indicates the number of discrepancies between the outputs of the evolved FE compared to

another fault-free FE. To establish enough significance in the reported fitness value, the

application records the number of discrepancies over a window of 65,536 evaluations, which

denotes the number of pixels in one 256x256 video frame for the use case under study. Due to

the message width limitation which confined the fitness value field width to 11 bits only, the

hardware implemented a scaling scheme in which the actual number of evaluations of 65,536

values was scaled down by 32 to fit the field width of 11. This means that the circuit is actually

evaluated for 65,536 input combinations where each 32 discrepancies are translated into 1 point

on the normalized fitness scale. This technique provides wide evaluation window for the OGA to

span one full frame, yet avoids high transmission bandwidth for fitness reporting between the

hardware and software. Another approach to expand the evaluation window while keeping the 11

90

bit field width is to poll the fitness values for a predefined number of times in the OGA API and

then average the readings or possibly detect and eliminate outliers, this software solution

provides a way to control the number of evaluations needed to assess the evolved individual‟s

fitness. Finally, the message width of 16bit is just an arbitrary selection for the experimental

extension of SMART. In real application, the message width can be extended to 32 or even 64

bits, allowing for largest fitness value field and thus accommodating wider evaluation window.

Table 9: Fitness and Timing Information for Twenty GA Runs

Run # Final Fitness Timing information

Best Avg Number of

Generations

Total Fitness

Evaluation

Time (sec)

Total FPGA

Configuratio

n Time (sec)

Total Genetic

Operators

Time (usec)

1 2047 2033 147 23.69 83.50 2098.75

2 2047 2043 217 35.27 111.97 3172.50

3 2047 2006 78 12.13 35.65 1106.88

4 2047 2015 156 25.34 81.74 2421.88

5 2047 1989 99 15.96 50.09 1470.00

6 2047 2001 148 24.09 77.40 2205.00

7 2047 2005 152 25.01 79.34 2170.63

8 2047 2020 126 20.50 63.76 1835.94

9 2047 2044 252 41.27 127.01 3686.56

10 2047 2032 71 11.46 36.00 984.38

11 2047 2000 221 35.99 112.49 3093.75

12 2047 1998 162 26.27 75.82 2364.69

13 2047 2018 103 16.65 51.19 1530.00

14 2047 2044 129 21.18 64.89 1920.00

15 2047 2046 177 29.01 91.33 2585.00

16 2047 2045 161 78.80 84.85 2250.00

17 2047 2007 75 12.18 39.00 1133.13

18 2047 1993 233 38.11 117.43 3480.00

19 2047 2015 62 9.99 31.93 876.88

20 2047 2044 202 33.42 98.78 2826.56

Average 2019.90 148.55 26.82 75.71 2160.63

Standard

deviation

 19.80 56.73 15.40 29.00 825.48

Confidence 0.95 0.95 0.95 0.95 0.95

Alpha 0.05 0.05 0.05 0.05 0.05

95%

Confidence

Interval

 (2011.2,

2028.5)

(123.69,173.41) (20.07,33.57) (63.00,88.42)

(1798.8,2522.4)

91

Table 10: OGA Parameters used in Experiments

Parameter Value

Population size 10

Mutation rate 0.3

Elitism size 1

Crossover rate 0.8

Tournament size 2

Figure 15: OGA Best and Average Fitness Results

Table 9 shows details of the 20 runs that are averaged in Figure 15. All runs converged to a final

solution based on the OGA parameters listed in Table 10. These parameters were determined

using preliminary experiments with analysis of variance (ANOVA) study of the interaction effect

between the parameters. We found that these parameter settings produced the best GA

performance for this particular application and settings. The average number of generations

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Fi
tn

es
s

Generations

Best Fitness Average Fitness

Stdev of Best Fitness Stdev of Average Fitness

92

required to repair the fault for the 20 runs is 148 generations, while the 95% confidence interval

is between 123 and 173 generations. Thus, 95% of the time, a repair happens in less than 173

generations.

The runs produced very small deviation in the average fitness of the population; this is partly due

to the small population size. The table also shows the timing information for fitness evaluation,

PR time, and genetic operator overhead. Although we used PR, the configuration time was still

the dominant factor in repair time. For example, the first run required 83.5 seconds of

reconfiguration time for a total of 147 generations, which means that each generation required

 seconds to configure a population of 10 individuals, resulting in 56.8 msec

per bitfile. This is close to the theoretical value obtained by dividing the bitstream size by the

Cable speed (). This value accounts only for CBS transmission

time, but in reality, there is a 95% probability that the configuration time will take 64 to 88 msec.

Table 11 compares the edge detection evolutionary approach that was implemented in this work

to three edge-detector evolution attempts [56, 62, 63]. The model-free fitness function provides

an application-independent approach as compared to the complex fitness functions adopted by

the others. The simplicity and straightforwardness of the discrepancy-based fitness function was

another plus compared to the complicated fitness functions used by other approaches, though

OGA aims to repair faulty edge-detectors rather than design them from scratch or from a

preliminary template. SMART is the only approach that demonstrated edge-detector evolution on

the actual hardware, other methods used software models to evaluate the fitness.

93

Table 11: Comparison between SMART and Other Edge Detection Evolution Techniques

Hollingworth [63] Gudmundsson

[56]

Ross [62] RARS

Application Generic images

(fairly simple)

Unfragmented,

localized thin edges
in medical images.

Microscopic

images from
mineral samples.

Generic (satellite

images, uniform
patterns, and so on).

Methodology Exploit inherent

parallelism in images

Split image into

linked sub-images.

Maintain links

between adjacent
pixels.

Implement a

training stage

(requires

sampling 23.6%
of image),

followed by

genetic

programming.

Evolve a subset of

the Edge Detector

(i.e., critical LUTs)

to recover from
faults.

Fitness

Evaluation

Software model Software model Software model Intrinsic evolution

on the hardware

Evolutionary

Algorithm

Genetic

programming.

2D Genetic

Algorithm with

problem-specific

operators.

Genetic

programming

training (~25%)

and evolution

(~75%).

Genetic algorithm.

Genetic

String

Coding

Four node functions

(i.e., and, or, not, and

xor) and eight
terminal values for

pixels around the

evolved pixel.

Edge map. Image

pixels are masked

with corresponding
values in pixel map

(i.e., 0: no edge, 1:

edge).

High-level

functions (i.e.,

avg, min, max,
and stdev).

Terminal pixels

and high-level

ephemerals (i.e.,

gradient and

intensity).

Direct bitstream

evolution. The

solution coding is
the actual bitfile.

Fitness

Function

Pratt figure of merit

(PFM) relative to

fault-free Sobel edge

detector

Highly complex

cost function based

on five cost factors.

Biased random

sampling fitness

evaluation for

training. Program

fitness is similar

to PFM.

Model-free, triplex

discrepancy-based

function. No

application-specific

a priori knowledge

needed.

Evolution
Speed

Partial solution in
2,333 generations

after 24 hours of

evolution time.

2,300 generations
used for ring

imaging; 300

generations used

for thin, well-

localized edges.

75 generations,
with 25% of

images used for

training. Very

large population

size of 2,000.

148 generations,
with low population

size of 10. Evolved

8 critical LUTs.

Best Fitness Not reported 0.85 PFM with

scaling factor of

0.01.

0.590 for Image 1;

0.633 for Image 2.

100% as compared

to output from fault-

free Sobel edge

detector.

94

5.3. The Relationship between RARS and the OGA

RARS is the hardware organic component of SMART. Its primary purpose is masking transient

faults that result from SEU in the user logic until the affected user register is re-written with a

new value from subsequent operations. In addition, RARS helps maintaining correct functional

output even in the case of soft faults in the configuration logic, until the scrubber re-downloads

the CBS and corrects the upset. However, In the case of hard faults, RARS cease to be efficient

as it does not have the mean to find alternative paths to circumvent faulty LUTs. Here comes the

role of the OGA, which will be invoked by SMART‟s controller to realize solutions even in the

case of hard faults. Still, RARS plays significant role in hard-fault repair by interacting with the

OGA in the following ways:

1. As the OGA is a guided heuristic search method that requires evaluating many

individuals until a good solution is found, and because the OGA performs online fitness

assessment, meaning that the evaluated individual is configured on the circuit and is

evaluated using the runtime functional inputs that drive the application, RARS conceal

the effect of evaluating suboptimal individuals by switching to TMR mode so that the

erroneous outputs of the evaluated individuals are overruled by other fault-free FEs, just

as if the evolved FE is affected by a transient fault. This will give the OGA enough time

to evolve optimal individual without affecting the functional operation of the circuit.

2. The OGA relies on the self-monitoring capabilities or RARS, which evaluates the

evolved FE and presents its fitness value to the OGA engine. The OGA by itself cannot

95

assess the fitness of the intrinsically-evolved individual and thus needs to interact with

RARS.

To demonstrate this behavior, we applied a sequence of injected faults on RARS and monitored

the performance of the application. Then, we superimposed OGA repair experiments taken under

the same conditions to create a holistic experiment that exploits the two pieces together. The

precondition for this sequence of events is that hard fault MTTR should be greater than the

MTBF; this condition is almost always realized in space missions due to low MTTF in radiation-

hardened FPGA devices that employ epitaxial CMOS process technology to lessen the impact of

energetic particles hitting the silicon. As seen in the figure, the number of faulty FEs in RARS

increases from 1 to 2 to 3 by time, as there is no mechanism to repair hard faults. On the other

hand, hard faults in the FEs are corrected as they occur to maintain a number of faulty FEs less

than or equal to 1. With the help of RARS, this guarantees a steady 100% overall performance of

the application, even though the faulty FEs are being evaluated online with performance levels

down to 15% at some point of time. The non-OGA mode will eventually suffer degraded

operation when there is two or more faulty FEs. With 3 Faulty FEs, the overall performance of

RARS gets closer to 50%. The voter hits this performance level due to compensating fault

scenarios in which the FEs do not fail in the same way and thus can still vote for the correct

output in about 50% of the cases.

96

Figure 16: Holistic Experiment Demonstrating the Interaction between RARS and OGA

0

1

2

3

4

5

6

7

8

9

10

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 250 500 750 1000 1250 1500

N
u

m
b

er
 O

f
Fa

u
lt

y
FE

s

P
er

ce
n

ta
ge

 o
f

C
o

rr
ec

t
P

ix
el

s

Self-Monitoring Samples

Numer of Faulty FEs Without OGA Number of Faulty FEs With OGA

System Performance Without OGA System Performance With OGA

Perforamnce of Evolved FE in OGA

97

CHAPTER 6: AVAILABILITY, AREA, AND POWER EVALUATION

METRCIS

After successfully demonstrating the ability of SMART to self-repair simulated soft and hard

faults in a real edge-detection use case, we intend to evaluate its availability, area usage, and

energy consumption against standard and well-accepted evaluation metrics. The aim is to

demonstrate and quantify the benefit of SMART over other conventional fault-tolerance

approaches that rely on fixed redundancy and scrubbing. SMART has two main advantages:

1. Capability of handling hard faults: Most fault-tolerance systems ignore hard fault

handling because they are less frequent than soft ones. However, with NASA plans of

executing space missions that last for many years, the likelihood of radiation-induced

hard faults become higher and higher. Moreover, Xilinx reports that under stressful

thermal conditions, aging-related faults can happen after 3 years only [37], which makes

it unwise to just ignore hard faults specially in multi-million mission-critical systems.

SMART handles hard faults using an intrinsic evolutionary repair mechanism that have

been actually implemented and shown to successfully repair simulated hard faults, as

demonstrated in Section 5.2.

2. Adapting the redundancy based on the mission reliability and resource requirements:

TMR runs three times the user logic all the time to mask faults as they happen in very

small portions of the mission duration. This attribute can be really costly, especially in

term of energy consumption in very long space missions like deep space probes which

98

use limited power sources that need to last for long periods. SMART design philosophy

is to provide adaptive level of redundancy by organically controlling which level to select

at runtime based on the mission requirements and the environment parameters.

Both advantages need to be properly evaluated using standard metrics. First, calculating MTTR

of hard faults and soft faults is not enough to judge SMART‟s abilities to sustain realistic

missions. Thus, based on published data and experimental measurements of SMART‟s

prototype, we formulated nine semi-hypothetical space missions to use in evaluation. Then,

CTMC was employed to simulate SMART‟s behavior in nine missions to calculate the overall

availability of the system and the time it spends in each repair stage. Finally, the common

convention in evaluation resource overhead against the industry-standard TMR approach is to

analytically assume that TMR requires 3 times the FEs‟ overhead plus the voter‟s overhead. This

however is not always the case due to the abundance of triplication optimization algorithms that

can do better than that. Thus, we relied on a standard triplication tool called BL-TMR to generate

28 benchmarks to be used in evaluating SMARTs overhead.

6.1. Semi-Hypothetical Use Cases

The first step to evaluate SMART‟s ability to sustain demanding long missions is to provide

semi-hypothetical use cases, meaning that the use cases are based on publically available data

but with the assumption that SMART architecture is used on board. Based on values reported in

published work and experimental results attained by SMART prototype, and to produce a set of

use cases (UCs) to use in examining SMARTs performance, we report the following:

99

6.1.1. Soft-Fault Rate

CREME-96 simulator was used in [31] to calculate predicted Soft-Fault Rate (FS) per day for

different 90nm device type. Assuming Low Earth Orbit (LEO) with altitude of 800 KM and

inclination of 22.0 degree, the reported SEU rate per day is 7.56 for Xilinx XQR4VSX55 90nm

FPGA.

This device has 24,567 slices [10], each slice has two LUTs (G and F). Thus, the final rate for

SEU/LUT in hours is . This value will be multiplied

by the number of LUTs in each FE to determine the soft fault rate in each FE per one simulation

hour.

6.1.2. Soft-Fault Repair Rate

We calculated the Soft-Fault Repair Rate (RS) based on scrubbing speed in the SMART JTAG-

based prototype to account for the worst case scenario, which takes around 39.56 seconds to

initialize the boundary scan chain, download the bitstream, readback/verify the bitstream, and

evaluate the FE for a wide window of functional input to ensure the SUE is corrected in the CBS.

Even if ICAP is used to expedite the scrubbing process, the assumed value is still valid as one

can always expand the evaluation window for the repaired FE to gain higher statistical

confidence that the fault is indeed repaired.

100

6.1.3. Hard-Fault Rate

In this work, Hard-Fault Rate (FH) is the rate of TDDB failures, due to many claims that

radiation-hardened Virtex devices are radiation-faults immune. Based on Xilinx Published data,

[36] predicts 10% of the LUTs in a circuit to be affected by TDDB per year under the most

stressful conditions of tox=1.2 nm, oxide area=0.25 mm
2
, at 125 C and 3.0 V. The static signal

probability is assumed to be 1 because the LUT is a lookup table that has all gates turned on all

the time.

For the sake of proper factorial experimental design, we assumed 3 levels of FS based on the

environmental conditions, where the fault rate under demanding conditions is assumed to be

10%, under moderate conditions is 5%, and under favorable condition is 1%. These values are

relative to the adjusted FE size that takes into consideration the resource decomposition rate such

that the FE ends up with 600 LUT/FE at the end of the mission time. The same aging rate

dictated the length of simulation time as the system cannot function for more than 10 years given

a hard fault rate of 10% of the LUTs per year.

6.1.4. Hard-Fault Repair Rate

Similar to FH case, we calculate three levels of Hard-Fault Repair Rate (RH) to establish full

3x3 factorial experiment, the three levels of RH were calculated based on simulation results for

OGA with different level of hard fault impact on the LUTs, where a hard fault can impact one,

two, or four bit(s) of the LUTs. The associated repair rates correspond to rapid, intermediate, and

lengthy repairs, respectively. The number of generations and the repair time/rate are depicted in

101

Table 12 below. Conventional TMR and scrubbing techniques commonly found in the literature,

which do not have hard-fault repair, will have RH equals to infinity. Plugging finite large

numbers for RH in the CTMC model that we will demonstrate in the next section caused the

system to stay in faulty states from the point it is hit with a hard-fault until the end of the

mission, this is because there will be no way to bring the system back into healthy stats if no

hard-fault repair techniques are available. Thus, in CTMC analysis, we assumed the quick,

intermediate, and lengthy RH rates to demonstrate the impact of finite changes of MTTR of

hard-faults on the overall system behavior.

Table 12: OGA Results for Various Numbers of Hard Faults

Number of Faults 1 2 4

Generations 3962 31352 63307

MTTR (hours) 0.704415 5.573703111 11.25462

RH (hours) 1.4196177 0.17941393 0.0888524

The nine use cases and the simulation parameters are summarized in Table 13 below. The

resulting 3x3 experiments represent nine semi-hypothetical scenarios for different operating

conditions. RS and FS values are fixed for all 9 UCs; the variation that is seen in the table is due

to the different number of LUTs required for different experiments to accommodate the

decomposition rate of the LUTs. Only FH and RH are varied across the experiments as they

represent the main focus of this work and demonstrate the true contribution of SMART over

conventional repair techniques. The simulation time assumes that each year has 10,000 hours.

102

 Table 13: Fault and Repair Values of the Nine Use Cases

UC # Description
FH

(per hour)

FS

(per hour)

RS

(per hour)

RH

(per hour)

Simulation

Time

(hours)

1
Demanding conditions

Rapid repair
0.065753425 0.038466235 90.91 1.4196177 10,000

2
Moderate conditions

Rapid repair
0.006027397 0.007052143 90.91 1.4196177 20,000

3
Favorable Conditions

Rapid Repair
0.000723288 0.004231286 90.91 1.4196177 60,000

4
Demanding conditions

Lengthy repair
0.065753425 0.038466235 90.91 0.0888524 10,000

5
Moderate conditions

Lengthy repair
0.006027397 0.007052143 90.91 0.0888524 20,000

6
Favorable Conditions

Lengthy Repair
0.000723288 0.004231286 90.91 0.0888524 60,000

7
Demanding conditions

Intermediate Repair
0.065753425 0.038466235 90.91 0.17941393 10,000

8
Moderate conditions

Intermediate Repair
0.006027397 0.007052143 90.91 0.17941393 20,000

9
Favorable Conditions

Intermediate Repair
0.000723288 0.004231286 90.91 0.17941393 60,000

6.2. Availability Analysis Using Markov Models

The first evaluation metric that we present to qualify SMART‟s benefit over conventional TMR

is reliability modeling using Continuous-time Markov Chains (CTMC). CTMC is a stochastic

modeling technique to predict a set of possible outcomes based on state-to-state transition

probabilities. The model has been recommended by IEC 61508 Standard for Functional Safety

of Electrical/Electronic/Programmable Electronic Safety-Related Systems [101] as a way to

analyze failure modes of electronic devices. CTMC relies on a state-transition diagram that

depicts a state space of the chain, which is defined by all the states that the system can traverse

during its operation, along with the possible transitions between the states with each transition

being characterized by a transition probability. Based on these states and transitions, the model

103

can be solved analytically or simulated experimentally to calculate the probability of being in

certain state based on the previous state. The steady-state solution can help quantifying the

probability of being in a certain state on the long run, which can be very useful in reliability and

safety modeling. Moreover, Monte Carlo simulation of the CTMC can predict the expected

transitions that the system is likely to undergo with time.

We intend to perform a comparative study using Markov tools to quantify the effect of having

hard-fault repair in mission critical applications. The system that we model is RARS, which has

three instances of the user applications and is capable of switching from duplex to triplex

configuration, and vice versa. The resulting Markov state transition diagram is shown in Figure

17. The state space consists of 10 different states, each represented by a circle in the diagram,

indicating the state number (Sn), the state condition (Good or Faulty), and the number of soft and

hard faulty FE‟s in that state, respectively. For instance, state S8 is said to be faulty because it

has all FE‟s faulty, two of which have soft faults and one has hard fault. The states belong to

vertical lanes that denote the total number of faulty FEs in RARS.

The possible transitions between the states are characterized by one of the following rates:

1. FS: Soft fault rate, denoting the SEU rate in the system

2. RS: Soft repair rate, this is the time needed to scrub the CBS to restore the correct value

of faulty LUTs

3. FH: Hard fault rate, which in this work signifies the TDDB fault rate

104

4. RH: Hard repair rate, this is the time that the OGA needs to repair faulty FEs.

S1

0,0

Good

S2

1,0

Good

S4

2,0

Faulty

S7

3,0

Faulty

S3

0,1

Good

S6

0,2

Faulty

S10

0,3

Faulty

S5

1,1

Faulty

S9

1,2

Faulty

S8

2,1

Faulty
3*FS

2*FS

FS

RH

RH

RH

RS

RS

RS

3*FH

2*FH

FH

2*FH

RH

2*FS

RS

FS

RS

FH

RH

RH

FH

RS

FS

0 Faulty FEs 1 Faulty FE 2 Faulty FEs 3 Faulty FEs

Good State Good States Bad States Bad States

Figure 17: Markov State-Transition Diagram of RARS

The system starts from an initial state S1, which has 0 faulty FEs and is in the good state. A soft

fault can occur with a rate of FS to put the system in S2 (1,0), or a hard fault can occur with a

rate of FH to put the system in state S3 (0,1). RARS is expected to stay error-free even with the

existence of one faulty FE, at the expense of switching from the low power and area duplex

mode to the high power and area triplex mode. Thus, S1 is not different from S2 and S3 in term

of availability, but does consume less area and power. For all Sn (n>3), RARS will be

105

unavailable and will also consume high area and power similar to S2 and S3 because the triplex

configuration is needed during repair. Repairs, whether they are RS or RH, will move the system

from faulty states to healthier ones.

6.2.1. Markov Configuration

The black box view of the CTMC experiment is depicted in Figure 18 below. The inputs are

already explained in the previous sections; they will be varied based on the use case under study

as shown in Table 13. The first two outputs (Steady-State Availability and Steady-State Time in

State) do not actually require running any simulation; they can be analytically calculated by

solving a set of differential equations of the matrix representation of the CTMC. These steady-

state solutions of the CTMC can serve as an indication of the long-term behavior of the model,

but they cannot be completely relied-upon in real engineering missions that run for finite periods

of time. Thus, we extended the CTMC work to include Monte Carlos simulation for finite

periods of operation with sufficient statistical significance to calculate the bottom three outputs

of the model.

CTMC

FS

RS

FH

RH

Mission Time

Steady-State Availability

Steady-State Time in State

Cumulative Time in State

Cumulative uptime/downtime

Availability = f(T, FS ,RS ,FH ,RH)

Figure 18: Functional Model of the CTMC Experiments

106

To perform these simulations, we used a publically available operation research tool based on

Excel and VBA [102]. The tool provides an ample of features to perform various computations

on a CTMC; it includes a steady-state Markov solver, Monte Carlo simulator, and other useful

tools. The excel tool, as is, does not support running multiple simulations and reporting statistical

significance of the results. Therefore, we developed a VBA wrapper around the Monte Carlo

simulation module to aid in running multiple experiments for statistical significance purposes.

The wrapper executes multiple experiments and then processes the large amount of generated

data to calculate fixed-point time intervals for all runs based on a weighted average principle.

The goal is to unify all Monte Carlos runs to fixed-time units to be able to average runs and

provide confidence levels of the experiments. This post-processing step allowed the simulator to

execute its random time strides and thus enabled it to switch to various states based on the actual

transition probabilities.

6.2.2. Availability Evaluation Metric Results

Each use case was simulated 20 times to provide enough statistical significance. FH and RH are

physically independent as the hard fault arrival rate is an uncontrollable event for SMART,

whereas the repair mechanism is executed irrespective to the fault arrival assuming a single fault

scenario and MTTR<MTTF. Consequently, no ANOVA were required to analyze the interaction

effect of the experiment parameters. Table 14 below reports the 20-runs average of the

cumulative time in each state for all the UCs. The 20-runs produced low standard deviation

values for all calculated averages. To demonstrate the statistical significance of the results, we

provide all 95% confidence intervals (alpha=0.05) of the measured averages in Table 15.

107

Table 14: Average of Cumulative Time in State for the Nine Use Cases

S UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9

1 86617.1 197416 598992 11119 162040 585007 31157 180556 592712

2 110.433 45.2201 83.5574 14.3668 37.6925 81.7908 39.7021 42.2014 83.0391

3 12015.3 2516.95 923.3729 24848.4 33194.18 14687.45 34308.25 18107.62 7144.62

4 0.09638 0.01509
0.004101

5
0.01409 0.003113

0.007519

5

0.049475

1

0.000390

6
0.01094

5 10.3220 0.41594 0.090234 21.1690 5.169533 1.313137 29.26737 2.807783 0.63295

6 1096.85 20.7712 0.783642 36652.5 4428.781 221.4332 25121.46 1251.339 58.3688

7 0 0 0 0 0 0 0 0 0

8 0.09406 0.01069 0.0039 0.02598 0.00119 0.00468 0.04846 0.00312 0.00996

9 0.44219 0.00098 0 15.3885 0.323547 0.012548 10.60557 0.105731 0.00234

1

0
49.3238 0.09766 0 27229.0 293.4965 0.722656 9233.248 39.06087 1.36357

A 0.98842 0.999893 0.999998 0.36018 0.976361 0.999627 0.655709 0.993533
0.99989

9

Table 15: Standard Error (alpha=0.05) of Cumulative Time in State for the Nine Use Cases

S UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9

1 54.0413 25.63603 20.806927 128.689 458.6283 219.3030 184.8870 177.1719

108.406

1

2 0.5206 0.4011 0.7582 0.2728 0.3856 0.6317 0.4579 0.4355 0.7836

3 47.7744 26.0467 20.9827 146.946 346.58 225.428 113.355 167.343 109.964

4 0.01364 0.008931 0.004485 0.00643 0.003586 0.006098 0.014215 0.000765 0.00592

5 0.21827 0.03558 0.02292 0.32728 0.17359 0.11659 0.23309 0.10955 0.05251

6 15.0511 2.201358 0.5452965 188.010 138.15027 26.15954 159.7461 55.86048 10.7571

7 0 0 0 0 0 0 0 0 0

8 0.0159 0.0062 0.0041 0.01 0.0016 0.0064 0.0102 0.0037 0.0066

9 0.04699 0.00191 0 0.28084 0.03692 0.00982 0.14724 0.02415 0.00316

1
0 5.32583 0.191403 0 226.063 36.234844 1.169738 135.2700 10.09050 2.25778

A
1.767
E-04

1.087
E-05

9.2
E-07

2.1974
E-03

8.072
E-04

4.352
E-05

2.1125
E-03

2.728
E-04

1.746
E-05

Table 14 can be of great importance in pre-deployment preparations as it can tell the system

designers where to focus in order to handle the common case scenarios. For instance, none of the

UCs has entered S7 (all 3 modules hit by SEU) due to the very low MTTR compared to the high

108

MTTF in the soft fault case. This analysis can impact design decisions such as the interfacing

between the scrubber and the FEs or the number of ports in the reconfiguration ROM, as the

system is highly unlikely to scrub three FEs at the same time. Similar conclusions can be drawn

about S9 and S10 for UC3, and so on.

The availability of the nine UCs are reported in the last column of Table 14, it is clear that the

demanding conditions can greatly impact the system availability to levels below the accepted

state-of-the-art standards (UC4: A=36%, UC7: A=65.6%). A mission operating in such harsh

conditions must be equipped with quick repair mechanisms to be able to process the rapid arrival

rate, and thus be able to produce relatively higher availability rates such as UC1: A=98.8%.

The impact of lengthy repair is also demonstrated in Table 14. A rapid repair will move the

system from 98.6% availability under worst conditions, to three nines under moderate

conditions, to 6 nines under favorable conditions. This difference, yet apparently negligible at a

100% scale, can make the difference in mission-critical applications that require the highest

possible availability levels, especially when the mission is long enough to make these ones of

tenths grow into hundreds of hours of system downtimes, as we will show shortly. Similarly, the

impact of mission conditions on the performance of a particular fault-tolerance approach is great;

such impact can be demonstrated by scrutinizing the results of UC 4, 5, and 6 which all utilize

lengthy repair mechanisms. The mission conditions can elevate the system availability from 36%

to 99.9%, making a huge impact on the mission success rate.

109

Table 14 only shows the cumulative time at the end of the simulation. To further explain the

behavior of the system, we plot the cumulative downtime of each use case versus the mission

time. The UCs need to be grouped by FH because the hard fault rate will impact the maximum

mission time. So, under the most demanding conditions of 10% of the LUT impacted by hard

faults each year, the system can live for 10 years maximum, after which all LUTs will be

impacted by faults.

Figure 19 shows the cumulative downtime of the system with time. The first two figures,

corresponding to the demanding and moderate conditions, are plotted on logarithmic Y-axis due

to the huge divergence in cumulative downtime of quick, moderate, and lengthy repairs. For

instance Figure 19.A shows that the mission that is equipped with quick repair mechanism

resulted in 1,000 hours of system downtime, whereas a system with lengthy repair resulted in

more than 60,000 hours of downtime, confirming the importance of efficient hard-fault repairs in

SMART.

On the other hand, Figure 19.C depicts the favorable mission conditions, it was plotted on a liner

scale because of the relatively marginal difference between the use cases with the rapid and

lengthy repairs. Even after running for 60 years, the system with the lengthy repair only

cumulated approximately 225 hours of downtime. One can argue that in such favorable

conditions a hard-fault repair mechanism would not be required, but this is really dependent on

the mission type. If this is an imagining application aiming to capture explorative images then we

might agree, but if the FE is designed for a more critical application, such as a power controller

110

or security-critical encryption circuit, then 225 hours, a little more than 9 days, can be really a

significant period of time that can jeopardize the mission success rate.

A: Demanding Condition

B: Moderate Conditions

0.1

1

10

100

1000

10000

100000

0 20000 40000 60000 80000

C
u

m
u

la
ti

ve
 D

o
w

n
 T

im
e

(H
o

u
rs

)

Hours

Rapid Repair Lengthy Repair Intermediate Repair

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 40000 80000 120000 160000 200000

C
u

m
u

la
ti

ve
 D

o
w

n
ti

m
e

(H
o

u
rs

)

Hours

Rapid Repair Lengthy Repair Intermediate Repair

111

C: Favorable Conditions

Figure 19: Cumulative Downtime under the Nine Use Cases

Figure 20 shows the availability of the nine use cases throughout the mission life time. The

impact of the hard-fault rate (mission conditions) on the system availability is readily

demonstrated. The system with lengthy repair shows A<0.4 under demanding conditions (Figure

20.A), close to 0.98 under moderate conditions (Figure 20.B), and 0.9996 under favorable

conditions (Figure 20.C). The availability of the use cases is also affected by the repair time as

shown in the three figures, especially when the fault rate is high to push RARS toward faulty

states without a repair mechanism with an MTTR that is low enough to bring it back to the

healthy states.

0

50

100

150

200

250

0 100000 200000 300000 400000 500000 600000

C
u

m
u

la
ti

ve
 D

o
w

n
ti

m
e

 (
H

o
u

rs
)

Hours

Rapid Repair Lengthy Repair Intermediate Repair

112

A: Demanding Condition

B: Moderate Conditions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
u

m
u

la
ti

ve
 D

o
w

n
 T

im
e

Hours

Rapid Repair Lengthy Repair Intermediate Repair

0.97

0.98

0.99

1

0 40000 80000 120000 160000 200000

C
u

m
u

la
ti

ve
 D

o
w

n
ti

m
e

Hours

Rapid Repair Lengthy Repair Intermediate Repair

113

C: Favorable Conditions

Figure 20: Availability under the Nine Use Cases

Figure 21 shows the percentage of time spent in each of the 10 states under each of the nine use

cases. The 90 bars depicted in the figure shows huge variation and thus might be challenging to

visually grasp, it is still clear that use cases 4 and 7, with demanding conditions and lengthy and

intermediate repair, respectively, are the ones that register less presence in S1 and spend more

time in S6 and S10.

A practical way of studying Figure 21 is to combine the states based on their overall impact on

the mission status, meaning that S1 by itself a distinguished state which guarantees that the

system is available (no faulty FEs) and is running in reduced power and area modes through the

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

0 100000 200000 300000 400000 500000 600000

C
u

m
u

la
ti

ve
 D

o
w

n
ti

m
e

Hours

Rapid Repair Lengthy Repair Intermediate Repair

114

exploitation of the reconfiguration property of the FPGA to downgrade the redundancy level to

duplex, with discrepancy monitoring to detect faults. A less desirable stats of the system in seen

in S2 and S3, where the system is still available via triplex configuration of RARS, yet consume

more power and area than S1, availability in these two states is exactly equal to S1 availability,

but the system is less reliable as it cannot handle any further faulty FEs. The remaining states

from S4 to S10 represent the least desirable system condition where it expends the triplex power

and area yet is not sufficiently available. A design goal of SMART is to minimize the time spent

in S4 to S10.

Figure 21: Percentage of Time in Each State under the Nine Use Cases

UC 1
UC 2

UC 3
UC 4

UC 5
UC 6

UC 7
UC 8

UC 9

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

115

Another important conclusion that can be drawn from Figure 21 is that the faulty states that are

actually traversed throughout the mission lifetime are the ones that comprise hard faults, which

are S3, S6, and S10. This can be attributed to the high MTTR for hard faults compared to soft

faults. The states that feature soft faults are visibly negligible (though they were actually

traversed), because SMART is able to exit them in very short time by applying PR-based

scrubbing. In fact, Table 14 shows that S7 which represents three soft-faulty FEs was never

visited even with very long simulation times (60 years), a clear indication that conventional

repair techniques can efficiently handle soft faults, steering the attention to hard-fault repair as a

vital requirement for autonomous fault-handling in mission critical systems running in harsh

environments.

Finally, to quantify the aggregation of the states of RARS, Figure 22 depicts the percentage of

time spent on each of the operation phases under the nine use cases. (A) with lower power and

area represents S1, (A) with high power and area combines S2 and S3, whereas (1-A)

corresponds to states S4-S10. UC 3 with favorable conditions and rapid repair has almost

negligible (1-A) presence, UCs 5 and 7 with demanding conditions and lengthy and intermediate

repair, respectively, are the ones that spend time in (1-A) more than in (A), other use cases show

mixed behaviors that correlates to the reaction time to faults and their arrival rates. Such figure

can be constructed based on the mission expected conditions and the fault-tolerance system

prototype results to predict the availability and the overhead associated with a particular mission,

such level of prediction and control is greatly desired in multi-million missions that are required

to maintain their objectives according to high standards.

116

Figure 22: Operational Phases Distribution under the Nine Use Cases

6.3. Area and Power Comparison to industry-standard Techniques

The benefit of RARS over conventional TMR approaches in reconfigurable devices is that

RARS actually makes use of the reconfigurability feature of the FPGA devices by selectively

adding or removing the FEs based on the mission status and requirement. This comes at the

expense of adding a small controller, which is the AE, to RARS, incurring certain overhead,

called Overhead of Autonomic Element (OAE), over what a conventional TMR would require.

However, if the mission conditions are favorable enough not to introduce any faults, RARS can

theoretically save compared to the conventional TMR that will consume power

and area of an unused third FE. The duplex mode is assumed as a minimal requirement here to

allow for fault detection through discrepancy detection. The overhead in this context can refer to

any quantity that incur burden on the mission, such as area, power, cost, effort, etc…

UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 UC 7 UC 8 UC 9

(A) with Low Power/Area 86.70% 98.71% 99.83203% 11.13% 81.02% 97.50% 31.19% 90.28% 98.79%

(A) with High Power/Area 12.14% 1.28% 0.16782% 24.89% 16.62% 2.46% 34.38% 9.07% 1.20%

1-A 1.16% 0.01% 0.00015% 63.98% 2.36% 0.04% 34.43% 0.65% 0.01%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

P
e

rc
e

n
ta

ge
 o

f
Ti

m
e

(A) with Low Power/Area (A) with High Power/Area 1-A

117

Referring to the CTMC experiment in the previous section, we define Time in State 1 (TS1) as the

period of time in which RARS is in S1 and thus offers power and area saving over TMR while

providing the same level of availability. The component difference between RARS and TMR is

shown in Figure 23 below. Operating in S1 (Duplex) will save the overhead of one FE and one

Voter, but will still consume extra overhead for the AE component. Running in the triplex mode

(1- TS1) will cause RARS to expend more power and area than TMR because of the added

overhead of the AE, which is not required in a conventional TMR.

FE

FE

FE

V

FE

FE

FE

V

FE

FE AE

FE

FE

FE

V

AE

FE

AE

V

AE

TMR RARS Difference

Duplex operation

TS1

Triplex Operation

(1-TS1)

Figure 23: Component Differences between RARS and TMR

Let the quantities of interest be denoted as shown in Table 16:

Table 16: Overhead Analysis Quantities Definition

Term Definition

OFE Overhead of one FE

OAE Overhead of AE (without the voter component)

OV Overhead of the voter

OTMR Overhead of the TMR

ORARS Overhead of RARS

ODX Overhead of RARS when it runs the duplex mode

OTX Overhead of RARS when it runs the triplex mode

OS Overhead saving by using RARS over conventional TMR

118

The Overhead of RARS is a weighted average controlled by TS1:

 (1)

The duplex overhead is two times the FE overhead plus the AE overhead, whereas the triplex

overhead is three times the FE overhead plus the AE and the voters overhead:

 (2)

 (3)

The goal is to calculate the overhead savings of RARS compared to TMR.

 (4)

6.3.1. Experimental Setup

We have selected power and area as the two overhead metrics of interest in this work due to their

quantifiable nature and direct impact on mission resources, and then we have compared RARS to

various TMR configurations in term of the expected dynamic power consumption and the area

requirements. We employed XPA [19] to measure the dynamic power consumption for the

different system components. The XPA is part of the Xilinx ISE design suite and provides a way

119

to analyze the power profile of post-PAR designs, which is an advantage over the other

alternative tool, Xilinx Power Estimators (XPE) [19], which relies only on mapping reports and

thus ignores the details of the placement and routing in estimating power consumption. As for

area requirement, the Xilinx flow generates the PAR report that includes a detailed description of

the number of LUTs and other FPGA constructs that the design uses.

The power and area results for the edge detection application that we developed were extracted

experimentally from the XPA and the PAR reports. As for the TMR benchmark results that we

intend to compare against, we have employed the automated design triplication tool, BL-TMR

[18], which is a JAVA-based open-source tool that handles the generation of redundancy in

FPGA designs in order to improve system availability.

The BL-TMR tool is an EDIF-based one, which means that its primary input is the EDIF file,

which is a non vendor-specific format to represent and exchange netlists and schematics of

electronic circuits. EDIF generation is embedded in the Xilinx flow using the NGD2EDIF tool

that can generate EDIF representation of the design from the Native Generic Database (NGD)

file. The resulting EDIF file can undergo the triplication process of BL-TMR to generate the

triplicated EDIF, which can be translated back to the Xilinx process file formats using the

EDIF2NGD tool. This custom triplication flow is depicted in Figure 24 below, where the normal

Xilinx flow is interrupted right after it generates the NGD file in order to apply the triplication

using the BL-TMR redundancy generation flow.

120

Xilinx Flow

Design Entry

(Schematic or

HDL)

Native Generic

Database

(NGD)

NGD2EDIF

Electronic

Design

Interchange

Format (EDIF)

BL-TMR

Triplicated

EDIF
EDIF2NGDXilinx Flow

Configuration

Bitstream

(bitfile)

Xilinx

Flow

Redundancy

Generation

Flow

Figure 24: Custom TMR-Insertion Flow Based on Integrated BL-TMR and Xilinx Flows

The BL-TMR redundancy generation flow starts by executing the JAVA JEdifBuild tool, which

takes the EDIF file as converted by NGD2EDIF and generates an intermediate jedif file that will

be used throughout the redundancy injection process. Then, the jedif file is analyzed using the

JEdifAnalyze tool in order to learn the Input Output Buffers (IOBs) and the feedback paths of the

design, the resulting analysis is stored in a circuit description file (cdesc) for further use by the

tool.

Then, the JEdifNMRSelection tool is executed to select which parts of the user circuit to

replicate. This tool is run in passes, each pass aims to perform further replication selection steps,

including the redundancy degree (duplication or triplication) or the replication options (clocks,

121

IO, instances, etc…). The output of this tool is written to a replication description file (.rdesc) for

further processing by the tool.

After that, the JEdifVoterSelection tool is invoked to decide the locations of the voters that will

be inserted to accomplish triplication, using different voter insertion algorithm. Finally, the

JEdifNMR tool is invoked to actually triplicate the design based on the specified options in all

the previous steps. The triplicated design is saved into an EDIF file and can be ported back to the

Xilinx flow using the EDIF2NGD tool.

In order to establish enough confidence when comparing RARS to other triplication approaches,

we employed various triplication settings along with various voter insertion algorithms. The

following list depicts the TMR configurations that will be used in the comparison.

Voter Insertion location:

1. Triplicate Logic (TL): Only internal logic, including clock signals, will be triplicated,

without triplication of the IOs

2. Triplicate Logic and Input ports (TLI): The logic and the input ports will be triplicated

3. Triplicate Logic and Output ports (TLO): the logic and the output ports will be triplicated

4. Triplicate Logic, Input, and Output ports (TLIO): Triplicates all logic, input, and output

signals.

122

Voter Insertion Algorithm:

1. Voters before Every Flip-Flop (FF) Algorithm: This algorithm will place a voter before

the data input of every FF. The algorithm is very simple and does not require heavy

analysis of the design, it guarantees that only one voter will be inserted in any timing

path, reducing the negative timing impact of the triplication [18]

2. Voters after Every FF Algorithm: Similar to the previous algorithm, but inserts the voter

after the FF. This has produced the best timing results out of 15 benchmark designs [18]

3. Basic Strongly Connected Components (SCC) Decomposition Algorithm: Applies

Kosaraju algorithm [18] to remove all feedbacks from the SCC. Runs quickly but

produces bad timing results compared to the other algorithms because it allows more than

one voter in the timing path.

4. Highest Fanout SCC Decomposition Algorithm: Reduces the number of voters using a

heuristic search to find nets with high fanout as candidate places to insert voters.

5. Highest FF Fanout SCC Decomposition Algorithm: Combines 4 and 2, it guarantees that

only one highest fanout voter is inserted per timing path, by inserting it after the FF

outputs, resulting in cutting more voters and thus protecting the timing paths and saving

more area.

123

6. Highest FF Fanin Input: Finds the highest fan-in FF in the SCC that is a legal voter

location.

7. Highest FF Fanin Output: Same as 6, but inserts the voter after the identified FF.

This has resulted in triplicated designs, shown in Table 17, as benchmarks to be

used in the comparison against RARS.

6.3.2. Experimental Results

The BL-TMR tool was run 28 times to generate triplicated designs of the FEs with the

specification listed in Table 17. The resulting designs were first analyzed using the Xilinx PAR

reporting tools to calculate the area overhead of each benchmark. The full results are shown in

Table 18. We rely on the “Total equivalent gate count” as generated by the Xilinx tool to be the

area overhead metric in this experiment. Benchmark number 5 (Highest Flip-Flop Fanout SCC

Decomposition, Logic Only) resulted in the least number of gates, meaning it is the top design in

the area category out of the 28 benchmarks.

The expected used area in RARS is a function of TS1, ODX, and OTX, as shown in Eq.1. TS1 will

be first theoretically set to different values of interest to analyze the behavior of RARS as an

area-saver redundancy-based fault tolerance method. It will be later set to the values reported

under the nine UCs that we presented in the CTMC experiments in the previous section to

actually calculate RARS area requirements under those conditions.

124

But to start with, ODX and OTX must be calculated by synthesizing the sub-modules of RARS

independently and generating the Xilinx PAR reports accordingly. The results of the FE, AE, and

Voter areas are shown in Table 19.

Table 17: 28 BL-TMR Triplicated Edge Detector Benchmarks

Benchmark

Triplication

Location Voter Insertion Algorithm

1

logic only

Before Every Flip-Flop

2 After Every Flip-Flop

3 Basic Strongly Connected Components (SCC) Decomposition

4 Highest Fanout SCC Decomposition

5 Highest Flip-Flop Fanout SCC Decomposition

6 Highest Flip-Flop Fanin Input

7 Highest Flip-Flop Fanin Output

8

logic and input

ports

Before Every Flip-Flop

9 After Every Flip-Flop

10 Basic Strongly Connected Components (SCC) Decomposition

11 Highest Fanout SCC Decomposition

12 Highest Flip-Flop Fanout SCC Decomposition

13 Highest Flip-Flop Fanin Input

14 Highest Flip-Flop Fanin Output

15

logic and output

ports

Before Every Flip-Flop

16 After Every Flip-Flop

17 Basic Strongly Connected Components (SCC) Decomposition

18 Highest Fanout SCC Decomposition

19 Highest Flip-Flop Fanout SCC Decomposition

20 Highest Flip-Flop Fanin Input

21 Highest Flip-Flop Fanin Output

22

logic, input, and

output ports

Before Every Flip-Flop

23 After Every Flip-Flop

24 Basic Strongly Connected Components (SCC) Decomposition

25 Highest Fanout SCC Decomposition

26 Highest Flip-Flop Fanout SCC Decomposition

27 Highest Flip-Flop Fanin Input

28 Highest Flip-Flop Fanin Output

125

Table 18: Area Results of the Twenty Eight Benchmarks

Benchmark Slices

4

input

LUTs

Logic 4

input LUTs

Route-thru 4

input LUTs

bonded

IOBs
BUFG

Total equivalent

gate count

1 1,294 2,148 1,878 270 63 1 20,629

2 1,320 2,144 1,991 153 63 1 21,307

3 1319 2148 1932 216 63 1 20,953

4 1237 2006 1787 219 63 1 20,083

5 1182 1925 1769 156 63 1 19,975

6 1260 2079 1809 270 63 1 20,215

7 1185 1928 1772 156 63 1 19,993

8 1297 2173 1903 270 107 3 20,779

9 1323 2145 1992 153 107 3 21,313

10 1323 2149 1933 216 107 3 20,959

11 1240 2007 1788 219 107 3 20,089

12 1185 1926 1770 156 107 3 19,981

13 1264 2080 1810 270 107 3 20,221

14 1188 1929 1773 156 107 3 19,999

15 1343 2229 1959 270 145 1 21,771

16 1,416 2,289 2,136 153 145 1 22,833

17 1,357 2,109 1,893 216 145 1 21,375

18 1,256 1,980 1,761 219 145 1 20,583

19 1,200 1,899 1,743 156 145 1 20,475

20 1,304 2,037 1,767 270 145 1 20,619

21 1,203 1,902 1,746 156 145 1 20,493

22 1,370 2,253 1,983 270 189 3 21,915

23 1,434 2,289 2,136 153 189 3 22,833

24 1,388 2,109 1,893 216 189 3 21,375

25 1,275 1,980 1,761 219 189 3 20,583

26 1,218 1,899 1,743 156 189 3 20,475

27 1,339 2,037 1,767 270 189 3 20,619

28 1,221 1,902 1,746 156 189 3 20,493

126

Table 19: Area Results of RARS Sub-Modules

Substituting the values in Eq.2 and Eq.3, ADX=15,115 gates, ATX=22,793 gates. ARARS can be

calculated for any given TS1. Table 20 shows ARARS for various TS1 and the saving over

benchmark 5 that has the smallest area out of the 28 benchmarks.

Table 20: RARS Area Savings over Benchamrk Five for Different TS1 Values

TS1

ARARS

(in Gates)

Area Saving of RARS

over Benchmark 5

0% 22793 -14.11%

1% 22716.22 -13.72%

10% 22025.2 -10.26%

20% 21257.4 -6.42%

30% 20489.6 -2.58%

36% 20028.92 -0.27%

37% 19952.14 0.11%

40% 19721.8 1.27%

50% 18954 5.11%

60% 18186.2 8.96%

70% 17418.4 12.80%

80% 16650.6 16.64%

90% 15882.8 20.49%

98% 15268.56 23.56%

99% 15191.78 23.95%

100% 15115 24.33%

Module Slices

4

input

LUTs

Logic 4 input

LUTs

route-thru 4

input LUTs

bonded

IOBs

BUF

Gs

Total

equivalent

gate count

One FE 348 616 526 90 64 1 6,495

AE

(without

Voter)

86 151 136 15 210 2 2,125

Voter 71 107 107 0 169 1 1,183

127

One can see that the TS1 threshold after which RARS becomes beneficial in term of area is 37%.

Missions that run 90% of the time in the Duplex mode (S1) can benefit from 20% area savings

for the design example of the edge detector. To generalize the area saving potential over a

spectrum of TS1values, we depict the relation between the total equivalent gate count of RARS

and TS1. On top of that, we overlay the 28 triplication benchmarks area results on a secondary x-

axis, the results show that RARS will become more beneficial than all the TMR benchmarks

when TS1 is approximately greater than 40%.

Figure 25: RARS Area Overhead Relative to Twenty Eight Benchmarks

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

15000

16000

17000

18000

19000

20000

21000

22000

23000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BL-TMR Benchmarks

To
ta

l E
q

u
iv

al
en

t
G

at
e

C
o

u
n

t

T
S1

RARS BL-TMR

128

Next, the XPA tool was used to analyze the dynamic power consumption of the same 28

benchmark designs. From the results that are reported in Table 21, it was noted that the dynamic

power consumption is greatly affected by the presence of triplicated IO‟s, and thus the results of

TLIO sets were only considered to select the power winner design to be fair to RARS, which

triplicates the input and output ports. Therefore, the winning benchmark in the power category is

benchmark 22 with 166.32 mWatt.

Table 21: Power Results (in mWatt) for the Twenty Eight Benchmarks

Benchmark Clock Input Output Logic Signals Total

1 10.96 15.59 31.15 2.48 5.24 65.42

2 11.19 15.59 31.15 1.23 4.19 63.35

3 13.43 15.59 31.15 2.36 5.09 67.62

4 12.14 15.59 31.15 1.99 4.55 65.42

5 12.77 15.59 31.15 1.94 5.13 66.58

6 12.49 15.59 31.15 2.45 5.26 66.94

7 11.46 15.59 31.15 1.77 5.01 64.98

8 21.01 46.76 31.15 3.89 3.39 106.2

9 23.1 46.76 31.15 2.1 5.47 108.58

10 19.25 46.76 31.15 3.22 4.87 105.25

11 18.6 46.76 31.15 2.86 4.6 103.97

12 18.24 46.76 31.15 2.8 5.54 104.49

13 19.13 46.76 31.15 3.32 5.46 105.82

14 16.48 46.76 31.15 2.63 5.21 102.23

15 14.88 15.59 93.45 2.63 6.03 132.58

16 12.07 15.59 93.45 1.67 4.26 127.04

17 13.64 15.59 93.45 2.38 5.07 130.13

18 14.01 15.59 93.45 2.03 4.83 129.91

19 11.24 15.59 93.45 1.97 4.98 127.23

20 13.96 15.59 93.45 2.47 5.07 130.54

21 13.15 15.59 93.45 1.8 5.3 129.29

22 18.89 46.76 93.45 3.05 4.17 166.32

23 27 46.76 93.45 2.53 6.26 176

24 21.7 46.76 93.45 3.24 5.56 170.71

25 19.28 46.76 93.45 2.89 5.25 167.63

26 21.7 46.76 93.45 2.84 5.83 170.58

27 22.86 46.76 93.45 3.33 5.8 172.2

28 18.95 46.76 93.45 2.67ss 5.7 167.53

129

Again, the same values were calculated for RARS sub-modules by synthesizing them

independently and applying the XPA analysis to the resulting designs. The results, shown in

Table 22, indicates that the majority of the dynamic power is consumed by the FE elements due

to the amount of logic used in it compared to the AE and the Voter. The Voter and the AE

consumed relatively equal amounts of dynamic power.

Table 22: Power Results for RARS Sub-Modules

Module Clock Input Output Logic Signals Total

FE 6.2 15.59 31.15 1.11 1.69 55.74

Voter 4.38 0 0 0.52 0.12 5.02

AE (without Voter) 4.77 0 0 0.6 0.37 5.74

Applying Eq.2 and Eq.3, we calculate PDX=117.22 mWatts and PTX=177.98 mWatts. PRARS can

be calculated for any given TS1. Table 23 shows PRARS for selected TS1 values and the power

savings over benchmark 22 that consumed the least dynamic power in the eight TLIO

benchmarks. The cutoff value for the power case is 20%, so any mission that stays in S1 for

more than one fifth of the time will benefit from RARS to reduce power consumption while

maintaining the same availability levels compared to the conventional TMR.

130

Table 23: RARS Power Savings over Design Twenty Two for Different TS1 Values

TS1 Power

Power Saving of RARS

over Benchmark 22

0% 177.98 -7.01%

1% 177.3724 -6.65%

10% 171.904 -3.36%

19% 166.4356 -0.07%

20% 165.828 0.30%

30% 159.752 3.95%

40% 153.676 7.60%

50% 147.6 11.26%

60% 141.524 14.91%

70% 135.448 18.56%

80% 129.372 22.22%

90% 123.296 25.87%

98% 118.4352 28.79%

99% 117.8276 29.16%

100% 117.22 29.52%

Plotting the Power in mWatts versus TS1 will show linear savings with increased duplex time. In

comparison with the 28 benchmarks, RARS can still be beneficial for power savings unless TLI

or TL are used, but this would decrease the reliability of the design because not all IOBs are

triplicated, introducing many failure points to the system.

131

Figure 26: RARS Power Overhead Relative to Twenty Eight Benchmarks

Figure 27 depicts the percentage of power and area savings of RARS over the top two

benchmarks, 5 and 22, except for the power of design 5 which does not include IOBs and thus

produced very low power consumption at the expense of less reliability. All the three lines enter

the positive region of the Y axis at TS1>37%. If the power is the main concern of the mission

then any TS1>20% will mean that RARS will be more beneficial than any BL-TMR generated

designs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

50
60
70
80
90

100
110
120
130
140
150
160
170
180

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

1

BL-TMR Benchmarks

P
o

w
e

r
(m

W
)

T
S1

RARS BL-TMR

132

Figure 27: RARS Area and Power Savings Relative to the Top Two Benchmarks

Note that the previous power analysis ignores the impact of the power consumption of the

reconfiguration process. The power analysis aims to compare between the conventional TMR

and the RARS approaches. This comparison only covers the organic hardware behavior of

RARS; it does not actually include scrubbing for repairing soft faults or GA for repairing hard

faults. We expect both TMR and RARS to follow the same reconfiguration pattern if they are

designed to go into the scrubbing or the GA phases. In fact, RARS implement a TMR

configuration when running the GA in order to use the discrepancy-based fitness evaluation

feature. Thus, both approaches will be affected in the same fashion if the GA reconfiguration

power consumption is considered.

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

0

0.
04

0.
08

0.
12

0.
16 0.

2

0.
24

0.
28

0.
32

0.
36 0.

4

0.
44

0.
48

0.
52

0.
56 0.

6

0.
64

0.
68

0.
72

0.
76 0.

8

0.
84

0.
88

0.
92

0.
96

1

Sa
vi

n
gs

TS1

Area Saving Over Design 5 Power Saving Over Design 22
Area Saving Over Design 22

133

As for the RARS Duplex-to-Triplex switching power, neglecting the reconfiguration process

power consumption can only be acceptable if the configuration time is very low compared to the

application running time, which can be achieved by two ways.

First, by reducing the bitstream size through the use of PR rather than the full configuration

approach. As we demonstrated in the experimental section, the bitstream size was reduced using

the PR flow to 30.61 KB compared to 1.633 MB for the full static bitstream. This reduction in

the CBS size led to decreasing the reconfiguration time to 1.8% of the original value, which

should translate into comparable power saving during the reconfiguration process.

Second, the configuration time can be vastly reduced by relying on the much-faster ICAP instead

of the external configuration ports such as the JTAG. As mentioned previously, and in spite of

the usage of the parallel Cable IV in the experimental setup, the intended deployment platform

which will utilize the PowerPC processor will make use of the ICAP for all reconfigurations. The

ICAP can reach download speed of up to 400MB/Sec compared to the 5MB/Sec for the parallel

Cable IV that we used in experimental setup. The problem that faces most designers is that this

speed is bounded by the limiting factor of fetching the CBS from the configuration memory into

the ICAP with the same rate. Thus, the ICAP is able to support the maximum throughput of 400

MB/Sec, but the bottleneck becomes how fast the application can fetch the configuration data

from the memory.

Several efforts in the literature have implemented CBS fetching mechanisms to match the speed

of the ICAP. In [103], an implementation of BRAM next to the ICAP along with a finite state

134

machine (FSM) to drive the memory load operations into the ICAP are presented. The resulting

system was able to write 4-byte words to the ICAP at a frequency of 100MHz, matching the

maximum throughput made available by the ICAP. In [4], the lightweight hardware artNOC-

ICAP interface is developed to support fast Readback-Modify-Writeback (RMW) mechanism

that achieves 40us configuration time per frame, again matching the maximum speed of the

ICAP. Another successful approach to match the ICAP speed is presented in [104], based on

Direct Memory Access (DMA) aided by master burst and BRAM caching techniques. Another

extensive effort is demonstrated in [105] where the JTAG dynamic power consumption is

measured via a digital oscilloscope from a Spartan III FPGA that does not have an ICAP

interface. The reconfiguration time for a PR bitfile of 21KB was 34 ms, utilizing ICAP instead

with a performance of 66MB/Sec on a Virtex II device would reduce the configuration time to

0.32 ms, and this 99% reduction in configuration time would again yield considerable reduction

in reconfiguration power.

The final goal of this work is to combine the CTMC and the BL-TMR experiments into one

holistic experiment that shows the expected savings of SMART over TMR in the nine use cases.

We experimentally calculated the TS1 values of the nine UCs, and used these realistic values as

an input to the weighted average in Eq.1 to calculate the area and power overhead of RARS

under the nine UCs. The RARS expected values were compared against benchmarks 5 and 22 as

the top designs in term of area and power, respectively. Table 24 shows the holistic experiment

results, where TMR was the recommended approach over SMART only in UC4 and UC7. For

the remaining use cases SMART consistently showed better power and area requirements. The

power savings ranged from 22% to 29%, whereas the area savings ranged from 17% to 24%.

135

Table 24: Combining Availability, Area, and Power Results

UC

S1

(A, Low

Power,

low

Area)

S2, S3

(A, High

Power,

High

Area)

S4-S10

1-A, High

Power,

High

Area)

A

(%)

Avg

Power

Avg

Area

Power

Savings

over

Design

22

Area

Savings

over

Design

5

Recom-

mended

Method

1 86.704% 12.1379% 1.15828% 98.8417 125.3 15319.13 24.66% 19.22% SMART

2 98.707% 1.28331% 0.01014% 99.9899 118 14284.5 29.05% 23.83% SMART

3 99.833% 0.16663% 0.00012% 99.9999 117.3 14187.37 29.46% 24.27% SMART

4 11.130% 24.8876% 63.9821% 36.0179 171.2 21833.57 -2.94% -9.83% TMR

5 81.162% 16.5161% 2.32216% 97.6778 128.7 15796.86 22.64% 17.09% SMART

6 97.522% 2.43057% 0.04736% 99.9526 118.7 14386.6 28.62% 23.38% SMART

7 31.189% 34.3823% 34.4291% 65.5709 159 20104.55 4.38% -2.12% TMR

8 90.189% 9.15584% 0.65490% 99.3451 123.2 15018.69 25.94% 20.56% SMART

9 98.798% 1.19488% 0.00749% 99.9925 118 14276.64 29.08% 23.87% SMART

136

CHAPTER 7: CONCLUSION

Reliability emerges as one of the most significant concerns in the new era of nano-scale devices

[106]. Nano-electronic systems promise immense advancements in term of power, performance,

area, and cost, making them ideal platforms to host many of the computing ideas that are yet to

be explored in our modern days. However, existing reliability techniques might not be able to

scale in compliance with the ever-shrinking device technology. Therefore, novel paradigms that

exploit the massive underlying parallelism of the nano-scale devices might be needed. This

dissertation explores the possibility of imparting self-x properties to enable these paradigms.

7.1. Technical Summary

The OC paradigm has been widely accepted as a potential model for future computing systems,

where numerous independent computing agents can exchange sensory data and actuation

knowledge to regulate system-level parameters, leading to the emergence of self-x properties that

cannot be spotted at the individual component level.

Therefore, an organically-inspired SMART approach was presented, which can adapt to runtime

failures based on alternative configurations. This allows for use of a continuum of power and

area utilizations versus reliability. The organic hardware layer provides decentralized awareness

and control by means of distributed RARS module across the hardware fabric. The supervisory

software layer provides the ability to assimilate hardware sensory information while providing

vital centralization for decision-making.

137

RARS avoided the dilemma of choosing a fixed redundancy degree by deferring a commitment

to a particular fault handling configuration until run-time. This approach, utilizing

reconfigurability of SRAM-FPGAs, demonstrates an effective use of resources depending upon

current mission conditions. TMR consumes three times the required resources to survive during

the short periods of time when faults hit the application. RARS, in contrast, adapts to the various

requirements at different stages of the mission by enabling just the right amount of spares.

Unnecessary spares can be completely disabled or even replaced by other circuits. In the age of

power-aware applications, where cooling and battery-life are as crucial as performance, RARS is

able to save up to 30% of the power used by TMR, while still providing protection against

transient and permanent faults.

Offline repair is entirely undesirable in modern mission-critical applications whereby the system

must show graceful degradation and partial ability to function even when being refurbished.

Partial reconfiguration made it possible to keep the system online while under repair. It also

enabled fast reconfiguration, reducing the repair time and increasing system availability. Finally,

it allowed for the implementation of innovative solutions at the software layer, such as lazy

scrubbing and intrinsic fitness evaluation.

The software layer relied on a JTAG interface to communicate with the FPGA and to download

partial bitfiles. This layer facilitated experiments with evolutionary repair where the fault

recovery is not limited by the number of available spares. OGA, unlike other conventional GAs,

supported features that are well-matched to the OC requirements. The model-free fitness

function enabled the GA to be portable and scalable to fit any application domains. Direct

138

bitstream evolution reduced the mapping time of the genetic material into physical individuals,

thereby boosting the performance of the GA. Finally, intrinsic evolution improved the accuracy

of the GA because it allowed the evolution to happen on the actual hardware rather than a

software model.

7.2. Future Work

Future work can target any aspects of SMART that were deemed out of the scope of this work,

such as recovering faults in the AE. AE is considered as a golden element in this work, previous

work by our research group has demonstrated successful methods to protect the voting logic

[90]. Integration effort is considered to combine the two methods into one integrated system.

Extending the power analysis to cover the GA process with the associated complexity of

experimentally measuring and analytically modeling the configuration process power, can be

another useful expansion to aid in predicting and controlling SMART in mission-critical

deployments.

A novel OGA based on Island-based GA (IGA) [64] can greatly contribute to the hard-fault self-

repair mechanisms of SMART. The proposed future work aims to map the islands of the IGA to

dynamically reconfigurable FEs on the FPGA device. The goal is to grow and shrink the number

of islands based on the availability of reconfigurable resources at any stage of the mission.

Adding and removing islands will impact the MTTR of hard-faults and also change the

dynamicity of the resource utilization of SMART.

139

For instance, if an island is to be retired due to fault scenarios or in order to utilize its

reconfigurable resources for a different task, SMART needs to choose from many options

regarding which island to retire and how to handle the individuals of that island. For example,

SMART can retire the lowest fit island, which might be a costly decision if good building blocks

of the GA are lost. It can also retire an island such that diversity-preservation is maximized.

Another alternative is to retire any random island but rescue a selected set of individuals by

migrating them to other islands. The question here becomes what are the selection criteria for

these rescued individuals? Should that be fitness, diversity, or both?

On the other hand, when SMART has a newly available reconfigurable block to make use of, and

thus decides to populate a new island in order to expedite the evolutionary process, what would

be the best way to construct the new island? Would that be creating a super island comprising the

best performers across all other islands? Although this Pareto-preserving option seems optimal, it

might not produce good solutions if the best performers across all islands have converged

similarly, leading to a super island that lacks the genetic diversity to promote new innovative

solutions. The other extreme alternative is to compose the island such that diversity is

maximized, by analyzing the variance of selected individuals and picking the ones that are

different from the rest. Randomly populating the new island with immigrants from other islands

might lead to more diversity and thus promote better solutions

These are all interesting question to answer, and we believe that IGA can be a rich field to

analyze in the context of organic computing on reconfigurable devices due to its compatibility

with the OC paradigm and its technical suitability for reconfigurable devices.

140

APPENDIX: COMMUNICATION PROTOCOL MESSAGES

141

This is a summary of the communication protocol messages

Protocol Attribute Description

Implementation Socket Communication

Direction Bidirectional

Communication Type Asynchronous (Producer/Consumer)

Message – 1
Message Name DISCREPANCY_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

Message Format

AE_ID FE_ID TMR FAULT_ ARTICULATION_ INPUTMSG_ CODE

5
Log2 |AE|

2 1 n- bit Functional Input

TIME_STAMP

TBD

Message Trigger(s) Discrepancy detected by the AE

Message Description

This message is sent whenever an AE detects discrepancy

among its FEs. The TMR flag is used to specify the

configuration of the organic unit when the discrepancy was

detected. A TMR flag value of 1 indicates that the 3 FEs were

simultaneously used in voting scheme, and the FE_ID in this

case specifies the discrepant FE, whereas a 0 value indicates

the original configuration of two online FEs and one Cold-

spare standby (duplex mode), the FE_ID reflects the address of

the cold-standby FE in this case. The n-bit

FAULT_ARTICULATION_INPUT provides the AS with the

actual input that articulated the discrepancy; this could be

useful for the Software layer and/or RM to regenerate the fault

scenario during the refurbishment process.

Message – 2
Message Name FE_STATUS_REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

142

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) Software layer initiated according to the Cognitive Layer logic.

Message Description

This message is sent from the Software layer to the organic

layer to query the status of any number of FEs. The addresses

of the AEs/FEs can be specifically provided to target specific

FE or a broadcast address (e.g. address zero) can be used to

query multiple FEs. For example, if the AE_ID is 3 and the

FE_ID is 0, the AE that has the address of (3) has to respond

with three FE_STATUS_REPORT messages (Message-3) for

each one of its FEs. Also, if the AE_ID field is zero and the

FE_ID is 2, all AEs in the organic layer have to report the

status of their FE with the address 2. It is apparent that an

FE_STATUS__REQUEST message with both AE_ID and

FE_ID fields filled with zero means a full broadcast to the

organic layer to send the status of every single FE to the

cognitive layer.

Message – 3
Message Name FE_STATUS_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

Message Format

TIME_STAMP

TBD

AE_ID FE_ID STATUSMSG_CODE

5
Log2|AE|

2 3

Message Trigger(s) Response to Message-2

Message Description

Responding to Message-2, an AE has to send one

FE_STATUS_REPORT message per FE to the Software layer.

Contrary to message-2, The AE_ID and FE_ID fields cannot

specify a broadcast address in this message; they have to

explicitly indicate the sender identity.

Message – 4

143

Message Name TMR_ACTIVATION_REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

Message Format

TIME_STAMP

TBD

AE_IDMSG _CODE

5
Log2 |AE|

Message Trigger(s)

Software layer initiated according to the Cognitive Layer logic.

It could be due to performance degradation below the mission

requirements for this organic unit (FEs and AE).

Message Description

Software layer can send this message to one/all AEs in the

organic layer to trigger TMR configuration activation. The

targeted AE(s) respond by activating TMR among FEs and

confirm back by sending Message-5

(TMR_ACTIVATION_REPORT)

Message – 5
Message Name TMR_ACTIVATION_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

Message Format

TIME _STAMP

TBD

AE_IDMSG_CODE

5
Log2 |AE|

Message Trigger(s)
- Response to Message-4

- Autonomous response taken by the AE itself.

Message Description

Software layer described in message-4, this message is a

confirmation from AE to Software layer that TMR has been

configured among the three FEs Software layer requested or a

notification to the Software layer that the AE has

autonomously activated the TMR mode.

Message – 6
Message Name REFURBISH _REQUEST

Message Type String

144

Message Source Software layer

Message Destination Hardware layer

Message Format

TIME_STAMP

TBD

AE_ ID FE_IDMSG_CODE

5
Log2 |AE|

2

Message Trigger(s)

Software layer initiated according to the Cognitive Layer logic.

It could be due to one of the FEs was reported faulty, or due to

performance degradation below the mission requirements.

Message Description

This message is sent from the Software layer whenever

refurbishment is needed. For example this call can initiate

running GA to repair faulty FE(s). The same principle of

broadcast addressing described in Message-2 is applicable to

this message.

Message – 7
Message Name REFURBISH _REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

Message Format
TIME_STAMP

TBD

AE_ID FE_IDMSG_ CODE

5
Log2 |AE|

2

FITNESS_ VALUE

Log2|Fitness|

Message Trigger(s) Refurbishment process is finished.

Message Description

This message is sent from the AE to Software layer upon

refurbish completion. The final fitness value of the refurbished

FE is reported in the message so that it can be used in future

mission-specific decision making.

Message – 8
Message Name FE_STATUS_CHANGE _REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

145

Message Format

TIME _STAMP

TBD

AE _ID FE_IDMSG_CODE

5
Log2 |AE|

2

STATUS

Log2|STATUS|

Message Trigger(s)

- FE is put under-repair.

- FE was refurbished and the Software layer decides that it is

eligible to be put online.

- FE has failed to be refurbished and claimed un-repairable and

hence should be decommissioned

Message Description

The Software layer can send this message to change the status

of FE(s). Broadcasting can be used to specify more than one

FE in a single command, provided that they will be changed to

the same status. The target AE will respond by changing the

status of the addressed FE(s) and send a confirmation of the

change to the Software layer (as described in Message-2).

Message – 9
Message Name PING _REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

Message Format

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2 |AE|

Message Trigger(s) Software layer checks that the AE is alive.

Message Description

The Ping message is used by the Software layer to check the

health of the AEs to check if it is minimally responsive. The

broadcast addressing can be used to ping all the AEs in the

organic layer. AEs respond to the Ping message by sending a

PING_REPLY to the Software layer (As described in

Message-10)

Message – 10
Message Name PING_REPLY

Message Type String

Message Source Hardware layer

146

Message Destination Software layer

Message Format

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2 |AE|

Message Trigger(s) Response to Message-9

Message Description
This message is sent from the AE to the Software layer as a

reply for the PING_REQUEST (Message-9).

Message – 11
Message Name RECONFIGURATION_REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

CONFIG_ID_

TBD

Message Trigger(s)

- AE is not responding properly (Any failure to respond such

as ping failure)

- Software layer decided to change the functionality of the

organic unit.

Message Description

This message is sent from the Software layer to the AE(s) to

change the configuration of the corresponding FE(s). The

broadcast addressing can be used in this message. The AE will

respond by downloading the requested configuration and reply

with the RECONFIGURATION_REPORT message

(Message-12)

Message – 12
Message Name RECONFIGURATION_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

147

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) Response to Message-11

Message Description
This message is a response to the

RECONFIGURATION_REQUEST (Message-11).

Message – 13
Message Name DUPLEX_ACTIVATION_REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s)

Take one FE offline in order to: refurbish, decommission, or

switch back to normal duplex operation due to fault recovery

achievement.

Message Description

As the Software layer has the capability to instruct Hardware

layer to switch to TMR mode (Message-4), it can also switch it

back to duplex mode under the situations mentioned above in

(Message Triggers). FE_ID field specifies the FE module that

will be taken offline (the other two FEs will be running in

duplex mode)

Message – 14
Message Name DUPLEX_ACTIVATION_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

148

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) Response to Message-13

Message Description

Once the AE changes the configuration to duplex mode, it

reports back the new configuration to the Software layer, the

FE_ID fields indicates the offline FE.

Message – 15
Message Name GET_OL_CONFIGURATION_REQUEST

Message Type String

Message Source Software layer

Message Destination Hardware layer

Message Format

AE_IDMSG_CODE

5
Log2|AE|

TIME_STAMP

TBD

Message Trigger(s)
Software layer initiated when it needs information about how

the organic layer is organized

Message Description
The Software layer sends this message to request the

configuration of the Organic Layer.

Message – 16
Message Name OL_CONFIGURATION_REPORT

Message Type String

Message Source Hardware layer

Message Destination Software layer

Message Format Adjacency list

149

Message Trigger(s) Response to message-15

Message Description

The Hardware layer sends this message to report the

configuration of the Organic Layer, the organization of the

organic units is sent in the format of an adjacency list.

150

REFERENCES

[1] H. Schmeck, "Organic computing-a new vision for distributed embedded systems," in

Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC’05), Washington DC, USA,, 2005, pp. 201-203.

[2] C. Müller-Schloer, "Organic computing: on the feasibility of controlled emergence," in

2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis, Stockholm, Sweden, 2004, pp. 2-5.

[3] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and W. Stechele, "Towards a

framework and a design methodology for autonomic SoC," in Second International

Conference on Autonomic Computing (ICAC’05) Washington DC, USA, pp. 391-392.

[4] S. Christian, H. Bastian, and J. Becker, "An interface for a decentralized 2d

reconfiguration on xilinx virtex-FPGAs for organic computing," International Journal of

Reconfigurable Computing, vol. 2009, 2009.

[5] J. Haase, A. Hofmann, and K. Waldschmidt, "A Self Distributing Virtual Machine for

Adaptive Multicore Environments," International Journal of Parallel Programming, vol.

38, pp. 19-37, 2010.

[6] M. Parris, C. Sharma, and R. Demara, "Progress in Autonomous Fault Recovery of Field

Programmable Gate Arrays," accepted to ACM Computing Surveys, December, 2009.

[7] B. Bridgford, C. Carmichael, and C. W. Tseng, "Single-event upset mitigation selection

guide," Xilinx Application Note XAPP987, vol. 1, 2008.

[8] F. Lima, L. Carro, and R. Reis, "Designing fault tolerant systems into SRAM-based

FPGAs," DAC '03: Proceedings of the 40th annual Design Automation Conference, pp.

650-655, 2003.

[9] R. Al-Haddad, R. Oreifej, R. DeMara, and R. Ashraf, "Sustainable Modular Adaptive

Redundancy Technique Emphasizing Partial Reconfiguration for Reduced Power

Consumption," Accepted to International Journal of Reconfigurable Computing (IJRC),

2011.

151

[10] Xilinx, "Xilinx Virtex-4 Family Overview, DS112 (v1.1)," September 10, 2004.

[11] R. DeMara, J. Lee, R. Al-Haddad, R. Oreifej, R. Ashraf, B. Stensrud, and M. Quist,

"Invited Paper: Dynamic Partial Reconfiguration Approach to the Design of Sustainable

Edge Detectors," in Engineering of Reconfigurable Systems and Algorithms (ERSA), Las

Vegas, Nevada, USA, 2010, p. 11 pages.

[12] F. Lima, L. Carro, and R. Reis, "Designing fault tolerant systems into SRAM-based

FPGAs," in 40th conference on Design automation,, Anaheim, CA, USA 2003, pp. 650-

655.

[13] S. Mitra, N. R. Saxena, and E. J. McCluskey, "A design diversity metric and reliability

analysis for redundant systems," in International Test Conference, Atlantic City, NJ ,

USA, 1999, pp. 662-671.

[14] S. Vigander, "Evolutionary fault repair of electronics in space applications," Doctorate

Dissertation, University of Sussex, Galmer, Brighton, UK, 2001.

[15] R. Oreifej, R. Al-Haddad, H. Tan, and R. DeMara, "Layered approach to intrinsic

evolvable hardware using direct bitstream manipulation of Virtex II pro devices," in

International Conference on Field Programmable Logic and Applications, Amsterdam,

Netherlands, 2007, pp. 299-304.

[16] I. Sobel, "Camera models and machine perception," PhD Dissertation, Stanford

University, Department of Computer Science, 1970.

[17] M. Garvie and A. Thompson, "Scrubbing away transients and jiggling around the

permanent: Long survival of FPGA systems through evolutionary self-repair," in

International On-Line Testing Symposium, 10th IEEE (IOLTS'04), 2004, pp. 155-160.

[18] B. Y. University, "BYU-LANL Triple Modular Redundancy Usage Guide (Version

0.5.2)," September 30, 2009.

[19] Xilinx, "Xilinx Power Tools Tutorial UG733 (v1.0)," 2010.

[20] Xilinx, "ISE In-Depth Tutorial (V 9.1)," 2007.

152

[21] G. R. Burke, "Jupiter Europa Orbiter Mission: ASIC via FPGA Guidelines with

Addendum on Europa ASIC Process Flow, Version 1.1," Jet Propulsion Laboratory

October 7, 2008.

[22] E. S. Seumahu, T. S. Bird, W. G. Cowley, and A. J. Parfitt, "The FedSat communications

payload," in International Conference on Information, Communications and Signal

Processing, 1999.

[23] M. Caffrey, D. Roussel-Dupre, A. Salazar, and M. Wirthlin, "The Cibola Flight

Experiment," in 23rd Annual Small Satellite Conference, Logan, UT, USA, 2009.

[24] N. Nishinaga, M. Takeuchi, and R. Suzuki, "Reconfigurable communication equipment

on smartSAT-1, IEIC Technical Reoprt.," 2004.

[25] T. Snowden and N. Ambrosiano, "Space-based supercomputer in design at Los Alamos,

http://www.xilinx.com/prs_rls/2006/end_markets/0661lanl.htm," April 26, 2006

[26] B. Fiethe, H. Michalik, C. Dierker, B. Osterloh, and G. Zhou, "Reconfigurable system-

on-chip data processing units for space imaging instruments," in Design, Automation and

Test in Europe, 2007, pp. 977-982.

[27] M. Wang and G. Bolotin, "SEU Mitigation Techniques for Xilinx Virtex-II Pro FPGA,"

in Military and Aerospace Programmable Logic Device, Washington, D.C., USA, 2004.

[28] I. A. Troxel, M. Fehringer, and M. T. Chenowet, "Flexible Fault Tolerance Using the

ARTEMIS Reconfigurable Payload processor, In Military and Aerospace FPGA and

Applications (MAFA) Meeting," Palm Beach, FL, USA 2007.

[29] C. Bolchini and C. Sandionigi, "Fault Classification for SRAM-Based FPGAs in the

Space Environment for Fault Mitigation," Embedded Systems Letters, IEEE, vol. 2, pp.

107-110.

[30] C. Bolchini and C. Sandionigi, "Fault Classification for SRAM-Based FPGAs in the

Space Environment for Fault Mitigation," Embedded Systems Letters, IEEE, vol. 2, pp.

107-110, Dec. 2010

http://www.xilinx.com/prs_rls/2006/end_markets/0661lanl.htm,

153

[31] G. M. Swift, G. R. Allen, C. W. Tseng, C. Carmichael, G. Miller, and J. S. George,

"Static Upset Characteristics of the 90nm Virtex-4QV FPGAs," in Radiation Effects Data

Workshop, Tucson, AZ, USA, 2008, pp. 98-105.

[32] T. Kuwahara, "FPGA-based reconfigurable on-board computing systems for space

applications, PhD Dissertation," in Faculty of Aerospace Engineering and Geodesy

Stuttgart, Germany: Institute of Space Systems, 2010.

[33] M. French, P. Graham, M. Wirthlin, and L. Wang, "Cross functional design tools for

radiation mitigation and power optimization of FPGA circuits," in NASA Earth

ScienceTechnology Conference, 2006, p. 2006.

[34] C. Carmichael, "Triple module redundancy design techniques for Virtex FPGAs," Xilinx

Application Note XAPP197, vol. 1, 2001.

[35] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, "FPGA partial reconfiguration via

configuration scrubbing," in 11th Int. Workshop, Field-Programmable Logic and

Applications and Lecture Notes in Computer Science, 2009, pp. 99-104.

[36] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M. J. Irwin, and K.

Sarpatwari, "Toward increasing FPGA lifetime," IEEE Transactions on Dependable and

Secure Computing, pp. 115-127, 2007.

[37] Xilinx, "Spartan-3 /UMC-12A 90 nm Qualification Report, RPT012 (v2.0.2)," October

7, 2009.

[38] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, "An overview of reconfigurable

hardware in embedded systems," EURASIP Journal on Embedded Systems,, vol. 3, p. 19,

2006.

[39] M. Hubner and J. Becker, "Exploiting dynamic and partial reconfiguration for FPGAs:

toolflow, architecture and system integration," in 19th SBCCI Symp. on Integrated

Circuits and Systems Design, Ouro Preot, Brazil, 2006, p. 4.

[40] C. Kao, "Benefits of partial reconfiguration," Xilinx Xcell Journal, vol. 2005, pp. 65–67,

2005.

154

[41] J. Huang and J. Lee, "A self-reconfigurable platform for scalable DCT computation using

compressed partial bitstreams and BlockRAM prefetching," Special Issue on

Algorithm/Architecture Co-Exploration of Visual Computing, IEEE Transactions on

Circuits and Systems for Video Technology (TCSVT), vol. 19, pp. 1623-1632, November

2009.

[42] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, "FPGA partial reconfiguration via

configuration scrubbing," in 11th Int. Workshop, Field-Programmable Logic and

Applications and Lecture Notes in Computer Science, Aug. 2009.

[43] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "Low overhead fault-tolerant FPGA

systems," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 6,

pp. 212-221, 1998.

[44] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma, "Using roving

STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications," in

International Test Conference Atlantic City, NJ, usa, 1999, pp. 973-982.

[45] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-tolerant evolvable hardware

using field-programmabletransistor arrays," IEEE Transactions on Reliability (Special

Issue on Fault-Tolerant VLSI Syst.), vol. 49, pp. 305-316, September 2000.

[46] R. F. DeMara and K. Zhang, "Autonomous FPGA fault handling through competitive

runtime reconfiguration," in ASA/DoD Conference on Evolvable Hardware (EH'05)

Washington DC, USA, 2005, pp. 109-116.

[47] A. Bernauer, O. Bringmann, W. Rosenstiel, A. Bouajila, W. Stechele, and A.

Herkersdorf, "An Architecture for Runtime Evaluation of SoC Reliability,"

INFORMATIK 2006-Informatik für Menschen, vol. P-93 of GI-Edition, pp. 177-185,

2006.

[48] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F. Rochner, and H.

Schmeck, "Organic computing-addressing complexity by controlled self-organization," in

ISoLA 2006, Paphos, Cyprus, 2006, pp. 185-191.

[49] D. Fey and D. Schmidt, "Marching-pixels: a new organic computing paradigm for smart

sensor processor arrays," in 2nd conference on Computing frontiers, Ischia, Italy, 2005,

pp. 1-9.

155

[50] A. El Sayed Auf, M. Litza, and E. Maehle, "Distributed Fault-Tolerant Robot Control

Architecture Based on Organic Computing Principles," Biologically-Inspired

Collaborative Computing, vol. 268, pp. 115-124, 2008.

[51] J. Becker, K. Brändle, U. Brinkschulte, J. Henkel, W. Karl, T. Köster, M. Wenz, and H.

Wörn, "Digital on-demand computing organism for real-time systems," in 19th

International Conference on Architecture of Computing Systems (ARCS’06),

Frankfurt/Main, Germany, 2006, pp. 230–245.

[52] M. Gen and R. Cheng, Genetic algorithms and engineering design, 1 ed.: Wiley-

Interscience, 1997.

[53] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-Tolerant Evolvable

Hardware Using Field-Programmable Transistor Arrays," IEEE Transactions On

Reliability, vol. 49, September 2000.

[54] J. F. Miller, P. Thomson, and T. Fogarty., "Designing Electronic Circuits Using

Evolutionary Algorithms. Arithmetic Circuits: A Case Study," in Algorithms and

Evolution Strategy in Engineering and Computer Science, D. Quagliarella, J. Periaux, C.

Poloni, and G. Winter, Eds. Chichester, England, 1998, pp. 105-131.

[55] H. Tan and R. DeMara, "A multilayer framework supporting autonomous run-time partial

reconfiguration," IEEE Transactions on Very Large Scale Integration Systems, vol. 16, p.

504, 2008.

[56] M. Gudmundsson, E. A. El-Kwae, and M. R. Kabuka, "Edge detection in medical images

using a genetic algorithm," IEEE transactions on medical imaging, vol. 17, pp. 469-474,

June 1998.

[57] J. F. Cayula and P. Cornillon, "Edge detection algorithm for SST images," Journal of

Atmospheric and Oceanic Technology, vol. 9, pp. 67–80, 1992.

[58] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, "Design of an image edge detection

filter using the sobel operator," IEEE Journal of solid-state circuits, vol. 23, pp. 358-367,

April 1988.

156

[59] N. Ratha and A. Jain, "FPGA-based computing in computer vision," in International

Workshop on Computer Architectures for Machine Perception (CAMP '97), 1997, pp.

128-137.

[60] M. Arias-Estrada and C. Torres-Huitzil, "Real-time field programmable gate array

architecture for computer vision," Journal of Electronic Imaging, vol. 10, p. 289, 2001.

[61] R. Tessier and W. Burleson, "Reconfigurable computing for digital signal processing: A

survey," The Journal of VLSI Signal Processing, vol. 28, pp. 7-27, 2001.

[62] B. J. Ross, F. Fueten, and Y. Y. Dmytro, "Edge detection of petrographic images using

genetic programming," in Genetic and Evolutionary Computation Conference, San

Francisco, USA,, 2000, pp. 658–665.

[63] G. S. Hollingworth, S. L. Smith, and A. M. Tyrrell, "Design of highly parallel edge

detection nodes using evolutionary techniques," in 7th Euromicro Workshop on Parallel

and Distributed Processing, 1999.

[64] E. Cantú-Paz, "A survey of parallel genetic algorithms," Calculateurs Paralleles,

Reseaux et Systems Repartis, vol. 10, pp. 141-171, 1998.

[65] D. Whitley, "The GENITOR algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best," in Third international conference on Genetic

algorithms, San Francisco, CA, USA, 1989, pp. 116-121.

[66] V. S. Gordon and D. Whitley, "Serial and parallel genetic algorithms as function

optimizers," in Fifth International Conference on Genetic Algorithms, San Francisco,

CA, USA, 1993, pp. 177-183.

[67] K. A. De Jong, "An analysis of the behavior of a class of genetic adaptive systems," PhD

Dissertation: MI, USA: Michigan Ann Arbor, 1975.

[68] E. Balas and E. Zemel, "An algorithm for large zero-one knapsack problems," operations

Research, vol. 28, pp. 1130-1154, 1980.

157

[69] C. Pereira and C. M. F. Lapa, "Coarse-grained parallel genetic algorithm applied to a

nuclear reactor core design optimization problem," Annals of Nuclear Energy, vol. 30,

pp. 555-565, 2003.

[70] C. M. N. A. Pereira and L. C.M.F., "Parallel island genetic algorithm applied to a nuclear

power plant auxiliary feedwater system surveillance tests policy optimization," Annals of

Nuclear Energy, vol. 30, pp. 1665-1675(11), November 2003.

[71] D. E. Goldberg, B. Korb, and K. Deb, "Messy genetic algorithms: Motivation, analysis,

and first results," Complex systems, vol. 3, pp. 493-530, 1989.

[72] T. C. Belding, "The distributed genetic algorithm revisited," 1995, pp. 114-121.

[73] R. Tanese, "Distributed genetic algorithms," 1989, pp. 434-439.

[74] Z. Skolicki, "An analysis of island models in evolutionary computation," 2005, p. 389.

[75] Homayounfar H., Areibi S., and Wang F., "An advanced island based GA for

optimization problems," International DCDIS Conference on Engineering Applications

and Computations, pp. 46-51, 2003.

[76] E. Cantu-Paz, "Designing efficient master-slave parallel genetic algorithms," IlliGAL

report, vol. 97004, 1997.

[77] D. Whitley, S. Rana, and R. B. Heckendorn, "The island model genetic algorithm: On

separability, population size and convergence," Journal of Computing and Information

Technology, vol. 7, pp. 33-48, 1999.

[78] J. Cui, T. C. Fogarty, and J. G. Gammack, "Searching databases using parallel genetic

algorithms on a transputer computing surface," FGCS. Future generations computer

systems, vol. 9, pp. 33-40, 1993.

[79] G. A. Sena, D. Megherbi, and G. Isern, "Implementation of a parallel Genetic Algorithm

on a cluster of workstations: Traveling Salesman Problem, a case study," Future

Generation Computer Systems, vol. 17, pp. 477-488, 2001.

158

[80] Z. Skolicki and K. D. Jong, "The influence of migration sizes and intervals on island

models," in GECCO '05 Proceedings of the 2005 conference on Genetic and evolutionary

computation, New York, NY, USA, 2005, pp. 1295--1302.

[81] D. Eby, R. C. Averill, B. Gelfand, W. F. Punch, O. Mathews, and E. D. Goodman, "An

injection island GA for flywheel design optimization," Invited Paper, Proc. EUFIT, vol.

97, 1997.

[82] E. Sinha and B. S. Minsker, "Multiscale island injection genetic algorithms for

groundwater remediation," Advances in Water Resources, vol. 30, pp. 1933-1942, 2007.

[83] P. Adamidis and V. Petridis, "Co-operating populations with different evolution

behavior," in IEEE International Conference on Evolutionary Computation, Nagoya ,

Japan 1996, pp. 188 - 191

[84] R. E. Lyons and W. Vanderkulk, "The use of triple-modular redundancy to improve

computer reliability," IBM Journal of Research and Development, vol. 6, pp. 200-209,

April 1962.

[85] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, and M. Wirthlin, "Fine-grain

SEU mitigation for FPGAs using partial TMR," IEEE Transactions on Nuclear Science.,

vol. 55, pp. 2274-2280, 2008.

[86] K. Zhang, G. Bedette, and R. DeMara, "Triple modular redundancy with Standby

(TMRSB) supporting dynamic resource reconfiguration," 2006 IEEE Autotestcon, pp.

690-696, September 2006.

[87] S. Y. Yu and E. J. McCluskey, "Permanent fault repair for FPGAs with limited redundant

area," in 16th IEEE International Symposium on Defect and Fault-Tolerance in VLSI

Systems, 2001, pp. 125-133.

[88] R. Al-Haddad, "RARS in action http://www.youtube.com/watch?v=I66nTIi9SSA," 2010.

[89] S. Mitra and E. J. McCluskey, "Which concurrent error detection scheme to choose?," in

Proceedings of 2000 International Test Conference, Atlantic City, NJ,, Oct. 3-5, 2000,

pp. 985-994.

http://www.youtube.com/watch?v=I66nTIi9SSA,

159

[90] R. F. DeMara and C. A. Sharma, "Self-checking fault detection using discrepancy

mirrors," in International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA05), Las Vegas, Nevada, U.S.A, June 27-30, 2005, pp. 311-

317.

[91] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," IEEE Computer, vol. 27,

pp. 17-26, 1994.

[92] Xilinx, "Xilinx Parallel Cable IV, Product Specification DS097 (v2.5)," 2008.

[93] Xilinx, "Partial Reconfiguration User Guide, UG702 (v 12.1)," 2010.

[94] C. Carmichael and C. W. Tseng, "Correcting Single-Event Upsets in Virtex-4 FPGA

Configuration Memory," Xilinx Application Note (XAPP197), 2009.

[95] J. Heiner, N. Collins, and M. Wirthlin, "Fault tolerant ICAP controller for high-reliable

internal scrubbing," in Aerospace Conference, Big Sky, MT, USA, 1-8 March 2008, pp.

1-10.

[96] Xilinx, "Video Starter Kit User Guide UG217 (v1.5)," 2006.

[97] S. Merchant, G. Peterson, S. Park, and S. Kong, "Intrinsic embedded hardware evolution

of block-based neural networks," in IEEE Congress on Evolutionary Computation,

Vancouver, BC, Canada, 2006, pp. 3129 - 3136

[98] K. Glette, J. Torresen, and M. Yasunaga, "online evolution for a high-speed image

recognition system implemented on a Virtex-II Pro FPGA," in Second NASA/ESA

Conference on Adaptive Hardware and Systems, Edinburgh, Scotland, 2007, pp. 463 -

470

[99] A. Telikepalli, "Power vs. performance: The 90 nm inflection point," Xilinx White Paper

223, May 2005.

[100] E. J. McDonald, "Runtime FPGA partial reconfiguration," IEEE Aerospace and

Electronic Systems Magazine, vol. 23, pp. 10-15, 2008.

160

[101] N. B. Fuqua, "The applicability of markov analysis methods to reliability,

maintainability, and safety," Selected Topics in Assurance Related Technologies START,

vol. 10, 2003.

[102] P. A. Jensen, "Operations Research Models and Methods,

http://www.me.utexas.edu/~jensen/ORMM/," 2004.

[103] S. Liu, R. N. Pittman, and A. Forin, "Energy Reduction with Run-Time Partial

Reconfiguration," in 18th annual ACM/SIGDA international symposium on Field

programmable gate arrays, New York, NY, USA, 2009.

[104] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, "Run-Time partial reconfiguration speed

investigation and architectural design space exploration," in Field Programmable Logic

and Applications (FPL 2009), 2009, pp. 498-502.

[105] K. Paulsson, M. Hübner, S. Bayar, and J. Becker, "Exploitation of run-time partial

reconfiguration for dynamic power management in Xilinx spartan III-based systems,"

ReCoSoc2007, Montpellier, France, 2007.

[106] W. Rao, C. Yang, R. Karri, and A. Orailoglu, "Toward Future Systems with Nanoscale

Devices: Overcoming the Reliability Challenge," Computer, vol. 44, pp. 46-53, 2010.

http://www.me.utexas.edu/~jensen/ORMM/,

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1. Need for Autonomous Repair in Mission Critical Applications
	1.2. Advantages of Reconfigurable Logic to Support Fault-Tolerance
	1.3. Contributions of the Dissertation
	1.3.1. Design and Implementation of SMART
	1.3.2. Autonomous Fault-Tolerance Technique to Improve Availability
	1.3.3. Evaluating Self-Regulation of Availability, Area, and Energy

	CHAPTER 2: RELATED WORK
	2.1. Device Technology Related Work
	2.1.1. Role of Reconfigurable Devices in Space Mission-Critical Applications
	2.1.2. Failure Modes and Their Effects

	2.2. Application Related Work
	2.2.1. Fault Tolerance in Reconfigurable Devices
	2.2.2. Organic Computing Approaches
	2.2.3. Genetic Algorithm Techniques
	2.2.3.1. Standard GA Techniques
	2.2.3.2. Parallel GA Techniques

	CHAPTER 3: SMART DESIGN OBJECTIVES
	3.1. Exploit Reconfigurability to Realize Adaptive Level of Redundancy
	3.2. Develop Organically Amenable Hard-Fault Repair Techniques
	3.3. Implement SMART and Evaluate it Using Widely Accepted Metrics

	CHAPTER 4: A SMART ARCHITECTURE FOR MISSION-CRITICAL SYSTEMS
	4.1. RARS Hardware Layer
	4.1.1. Motivation as a Hybrid of Approaches
	4.1.2. Architecture and Components
	4.1.3. Range of Possible Configurations

	4.2. Organic Fault-Tolerance Software Management Layer
	4.2.1. Architecture and Components
	4.2.2. Scrubbing and Amorphous Spares
	4.2.3. Organic GA Repair Technique
	4.2.3.1. Direct Bitstream Evolution
	4.2.3.2. Intrinsic Fitness Evaluation
	4.2.3.3. Model-Free Fitness Function
	4.2.3.4. OGA Design and Implementation

	4.3. Fault-Handling Handshaking-Based Communication Protocol
	4.4. Dynamic Partial Reconfiguration
	4.5. The Repair Cycle and Self-x Properties

	CHAPTER 5: EXPERIMENTS AND RESULTS
	5.1. Experimental Configuration: Edge Detection Application
	5.2. Use Case Results
	5.3. The Relationship between RARS and the OGA

	CHAPTER 6: AVAILABILITY, AREA, AND POWER EVALUATION METRCIS
	6.1. Semi-Hypothetical Use Cases
	6.1.1. Soft-Fault Rate
	6.1.2. Soft-Fault Repair Rate
	6.1.3. Hard-Fault Rate
	6.1.4. Hard-Fault Repair Rate

	6.2. Availability Analysis Using Markov Models
	6.2.1. Markov Configuration
	6.2.2. Availability Evaluation Metric Results

	6.3. Area and Power Comparison to industry-standard Techniques
	6.3.1. Experimental Setup
	6.3.2. Experimental Results

	CHAPTER 7: CONCLUSION
	7.1. Technical Summary
	7.2. Future Work

	APPENDIX: COMMUNICATION PROTOCOL MESSAGES
	REFERENCES

