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  ABSTRACT 

As reconfigurable devices‟ capacities and the complexity of applications that use them increase, 

the need for self-reliance of deployed systems becomes increasingly prominent.  A Sustainable 

Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system 

is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety 

of self-regulating properties to control availability, energy consumption, and area used, in 

dynamically-changing environments that require high degree of adaptation. The hardware layer 

is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-

repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The 

software layer supervises the organic activities within the FPGA and extends the self-healing 

capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage 

the benefits of dynamic Partial Reconfiguration (PR).  

A SMART prototype is evaluated using a Sobel edge detection application.  This prototype is 

shown to provide sustainability for stressful occurrences of transient and permanent fault 

injection procedures while still reducing energy consumption and area requirements. An Organic 

Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while 

maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable 

hardware. 

A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to 

compare SMART‟s availability to industry-standard Triple Modular Technique (TMR) 
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techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired 

from publically available sources, the results indicate that availability is significantly enhanced 

by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh 

environments, SMART is shown to improve system availability from 36.02% with lengthy repair 

techniques to 98.84% with fast ones. This value increases to “five nines” (99.9998%) under 

relatively more favorable conditions. 

Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by 

the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is 

the recommended technique, with power savings ranging from 22% to 29%, and area savings 

ranging from 17% to 24%, while still maintaining the same level of availability.  
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CHAPTER 1: INTRODUCTION 

In this chapter, the significance of the problem will be defined and a solution framework will be 

presented. Moreover, the contributions of the dissertation will be highlighted, emphasizing the 

innovation and novelty in SMART as a fault-tolerance technique targeting reconfigurable 

devices in mission-critical applications. 

1.1. Need for Autonomous Repair in Mission Critical Applications 

Current high-performance processing systems frequently consist of heterogeneous processor 

cores or subsystems that depend on one another in nontrivial ways. Each subsystem is itself a 

multi-component system with diverse capabilities. The organization of these subsystems is 

typically static; it is determined with great care at design time and optimized for a particular 

mode of operation. This design strategy is appropriate for systems that are accessible for repair 

when their components fail. However, systems which are unreachable once deployed present a 

different set of challenges. In these systems, the failure of a single component may result in 

large-scale inefficiency or even complete mission failure. 

Therefore, electronic systems operating in demanding environments require increased capability 

for autonomous fault tolerance and self-adaptation, especially as system complexities and 

interdependencies increase. Hence, the goal of  Organic Computing (OC) techniques [1, 2] is to 

create systems capable of adaptive and  fault-tolerant behaviors. The OC paradigm is compatible 

with biologically-inspired computing concepts that emphasize the so-called "self-x properties" 
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which emerge at the system-level and represent life-like properties such as self-configuration, 

self-reorganization, and self-healing [2, 3]. These properties must be maintained in an 

autonomous fashion yet be sufficiently constrained to avoid the emergence of undesirable 

behaviors. 

Complex digital systems that are able to operate autonomously for long periods of time without 

external repair are essential for reducing the risk involved in mission-critical applications, such 

as space, deep-sea, manned and unmanned avionic missions, and deployments to remote or 

perilous terrestrial areas. For instance, a military or commercial satellite that cannot recover from 

a hardware failure becomes orbiting space junk or must be replaced, thereby incurring great 

economic costs and negative societal impact. In contrast, a sustainable self-aware satellite would 

offer increased dependability and extended lifetime. Organic computing is one of the most 

promising approaches to realizing such dependable systems. 

1.2. Advantages of Reconfigurable Logic to Support Fault-Tolerance 

The OC paradigm is seldom tied to a particular platform or implementation, which makes it 

relatively broad in its impact and unrestricted with respect to any specific research or industrial 

context. Nonetheless, the immense flexibility of reconfigurable hardware devices makes them 

especially suited to hosting OC applications [4]. The fact that SRAM-based FPGAs can be 

dynamically reconfigured has made them a popular hardware platform for numerous OC systems 

[4, 5].  
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Several external environmental or internally-driven performance demands may require a change 

in the configuration of a multi-component system to maintain functionality and throughput 

throughout an extended mission [6]. For instance, a fault may occur in an individual component, 

which must then be replaced, refurbished to some degree, or otherwise bypassed. Although one 

could hypothesize that routine hardware failures would be a likely trigger for configuration 

change, other mission-level considerations, such as a storage device reaching its capacity or the 

environment deviating from expectation, could be handled similarly. In either case, existing 

modules must be reconfigured; SRAM-based FPGA devices facilitate this flexibility by enabling 

dynamic device reconfiguration.  

SRAM FPGAs represent ideal platforms for hosting organic computing hardware 

implementations due to their ability to reconfigure a system at any time to adapt to events that 

necessitate a change in the hardware, such as fault-occurrence or changes in mission 

requirements. The following reasons justify our selection of reconfigurable devices to host 

SMART: 

1. Reconfigurable hardware allows fast, in situ reconfiguration of a hardware device. This 

characteristic has been utilized in SMART to circumvent faulty resources in the hardware 

by maintaining collections of Amorphous Spares (AS), which are pre-seeded bitstream 

files that represent the same functionality of the circuit, though with different 

implementations or area constraints. Once errors are detected, these AS can be 

downloaded and tested individually to determine if any of them do not make use of the 
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faulty resource on the fabric. This approach is not possible on Application Specific 

Integrated Circuits (ASIC) due to the fixed nature of their hardware fabric. 

2. Dynamic PR allows for the reconfiguration of faulty components while the system is kept 

online. This method can be coupled with hardware redundancy such that the repair 

process can operate on the faulty part of the system, while other redundant parts continue 

in a normal operation mode to drive the system output. SMART employs this technique 

to provide efficient repair so that the system can continue to provide the highest possible 

performance while being repaired.  

3. Time-multiplexing of different applications on the same FPGA greatly benefits organic 

systems, which normally require adaptive and flexible design practices, such as changing 

the functionality of the hardware during certain stages of the mission to support another 

application or other operational modes. Different bitstreams for different applications can 

be stored and downloaded whenever the mission demands their use.  

4. Reconfiguration capability facilitates organic repair through evolutionary algorithms. 

Reconfigurability allows for testing the fitness of individuals on the hardware, and also 

enables direct evolution of the most compact presentation of the circuit, which is the 

Configuration Bit Stream (CBS) that stores the logic and routing configuration of the user 

circuit. Both Intrinsic fitness evaluation and direct CBS evolution are not possible in 

ASIC because the hardware logic and routing cannot be changed after fabrication. The 
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OGA that we implement in this work has many properties that are made possible due to 

the reconfigurability of the underlying hardware, as discussed in Section 4.2.3 

5. Reconfigurable systems based on FPGAs also have the option to integrate flexible soft-

core processors such as Microblaze on the same fabric with the application hardware, 

which provides an opportunity to implement a complete SoC application. High-end 

FPGA boards are also equipped with embedded cores such as PowerPC that interface 

with the FPGA and control its reconfigurability via the Internal Configuration Access 

Port (ICAP). 

6. A multitude of computing and memory resources such as High-Speed Digital Signal 

Processing (DSP) blocks operating at high speeds, block RAMs, FIFOs, and other built-

in hardware logic are available on today‟s FPGAs to provide many options for a broad 

range of applications and accelerated implementations of commonly used image 

processing, arithmetic, communication, and encryption applications   

7. Reconfigurable logic provides the option to change the clock frequency for a select part 

of the fabric at run time through the use of the built-in Digital Clock Manager (DCM) 

block. Therefore, an OC system can optimize the power usage for an application to meet 

mission requirements. 

Despite of all the aforementioned advantages, using FPGA devices rather than their ASIC 

counterparts in mission-critical applications is a double-edged sword. On the one hand, they 

allow the support of self-x capabilities through reconfiguration. On the other hand, such 
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capabilities can introduce new fault vulnerabilities to the hardware. Transient faults, which 

commonly occur as a Single Event Upset (SEU) [7] are a primary source of concern when 

deploying SRAM-based devices in mission-critical applications such as space applications [8]. 

SEUs can occur when a charged particle impacts the silicon substrate with enough energy to 

incur either a transient pulse in a combinational logic or a state flip in a sequential circuit. The 

former is only articulated if a state storage component, such as a Flip-Flop, is affected by the 

transient signal. Hence, the effect of SEU on combinational logic in ASICs could vanish without 

any repairs. On the other hand, SEUs hitting memory cells are more likely to cause damage 

because they flip the state of a stored bit, which affects the system until the relevant Flip-Flop is 

loaded with a new correct value.  

In SRAM-based FPGAs, where even the combinational logic is implemented using SRAM Look-

Up Tables (LUTs), SEUs gain amplified importance as every SEU is a state-flip that can affect 

both the sequential and the combinational logic.  To this end, space-qualified versions of SRAM-

based FPGAs are commercially available for mitigating SEUs at the circuit level such as Xilinx‟s 

QPro [6], Indeed, a new field of research that targets fault tolerance in reconfigurable platforms 

has emerged [6] to take advantage of the inherent reconfigurability of FPGAs. In conjunction 

with the use of high reliability components, mission-critical applications can benefit from PR to 

survive the various sources of failures that might affect reconfigurable resources.  
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1.3. Contributions of the Dissertation 

In this dissertation, we introduce SMART, a novel fault-tolerance technique exhibiting many 

advantages over the manufacturer‟s current standardized fault handling method, which is the 

Triple Modular Redundancy (TMR) Technique. SMART provides Adaptive Modular 

Redundancy (AMR), in contrast to the fixed one in TMR, by exploiting the reconfigurability 

property of the FPGA devices [9]. Moreover, SMART provides handling for hard-faults which 

are seldom considered in self-repair techniques due to their supposed rareness. We demonstrate 

via standard evaluation metrics and actual reported fault rates that hard-fault repair is needed to 

provide sustainable mission operations in harsh environments. Moreover, not just that SMART 

provides improved availability; it does it in a resource-aware fashion by optimizing energy 

consumption and area usage.  

1.3.1. Design and Implementation of SMART 

In this work, we present the design and implementation of SMART, a two-layered sustainable 

autonomic architecture for fault handling.  The autonomous hardware layer is implemented on a 

Virtex-4 Xilinx XC4VSX35 FPGA device [10], while the software layer is intended to be on a 

PowerPC embedded core with ICAP interface to the FPGA device to download different CBSs 

for repair purposes. In this work, in order to facilitate testing and verification, the software layer 

resides on a host PC that is connected to the FPGA via a Xilinx parallel cable IV. SMART is 

inspired by the OC paradigm, and thus the emergence of self-x properties is observed at the 

system level after assembling the individual parts into a single, integrated, fault-tolerant system.  
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 The hardware layer implements a decentralized observer/controller processing loop to adjust the 

configuration of the system based on real-time mission information. It accomplishes this task 

using a novel general-purpose redundancy scheme called RARS [11] which does not have a 

predetermined number of redundant modules like other fixed redundancy schemes commonly 

found in the literature such as Duplex, TMR, and pair-and-spare. [12, 13]. Instead, RARS can 

reconfigure its components at run-time to provide the appropriate level of redundancy that 

matches the mission status. The distributed controller function in RARS, which is called the 

Autonomic Element (AE), monitors the status of the redundant parts that implement the user 

application, called the Functional Elements (FEs), and collects the reports from various sensors 

to make decisions about which configuration to select. Having multiple RARS modules 

facilitates the decentralization of the organic layer while reducing single points of failure. 

RARS is a resource-conservative adaptive redundancy architecture that is only reconfigured to a 

high power/area configuration when multiple instances of the FE are needed to identify, mask, or 

repair faults. Other approaches like TMR run in triplex mode even when faults are not present, 

consuming three times the simplex configuration resources only to provide fault-tolerance during 

brief intervals of the mission lifetime during which the system is subject to faults. RARS saving 

benefits will be shown analytically and experimentally in Chapter 6. 

Still, the fault-tolerance of RARS is restricted by the limited capacity of the available hardware 

to support alternative routing and/or logic for faulty parts. Therefore, a monitoring and 

refurbishment layer that resides above the hardware layer serves two purposes. The first is to 

collect the hardware status reports and render them into a human-readable format so that system 
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operators can monitor the deployed system and interact with it. The second is to provide active 

repair in the event of faults, either via scrubbing [13], which involves rewriting the configuration 

memory with a fault-free CBS to correct any SEU occurrences in the configuration logic, or via a 

dynamic refurbishment process for permanent faults using Evolvable Hardware (EHW) 

approaches [14] .  The evolutionary approach employed in this work is a novel Genetic 

Algorithm (GA) that implements design practices suiting the organic nature of the system and 

thus is referred to as an Organic GA (OGA). The software layer reads the performance and status 

of RARS and triggers the refurbishment procedures whenever the redundancy degree of RARS is 

not adequate to mask the faults.  

The two layers are connected via Xilinx Parallel Cable that connects between a standard Joint 

Test Action Group (JTAG) [15] port on the FPGA and the parallel port on the host PC. On the 

FPGA, the JTAG communicates with RARS via the General-Purpose Native JTAG Tester 

(GNAT) [15] platform. The messages themselves are communicated using a special 

communication protocol that was designed specifically for this system. This communication link 

carries messages between the two layers as part of the fault-tolerance algorithm and also 

transmits the CBS to reconfigure parts of the system as needed.  

Dynamic PR is adopted to improve two aspects of the organic repair. First, it significantly 

reduces the configuration time as compared to the full bitstream configuration approach due to 

the small size of the bitstream. Second, it allows the system to remain online while its faulty 

parts are being reconfigured; this helps increase the availability of the system by enabling it to 

maintain functionality even during repair. Dynamic PR is used in two stages of the repair cycle. 
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It is first used in the scrubbing stage when the AS are repetitively configured on the FPGA 

searching for a spare that exclude the faulty resource, and second, it is used by the OGA when 

candidate solutions are reconfigured on the FPGA for fitness evaluation. 

In this work, we implement the well-known Sobel edge detection [16] application on the 

hardware layer to illustrate the organic self-healing, self-configuring, and self-monitoring 

capabilities of RARS. In addition, we implement the software layer and connect it to the circuit 

on the FPGA through the JTAG port. This layer is shown to successfully monitor and supervise 

the organic hardware layer and also performs evolutionary refurbishment of faulty modules. 

After combining all modules into one integrated fault-tolerant platform, we scrutinized the 

system behavior while processing a real-time video stream under various fault scenarios. The 

hardware layer demonstrated emergent self-monitoring and self-reorganization properties that 

allowed the system to sustain even in the presence of successive faults. When the number of 

faults exceeded the capabilities of the hardware layer, the higher-level software layer augmented 

the response through self-reconfiguration and self-healing. 

1.3.2. Autonomous Fault-Tolerance Technique to Improve Availability 

Figure 1 depicts the high-level view of SMART‟s repair methods and the various events that 

trigger their executions. The central state of SMART operation is the fault-free operation (1) that 

requires only RARS‟s self-monitoring techniques to detect the occurrence of faults. An SEU can 

impact the FPGA resources and cause a single bit flip in one of the LUTs. This LUT may fall 
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either on the data path of the application, i.e., a user register that stores an intermediate 

calculation value, or on the logic path, i.e., an LUT that is programmed to implement the 

intended circuit functionality. SEUs that affect LUTs in the user logic can be overwritten by 

subsequent operations without any repair interventions. This type of fault is classified as 

transient, and normally fades away in the regular execution cycle. The transient effect can be 

masked with redundancy techniques (2) until the fault is corrected.  

However, if the soft fault affects an LUT in the reconfigurable logic, then the bit flip will remain 

manifested until the unlikely event of another SEU impacting the exact same location. A bit flip 

in the logic path can be more harmful to the application because it changes the truth-table content 

of the affected LUT and thus alters the behavior of the circuit. This type of SEUs cannot be 

ameliorated in subsequent operations because the affected element is not written by the user 

application; thus, it must be explicitly re-written by reloading the correct CBS via scrubbing (3). 

Next, consider if radiation leads to pathways for electro-migration and accelerated aging effects 

[17]. This type of Local Permanent Damage (LPD) can be modeled as a stuck-at fault at one of 

the LUT inputs. Unfortunately, scrubbing techniques that rewrite the CBS contents will at best 

give up after a number of retries or at worst may usurp the mission, taking the device offline to 

repeatedly attempt to overwrite a permanent fault.  In that case, a permanent fault handling 

technique is required to circumvent the stuck-at faulty resource and thus repair the user 

application. 
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The self-configuration of spares via AS (4), aims to avoid the faulty resource by consecutively 

reconfiguring the faulty FE with design-time pre-seeded bitfiles, each of which exclusively 

avoids a set of LUTs in the physical FE area. By doing so, SMART searches the set of spares for 

one spare that can hide the fault by not using the broken LUT. Carrying spares is a common 

technique for fault-tolerance due to its simplicity and quickness, it is limited though to the 

number of carried spares, and cannot actually adapt at run-time to handle fault-scenarios that 

were not accounted for at design-time when the spares where configured. 

As a remedy, SMART adds one last-resort repair mechanism that is invoked when all other 

techniques fail to repair faults. This technique is the evolutionary OGA (5) repair that is not 

restricted by the number of spares or any other design-time considerations. Instead, it can 

heuristically search for alternative circuits that can bypass the faulty resource and thus produce 

the expected output. Such technique can sometimes be slow or unpredictable, but the fact that it 

is delayed to the very end of the repair cycle makes it a much better alternative to conceding to 

downgraded level of operation.  
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Figure 1: High-level Operational View of SMART Repair Methods 

1.3.3. Evaluating Self-Regulation of Availability, Area, and Energy  

The first evaluation metric that we perform is reliability assessment of SMART compared to 

conventional TMR and scrubbing techniques that choose to ignore hard faults handling due to 

their rareness. To accomplish this, we model RARS as a Continuous-time Markov Chain 

(CTMC), providing transition probabilities of soft and hard fault rates based on publically 

available fault-measurement data, and soft and hard repair rates based on experimental results of 

SMART prototype. We present a full factorial experiment with nine levels based on three levels 

of each MTTF and MTTR of the hard faults, where each experiments consists of Monte Carlo 

simulations for the fault and repair levels to calculate various reliability and availability metrics 
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that can help shedding light on the significance of hard fault repair in fault-tolerance systems. 

Details on availability analysis using CTMC can be found in section 6.2.2. 

After we experimentally established the benefits of SMART on the availability of mission-

critical systems in space applications, we shifted the focus to assessing SMART‟s power and 

area considerations as a real engineering platform. For that, we used the standard BYU-LANL 

Triple Modular Redundancy (BL-TMR) [18] toolset to create triplicated designs of the image 

processing Sobel edge detector use case that we evaluated SMART against. The BL-TMR tool is 

a Java-based project that relies on the platform-independent Electronic Design Interchange 

Format (EDIF) [18] files to automatically insert redundancy, such as duplication and triplication, 

into digital designs. We chose four voter insertion options times seven voter insertion algorithms 

to design twenty eight BL-TMR triplicated edge detectors benchmarks. We used Xilinx mapping 

reports to extract the area overhead of each benchmark, and Xilinx Power Analyzer (XPA) [19] 

tool to calculate the dynamic power of the benchmarks. We then compared the twenty eight 

benchmarks to RARS in term of power and area to demonstrate the benefits of utilizing PR in 

FPGA-based fault-tolerance applications. The experimental setup and results are documented in 

section 6.3.2. 
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CHAPTER 2: RELATED WORK 

In this chapter, we present literature survey for previous works of the dissertation. The previous 

work is classified into technology related work and application related work, where the former 

deals with reconfigurable devices and their susceptibility to faults, while the latter focuses on the 

various fault-tolerance methods and their applications. 

2.1. Device Technology Related Work 

2.1.1. Role of Reconfigurable Devices in Space Mission-Critical Applications 

Hardware devices are commonly viewed as fixed-functionality devices as they are rendered for 

specific application at fabrication time and cannot be changed after that. However, the main 

benefit of FPGA devices is reconfigurability, as the fabrication will only create a programmable 

platform that can be configured -and often reconfigured- by the end user, to realize various 

functionalities at runtime. 

FPGAs are seas of programmable logic blocks that are highly interconnected through other 

programmable hierarchal communication switches. FPGAs can be made of anti-fuse technology, 

which allows single device programming, or SRAM cells that allows any number of device 

programming operations [6]. The focus of this dissertation is on SRAM-FPGAs because 

SMART relies on the reconfigurability feature to realize fault-tolerance with reduced power and 

area overhead. 
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SRAM-FPGA devices allow both logic and interconnect to be programmed by downloading a 

CBS that represents the desired circuit functionality. The generation of the CBS is normally 

automated through the usage of software tools, like Xilinx ISE pack [20], that read the design in 

schematic or Hardware Definition Languages (HDL) formats, and then transform the design into 

native bitfiles to program the target devices. Thus, FPGAs are considered a suitable platform for 

prototyping because they can be instantly programmed with the desired hardware functionality 

without going through the complicated, lengthy, process of fabrication in ASICs.  

Therefore, FPGA Devices have been widely used in space mission-critical applications for 

different purposes. For example, Europa mission [21] designers intend to use FPGA devices as a 

prototyping platform during the development phase, then based on a specially-designed flow, the 

prototype will be implemented on radiation-hardened ASIC devices for the actual mission 

deployment. Other missions will use FPGA devices in the actual deployment, whereas others are 

intended to test SRAM-FPGA resilience to SEU‟s.  Table 1 shows a list of actual space missions 

that utilize FPGAs in their operations, along with the deployment timeframe, and the intended 

use of the FPGAs. The various mission reported in the table demonstrate the important role of 

FPGA devices in such domain, and thus justify the direction toward fault-tolerance in FPGA in 

research and industry.  
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Table 1: Mission-Critical Space Applications Employing FPGA Devices 

Satellite Name 
Year 

Deployed 
Application 

FedSat (Australia - 

CRCSS) [22] 

2002 Remote Sensing: Control Logic, Classifier, Predictor, Encoder. 

Contains Actel FPGA for pre-filtering, Xilinx FPGA for data 

acquisition and synchronizations, another Xilinx FPGA device 

for data decoding. 

Cibola (USA-Los 

Alamos) [23]  

2007 Nine Xilinx Virtex FPGA devices  used for sensor-processing 

and SEU studies (soft faults monitoring and mitigation) 

SmartSat-1 (Japan – 

NICT) [24] 

2008 Seven XC2VP4 Xilinx FPGAs implementing 

Modulation/demodulation function (2 kbps -2 Mbps)  

Space-Based 

Reconfigurable 

Supercomputer [25]   

Future Xilinx Virtex-4, Atmel AT697 radiation-hardened, SPARC 

processor. Supercomputers that can achieve 1,000 GOPs, weigh 

40 pounds, and consume only 80 watts  

Venus Express [26] 2005-

2012 

Two radiation-hardened Xilinx Virtex-1 FPGA devices to 

implement Venus Monitoring Camera (VMC). 

NASA New Dawn [26] 2007-
2015 

Improved on Framing Cameras (VMC) that was used in Venus 

Mars Rover (JPL) [27] Many Xilinx Virtex FPGA has been used in DC motor controller in the 

rover 

 Europa [21] 2020-

2029 

FPGAs are used in prototyping, then the final design will be 

implemented on Rad-Hard ASIC devices for the actual mission  

ARTEMIS 

Reconfigurable Payload 

Processor (Responsive 

Space Missions) [28] 

 

Many RA-RCC (Reconfigurable Computers) using 3 Virtex-4 

(V4LX160) FPGAs 

  

2.1.2. Failure Modes and Their Effects  

Using FPGA devices comes at the expense of increased fault rate compared to ASIC-based 

devices. In the space environment, SRAM-based FPGAs can be affected by either radiation-

induced or aging-related faults [29].  Radiation-induced faults can be either non-destructive 

(soft) or destructive (hard). Aging Faults on the other hand are almost always destructive, which 

means that the fault cannot be recovered by rewriting the CBS. Regardless of the fault types, the 

application should be prepared to autonomously recover from the faults due to the limited human 

intervention in space missions. This section will provide taxonomy of the various fault types that 

can affect FPGA devices in space, and the common methods of dealing with them. 
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Radiation can cause one of the following two failure modes in FPFA devices [30]: 

1- Single Event Effect (SEE): Effect caused by single energetic sub-atomic particle strike, 

this is a random event that does not directly depend on cumulative effects. SEEs can 

result in two type of faults: 

a. Non-destructive SEU: This is a state-flip of an SRAM cell that is caused by the 

SEE [7]. It is non-destructive in the sense that the flipped bit can be restored by 

rewriting the cell‟s content with the correct value. SEUs can happen in the 

configuration logic or the user logic. The configuration logic is what defines the 

FPGA circuit behavior; the only way to correct SEUs in this logic is to rewrite the 

flipped cell with a new value via scrubbing. However, SEUs in the user logic fall 

on the datapath, and thus can be corrected by subsequent writes to the same user 

register. 

b. Destructive Single Event Latch-up (SEL): Occurs when an energetic charged 

particle causes excessive supply power to destruct the memory cell [30]. This 

destruction is permanent and cannot be restored by rewriting the CBS like in the 

previous SEU case. 

2- Total Ionizing Dose (TID): Cumulative damage caused by protons and electrons hitting 

the silicon substrate for long times. TIDs are almost always destructive. 
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To Summarize, radiation can cause destructive faults through TID faults or SEEs that get 

manifested as SELs. More commonly, radiation will cause non-destructive SEEs in the forms of 

SEUs. 

Numerous fault-tolerance systems in the literature have neglected permanent fault handling in 

FPGA devices [31]. The reason behind this choice is that many resources in research and 

industry have claimed that Xilinx SRAM-based FPGAs are immune to radiation-induced 

destructive hard faults. No SEL was reported during experiments when SRAM-based FPGAs 

were exposed to the maximum tested Linear Energy Transfer (LET) of tens of MeV cm
2
/mg 

[29]. Xilinx Virtex family was also found immune against TID effect of up to 300 krad in [32]. 

Moreover, The introduction of epitaxial CMOS fabrication process in Virtex devices resulted in 

TID immunity of >100 krad and SEL immunity of LET > 120 MeV cm
2
/mg [33].  

Therefore, conventional fault-tolerance approaches targeting SRAM-based FPGA devices in 

space applications have disregarded hard-faults tolerance [31]. Instead, they focused on 

mitigating SEU faults in the data path using redundancy techniques, such as TMR, to mask the 

transient effect of the user registers bit flips [34], and implementing scrubbing techniques to 

overwrite SEUs in the configuration logic [35]. Xilinx devices have shown high tolerance to SEL 

and TID, thus SEU remains as the main concern in space-mission that use FPGA devices [33]. 

Nonetheless, in this work, we contradict the aforementioned mainstream hypothesis by asserting 

that permanent faults cannot be ignored in mission-critical applications because of the following 

reasons: 
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1. With the continuous effort to shrink the feature size in VLSI devices, the impact of aging-

related (wear out) faults such as Time-Dependent Dielectric Breakdown (TDDB) will 

significantly increase to levels that cannot be ignored [36]. TDDB depends on the 

operating temperature of the device, and the gate oxide thickness that shrinks with 

smaller process technologies. The charge trapped in the thin oxide layer keeps increasing 

until it reaches the threshold of breakdown; this effect is imminent for aggressively 

scaled technologies operating in thermally stressful environments. The resulting fault is 

destructive, meaning that the SRAM cell cannot be reconfigured to amend the fault 

effect.   

2. Local Permanent Damage (LPD) is reported by [17]  due to SELs or SEUs that cannot be 

corrected without system reset. This type of LPDs is manifested as hard faults in systems 

that cannot tolerate full system restart. 

3. Radiation testing is not guaranteed to exactly replicate space environment. Also no FPGA 

has been tested for more than 15 years, whereas space mission can go for more than that 

[17] 

4. Xilinx publicly reports that TDDB can start to happen in as little as 3 years in an XC3S 

4000/5000 90-nm SRAM-based FPGA devices under a temperature of 125C [37]. 

5. Recently published work  reported TDDB impacting 10% of total LUTs every year [36] 

in aggressive thermal conditions, based on Xilinx data referenced above. Other recently 
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published work reported TDDB MTTF  of 476 days for a 2206-slice circuit on 150nm 

technology [29].  

Therefore, we believe that it is not the best engineering practice to blindly ignore hard faults 

especially in multi-million mission-critical applications that needs to be equipped with inherent 

tolerance to any type of destructive events. Thus, we present the design and implementation of a 

generic autonomous fault-tolerance system that can handle both soft and hard faults, followed by 

evaluation metrics to demonstrate the benefits of such system compared to conventional TMR 

and scrubbing systems, in term of availability, power, and area 

2.2. Application Related Work 

This section surveys previous researches that present various fault-tolerance methods, successful 

prototypes and implementations of OC systems, and the application of GA as a repair method.  

2.2.1. Fault Tolerance in Reconfigurable Devices 

FPGAs are popular platforms for reconfigurable computing applications especially pertaining to 

the field of embedded systems  [38]. Run-time partial reconfiguration has many advantages, such 

as time-multiplexing different functionality designs to save power and resources without losing 

the basic functionality of the application [39, 40], and supporting adaptive architectures that 

scales based on resources availability and mission requirements to achieve improved algorithm 

performance while reducing power consumption [41]. 
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The ability to perform partial reconfiguration for local and remote system has opened new 

domains in fault-tolerant hardware designs, especially for space applications [6]. These 

applications are susceptible to faults due to the harsh operating environments along with 

difficult, if not impossible, human intervention. Thus, runtime partial reconfiguration has been 

successfully utilized to autonomously repair faulty systems, and compensate for the absence of 

human intervention. 

One of the most common techniques for mitigating unwanted configuration memory changes is 

scrubbing [17, 42]. Scrubbing involves overwriting of the configuration memory at periodic 

intervals with a configuration that is known to be fault-free. Moreover, this process can be 

augmented by reading back the configuration memory and comparing it with a configuration that 

is known to be good to isolate the erroneous frame(s) so that they can be re-written using PR. 

Scrubbing techniques fail when the stored configuration is damaged or when the fault is caused 

by permanent hardware resource failures, in which case more elaborate repair techniques 

targeting permanent faults are needed, such as the evolutionary repair algorithm presented in [15] 

and in this work. 

Table 2 presents a comparison between SMART and other prominent fault-tolerance techniques. 

All surveyed techniques, except conventional TMR, employ some form of fault recovery 

mechanism to restore the original fault-free system status. TMR is a passive technique which 

employs spatial voting to mask the faults. The area and power overhead for the TMR approach is 

three times the area and power overhead associated with a single module (OFE) plus the overhead 

associated with the voting logic (OV). 
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Table 2: Comparison between SMART and Other Prominent Fault-Tolerance Approaches 

Approach 
Fault Handling 

Method 

Fault Detection Resource Coverage 
Power overhead 

Area cost Latency 
Hard 

faults 

Logic 

 
Comparator 

TMR Spatial Voting Negligible No Yes No 3*OFE + OV 

Vigander 

[14] 

Spatial voting and 

offline evolutionary 

refurbishment 

Negligible No Yes No 3*OFE + OV + OGA 

Lach [43] 

Design-time fine 

grain redundancy 

based reconfiguration 

Not 

addressed 
No Yes 

Not 

addressed 

Fault detection 

mechanism is not 

addressed 

STARS 

[44] 
Online BIST 

Depends 

on 

geometry 

of device 

Yes Yes Yes 

OFE + 

Reconfiguration 

controller 

Garvie [17] 
Spatial Voting and 

online (1+1) ES 
Negligible Yes Yes No 3*OFE + OV + OGA 

Keymeulen 

[45] 

Design-time 

population based 

fault insensitive 

designs 

Not 

addressed 
No Yes 

Not 

addressed 

Fault detection 

mechanism is not 

addressed 

SMART 

Adaptive 

redundancy, 

diversity-based 

configurations, OGA 

Negligible Yes Yes No 

Analyzed in Section 

6.3 

 

Vigander [14] presents an offline genetic algorithm refurbishment technique to handle hard 

faults. All the modules are simulated with faults representing a worst-case scenario, and the 

evolution-based refurbishment is performed on all three modules for recovery. The overhead 

associated with the GA based repair is represented as OGA. This cost can be used to include all 

GA based control mechanisms, and the spare resource allocated for the GA-based refurbishment.  

Lach [43] on the other hand presents a technique based on design-time allocation of fine-grain 

spares at the Configurable Logic Blocks (CLB) level. One CLB is allocated as spare for a design-

time defined group of CLBs, and multiple configurations are generated such that one fault can be 

tolerated in each group. Average Area overhead of the chosen benchmarks is 5.4%, which is 



24 

 

considerably less than the TMR. This scheme however does not include any fault detection 

mechanism. 

STARS [44] employs run-time Built-In Self Testing (BIST) by roving across the FPGA fabric. 

This technique covers fault detection, isolation and repair with minimal application area 

overhead. Dynamic PR has also been used in this approach to facilitate downloading the tested 

regions onto the fabric. Still, the time to detect a fault can be quiet high and as much as 8.5M 

erroneous outputs may be produced before being able to detect the fault [46]. Further, the fault 

detection process employs continuous reconfiguration and thus incurs huge power overhead, and 

potentially causes performance degradation due to clock stoppage, even when the system is fault-

free. 

Garvie [17] employs spatial TMR for masking the fault and an evolutionary strategy to refurbish 

the identified faulty module. The power and area overhead of this technique can be essentially 

considered same as that of TMR. The work concludes that hard-fault tolerance is essential for 

fault-tolerance of FPGA devices in harsh-environment deployments. 

Keymeulen [45] introduces an evolutionary-based method to generate a population of individuals 

at design time that are resilient to a set of predetermined type of faults according to the planned 

mission. This design-time process is tested by employing the design-time generated 

configurations to overcome the expected fault pattern at run-time. This scheme requires 

accommodating all possible faults at design-time. 
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2.2.2. Organic Computing Approaches 

Related works in the literature have explored techniques useful for the development of an OC 

system from various theoretical and practical perspectives. A frequent focus among these has 

been the design of OC architectures and development methodologies for systems with the 

potential to exhibit increased reliability and sustainability.  

For example, in [47], the run-time reliability of System-on-a-Chip (SoC) architectures was 

evaluated. The objective was to design SoCs that can adapt to environmental changes and 

unpredictable failure scenarios by introducing dynamic reliability, power management, and 

security tradeoffs. The implementation included five-stage RISC pipeline architecture with 

globally-accessible error counters in fixed time intervals. This technique addressed self-

monitoring in SoC applications with redundant parts; we expand on this by presenting a novel 

OC system that not only provides self-monitoring capability, but also self-repair and self-

adaptation for increased reliability yet with reduced power consumption than conventional 

redundancy techniques. 

In [48], an Observer/Controller architecture was developed to provide a generic template to 

design control architectures for OC systems without extension to a hardware prototype 

implementation. This organic framework mainly targeted self-organization in a simulated 

environment and recommended thorough empirical studies of OC systems in different 

application domains. We extend on these concepts and investigate more self-x properties in real-

life application of an edge detection circuit running in error-prone environments.   
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In [49], an organic computing paradigm called “marching-pixels” targeting future CMOS camera 

chips is presented. This paradigm relies on a massive fine-grain processor array to autonomously 

execute image pre-processing tasks, such as center detection and the tracking of moving objects. 

The organic concept stems from the fact that each pixel that falls on the detection path (e.g., 

edge, center, moving object, and so on) can be the origin or birth of a virtual organic object, 

which can then travel through a grid of identical PEs where it may die or join other pixels. The 

C-based simulator used to demonstrate “marching-pixels” confirmed the emergence of self-

organization and self-healing in software simulated CMOS environment.  

In [5], the role of middleware that acts between the hardware system and the application software 

is discussed for OC systems based on dynamically reconfigurable FPGAs. A scalable data flow-

driven virtual machine (SDVM) is introduced. It is able to schedule parallel computing 

assignments to a set of reconfigurable and heterogeneous processing elements on a FPGA. The 

middleware is also able to dynamically balance the workload of the entire system in order to 

optimize power management and cope with faults. To demonstrate the advantages of SDVM, the 

Romberg numerical integration algorithm is implemented on the FPGA where the soft cores are 

used as processing elements. The results show the speedups achieved by executing the task on a 

variable number of processing elements as allocated by the middleware; a comparison is 

conducted with respect to sequential execution. Furthermore, self-organization and self-

optimization are investigated in the experimental work, with less emphasize on self-repair due to 

the nature of the application. SMART on the other hand targets hardware sustainability in 

mission critical applications; with the main emphasize being self-repair and self-optimization of 

power consumption. 
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In robotic applications a control architecture for a robot based on organic computing principles is 

presented in [50]. Decentralized control is shown to achieve the global objective of movement 

for a six-legged platform. The platform is also able to manage the failure of a node through its 

local rules and demonstrate sustainability in a mechanical environment. 

More generally, in [51], Digital on-demand Computing Organism (DoDOrg) targeting real-time 

systems is presented. The system model is based on biological principles to achieve the desired 

self-x properties; it is divided into processing cells representing human cell analogs, middleware 

control representing organ analogs, and high-level control representing brain analog. The system 

is based on heterogeneous mix of computing elements, including standard elements such as 

CPUs and reconfigurable cells. The work presents an approach to organic computing that shows 

many of its desired self-x properties along with power management demonstrated using a robot-

controller example. While the viability of this system is shown in a simulated environment, the 

transfer to a real robot system is sought in a later phase. In our work, we aspire from and extend 

on the significant self-x properties demonstrated in DoDOrg robot simulation by using an actual 

FPGA implementation of edge detection circuit, where the OC paradigm demonstrates power-

conservative fault-tolerance through adaptive redundancy and software monitoring and 

refurbishment of the reconfigurable logic. 

In an attempt to practically realize DoDOrg on FPGAs, a framework to achieve a decentralized 

configuration and power management scheme is shown in [4]. This work considers FPGAs as 

the most viable computing platform for OC systems due to the enormous benefits of 

reconfigurability. However, the work identifies the centralized nature of the FPGA‟s ICAP as the 
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main contradiction to the crucial decentralized requirement of OC systems. Therefore, a platform 

in which each computing node can autonomously and independently request its reconfiguration 

through the ICAP is presented. Similarly, power consumption is managed individually by each 

node at run-time to attain the desired virtual decentralization of the ICAP. Though this work does 

not present a complete implementation of an OC system, it does point toward the idea that 

FPGAs can serve as a viable computing platform for these systems. In the experimental setup, 

each computing node is autonomously and independently able to request its reconfiguration 

through the ICAP. Similarly, power consumption is managed individually by each node at run-

time. 

2.2.3. Genetic Algorithm Techniques 

Evolutionary Algorithms are a family of intelligent, heuristic, search algorithms that are inspired 

by the Darwinian theory of natural evolution. Darwin‟s famous theory about the natural selection 

of the fittest individuals and the recombination of their genetic material to produce yet better 

individuals is imitated in the evolutionary algorithms. 

2.2.3.1.Standard GA Techniques 

One of the widely used types of evolutionary algorithms is the Genetic Algorithm (GA). GA is an 

adaptive heuristic search based on initial set of individuals, called population; the selection 

process favors a subset of this population that shows better fitness according to a predefined 

function called the fitness function. This function must accurately quantify what a good solution 
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is for the problem in hand. Each individual is encoded into a genetic representation of the 

solution, called chromosome, which contain one or many blocks, each called a gene, which 

encodes a single physical trait of the individual. Once the fittest individuals in a generation are 

selected based on their fitness function, a set of genetic operators are applied on them to produce 

different chromosomes that might yield better solutions. The Genetic operators vary in their 

nature and usage, but two of them are used in almost all GA implementations, namely crossover 

and mutation. 

Crossover is the recombination of genetic material to produce new chromosomes; the content of 

the genetic material is preserved, but only shuffled probabilistically hoping that this reshuffling 

could lead to the juxtaposition of some genes in such a way to increase the fitness of the 

offspring. Mutation on the other hand, is a probabilistic change in the chromosome to introduce 

new traits, this is similar to mutations in nature which produces better or worse individuals, but 

under any case, the selection pressure can pick the useful mutations and ignore the harmful ones 

by measuring the mutation impact on each individual.  

Once the selected individuals are genetically operated, they get replaced into the population and 

another round of the algorithm is executed. In general, this approach is shown to converge into 

better fit solutions, based on the exploitation of the selection process and the exploration of the 

genetic operators. 

Figure 2 depicts the GA process in a flow chart. The power of GA comes from the contradicting 

forces of exploitation and exploration [52]; the GA exploits the best solutions by picking them in 
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the selection process which favors the fittest individuals, then explores these selected solutions 

by recombining their genetic material and introducing limited randomness into them, in order to 

produce more diversity into the population. 

Generation of initial population

Selection of the fittest 

individuals

Fitness evaluation based on 

the fitness function

Recombination of selected 

individuals (Crossover)

Mutation of selected 

individuals

Placement of offspring into 

new generation

Termination criteria 

met?

N
O

Get solution

Selection Process: GA’s 

way of exploiting the fit 

individuals in the search 

process

GA operators: Exploring 

new solutions derived form 

the best individuals in the 

population

YES

 

Figure 2: Genetic Algorithm Flow Chart 
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There are two paradigms for implementing GA in reconfigurable applications: Extrinsic 

evolution via functional models that abstract the physical aspects of the real device, and intrinsic 

evolution on the actual devices. It is evident that extrinsic approaches simplify the evolution 

process as they operate on software models of the FPGAs. 

For applications like fault handling in deep space missions, not all fault types can be readily 

accommodated by software models. Additionally, abstracting the physical aspects of the target 

device complicates rendering the final designs into actual on-board circuits, for instance, 

limitations such as routability of the design cannot be ensured until the final stages of the 

configuration process. For these reasons, intrinsic evolution can provide a direct approach to 

realizing physical designs for a specific FPGA device. 

Several previous research efforts have addressed intrinsic evolution. A successful attempt on 

Field Programmable Transistor Array (FPTA) chips was implemented by [53]. FPTAs are 

transistor-level programmable devices configured by controlling the status of programmable 

switches interconnecting array of transistors. The work proposed new ideas for long-term 

hardware reliability using evolvable hardware techniques via an evolutionary design tool, called 

EHWPack, which facilitates intrinsic evolution by incorporating PGAPack genetic engine with 

Labview test-bed running on UNIX workstation. Digital XNOR Gate on two connected FPTA 

boards was intrinsically evolved.  

Miller [54] addressed the importance of direct evolution on the Xilinx 6216 FPGA devices; the 

research explored the effect of the device physical constraints on evolving digital circuits. A 
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mapping between the representation genotype and the device phenotype was proposed, however, 

no implementation details were presented. 

In [55], a Multilayer Runtime Reconfiguration Architecture (MRRA) framework illustrates the 

concept of a communication and reconfiguration interface with an embedded System-on-Chip 

(SoC). This modular architecture has a hierarchical framework to support different functionalities 

as each functional layer can do its job independently of other working layers. It provides the 

logic, translation and reconfiguration layers with standardized interfaces for communication 

between these layers and the FPGA-based SoC. The bitstream was directly manipulated to 

efficiently realize different logic by modifying the content and/or reallocating the LUTs. 

SMART uses an enhanced version of MRRA based intrinsic evolution platform and introduces 

direct bitstream manipulation for Xilinx Virtex 4 devices as compared to Xilinx Virtex II Pro 

devices. 

In this work, we test SMART using Sobel edge-detection algorithm on reconfigurable logic. 

There are various applications of edge-detection with main emphasis on identifying boundaries 

in an image; it is used for object recognition and quality monitoring in industrial applications, 

medical imaging applications such as magnetic resonance imaging (MRI) , Ultrasound [56] and 

it is used for satellite imaging applications [57]. Numerous efforts have been made to accelerate 

this computationally expensive algorithm on specialized hardware using conventional design 

techniques [58-61]. Research has also been done on designing edge-detectors using evolutionary 

techniques [56, 62, 63]. A comparison between SMART edge-detection evolution results and the 

other edge-detection evolution techniques is shown in Table 11. 
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2.2.3.2.Parallel GA Techniques 

Traditional GA techniques have demonstrated outstanding capabilities in solving complex 

optimization problem since their introduction back in the 1970‟s. However, engineering and 

scientific applications have increasingly grown in complexity and criticality, demanding better 

solutions yet within strict optimization constraints such as time, cost, and power. For that, the 

research community targeted improving the GA performance in order to suit the nature of these 

complex mission critical applications. The most noticeable effort to improve on the SGA is the 

introduction of Parallel Genetic Algorithms (PGA). 

PGA adopts a divide-and-conquer approach to split the problems into pieces and thus exploits 

multiple processors to enhance the convergence time [64]. Among the many PGA subclasses that 

have emerged, Island-Based Genetic Algorithm (IGA) has been heavily studied and implemented 

in various scholar and practical domains.  

IGA consists of several semi-isolated islands or demes, each of which hosts an independent GA 

implementation that runs in parallel with other demes‟ GAs. The islands exchange individuals 

from time to time in an effort to increase the chance of finding a better global solution. The IGA 

can apply global parameters, such as mutation rate, crossover rate, population size, to all islands 

or vary them across islands. IGA introduces new set of parameters such as the number of islands, 

the island topology, the migration rate, and the migration policy. Even though IGA appears to be 

a straight juxtaposition of many simple GA runs, the emergent behavior caused by speciation and 

migration entirely suits the organic theme of the OGA that we presented in this work. 
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The benefits of the IGA are many; some of them are listed below: 

1- Understandability and Inherent Technical Support: IGA is the most popular approach 

among all PGA types [64]. This is partly attributed to the relative ease of this approach 

and its compatibility with the coarse-grain parallel computing paradigm. 

2- Speedup and Quality of Solution: Many research efforts have shown the advantage of 

using IGA over SGA and other Parallel GA approaches [65-73]  

3- More Diversified Population: Spatial distribution of individuals across multiple islands 

and allowing them to interact only through limited migrations will effectively reduce the 

chance that the best individuals take over the population rapidly and direct the GA toward 

local optima in the early stages of the search [74] 

4- Closer Analogy to Natural Evolution: Although not necessarily an advantage, some 

advocates of the biological inspiration of computation algorithms believe that IGA 

represents a closer analogy to natural evolution, where the population is seldom a 

panmictic one; there are usually many niches that evolve separately and occasionally 

exchange individuals. [75] 

5- Scalability and parallel-computation suitability: The effectiveness of IGA comes from the 

fact that the inter-process communication is minimal and only limited to the migration 

phase. Other Parallel GA paradigms, like a master-slave GA that distributes the selection 

knowledge [76], require heavy communication between the nodes in order to pick the 
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fittest among the entire population, this is not a problem in IGA as the selection process 

is limited to each island‟s subpopulation, the only time inter-process communication 

happens  is when the individuals migrate, an event that sparsely occur in a traditional 

IGA (1% of population every 1 generation is a common choice [72]) 

6- Linearly separable problems and multi-objective optimization: The fact that 

subpopulations are evolved independently causes different islands to climb different 

peaks in the search space, provided that the migration rate is not too high to cause 

premature convergence for all islands. This finding amplifies the importance of IGA as it 

makes it a good candidate for achieving multi-objective optimizations, which are widely 

encountered in many scientific and engineering fields [77] 

Examples of successful applications of IGA are shown in Table 3 below. 

Table 3: Successful Applications of IGA 

Application Reference 

Database search using PGA [78] 

Nuclear reactor optimization [70] [69] 

Travelling Salesman  [79] 

Royal Road functions (R1-R4) [72] 

DeJong test suites [67],  Goldberg, Korb, and Deb‟s ugly 3-bit deceptive problem 

[71], and the zero-one knapsack problem [68]. 

[66] 

Total of eight functions: 

Four functions (IM1-IM4) are specially created to test properties of IGA; three of 

them require that islands cooperate to find a good solution. 

The remaining four are standard multimodal test functions, which are: 

Rosenbrock, Schwefel, Astrigin, and Griewangk. 

[80] 

Optimal design of elastic flywheels  [81] 

Optimization fine spatial grid of water pipes for groundwater remediation (pump-

and-treat technology) 

[82] 

Training a Recurrent Artificial Neural Network (RANN). [83] 
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CHAPTER 3:   SMART DESIGN OBJECTIVES  

In this section, we present the major design objectives of SMART. Each of these objectives, 

listed in Table 4, is analyzed in terms of motivation and how it has been approached in other 

studies; we then show the design decisions that each goal has prompted and how these decisions 

were manifested in the actual system design.  

Table 4: System Goals, Motivations, and Impacts 

Objective Motivation Impact on Design 

Exploit 

Reconfigurability to 
Realize Adaptive Level 

of Redundancy 

tradeoff between reliability and overhead,  

Incorporate run-time info in redundancy 
decisions, make use of the reconfigurability of 

the FPGA as an adaptation technique  

RARS, Dynamic PR 

Develop Organically 

Amenable Hard-Fault 

Repair Techniques 

Account for hard-fault possibilities in space 

missions, Exploit reconfigurability to advance 

organic behavior, Utilize Evolutionary 

Algorithms in the OC domain. 

OGA, decoding Virtex-

4 CBS, AS, efficient 

use of Xilinx Tools 

 

Implement SMART and 

Evaluate it Using Widely 

Accepted Metrics 

Discover and Mitigate difficulties in 

implementing real OCs,  provide test-bed for 

future research, properly evaluate SMART 

against standard metrics 

Sobel edge detector, 

JTAG, GNAT, Verilog, 

JAVA GUI, CTMC, 

BL-TMR 

3.1. Exploit Reconfigurability to Realize Adaptive Level of Redundancy 

Traditional reliability techniques often rely on the concept of redundancy. Redundancy is the 

addition of resources, time and/or information beyond what is actually needed for normal system 

operation in order to maintain functionality and performance when faults occur. The tradeoff 

between overhead and reliability in redundant systems has been the focal interest of many 

research efforts in the past few decades [6]. Consequently, many redundancy schemes have 

emerged to support different reliability requirements. Some of the influential redundancy 

schemes are as follows.  
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1. TMR: This is a passive redundancy scheme that masks faults as they occur without 

isolating the faulty parts. TMR consists of three functionally-identical modules that 

perform the same task in tandem and a voter that outputs the majority vote of the three 

modules [84]. If one module fails, the other two can still overrule its erroneous output 

and maintain correct overall TMR output. 

2. Duplex Configuration: Consists of two functional modules and a discrepancy detector 

that keeps track of any discrepancy between the outputs of the modules. The system 

should be able to tolerate a period of degraded operation until the fault is isolated and 

recovered by other means. 

3. Stand-by Sparing. In this system, one module drives the system operation, while the 

others are hot spares in an idle state that are ready to be called into action. Cold spares, in 

contrast, are kept shut down and thus do not consume power, but they do incur some 

delay upon activation before they are able to replace the faulty module. 

The tradeoff in all of these fault-handling systems is between increased system dependability and 

the overhead associated with maintaining redundant parts. For instance, duplex systems maintain 

one redundant element but cannot mask faults on the fly. Adding one module to a duplex system 

makes it capable of masking faults via TMR techniques at the expense of extra area, power, and 

cost. This compromise is usually hard to achieve at design time. Thus, a mission-level analysis is 

used to determine appropriate tradeoffs. 
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In addition, mission-critical applications are impacted by many parameters, some of which can 

only be decided at run time. For example, an edge detector circuit is of extreme importance when 

it is operating on a critical video stream, for example, of a moving object in a surveillance 

recording; in these cases, it is usually necessary to quickly mask any faults that might occur 

because any loss of detection capabilities is intolerable and can affect the overall mission 

objectives. However, if the same edge detector is operating on a still scene in a surveillance 

recording, then it might be possible for the system to tolerate some degradation in the output 

because the generated image can still be analyzed later or simply omitted due to the lack of 

action in the scene. TMR may be a wise choice in the former case, whereas a duplex 

configuration might be a better option in the latter. This scenario is an example of a system that 

shows changing reliability needs at different mission stages. 

Whereas many other studies have constant redundancy level in their systems at design time [12, 

34, 85-87], we sought an adaptive solution by deferring the decision regarding which level of 

redundancy to support until the run time. Thus, the choice can be enhanced by mission-related 

information and status to make it an efficient compromise between the desired reliability and the 

associated overhead in terms of cost, size, power, and area. To facilitate this approach, we 

implanted RARS with various innate levels of redundancy from which the AE can select at run 

time based on the mission status and the desired reliability level.  
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3.2. Develop Organically Amenable Hard-Fault Repair Techniques 

OC research is usually more concerned about spotting and controlling the emergence of self-x 

properties than emphasizing the underlying platforms and implementation details. Therefore, one 

should question whether FPGAs are suitable platforms for hosting organic computing systems, 

and if so, to what extent. We believe that these are fundamental questions that must be answered 

to assert the validity of choosing FPGAs as the hosting platform for an OC system. 

In Section 1.2, we listed seven reasons that justify the selection of FPGAs as a hosting platform 

for SMART. Mainly, due to the ability to change the hardware realization of the system at any 

point of time, we were able to add and remove hardware components to adapt for changing 

mission requirements and fault scenarios, this feature would not be attainable on a fixed 

hardware device like ASICs. 

Guarding mission-critical systems against faults has been a major research and industry focus in 

the past few decades [6]. Nevertheless, the extreme majority of these efforts have overlooked 

hard-fault repair on the basis that new technological advancements have produced device 

technologies that are immune to radiation-induced faults [33], overlooking the increased impact 

of device scaling toward smaller technology nodes (sub 90nm) on the aging-related failure 

modes. We have listed five reasons in Section 2.1.2 to rationalize our choice of considering hard 

faults in SMART‟s repair techniques. 

Therefore, a key SMART design objective is to exploit the reconfigurability feature of FPGA to 

implement organically-amenable hard-fault repair techniques that can help extending the 
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operational lifetime of mission-critical systems. These two techniques are the Amorphous Spares 

(AS) and the Organic GA (OGA). 

The AS concept stems from the fact that a spare for FPGA circuit implementation is nothing but 

a reasonably-sized bitstream file, this is in contrast to carrying an actual hard spare that occupies 

space and require dedicated swapping mechanism to replace faulty parts. AS on the other hand 

only requires re-implementing the same hardware design by using different area constraints per 

intended spare. The ability of PowerPC embedded processor to reconfigure the FPGA using the 

ICAP makes the swapping mechanism a software-driven process. The next stage of AS is to 

allow dynamic relocation of the bitstream to avoid suspected faulty resources in the FPGA 

during the mission runtime. 

The second organic technique to deal with hard-faults is the OGA. The GA is a non-deterministic 

heuristic search that can lead to slow and partial convergence. In order to make SMART GA an 

organically-amenable one, we narrowed down three aspects that stand in the way of 

implementing a GA that is appropriate for an organic system comprised of reconfigurable 

devices. These three aspects are fitness evaluation, genetic representation, and design of fitness 

function.  We devised solutions that can help realize the organic GA objective as follows. 

1. Genetic representation: The process of encoding the physical traits of the application 

(phenotype) into digital representations (genotype), and vice versa: decoding back the 

digital representations into physical form. This selection can complicate the evolution 

process as it is needed every time an individual is evaluated. The genetic operators are 
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applied in a computer program that requires string or integer representation of the 

individuals (called chromosomes), but the intrinsic fitness evaluation requires the 

individual to be implemented as a physical circuit on the FPGA. SMART uses direct 

bitstream evolution to solve this problem, where the most compact and innate 

representation of the circuit, the CBS, is directly evolved by the OGA. This process is 

described in details in Section 4.2.3.2. 

2. Fitness evaluation: This is the process of measuring the fitness of the evolved individual. 

The common technique is to model the hardware device and use the software model to 

evaluate the fitness, this is called extrinsic fitness evaluation [14]. This method poses risk 

of imprecise modeling especially with the complexities of capturing timing and physical 

constraints. Relying on simulators of the hardware rather than the hardware itself is a 

risky approach for mission-critical systems because the evolved solution in not 

guaranteed to fit on the actual hardware. Thus, the OGA utilizes intrinsic fitness 

evaluation method that employs the actual hardware in measuring the fitness of the 

individuals. This technique will be described in Section 4.2.3.2. 

3. Fitness function: GAs are inspired by Charles Darwin‟s theory of natural selection, which 

is usually reduced to the motto “survival of the fittest”. In reality, nature is capable of 

determining the fitness of individuals by assessing their success in reaching natural 

resources, evading predators, and ultimately mating and reproducing. However, in 

artificial evolution, determining the “fitness” of individuals is normally done using a 

fitness function that measures the desired traits of the evolved individuals and quantifies 
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them into numerical values. Having a representative fitness function is of great 

importance to the GA success. In addition, it impacts the portability of the GA to other 

problem domains. For instance, a fitness function to quantify the adherence of a frame to 

certain edge-detection criteria will not fit a GA that aims to reduce noise in a 

communication channel. Therefore, the OGA is equipped with a model-free, application-

independent fitness function that relies on measuring the deviation between any evolved 

individual and a known-to-be-good one. More details about the OGA‟s discrepancy-

based fitness function is presented in Section 4.2.3.3  

3.3. Implement SMART and Evaluate it Using Widely Accepted Metrics 

In this work, not only we develop and oversee an approach to promote self-repair with reduced 

power consumption compared to traditional approaches, but we also synthesize the solution and 

evaluate its performance in a realistic application running on intrinsic hardware configuration. 

The ever-increasing complexities of computing systems require new original design paradigms. 

Organic computing is one paradigm that restrains this complexity by allowing more freedom to 

the system to improvise solutions at run time. The inherent authority of the system over its own 

operation is usually manifested by the emergence of properties at the system level that can hardly 

be noticed at the component level. These properties may be useful or harmful to the system's 

operation. The design goal of any OC system is to subdue the emergence of harmful properties 

while promoting helpful ones. The controlled emergence of life-like, self-x properties is what 

distinguishes OCs from other design paradigms. Rather than manually providing all alternative 
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execution paths at design time, the system is equipped with innate capability to actuate desired 

configurations based on the sensory information that it acquires, making it capable of adapting to 

handle many execution scenarios. 

Whereas many OCs in literature were either conceptually prototyped or limitedly simulated, 

SMART has been fully implemented and its benefits are demonstrated quantitatively in action 

[88]. To place the system into a real-life context, we implemented real-time video edge detection 

using a 2-D gradient-based Sobel edge detection algorithm. Table 5 shows the different modules 

in the system along with the underlying technology that is used to implement them. The details 

on each module are presented in Section 5.1. 

Table 5: System Modules Implementation Details 

Module Implementation Platform 

Organic layer ML402 mother board (lower board of Xilinx Video Starter Kit) with 

Virtex-4 FPGA (XCV4SX35)  

Video 

capturing/buffering 

Video IO Daughter Card (VIODC) 

(Upper board of Xilinx Video Starter Kit) with Virtex-2 PRO FPGA 

XCV2P7 

HW-SW connection JTAG from FPGA side 

Xilinx Parallel port host PC 

GNAT to interface with the FEs  

Comm. Manager Multi-threaded C++ application  

Human Interface 

Module (HIM) 

C++ encoder/decoder that accesses the file system 

Software monitor Java-based application (Figure 5) 

Application Sobel edge detector (Verilog) 

GA engine C++ based Standard GA [15] 

OGA interface C-based API (MRRA) [55] 

 

Moreover, the experimental work has been expanded to evaluate SMART‟s advantages against 

widely-accepted benchmarks. First, the availability of SMART and the industry standard TMR 
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techniques were simulated through CTMC under the conditions of nine realistic space mission 

use cases. All used numbers and parameters were acquired from either public resources or 

experimental results of SMART operation. The simulation‟s merit was to abandon analytical and 

steady-state reliability results in order to attain practical prediction of the nine use cases. The 

results of these simulations are presented in Section 6.2. 

Finally, whereas many works in the literature evaluated their systems against an assumed TMR 

overhead of three times the FE overhead plus the voter overhead, we opted to employ special 

tools to insert triplication in a design while maintaining efficient power, area, availability, and 

timing standards. We used BL-TMR [18] tools to generate optimized triplicated FEs, in order to 

gain more precise and unbiased comparison to SMART. The details of the evaluation methods 

that were used are listed in Section 6.3. 
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CHAPTER 4: A SMART ARCHITECTURE FOR MISSION-CRITICAL 

SYSTEMS 

Figure 3 depicts the detailed architecture of the lab prototype of SMART. In this prototype, the 

software-based repair layer is implemented on a host PC to aid in experiments and validation. 

The deployment system is intended to have the software components implemented in an 

embedded PowerPC processor that comes with many commercially-available Xilinx FPGA 

boards.  

The lower half of the figure shows the organic hardware layer where one or more FPGA boards 

can be accommodated in the system, each of which has one or more RARS module(s). The 

RARS modules are connected via a dispatcher module, which facilitates the communication with 

the software layer. This communication takes place through a JTAG interface on the FPGA side 

to a parallel port on the host PC side via a Xilinx parallel cable. The software layer 

communicates with the hardware through a multi-threaded communication manager, which is 

responsible for abstracting all hardware complexities and providing messages to the various 

software components. These components include the Human Interface Module (HIM), which 

converts the binary message into human-readable text files, and vice versa. They also include the 

repair modules, which are the scrubber and the OGA repair that will be thoroughly described in 

upcoming sections. 
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Figure 3: SMART Top-level Hardware and Software Architecture 

 

4.1. RARS Hardware Layer 

The hardware layer consists of one or more RARSs and dispatchers configured on one or more 

FPGA boards. The RARS module comprises the smallest integrated unit in the hardware 

platform; it consists of one AE and three identical FEs. The AE is application-independent; it 

contains the logic that drives the organic behavior by actively reorganizing the available FEs. On 

the other hand, the FEs represents the application-dependent user implementation of the desired 

functionality. Therefore, the FEs are the only modules that need to be modified for the system to 

support new applications. 
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Having three FEs in each RARS module illustrates the common practice of employing a TMR 

configuration in redundancy-based fault-tolerant systems. Nonetheless, there is no loss of 

generality which prevents RARS from accommodating       FEs for any    . 

One straightforward approach is to initially enable two FEs while the third is kept offline as a 

cold spare. Upon finding a discrepancy between the two outputs in the duplex mode, the AE 

switches to the TMR mode of operation by placing the standby third FE online and activating a 

voting scheme among the three FEs to obtain the correct output and hence masks single-fault. 

While the duplex mode has the shortcoming of expending clock cycles from the instant it detects 

a fault until the correct functional output is regained, it reduces the required dynamic power 

compared to a conventional TMR in the no-fault scenario. Moreover, the fact that the standby FE 

is normally offline makes its resources available for use for any other purpose.  

4.1.1. Motivation as a Hybrid of Approaches 

TMR requires three functionally-identical modules that perform the same task in tandem and a 

voter that outputs the majority vote of the three modules [84]. Meanwhile, Concurrent Error 

Detection (CED) [89] approaches rely on a duplex configuration and discrepancy detection 

among the output bits of the redundant modules. Both TMR and CED can increase reliability 

using Stand-by Sparing approaches whereby hot spares are kept in an idle state and thus are 

ready to be called into action once required. Cold spares, in contrast, are kept shut down and thus 

do not consume power, but incur delay before they are able to replace faulty modules. 
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As described in SMART Design Objective 1: Exploit Reconfigurability to Realize Adaptive 

Level of Redundancy, the tradeoff in all of these approaches is between increased system 

reliability and increased resource consumption. Running in TMR means increased chances of 

keeping the system healthy, but it also consumes approximately triple the area and the power.  

Moreover, we hypothesize that fixing the redundancy level at design-time can be challenging as 

the mission engineers do not have complete knowledge of the mission trajectory and the various 

dynamic parameters than can impact it. Some missions can go smoothly for 99.99% of the time, 

only requiring high degree of redundancy in the remaining 0.01% due to a probabilistic event 

that may or may not have occurred in other similar missions. Such uncertainty complicates 

design-time decisions, and in mission-critical applications that are highly valued due to their 

scientific and social impact, the wise decision can be often to increase redundancy to be prepared 

for any events, even the unlikely ones. Thus, RARS promotes run-time adaptive redundancy 

techniques, taking advantage of the inherit reconfigurability property of the underlying FPGA 

devices. The initiative of growing and shrinking the number of spares on demand is the focal 

contribution of RARS.  

In addition, the fault recovery decision is not a black-and-white one, if the FPGA board is hit by 

a strong radiation or thermal flux such that two functional modules of a particular TMR are 

partially damaged. Assuming the third one is in a better state, it might be more useful to shut 

down the two fault modules and operate on simplex configuration, saving energy and electrical 

stress during a critical stage of the mission, and eliminating the possibility of the other two, 

faulty, modules to overrule the healthy one when they both agree on an erroneous output. A 
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simple operational mode might serve the mission purpose better than a TMR, something that 

cannot be entirely predicted during design time, but can only be wished for when certain 

conditions are met during the mission runtime. 

For that reason, we wanted the organic hardware layer of SMART to be as flexible and dynamic 

as possible; the more flexible RARS is, the more options SMART will have during mission run-

time. RARS is a generic fault-tolerant module that can operate in Simplex, Duplex, and TMR 

configurations; there are three Functional Elements (FEs) and one Autonomic Element (AE), the 

AE is a controller for the fault tolerant behavior that is completely independent from the FEs, 

which are solely in charge of accomplishing the functional requirements of the mission. 

4.1.2. Architecture and Components 

The proposed RARS architecture is shown in Figure 4. The functional input is delivered directly 

to the three FEs for evaluation. The outputs of the FEs are then sent to the AE to be processed by 

the following five modules: 

1. Discrepancy Sensor (DS): This component uses the three FE outputs to detect 

discrepancies between any pair of enabled FEs. This module is only activated when 

RARS is running in the duplex mode; otherwise, it is disabled to conserve energy.  

2. Voter. The voter module performs bitwise voting among the three FE outputs and 

produces the majority vote. It also generates a report that conveys any of the condition 
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codes listed in Table 6. The voter is enabled only in the TMR mode and otherwise is 

disabled to save power and resources.  

Table 6: Possible Values of the Voter Report 

Voter report Description 

000 No discrepancy among the three FEs 

001 FE1 is discrepant from the other two FEs 

010 FE2 is discrepant from the other two FEs 

100 FE3 is discrepant from the other two FEs 

111 All  FEs are discrepant (m-bit, m>1) 

101 Voter is disabled 

3. Output Actuator (OA): This module performs a 4x1 multiplexer function. The inputs 

come from the outputs of FE1, FE2, FE3, and the voter. The selection lines come from 

the Redundancy Controller (will be described shortly), while the output drives the overall 

system‟s functional output. This module signifies the flexibility of the AE compared to 

other fixed redundancy techniques, because RARS can select from all of the simplex 

configurations in addition to the majority vote output. 

4. Performance Monitor (PM): This module samples the DS and the voter report to provide 

reports that reflect the aggregate performance of the system. The PM is periodically 

polled by the software layer during repairs to acquire system performance to convey the 

fitness value of the evaluated individuals.   

5. Redundancy Controller (RC). This is the core element in the AE; it is responsible for the 

unit awareness and for sending status reports and receiving control signals to or from the 

software layer. In SMART, the RC is a Finite State Machine (FSM) that encodes all 

possible system configurations. The inputs to this state machine are the reports from the 
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various modules, such as the DS, voter, and the PM. The output drives the “Enable” 

signals for all the modules and the selection lines for the OA. Moreover, this module 

contains the communication logic of the dispatcher and the input and output buffers that 

store the incoming and outgoing messages. 

 

Reconfigurable Adaptive Redundancy System (RARS)

Autonomic Element (AE)

Functional 

Element (FE-1)

Functional 

Element (FE-2)

Functional 

Element (FE-3)

Output 1

Output 2

Output 3

Output 

Actuator

Discrepancy 

Sensor

Voter

Redundancy 

Controller

Enable FE-1
Enable FE-2
Enable FE-3

Select

To/From

 Dispatcher

Functional

Input

Functional 

Output

Enable

Discrepancy

Report

Voter

Report

Enable

Performance 

Monitor

Voting 

Result

Enable
Performance

 

Figure 4: Reconfigurable Adaptive Redundancy System (RARS) 

4.1.3. Range of Possible Configurations 

To obtain adaptive levels of redundancy, RARS uses real-time performance feedback based on 

the mission objectives to dynamically reorganize its modules into one of the following 

configurations. 
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1. Simplex. The RC disables two FEs, the DS, and the voter. The OA propagates the 

enabled FE output. This configuration allows highest energy conservation if that is a 

priority. It is also practical during non-critical stages of missions. The simplex 

configuration can also be enabled during repair in a pair-and-spare scheme.  

2. Duplex. The DS is enabled to inform the RC in the event of output disagreement between 

the two enabled FEs. The OA is set to one of the enabled FEs. This configuration is only 

used for applications that can tolerate temporary degradation in output quality until the 

RC takes further repair action. The system can run in duplex mode while repairing a 

faulty module in order to detect additional faults in the online modules. 

3. TMR: The voter and all FEs are enabled, whereas the OA propagates the voter output. 

Only the DS can be disabled as the voter report is able to convey all needed information. 

The system can maintain 100% correct throughput in the TMR mode even if one module 

is faulty. Even with the existence of multiple faults, design diversity and compensating 

module faults [13] can still assist in generating a correct vote. The TMR configuration is 

utilized in this platform when the system is repairing a faulty FE because it can maintain 

a fully functional system while the FE is repaired. This is made possible by dynamic PR, 

which keeps the system online while performing repair. 

4. Hybrid Mode. Many temporal configurations can be supported by RARS. For instance, 

an application can run in simplex mode but switch to duplex periodically to detect 

discrepancies. Another usage example might be an application that has a duplex 
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reliability requirement except during certain stages of the mission, where it can switch to 

TMR in order to meet reliability needs. Downgrading is also possible based on reliability 

needs, while the arrangement of FEs can be dynamically reconfigured back to the original 

configuration once the operating behavior has changed accordingly. 

A key consideration in RARS is that reconfiguration adds minimal additional component to 

functional critical path. The design attempts to promote the fact that if faults occur outside the 

FEs logic, only the recovery is impacted, not the FEs functionality. Therefore, we can apply the 

RARS concept recursively if needed to provide coverage for faults in the AE. Nonetheless, 

reconfiguration capability needs to remain intact for recovery by reconfiguration to remain 

viable, and also the voter logic should remain intact, as in conventional TMR approach, to 

guarantee that the correct vote is propagated as the functional output. 

Assuming that the AE voting core is an unbreakable voting element will indeed add a single-

failure point to the fault-tolerant system. However, this risk is alleviated by the fact that the voter 

element of the AE has much lower area than the FEs, meaning that the probability of fault hitting 

the voter element is reduced accordingly. The FEs in the experimental use case of the edge 

detector have a total size of approximately 1800 LUTs, compared to the voter element of 

approximately 100 LUTs. This means that the probability that a fault happens in the voter is 5% 

of the probability of a fault to hit the FEs logic. This value is still high enough to be neglected in 

mission critical applications, a successful approach to handle golden elements is random pairings 

and temporal voting that have been successfully demonstrated in [90]. Moreover, The FEs are 

expected to considerably increase in area for real complex applications, the voter is not expected 
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to scale with the same degree, further reducing the chance of broken golden element compared to 

the functional elements. 

4.2. Organic Fault-Tolerance Software Management Layer 

The software layer controls the higher-level throughput of the system by monitoring the 

performance and enabling active repair when the performance dips below an acceptable level as 

specified by the mission requirements. The software layer serves two main purposes:  

The first purpose is to provide an interface to monitor and control the hardware. To that end, a 

Java applet GUI has been created to depict the hardware status schematically and show the status 

of each component. The applet is shown in Figure 5, it shows the following information:  

1. FE Status: online, offline, faulty, fault-free, or under repair. 

2. AE Configuration: simplex, duplex, or TMR. 

3. Performance level: the number of reported discrepancies divided by the total number of 

evaluations. 

4. Log of the transmitted messages: The communicated messages are recorded as a paper-

trail of hardware status changes. 
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Figure 5: Java Applet GUI Indicating Instantaneous RARS Status 

 

The second purpose of the software layer is to enable higher-level autonomous recovery 

techniques. First, the scrubbing technique rewrites the CBS to the FPGA in order to fix any SEU 

in the configuration logic. Second, the AS are consecutively reconfigured on the FPGA until the 

faulty element is excluded from the logic path, as a way to quickly evade resources hit with hard-

faults when a proper spars is available. Last, we have demonstrated in our experimental work 

that we are able to recover simulated hard-fault by means of OGA. The fitness function was set 

to be the instantaneous performance level of RARS over a recent window of inputs.  
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4.2.1. Architecture and Components 

The top half of Figure 3 shows the architecture of the software layer. The Communication 

Manager (CM) is a multi-threaded C++ module that acts as the parallel port driver to 

communicated messages with the hardware. HIM converts the binary messages in the CM 

queues into human-readable messages that are stored in a predefined directory on the file system, 

and vice versa. The Message Decoder consults the communication protocol opcode table and 

generates text files representation of the messages. For example, this decoded message illustrates 

the status of FE #2 in RARS #1 as being online and fault-free: 

MSG_NAME: FE_STATUS_REPORT 

MSG_CODE: 3 

AE_ID: 1 

FE_ID: 2 

STATUS: 1 (ONLINE AND FAULT-FREE) 

Any application that complies with the protocol message format can communicate with the 

hardware layer. The encoder periodically polls for message files stored in a predefined directory, 

encodes them into binary representation, and stores them in the inbox queue of the CM in order 

to be sent to the organic hardware. This platform provides a bi-directional communication link 

between the organic hardware and any user application that needs to monitor and/or control it. A 

Graphical User Interface (GUI) was constructed to display hardware status. The GUI is 

dynamically updated based on the customizable message exchange frequency. 

The scrubber and the GA repair modules can be seen to the right of the CM in Figure 3.  These 

modules are described in detail in the next two sections. Both of them can reconfigure the FPGA 
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by executing batch files that invoke the Xilinx iMPACT tool [20] to perform partial device 

reconfiguration using the parallel Cable IV.  

4.2.2. Scrubbing and Amorphous Spares 

The RARS-centric techniques are sufficient to recover from transient faults in the user logic. 

SEUs in the configuration logic and hard faults cannot be indefinitely masked by redundancy 

because any further faults can shift the voting results toward the faulty FEs. Thus, in such cases, 

RARS will signal to the software layer of SMART to intervene and help fixing this type of 

persistent faults. 

SMART begins by assuming that the persistent fault is caused by an SEU in the configuration 

logic (soft fault) that caused the flipping of one or more LUT bit(s). SMART handles this via 

scrubbing the bitfile to correct the impact of the SEU and thus restore the correct funct ional 

operation of the circuit. Scrubbing entails fetching the CBS from an off-chip ROM via PowerPC 

APIs, reconfiguring the faulty FE via the ICAP, reading back the freshly downloaded bitfile to 

compare it to the ROM-based golden image, and finally monitoring the discrepancy for a 

sufficient number of evaluations to ensure that the fault is indeed corrected by scrubbing. 

If the fault is not corrected by simple CBS scrubbing, SMART concludes that it is caused by a 

hard fault that requires extra repair effort. It starts by repetitively configuring a set of design-time 

generated spares that have different area constraints to guarantee the avoidance of each and every 

LUT in at least one of the spares. This will ensure that each faulty LUT can be avoided by, at 
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least, one available spare. These spares are called amorphous because they have the same 

hardware design which can be constrained by the Xilinx tools to avoid certain LUTs, meaning 

that the spare generation effort is minimal. 

The AS generation is accomplished via the Xilinx PROHIBIT constraint in the Xilinx User 

Constraint File (UCF) [20]. The PROHIBIT constraint allows the designer to specify a set of 

LUTs that should be avoided during the placement stage of the bitfile creation process. For 

example, the following constraint will exclude all slices in the range between locations (0, 33) 

and (13, 33):  

CONFIG PROHIBIT= SLICE_X0Y33:SLICE_X13Y33 

The same HDL entry is used to generate multiple configuration bitfiles, each with different UCF 

settings that exclusively prohibit the use of a set of slices. When a fault occurs, the scrubber 

successively downloads the bitfiles to the FPGA and searches for a configuration that prohibits 

the use the faulty LUT, in which case the fault will be corrected throughout a window of 

evaluations. If none of the AS was able to hide the erroneous output, perhaps because there is 

more than one faulty LUT in the FE that cannot be excluded by any spare, the scrubber ceases to 

be efficient and will consequently request the intervention of the OGA repair.  

The scrubber is the first line of recovery from faults that cannot be handled by RARS 

reorganization techniques. SMART relies on lazy scrubbing [17] such that only the discrepant  

FE in a TMR configuration is partially reconfigured while the system remains online; the other 

two fault-free FEs, along with the voter, guarantee that the system can maintain correct overall 
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output while the faulty FE is being scrubbed. A tile-based reconfiguration approach for fault-

tolerance is covered in details in [43]. 

4.2.3. Organic GA Repair Technique  

SMART‟s autonomous fault-tolerance method installs OGA as an integral part of the repair 

cycle because it offers hard-faults active repair that is independent of the number of carried 

spares. However, the GA is a nondeterministic process than can affect the flexibility of SMART 

if not designed efficiently. Thus, three properties that can enhance the efficiency of the GA for 

an organic system were addressed. 

4.2.3.1.Direct Bitstream Evolution 

 Genetic representation is the process of mapping from the visible traits of the application (i.e., 

phenotypes) to the genetic coding of the chromosomes (i.e., genotypes), and vice versa. The 

Phenotype to Genotype Mapping (PTGM) is performed only once during the design stage of the 

GA, and it requires special care to capture the building blocks that the GA needs to evolve in 

order to achieve the desired solutions [91]. The Genotype to Phenotype Mapping (GTPM), on the 

other hand, is applied every time the individual fitness is evaluated to transform chromosomes 

into physical individuals that can be evaluated by the GA. 

This two-way mapping can be a source of errors and complications if the distance between the 

genetic encoding and the phenotypic realization is large. For instance, if the GA evolves the 

HDL code of the FE to repair its circuit realization on the FPGA, then every time the 
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chromosome is evaluated, it must undergo synthesis, mapping, Placement and Routing (PAR), 

bitfile generation, and FPGA reconfiguration, which is a huge overhead to endure for every 

evaluation. For that reason, we designed OGA to use direct bitstream evolution, whereby the 

chromosome is selected to be the FPGA raw bitfile. This selection puts the burden of PTGM on 

the FPGA vendors (Xilinx in this work) and abridges GTP to a mere Xilinx iMPACT run to 

download the CBS onto the FPGA.   

Direct evolution of a bitstream depends upon details about the LUT mapping between the CBS 

and the actual device. It is required to manipulate the encoding of the bitfile to be able to apply 

genetic operators like crossover and mutation to the relevant sections of the long bit array. This 

overhead is still considered feasible given the vast advantages of direct CBS evolution in term of 

increased performance and reduced mapping effort. In order to directly manipulate the CBS, it is 

necessary to decode its bits to understand how to locate and modify specific LUTs and thus 

change the behavior of the resulting circuit. To that end, we extended the Virtex-2 approach that 

we previously developed in [15] to perform direct bitstream evolution on Virtex-4 devices. 

The CBS contains the LUT content that is evolved by the OGA in addition to other information 

like routing, checksums, and header information such as the device signature and the time of 

bitfile creation. We implemented an LUT mapping module, as shown in Figure 6, to map the 

location of LUT_X_Y, where X and Y are valid coordinates inside the evolved FE, to the correct 

offset in the CBS file. This mapping is not entirely documented in any of Xilinx application 

notes; rather, it was discovered through repetitive trial-and-error experiments. 
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Figure 6: Mapping from LUT Coordinates to CBS Offset Representation 

Each experiment aimed to discover the mapping between one of the LUT coordinates and the 

corresponding bit offset in the CBS file. This was accomplished by viewing the Native Circuit 

Description (NCD) file using the visual Xilinx FPGA editor tool [20] and negating the content of 

one known LUT. The NCD files before and after the negations were used to generate bitfiles 

with the same bit generation (bitgen) options [20]. The two resulting CBSs were then compared 

using a hex comparator. The 16-bit LUT content could be readily identified by monitoring the 

inverted bits between the two hex files, other differences resulting from header and time stamps 

were usually located at the beginning of the bitfiles and thus promptly discarded. After many 

trials, one can infer a relation between the XY of the LUTs and their offsets in the file, or rather 

store a lookup table that contains all of the used LUTs along with their corresponding offset in 

the CBS file, to assist in the mapping. 
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4.2.3.2.Intrinsic Fitness Evaluation  

There are two methods to measure the fitness of the evolved individual. The common approach 

is extrinsic evaluation [14] , which operates on a software model of the FPGA device. This 

abstraction simplifies the experiments and can be tuned more dynamically. However, the 

resulting representation has to undergo mapping and PAR on the target FPGA at deployment 

time. This step imposes risk of incompatibility between the device's physical constraints and the 

software model that was used in simulation, thereby possibly leading to incorrect solutions. 

Instead, the OGA performs intrinsic fitness evaluation [14], whereby the hardware itself is used 

to measure the fitness of the evolved individuals. All of the device‟s physical constraints are 

considered during the process, and even the output is measured from the FPGA device while 

processing the functional inputs of the application.  

Therefore, the system can remain online during fitness evaluation, provided that there are 

redundant parts to compensate for the evolved individual. Intrinsic evaluation requires that the 

evolved circuit is configured into the FPGA device each time the fitness is measured. This 

process is made feasible because of the direct bitstream feature of OGA, which means that the 

GTPM requires only a Xilinx iMPACT device configuration to place the circuit on the FPGA. 

4.2.3.3.Model-Free Fitness Function 

 An accurate fitness function is a critical factor in designing an efficient GA because it 

determines the shape of the problem landscape that the GA will search [91]. This process can be 

extremely complicated in real-life engineering problems because it requires capturing all the 
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attributes that distinguish a good solution from other ones. In addition, it is highly dependent on 

the problem domain, because what is good for one particular purpose does not usually fit other 

purposes.  

Because SMART is intended to be a generic platform that fits any application domain, the OGA 

employs a novel, application-independent, model-free fitness function that can be ported to other 

applications with minimal effort. This was made possible because of the robust design of RARS, 

which enables run-time discrepancy detection between the evolved FE and other redundant, 

fault-free one(s). The model-free fitness function quantifies the fitness of the evaluated FE by 

counting the number of discrepancies between its output and other fault-free FE‟s. The number 

of discrepancies over a window of evaluations is stored in the PM, and is reported back by the 

RC to the OGA engine using a performance report message. This value quantifies the deviation 

between the evaluated individual‟s fitness and the ideal one, where low values indicate fitter 

individuals. Therefore, the GA becomes a minimization optimizer for this value. 

It is important to note that this model-free fitness functions is only possible when the goal is to 

repair a faulty circuit when there is another redundant circuit on the FPGA that can produce the 

same functionality. This condition does not pose any limitation on redundancy-based fault-

tolerant systems because the redundant parts are activated anyway in order to maintain correct 

functional output. The OGA takes advantage of that and implements the model-free fitness 

function. Future work might consider adding a customizable layer of application-dependent 

fitness evaluation knowledge to aid in even faster convergence.  
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4.2.3.4.OGA Design and Implementation 

The OGA platform consists of the following modules [15]: 

1. GA Engine: This is a C++ application that implements a customizable, Standard Genetic 

Algorithm (SGA). This module is platform-independent; it encapsulates the 

implementation of the SGA, including the population data structures, the functionality for 

selection and replacement, and other standard GA operators such as mutation and 

crossover. 

2. Chromosome Manipulator: This is a C-based library that abstracts the underlying 

hardware from the perspective of the OGA engine. It provides hardware-independent 

abstraction of the genetic operators so that they can be executed with regard to the LUT 

boundaries in the long CBS string.  

3. MRRA: This is a set of APIs that facilitates communication with the target FPGA device 

[55]. This module handles direct bitstream manipulation and decoding and includes the 

LUT mapping module that is depicted in Figure 6. 

4. Bitstream File: PR bitstream file that represents the FE design. It is generated beforehand 

using the Xilinx tools. The format and content of this file are identified through repetitive 

trial-and-error experiments to map the contents and location of the bits to the physical 

LUT locations in the FE. 
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Figure 7 shows the complete OGA platform. The OGA engine relies on the chromosome 

manipulator to perform platform-independent mutation and crossover operations. It also reads 

the fitness values from the CM, which in turn acquires them directly from the hardware via the 

communication protocol messages. The MRRA module operates directly on the bitstream using 

the LUT mapping module shown in Figure 6, and then invokes a batch file that runs the 

iMPACT tool, which performs boundary-scan device-chain initialization and then programs the 

chip. All communication proceeds via the parallel port from the host PC side to the JTAG port 

from the FPGA side.  
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Figure 7: OGA Intrinsic Evolution Platform 

The OGA creates the initial population based on the PR bitfile that was used to configure the 

original faulty FE. It generates a copy of the bitfile for each individual in the initial population, 
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and then randomizes its LUT bits to promote genetic diversity that should lead to more 

innovative solutions.  

After that, each individual‟s fitness is evaluated intrinsically by downloading its bitfile to the 

FPGA using iMPACT. The OGA engine then requests the fitness value of the evaluated 

individual using a PERFORMANCE_REQUEST message that is sent to RARS through the 

JTAG-GNAT interface. The RC reads the PM counters, which are updated periodically based on 

the actual run-time functional inputs that the FEs process, it then formulates 

PERFORMANCE_REPORT as a reply message and sends it back to the GA engine. 

After evaluating the fitness of all individuals, the OGA selects the individuals that will 

participate in the creation of the next generation using tournament selection of size 2 (value was 

set based on preliminary runs aimed to locate the most promising GA parameters for the 

experimental work). The selected individuals are then mated to create the offspring using single-

point crossover and conventional bit-flip mutation operation. Both operators are executed on the 

raw bitfile as mandated by the direct bitstream evolution premise. The mapping between the 

LUT coordinates and its actual location in the bitfile is abstracted using the LUT mapping 

module that was demonstrated in Figure 6 to map FE XY coordinates to the actual offset of the 

evolved LUTs location in the bitfile.  

Finally, the newly created offspring is assigned to the population of the next generation and the 

OGA repeats the same steps over and over until an adequate solution is found, which in our 

experiments was defined as realizing no discrepancies at all between the evolved individual and 
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the fault-free ones over a predefined window of readings. This termination criterion can be 

relaxed for more complex applications or ones that require faster repair time at the expense of the 

fitness of the final solution. 

4.3. Fault-Handling Handshaking-Based Communication Protocol 

The communication protocol consists of two components. The first is the hardware component 

that resides on the FPGA board and includes the standard JTAG interface serial port and the 

GNAT platform [15] , which is configured on the device to support input and output operations 

with the AE. The second component is the software, which runs on a host PC that is connected to 

the FPGA. The AE sends messages to the Dispatcher, which is then polled by the CM from the 

software layer via the JTAG interface. On the other way around, binary-encoded messages are 

shifted from the CM to the Dispatcher via JTAG and then routed to the destination AE or 

broadcasted to all AEs. The messages are 16 bits in width, with a Xilinx Parallel Cable IV 

download rate of 5 Mbps [92], the communication link can theoretically handle up to 300,000 

messages per second.  

The JTAG boundary scan interface (IEEE 1149.1) is implemented on the non-reconfigurable 

area of the Xilinx Virtex devices. The interface offers half-duplex serial communication between 

the user circuit on the FPGA and the host PC. The GNAT component is implemented on the 

reconfigurable area of the chip to connect the JTAG boundary scan with the user circuit to 

provide bi-directional communication channel. The communication protocol relies on 

handshaking to acknowledge received messages and request new ones. The protocol also 
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specifies a 16-bit packet format with 5 bits reserved for the opcode, thus supporting up to 32 

message types, while the remaining fields are used for AE and FE addressing, and other purposes 

like performance readings and component status.  The messages defined in the protocol along 

with their field specifications are listed in the Appendix: Communication Protocol Messages. 

The class diagram of the software communication layer is shown in Figure 8. Special care was 

taken to design the CM to enhance availability and graceful degradation. These objectives were 

mandated by the fact that the system is designed for mission-critical applications. Hence, multi-

threading and non-blocking calls were extensively employed in the design to support these non-

functional requirements. Multi-threading was adopted such that every active communication is 

held over its own thread. This design prevents blocking the controller class, thereby making it 

available to serve any other incoming calls. For example, if the connection object informs the 

communication controller object that there is a new message that requires processing, the 

communication controller opens a separate thread to handle the message, leaving the main object 

free to engage in any other operation. 

The AE allocates inbox and outbox queues to respectively store incoming and outgoing message; 

in addition, it continues to poll the head of the inbox queue periodically to search for new 

messages. Once the AE finds one, it decodes the opcode field to extract the message type and 

then forms a response message to serve the request, placing it at the end of the outbox queue to 

be processed later by the software layer.  
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The communication protocol relies on handshaking to acknowledge received messages and 

request new ones. Examples of the messages that flow from the software to the hardware are as 

follows. 

1- FE_STATUS_REQUEST solicits the status of a particular FE (RARS_Index.FE_Index). 

2- AE_STATUS_REQUEST solicits the status of a particular AE (RARS_ Index.AE_ 

Index). 

3- PERFORMANCE_REQUEST asks a particular RARS to report back the values of the 

Performance Counter (PC). 

The respective responses of the hardware to these messages are as follows. 

1- FE_STATUS_REPORT reports FE status (such as online healthy, online faulty, offline, 

and so on). 

2- AE_STATUS_REPORT reports AE status (such as Simplex, Duplex, Voter, and so on). 

3- PERFORMANCE_REPORT reports the PC value. 
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Figure 8: Class Diagram of the Communication Module in the Software Layer 

4.4. Dynamic Partial Reconfiguration  

SMART relies on the repetitive reconfiguration of the FPGA to achieve active repair via 

scrubbing and intrinsic evolution. Dynamic PR was successfully introduced into the RARS 

hardware in order to reduce repair time. Introducing dynamic PR into this design, the faulty FEs 
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could be reconfigured in 1.8% of the time originally required to reconfigure the entire system. 

This improvement becomes extremely important during the repair process, considering that the 

OGA may require thousands of evaluations to evolve an adequate solution.  This approach also 

has the added advantage of keeping the system online during bitstream downloading. 

Early Access Partial Reconfiguration (EAPR) design flow [93] was used to achieve dynamic PR 

capabilities. This flow requires a strict design routine that does not follow the conventional 

single-pass of synthesis, mapping, and PAR. Instead, it requires the design to have an explicit 

modular structure such that the PR modules are singled out at the top-level module. These 

modules are called Partial Reconfigurable Modules (PRM), whereas the region of the fabric to 

be reconfigured is defined as a Partial Reconfigurable Region (PRR). PRMs define the 

functionality of each PRR. All other logic in the design is referred to as static logic. All resources 

required for an FE must be confined within a PRR.  

To connect each FE with the surrounding logic, a special interface is required, known as a Bus 

Macro (BM). BMs are special structures that are implemented with the help of CLB in which 

pre-configured LUTs are used to transfer signals between the static logic and the reconfigurable 

region. A group of LUTs in one CLB is placed on the PRR side, and another group of LUTs in 

another CLB is placed on the static side. This two-CLB macro can provide a communication 

bandwidth of up to 8 bits. BMs are made available by Xilinx to compensate for the old 

alternative of using hard-wired tri-state buffers, which have been used with earlier PR design 

flows and are known to present strict constraints on the communication bandwidth due to the 
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limited number of buffers available on the fabric. The BMs are uni-directional structures and can 

be placed on all sides of a PRR. 

The other factor to consider in the PR process is the configuration frame size of the target device. 

For Xilinx Virtex 4 FPGAs, a frame is 16 CLBs long and one CLB wide. The time to reconfigure 

a functional element depends on the bitstream size, which is proportional to the number of 

frames. The resource allocated to each FE is the same because the three elements are functionally 

and physically identical. The total number of configurable logic blocks allocated to each FE is 

112. Each FE requires seven logic configuration frames to be loaded for its partial 

reconfiguration.  

The introduction of partial reconfiguration reduced the size of the bitstream considerably and 

thus improved the reconfiguration time for the FEs. The full bitstream size is 1.7 MB, and it 

takes 2.61 seconds to fully download using the Parallel Cable IV. However, the partial bitstream 

is 31 KB and requires only 48 milliseconds to configure. This improvement becomes extremely 

important during the repair process, considering that the GA may require thousands of 

evaluations to evolve an adequate solution. In addition, the PRR can be reconfigured while the 

system is running. Therefore, considering that the system will be running in the TMR mode, 

under the assumption of a single-fault scenario, the system can still maintain 100% performance 

while undergoing repairs. 

Figure 9 shows a snapshot of each of the three PRRs along with the static, top-level full design 

of the RARS. The placement of the PRR and the BMs was achieved with the help of the Xilinx 
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PlanAhead tool [93] . All of the clock signals BUFGs, I/O signals, BMs, and DCMs were 

defined in the top-level module. A user constraint file was assigned to the top-level module that 

contained all of the I/O pin constraints, the range of all of the PRRs using the AREA_GROUP 

constraint, and the location of all of the bus macros. 

 

Figure 9: FPGA Layout for FE1, FE2, FE3, and RARS 

4.5. The Repair Cycle and Self-x Properties 

The controlled emergence of self-x properties is what distinguishes OCs from other design 

paradigms [48]. Rather than providing all alternative execution paths at design time, the system 

is equipped with innate capability to actuate different configurations based on run-time sensory 

information, making it adaptive to various execution scenarios. 

Figure 10 shows the repair cycle that the system executes in order to maintain the highest 

possible correct throughput. The flow diagram is partitioned into three black-framed boxes to 

signify the observed organic self-x properties that emerge upon executing each repair stage.  
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The left side of the diagram shows the organic repair that is implemented on the FPGA device. 

The prominent observed self-x properties are self-monitoring and self-organization. The self-

monitoring property is manifested by the system‟s self-awareness of any discrepancy that results 

from one or more faulty FE(s) through the use of different sensors, enhanced with self-diagnosis 

of the exact faulty FE through monitoring the discrepancies of the output lines. The first repair 

action the system takes upon detecting faults is reorganizing the components of the system to 

mask the fault. The self-organization property emerges through adjusting the redundancy 

configuration in order to hide the effect of hardware failures. The example in Figure 10 shows a 

Duplex-TMR-Duplex reorganization scenario, but other reorganization sequences can be applied 

to meet the desired reliability levels as mandated by the mission requirements. 

When the degree of the faults exceeds the inherent redundancy capacity of RARS, SMART 

triggers a different repair cycle that demonstrates another organic activity, namely, self-

configuration. The self-configuration property emerges through successive lazy-scrubbing [17] 

attempts, which begins by rewriting the same CBS to eliminate SEUs in the configuration logic. 

Then, if the fault is caused by a stuck-at hard-fault, scrubbing proceeds to reconfiguring the 

FPGA with a set of pre-seeded amorphous spares that have different area constraints to 

potentially introduce an FE that does not utilize the faulty LUT.   

Finally, if self-configuration fails to bypass the faulty element(s), the system initiates a more 

elaborate refurbishment cycle that relies on OGA. This evolutionary repair introduces self-

healing property at the system-level, which is characterized by the system‟s ability to actively 

recover from more catastrophic fault scenarios by searching for innovative solutions using 
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evolutionary approaches. Self-healing is not limited by the degree of redundancy nor the number 

of amorphous spares, which makes it a compelling option for complex fault scenarios. However, 

SMART makes OGA the last resort in the repair sequence due to its long repair time.  
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In SMART, failures in the reconfiguration logic will only cause the loss of the software-based 

fault-tolerance features, that is, scrubbing and OGA. However, the inherent organic hardware of 

RARS will remain intact to switch among the available Simplex, Duplex and Triplex 

configurations. This graceful degradation property means that the system will become, at worst, 

a TMR system if the parallel/serial interface fails.  

Complete handling of failures in reconfiguration logic in FPGA devices is beyond the scope of 

this work, we relied on proven solutions provided by Xilinx, the main manufacturer of FPGA 

chips, to deal with this type of faults [94]. Moreover, the same techniques used in handling faults 

in the data path can be extended to the reconfiguration logic. One prominent approach in dealing 

with this kind of faults using redundancy can be found in [95]. 

Virtex-4 FPGAs are fully characterized for Single-Event Functional Interrupts (SEFI), which are 

SEEs that result in device-wide operation interrupts such as power on reset, configuration 

circuitry, frame address register used extensively in the reconfiguration process, and some other 

global signals that affect reconfiguration logic and device functionality. Xilinx states that pulsing 

the PROG signal will result in correcting any of the aforementioned SEFIs [94].  

More catastrophic faults, such as hard faults affecting the ICAP, can be recovered using 

redundancy techniques presented in [95]. This technique protects the ICAP logic in a similar 

fashion to any other user application logic. First, by having TMR inserted in the ICAP circuit 

using BL-TMR tools to correct faulty configuration on the fly. Second, by scrubbing the ICAP 

interface in case an SEU is suspected in the configuration logic. These techniques can be used to 
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prevent the parallel/serial configuration interfaces from becoming a single point of failure in 

SMART. 
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CHAPTER 5: EXPERIMENTS AND RESULTS 

Using the Xilinx Video Starter Kit (VSK) FPGA board shown in Figure 11 [96] and the other 

technologies listed in Table 4, the benefits of SMART are demonstrated quantitatively using a 

2D gradient-base Sobel edge detection algorithm. 

 

 

Figure 11: Xilinx Dual-Layered Video Starter Kit 

5.1. Experimental Configuration: Edge Detection Application 

In this work, we implement a popular edge detection algorithm to demonstrate the capabilities of 

SMART. There are various applications for edge detection, as it involves identifying boundaries 

in an image. Thus, it can be employed for object recognition and quality monitoring in industrial 
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applications, medical imaging applications, such as Magnetic Resonance Imaging (MRI) and 

ultrasound imaging [56], and satellite imaging applications [57]. Numerous efforts have been 

made to design edge detectors using evolutionary techniques [56, 63]; we compare our GA 

performance against those techniques in Table 11.  

Figure 12 shows SMART application architecture where a continuous video stream provides the 

functional input to the circuit. The video is transmitted via either the Video Graphic Array (VGA) 

or the Digital Video Interface (DVI) output ports on the host PC to the VGA-In or DVI-In, 

respectively, on the upper board of the Xilinx VSK, the Video IO Daughter Card (VIODC) [96]. 

In this system, we used the VGA ports on both ends, but nothing prevents the system from 

running on a DVI interface because of the versatility of the AD9887A dual interface on the 

VOIDC. Indeed, this IC offers both an analog and a digital receiver integrated on a single chip. 

The AD9887 has a parallel digital bus interface with the FPGA for video data and an I2C control 

bus for configuration. The captured frames are buffered into the Block RAM (BRAM) of the 

Virtex-II Pro XCV2P7 FPGA on VIODC. The frames are continuously written on the BRAMs; 

if the video feed stops then the last captured frame is used for all pixel operations until the feed is 

resumed. 
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Figure 12: SMART Use Case System Architecture 

A sequencer module handles memory scanning and synchronization and sends the pixel data 

through the Xilinx Generic Interface (XGI) connector [96]. This connector is a 64-bit bus which 

connects between the lower board, referred to as the ML402 motherboard, and the upper VIODC 

board. It uses a simple synchronous interface running at 100 MHz to send data and control 

information between the two boards.  

A goal achieved in the prototype is application-independence. That is, any other application can 

be implemented by designing new logic in the FEs and by tuning the clock-division ratio in the 

DCM to match the frequencies of the AE and the FEs. 
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Applications that are known to be more tolerant to errors than other kinds of design, such as 

Signal processing applications, will tend to ameliorate the impact of erroneous behavior. 

However, the metric reported in our results is actual data path bitwise discrepancies of the 

output. The fitness function did not rely on any kind of pixel averaging or gradient-based 

operators to quantify image quality into fitness values. This discrepancy-based metric on a pixel-

by-pixel basis makes this approach applicable for non digital signal processing applications with 

no loss of generality. 

On the ML402 motherboard, the enabled FEs in RARS process the video feed and provide the 

output to the AE. Based on the current configuration of the system, the AE produces the overall 

output and stores it into the XCV4SX35 BRAMs. In fact, it stores both the original and the edge-

detected video stream for demonstration purposes. The BRAMs are continuously scanned by a 

VGA driver that is implemented on the same FPGA to generate the VSCAN, HSCAN, and RGB 

values for the VGA-Out interface. The VGA-out is connected to another monitor that shows both 

the original and edge–detected video streams. Any error in the edge detection can be clearly 

spotted on this monitor, as shown in Figure 14. 

The three FEs and the AE are connected to the host PC that runs the organic software layer. This 

PC is tied to a monitor that displays the real-time status of the organic layer using the GUI Java 

applet. The status and control signals are passed between the FEs/AE on one side and the 

BSCAN/JTAG on the other side. The organic layer and the FEs (i.e., the Sobel edge detector) 

were implemented using Verilog HDL and synthesized into FPGA bitfiles using the Xilinx ISE 

9.1 software packs [20] 
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The DIP switches beneath the LCD screen on the ML402 FPGA board were used to simulate 

stuck-at faults in the data path to test the ability of RARS to switch configurations in order to 

mask faults immediately. One of the switches was also used to enable or disable the organic 

repair capabilities (i.e., AE Enable), as shown in Table 7. Nine LEDs were used to show the 

status of various modules of the design. Three of them reflect the status of the voter report shown 

in Table 6, whereas the other six show the status of the FEs, with two LEDs per FE, as shown in 

Table 8.  

Table 7: DIP Switch Assignment in RARS Prototype 

DIP-Switch Purpose 

1 AE Enable to control organic capabilities  

2 Stuck-at fault injected in FE1  

3 Stuck-at fault injected in FE2 

4 Stuck-at fault injected in FE3 

Table 8: LED Assignment in RARS Prototype 

LED 1 LED 2 FE status 

OFF  OFF  Offline and faulty 

OFF  ON  Offline 

ON  OFF  Online and faulty 

ON  ON  Online 

It is imperative to mention that the fault simulation accomplished via the dip switches is only for 

the SEUs or stuck-at faults in the data path. This was done by masking the enabled dip switch 

logical value with one bit of the pixels input of the edge detector to affect the data signals. This 

kind of error should be repaired instantly by the hardware through the embedded configurations 

of RARS. However, in order to simulate the stuck-at faults in the configuration logic, we had to 

actually alter the value of one or more of the LUT contents. We accomplished this by using the 

FPGA editor to manually alter the content of one LUT in the NCD file in schematic view. Both 
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types of fault simulation were used to test the system repair cycle in Figure 10 and to test the 

intrinsic OGA repair as shown below. 
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Figure 13: Use Case Physical Design using Xilinx VSK Platform 

The PC and JTAG prototype is only meant as a testing environment for SMART. The 

convenience and performance of using a PC to run the GA APIs and the communication 

applications have greatly reduced development time and validation effort. However, deploying 

the host PC with SMART will actually eliminate any benefit for such system, either from power 

or reliability points of view. Therefore, we believe that the system will not realize its original 

design goals unless it is deployed on a PowerPC processor that comes embedded within the 

majority of the high-end Xilinx FPGA boards. Many successful PowerPC deployment efforts for 

fault-tolerant systems have been reported in literature, especially ones that employ evolutionary 

repair techniques. 

In [97], the design and implementation of an intrinsic evolution system is presented. The system 

relies on online evaluation of fitness, i.e. using the functional input of the circuit in runtime. The 
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GA was implemented in C (similar to OGA in this work), and was embedded on PowerPC 405 

embedded processor on a Virtex-II device. Another approach is reported in [98] where a 

PowerPC-based intrinsic GA and a workstation-based extrinsic GA are compared in term of the 

fitness evaluation time. The intrinsic GA evolves image recognition system was implemented on 

a PowerPC residing on a Virtex-II Pro FPGA, it was shown that it achieved fitness evaluation 

speed comparable to software fitness evaluation that was run on a workstation operating on 30-

times the frequency of the PowerPC. One might consider using the soft-core that can be 

configured on the FPGA, like Microblaze, to achieve similar goals. However, as [99] 

demonstrates, soft cores will consume huge number of LUTs and would consume much more 

power, they are also vulnerable to the same radiation effects that can affect other logic on the 

board, making them far less appealing approach for fault-tolerant system implementations. 

Finally, the ability of IBM PowerPC to process C/C++ code [100] mitigates the risk of porting 

SMART into on-board implementation as all the GA and communication APIs in SMART are 

based on ANSI/ISO standard, the only difference being the need to interface with the ICAP 

rather than the parallel IV cable, which is completely supported by the PowerPC APIs [100]. 

5.2. Use Case Results 

The following scenarios were tested successfully, these scenarios simulate a stuck-at fault at a 

given FE using dip-switches on the FPGA board to demonstrate the system‟s ability to 

autonomously detect, isolate, and repair the fault. 

Scenario 1: Fault injection when the AE is disabled: 
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1. The system runs in duplex mode, where two FEs are running the edge-detection 

algorithm and the third one is in „cold standby‟ (inactive) mode. 

2. DIP-switch 1 is OFF, indicating that the AE is disabled and will not be able to monitor 

faults in the FEs 

3. DIP-switch 2 (FE-1 fault injection) is turned ON. The edge detected image starts to show 

faulty pixels and degradation in the quality of the image. Voter report is always ON-OFF-

ON, indicating that the voter is disabled (That is because the AE is inactive) 

Scenario-2: Fault injection when the AE is enabled: 

1. The system runs in duplex mode, where two FEs are running the edge-detection 

algorithm and the third one is in „cold standby‟ (inactive) mode. 

2. DIP-switch 1 is ON, indicating that the AE is enabled and should be able to monitor 

faults in the FEs 

3. DIP-switch 2 (FE-1 fault injection) is turned ON. The edge detected image shows NO 

faulty pixels and the quality of the image remains the same, this is due to the AE 

intervention which can be summarized as follow: 

a.  AE detects discrepancy in FE1. FE1 status becomes (Online and faulty) 

b. AE enables FE3 and change its status from Offline to Online. 
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c. AE enables the voter, the discrepancy report changes from (Voter disabled) to 

(FE1 discrepant) 

d. The output is taken from the majority vote and hence shows no degradation in the 

performance 

Scenario-3: Recovering the injected fault causes the system to shift to Duplex mode again. 

1. Starting from Scenario-2 output: a Triplex system in which FE1 is faulty. 

2. DIP-switch 2 (FE-1 fault injection) is turned OFF again, indicating that the fault is 

recovered.  

3. The voter report LEDs change from (FE1 discrepant) to (No discrepancy). 

4. After 5-second window without any discrepant readings, the AE realizes that the fault is 

recovered and the TMR mode is not needed anymore, it disables FE3 (status changes 

from Online to Offline) and the Voter (status changes from No discrepancy to Voter 

disabled). 

Figure 14 (a) shows the sample input satellite image of urban buildings having industrial factory 

fans along with the fault-free result of real-time processing of that image using the Sobel edge 

detection algorithm. Figure 14 (b) depicts the scenario of single-fault in the data path that can be 

simulated using switches 2, 3, or 4 as defined in Table 7. Upon the detection of the discrepancy 

caused by the fault, the RARS switches to the TMR configuration, thereby allowing the system 
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to maintain 100% of its fault-free throughput. Hence there is no degradation in quality as 

compared to the fault-free scenario. Figure 14 (c) depicts the impact of another stuck-at fault at a 

different FE, in which case system performance drops, as can be seen from the degraded edge-

detected image. When the software monitoring layer initiates the refurbishment of one of the 

faulty FEs through PR, the system regains 100% performance, as shown in Figure 14 (d). Thus, 

the application throughput is restored using hardware identification of resource capabilities and 

autonomous refurbishment. 

 

 

Figure 14 (a): Fault-free Scenario 

 

Figure 14 (b): single-fault Scenario 

 

Figure 14 (c): Two faulty FEs Scenario 

 

Figure 14 (d): After-repair scenario 

Figure 14: Original and Edge-detected Images under Different RARS Configurations 
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The intrinsic bitstream evolution targeted eight LUTs in the entire FE design. These LUTs were 

selected after investigating the different impacts that each LUT selection might have on overall 

system performance. Based on preliminary experiments, we were able to extract the critical 

LUTs [85] that are highly influential for the performance of the Edge Detector circuit.  

The average fitness and best fitness values per generation averaged over 20 runs, along with the 

standard deviation for both values are shown in Figure 9. The maximum fitness value is 2,047 

(     ), which means that out of 2,047 discrepancy reading, the evolved FE does not show any 

discrepancy when its output is compared to the other configured fault-free FE outputs.  

The maximum fitness value in this work is 2047; this value does not actually denote the number 

of possible output combinations as in most conventional circuit evolution approaches. Instead, it 

indicates the number of discrepancies between the outputs of the evolved FE compared to 

another fault-free FE. To establish enough significance in the reported fitness value, the 

application records the number of discrepancies over a window of 65,536 evaluations, which 

denotes the number of pixels in one 256x256 video frame for the use case under study. Due to 

the message width limitation which confined the fitness value field width to 11 bits only, the 

hardware implemented a scaling scheme in which the actual number of evaluations of 65,536 

values was scaled down by 32 to fit the field width of 11. This means that the circuit is actually 

evaluated for 65,536 input combinations where each 32 discrepancies are translated into 1 point 

on the normalized fitness scale. This technique provides wide evaluation window for the OGA to 

span one full frame, yet avoids high transmission bandwidth for fitness reporting between the 

hardware and software. Another approach to expand the evaluation window while keeping the 11 
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bit field width is to poll the fitness values for a predefined number of times in the OGA API and 

then average the readings or possibly detect and eliminate outliers, this software solution 

provides a way to control the number of evaluations needed to assess the evolved individual‟s 

fitness. Finally, the message width of 16bit is just an arbitrary selection for the experimental 

extension of SMART. In real application, the message width can be extended to 32 or even 64 

bits, allowing for largest fitness value field and thus accommodating wider evaluation window. 

Table 9: Fitness and Timing Information for Twenty GA Runs 

Run # Final Fitness Timing information 

Best Avg Number of 

Generations 

Total Fitness 

Evaluation 

Time (sec) 

Total FPGA 

Configuratio

n Time (sec) 

Total Genetic 

Operators 

Time (usec) 

1 2047 2033 147 23.69 83.50 2098.75 

2 2047 2043 217 35.27 111.97 3172.50 

3 2047 2006 78 12.13 35.65 1106.88 

4 2047 2015 156 25.34 81.74 2421.88 

5 2047 1989 99 15.96 50.09 1470.00 

6 2047 2001 148 24.09 77.40 2205.00 

7 2047 2005 152 25.01 79.34 2170.63 

8 2047 2020 126 20.50 63.76 1835.94 

9 2047 2044 252 41.27 127.01 3686.56 

10 2047 2032 71 11.46 36.00 984.38 

11 2047 2000 221 35.99 112.49 3093.75 

12 2047 1998 162 26.27 75.82 2364.69 

13 2047 2018 103 16.65 51.19 1530.00 

14 2047 2044 129 21.18 64.89 1920.00 

15 2047 2046 177 29.01 91.33 2585.00 

16 2047 2045 161 78.80 84.85 2250.00 

17 2047 2007 75 12.18 39.00 1133.13 

18 2047 1993 233 38.11 117.43 3480.00 

19 2047 2015 62 9.99 31.93 876.88 

20 2047 2044 202 33.42 98.78 2826.56 

Average   2019.90 148.55 26.82 75.71 2160.63 

Standard 

deviation 

  19.80 56.73 15.40 29.00 825.48 

Confidence   0.95 0.95 0.95 0.95 0.95 

Alpha   0.05 0.05 0.05 0.05 0.05 

95% 

Confidence 

Interval 

  (2011.2, 

2028.5) 

(123.69,173.41) (20.07,33.57) (63.00,88.42) 

 

(1798.8,2522.4) 
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Table 10: OGA Parameters used in Experiments 

Parameter Value 

Population size 10 

Mutation rate 0.3 

Elitism size 1 

Crossover rate 0.8 

Tournament size 2 

  

 

Figure 15: OGA Best and Average Fitness Results 

 

Table 9 shows details of the 20 runs that are averaged in Figure 15. All runs converged to a final 

solution based on the OGA parameters listed in Table 10. These parameters were determined 

using preliminary experiments with analysis of variance (ANOVA) study of the interaction effect 
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required to repair the fault for the 20 runs is 148 generations, while the 95% confidence interval 

is between 123 and 173 generations. Thus, 95% of the time, a repair happens in less than 173 

generations. 

The runs produced very small deviation in the average fitness of the population; this is partly due 

to the small population size. The table also shows the timing information for fitness evaluation, 

PR time, and genetic operator overhead. Although we used PR, the configuration time was still 

the dominant factor in repair time. For example, the first run required 83.5 seconds of 

reconfiguration time for a total of 147 generations, which means that each generation required 

                seconds to configure a population of 10 individuals, resulting in 56.8 msec 

per bitfile. This is close to the theoretical value obtained by dividing the bitstream size by the 

Cable speed (                      ). This value accounts only for CBS transmission 

time, but in reality, there is a 95% probability that the configuration time will take 64 to 88 msec. 

Table 11 compares the edge detection evolutionary approach that was implemented in this work 

to three edge-detector evolution attempts [56, 62, 63]. The model-free fitness function provides 

an application-independent approach as compared to the complex fitness functions adopted by 

the others. The simplicity and straightforwardness of the discrepancy-based fitness function was 

another plus compared to the complicated fitness functions used by other approaches, though 

OGA aims to repair faulty edge-detectors rather than design them from scratch or from a 

preliminary template. SMART is the only approach that demonstrated edge-detector evolution on 

the actual hardware, other methods used software models to evaluate the fitness. 
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Table 11: Comparison between SMART and Other Edge Detection Evolution Techniques 

 

Hollingworth [63] Gudmundsson 

[56] 

Ross [62] RARS  

Application Generic images 

(fairly simple) 

Unfragmented, 

localized thin edges 
in medical images. 

Microscopic 

images from 
mineral samples. 

Generic (satellite 

images, uniform 
patterns, and so on). 

Methodology Exploit inherent 

parallelism in images  

Split image into 

linked sub-images. 

Maintain links 

between adjacent 
pixels. 

Implement a 

training stage 

(requires 

sampling 23.6% 
of image), 

followed by 

genetic 

programming. 

Evolve a subset of 

the Edge Detector 

(i.e., critical LUTs) 

to recover from 
faults.  

Fitness 

Evaluation 

Software model Software model  Software model  Intrinsic evolution 

on the hardware  

Evolutionary 

Algorithm 

Genetic 

programming. 

2D Genetic 

Algorithm with 

problem-specific 

operators. 

Genetic 

programming 

training (~25%) 

and evolution 

(~75%). 

Genetic algorithm. 

Genetic 

String 

Coding 

Four node functions 

(i.e., and, or, not, and 

xor) and eight 
terminal values for 

pixels around the 

evolved pixel. 

Edge map. Image 

pixels are masked 

with corresponding 
values in pixel map 

(i.e., 0: no edge, 1: 

edge). 

High-level 

functions (i.e., 

avg, min, max, 
and stdev). 

Terminal pixels 

and high-level 

ephemerals (i.e., 

gradient and 

intensity). 

Direct bitstream 

evolution. The 

solution coding is 
the actual bitfile. 

Fitness 

Function 

Pratt figure of merit 

(PFM) relative to 

fault-free Sobel edge 

detector 

Highly complex 

cost function based 

on five cost factors. 

Biased random 

sampling fitness 

evaluation for 

training. Program 

fitness is similar 

to PFM. 

Model-free, triplex 

discrepancy-based 

function. No 

application-specific 

a priori knowledge 

needed. 

Evolution 
Speed 

Partial solution in 
2,333 generations 

after 24 hours of 

evolution time. 

2,300 generations 
used for ring 

imaging; 300 

generations used 

for thin, well-

localized edges. 

75 generations, 
with 25% of 

images used for 

training. Very 

large population 

size of 2,000. 

148 generations, 
with low population 

size of 10. Evolved 

8 critical LUTs. 

Best Fitness Not reported 0.85 PFM with 

scaling factor of 

0.01. 

0.590 for Image 1; 

0.633 for Image 2. 

100% as compared 

to output from fault-

free Sobel edge 

detector. 
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5.3. The Relationship between RARS and the OGA 

RARS is the hardware organic component of SMART. Its primary purpose is masking transient 

faults that result from SEU in the user logic until the affected user register is re-written with a 

new value from subsequent operations. In addition, RARS helps maintaining correct functional 

output even in the case of soft faults in the configuration logic, until the scrubber re-downloads 

the CBS and corrects the upset. However, In the case of hard faults, RARS cease to be efficient 

as it does not have the mean to find alternative paths to circumvent faulty LUTs. Here comes the 

role of the OGA, which will be invoked by SMART‟s controller to realize solutions even in the 

case of hard faults. Still, RARS plays significant role in hard-fault repair by interacting with the 

OGA in the following ways: 

1. As the OGA is a guided heuristic search method that requires evaluating many 

individuals until a good solution is found, and because the OGA performs online fitness 

assessment, meaning that the evaluated individual is configured on the circuit and is 

evaluated using the runtime functional inputs that drive the application, RARS conceal 

the effect of evaluating suboptimal individuals by switching to TMR mode so that the 

erroneous outputs of the evaluated individuals are overruled by other fault-free FEs, just 

as if the evolved FE is affected by a transient fault. This will give the OGA enough time 

to evolve optimal individual without affecting the functional operation of the circuit. 

2. The OGA relies on the self-monitoring capabilities or RARS, which evaluates the 

evolved FE and presents its fitness value to the OGA engine. The OGA by itself cannot 
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assess the fitness of the intrinsically-evolved individual and thus needs to interact with 

RARS. 

To demonstrate this behavior, we applied a sequence of injected faults on RARS and monitored 

the performance of the application. Then, we superimposed OGA repair experiments taken under 

the same conditions to create a holistic experiment that exploits the two pieces together. The 

precondition for this sequence of events is that hard fault MTTR should be greater than the 

MTBF; this condition is almost always realized in space missions due to low MTTF in radiation-

hardened FPGA devices that employ epitaxial CMOS process technology to lessen the impact of 

energetic particles hitting the silicon. As seen in the figure, the number of faulty FEs in RARS 

increases from 1 to 2 to 3 by time, as there is no mechanism to repair hard faults. On the other 

hand, hard faults in the FEs are corrected as they occur to maintain a number of faulty FEs less 

than or equal to 1. With the help of RARS, this guarantees a steady 100% overall performance of 

the application, even though the faulty FEs are being evaluated online with performance levels 

down to 15% at some point of time. The non-OGA mode will eventually suffer degraded 

operation when there is two or more faulty FEs. With 3 Faulty FEs, the overall performance of 

RARS gets closer to 50%. The voter hits this performance level due to compensating fault 

scenarios in which the FEs do not fail in the same way and thus can still vote for the correct 

output in about 50% of the cases.  
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Figure 16: Holistic Experiment Demonstrating the Interaction between RARS and OGA  
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CHAPTER 6: AVAILABILITY, AREA, AND POWER EVALUATION 

METRCIS 

After successfully demonstrating the ability of SMART to self-repair simulated soft and hard 

faults in a real edge-detection use case, we intend to evaluate its availability, area usage, and 

energy consumption against standard and well-accepted evaluation metrics. The aim is to 

demonstrate and quantify the benefit of SMART over other conventional fault-tolerance 

approaches that rely on fixed redundancy and scrubbing. SMART has two main advantages: 

1. Capability of handling hard faults: Most fault-tolerance systems ignore hard fault 

handling because they are less frequent than soft ones. However, with NASA plans of 

executing space missions that last for many years, the likelihood of radiation-induced 

hard faults become higher and higher. Moreover, Xilinx reports that under stressful 

thermal conditions, aging-related faults can happen after 3 years only [37],  which makes 

it unwise to just ignore hard faults specially in multi-million mission-critical systems. 

SMART handles hard faults using an intrinsic evolutionary repair mechanism that have 

been actually implemented and shown to successfully repair simulated hard faults, as 

demonstrated in Section 5.2. 

2. Adapting the redundancy based on the mission reliability and resource requirements: 

TMR runs three times the user logic all the time to mask faults as they happen in very 

small portions of the mission duration. This attribute can be really costly, especially in 

term of energy consumption in very long space missions like deep space probes which 
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use limited power sources that need to last for long periods. SMART design philosophy 

is to provide adaptive level of redundancy by organically controlling which level to select 

at runtime based on the mission requirements and the environment parameters.  

Both advantages need to be properly evaluated using standard metrics. First, calculating MTTR 

of hard faults and soft faults is not enough to judge SMART‟s abilities to sustain realistic 

missions. Thus, based on published data and experimental measurements of SMART‟s 

prototype, we formulated nine semi-hypothetical space missions to use in evaluation. Then, 

CTMC was employed to simulate SMART‟s behavior in nine missions to calculate the overall 

availability of the system and the time it spends in each repair stage. Finally, the common 

convention in evaluation resource overhead against the industry-standard TMR approach is to 

analytically assume that TMR requires 3 times the FEs‟ overhead plus the voter‟s overhead. This 

however is not always the case due to the abundance of triplication optimization algorithms that 

can do better than that. Thus, we relied on a standard triplication tool called BL-TMR to generate 

28 benchmarks to be used in evaluating SMARTs overhead.  

6.1. Semi-Hypothetical Use Cases  

The first step to evaluate SMART‟s ability to sustain demanding long missions is to provide 

semi-hypothetical use cases, meaning that the use cases are based on publically available data 

but with the assumption that SMART architecture is used on board. Based on values reported in 

published work and experimental results attained by SMART prototype, and to produce a set of 

use cases (UCs) to use in examining SMARTs performance, we report the following: 
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6.1.1. Soft-Fault Rate  

CREME-96 simulator was used in [31] to calculate predicted Soft-Fault Rate (FS) per day for 

different 90nm device type. Assuming Low Earth Orbit (LEO) with altitude of 800 KM and 

inclination of 22.0 degree, the reported SEU rate per day is 7.56 for Xilinx XQR4VSX55 90nm 

FPGA.  

This device has 24,567 slices [10], each slice has two LUTs (G and F). Thus, the final rate for 

SEU/LUT in hours is                                   . This value will be multiplied 

by the number of LUTs in each FE to determine the soft fault rate in each FE per one simulation 

hour. 

6.1.2. Soft-Fault Repair Rate  

We calculated the Soft-Fault Repair Rate (RS) based on scrubbing speed in the SMART JTAG-

based prototype to account for the worst case scenario, which takes around 39.56 seconds to 

initialize the boundary scan chain, download the bitstream, readback/verify the bitstream, and 

evaluate the FE for a wide window of functional input to ensure the SUE is corrected in the CBS.  

Even if ICAP is used to expedite the scrubbing process, the assumed value is still valid as one 

can always expand the evaluation window for the repaired FE to gain higher statistical 

confidence that the fault is indeed repaired.  
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6.1.3. Hard-Fault Rate 

In this work, Hard-Fault Rate (FH) is the rate of TDDB failures, due to many claims that 

radiation-hardened Virtex devices are radiation-faults immune. Based on Xilinx Published data, 

[36] predicts 10% of the LUTs in a circuit to be affected by TDDB per year under the most 

stressful conditions of tox=1.2 nm, oxide area=0.25 mm
2
, at 125 C and 3.0 V. The static signal 

probability is assumed to be 1 because the LUT is a lookup table that has all gates turned on all 

the time.  

For the sake of proper factorial experimental design, we assumed 3 levels of FS based on the 

environmental conditions, where the fault rate under demanding conditions is assumed to be 

10%, under moderate conditions is 5%, and under favorable condition is 1%. These values are 

relative to the adjusted FE size that takes into consideration the resource decomposition rate such 

that the FE ends up with 600 LUT/FE at the end of the mission time. The same aging rate 

dictated the length of simulation time as the system cannot function for more than 10 years given 

a hard fault rate of 10% of the LUTs per year.  

6.1.4. Hard-Fault Repair Rate  

Similar to FH case, we calculate three levels of Hard-Fault Repair Rate (RH) to establish full 

3x3 factorial experiment, the three levels of RH were calculated based on simulation results for 

OGA with different level of hard fault impact on the LUTs, where a hard fault can impact one, 

two, or four bit(s) of the LUTs. The associated repair rates correspond to rapid, intermediate, and 

lengthy repairs, respectively. The number of generations and the repair time/rate are depicted in 
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Table 12 below. Conventional TMR and scrubbing techniques commonly found in the literature, 

which do not have hard-fault repair, will have RH equals to infinity. Plugging finite large 

numbers for RH in the CTMC model that we will demonstrate in the next section caused the 

system to stay in faulty states from the point it is hit with a hard-fault until the end of the 

mission, this is because there will be no way to bring the system back into healthy stats if no 

hard-fault repair techniques are available. Thus, in CTMC analysis, we assumed the quick, 

intermediate, and lengthy RH rates to demonstrate the impact of finite changes of MTTR of 

hard-faults on the overall system behavior. 

Table 12: OGA Results for Various Numbers of Hard Faults 

Number of Faults 1 2 4 

Generations 3962 31352 63307 

MTTR (hours) 0.704415 5.573703111 11.25462 

RH (hours) 1.4196177 0.17941393 0.0888524 

The nine use cases and the simulation parameters are summarized in Table 13 below. The 

resulting 3x3 experiments represent nine semi-hypothetical scenarios for different operating 

conditions. RS and FS values are fixed for all 9 UCs; the variation that is seen in the table is due 

to the different number of LUTs required for different experiments to accommodate the 

decomposition rate of the LUTs. Only FH and RH are varied across the experiments as they 

represent the main focus of this work and demonstrate the true contribution of SMART over 

conventional repair techniques. The simulation time assumes that each year has 10,000 hours. 
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 Table 13: Fault and Repair Values of the Nine Use Cases 

UC # Description 
FH 

(per hour) 

FS 

(per hour) 

RS 

(per hour) 

RH 

(per hour) 

Simulation 

Time 

(hours) 

1 
Demanding conditions 

Rapid repair 
0.065753425 0.038466235 90.91 1.4196177 10,000 

2 
Moderate conditions 

Rapid repair 
0.006027397 0.007052143 90.91 1.4196177 20,000 

3 
Favorable Conditions 

Rapid Repair 
0.000723288 0.004231286 90.91 1.4196177 60,000 

4 
Demanding conditions 

Lengthy repair 
0.065753425 0.038466235 90.91 0.0888524 10,000 

5 
Moderate conditions 

Lengthy repair 
0.006027397 0.007052143 90.91 0.0888524 20,000 

6 
Favorable Conditions 

Lengthy Repair 
0.000723288 0.004231286 90.91 0.0888524 60,000 

7 
Demanding conditions 

Intermediate Repair 
0.065753425 0.038466235 90.91 0.17941393 10,000 

8 
Moderate conditions 

Intermediate Repair 
0.006027397 0.007052143 90.91 0.17941393 20,000 

9 
Favorable Conditions 

Intermediate Repair 
0.000723288 0.004231286 90.91 0.17941393 60,000 

6.2. Availability Analysis Using Markov Models 

The first evaluation metric that we present to qualify SMART‟s benefit over conventional TMR 

is reliability modeling using Continuous-time Markov Chains (CTMC).  CTMC is a stochastic 

modeling technique to predict a set of possible outcomes based on state-to-state transition 

probabilities.  The model has been recommended by IEC 61508 Standard for Functional Safety 

of Electrical/Electronic/Programmable Electronic Safety-Related Systems [101] as a way to 

analyze failure modes of electronic devices. CTMC relies on a state-transition diagram that 

depicts a state space of the chain, which is defined by all the states that the system can traverse 

during its operation, along with the possible transitions between the states with each transition 

being characterized by a transition probability. Based on these states and transitions, the model 
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can be solved analytically or simulated experimentally to calculate the probability of being in 

certain state based on the previous state. The steady-state solution can help quantifying the 

probability of being in a certain state on the long run, which can be very useful in reliability and 

safety modeling. Moreover, Monte Carlo simulation of the CTMC can predict the expected 

transitions that the system is likely to undergo with time. 

We intend to perform a comparative study using Markov tools to quantify the effect of having 

hard-fault repair in mission critical applications. The system that we model is RARS, which has 

three instances of the user applications and is capable of switching from duplex to triplex 

configuration, and vice versa. The resulting Markov state transition diagram is shown in Figure 

17. The state space consists of 10 different states, each represented by a circle in the diagram, 

indicating the state number (Sn), the state condition (Good or Faulty), and the number of soft and 

hard faulty FE‟s in that state, respectively. For instance, state S8 is said to be faulty because it 

has all FE‟s faulty, two of which have soft faults and one has hard fault. The states belong to 

vertical lanes that denote the total number of faulty FEs in RARS. 

The possible transitions between the states are characterized by one of the following rates: 

1. FS: Soft fault rate, denoting the SEU rate in the system  

2. RS: Soft repair rate, this is the time needed to scrub the CBS to restore the correct value 

of faulty LUTs 

3. FH: Hard fault rate, which in this work signifies the TDDB fault rate 
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4. RH: Hard repair rate, this is the time that the OGA needs to repair faulty FEs. 
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Figure 17: Markov State-Transition Diagram of RARS 

The system starts from an initial state S1, which has 0 faulty FEs and is in the good state. A soft 

fault can occur with a rate of FS to put the system in S2 (1,0), or a hard fault can occur with a 

rate of FH to put the system in state S3 (0,1). RARS is expected to stay error-free even with the 

existence of one faulty FE, at the expense of switching from the low power and area duplex 

mode to the high power and area triplex mode. Thus, S1 is not different from S2 and S3 in term 

of availability, but does consume less area and power. For all Sn (n>3), RARS will be 
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unavailable and will also consume high area and power similar to S2 and S3 because the triplex 

configuration is needed during repair. Repairs, whether they are RS or RH, will move the system 

from faulty states to healthier ones. 

6.2.1. Markov Configuration 

The black box view of the CTMC experiment is depicted in Figure 18 below. The inputs are 

already explained in the previous sections; they will be varied based on the use case under study 

as shown in Table 13. The first two outputs (Steady-State Availability and Steady-State Time in 

State) do not actually require running any simulation; they can be analytically calculated by 

solving a set of differential equations of the matrix representation of the CTMC. These steady-

state solutions of the CTMC can serve as an indication of the long-term behavior of the model, 

but they cannot be completely relied-upon in real engineering missions that run for finite periods 

of time. Thus, we extended the CTMC work to include Monte Carlos simulation for finite 

periods of operation with sufficient statistical significance to calculate the bottom three outputs 

of the model. 

CTMC

FS

RS

FH

RH

Mission Time

Steady-State Availability

Steady-State Time in State

Cumulative Time in State

Cumulative uptime/downtime

Availability = f(T, FS ,RS ,FH ,RH)

 

Figure 18: Functional Model of the CTMC Experiments 
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To perform these simulations, we used a publically available operation research tool based on 

Excel and VBA [102]. The tool provides an ample of features to perform various computations 

on a CTMC; it includes a steady-state Markov solver, Monte Carlo simulator, and other useful 

tools. The excel tool, as is, does not support running multiple simulations and reporting statistical 

significance of the results. Therefore, we developed a VBA wrapper around the Monte Carlo 

simulation module to aid in running multiple experiments for statistical significance purposes. 

The wrapper executes multiple experiments and then processes the large amount of generated 

data to calculate fixed-point time intervals for all runs based on a weighted average principle. 

The goal is to unify all Monte Carlos runs to fixed-time units to be able to average runs and 

provide confidence levels of the experiments. This post-processing step allowed the simulator to 

execute its random time strides and thus enabled it to switch to various states based on the actual 

transition probabilities.  

6.2.2. Availability Evaluation Metric Results 

Each use case was simulated 20 times to provide enough statistical significance. FH and RH are 

physically independent as the hard fault arrival rate is an uncontrollable event for SMART, 

whereas the repair mechanism is executed irrespective to the fault arrival assuming a single fault 

scenario and MTTR<MTTF. Consequently, no ANOVA were required to analyze the interaction 

effect of the experiment parameters. Table 14 below reports the 20-runs average of the 

cumulative time in each state for all the UCs. The 20-runs produced low standard deviation 

values for all calculated averages. To demonstrate the statistical significance of the results, we 

provide all 95% confidence intervals (alpha=0.05) of the measured averages in Table 15. 
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Table 14: Average of Cumulative Time in State for the Nine Use Cases 

S UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 

1 86617.1 197416 598992 11119 162040 585007 31157 180556 592712 

2 110.433 45.2201 83.5574 14.3668 37.6925 81.7908 39.7021 42.2014 83.0391 

3 12015.3 2516.95 923.3729 24848.4 33194.18 14687.45 34308.25 18107.62 7144.62 

4 0.09638 0.01509 
0.004101

5 
0.01409 0.003113 

0.007519

5 

0.049475

1 

0.000390

6 
0.01094 

5 10.3220 0.41594 0.090234 21.1690 5.169533 1.313137 29.26737 2.807783 0.63295 

6 1096.85 20.7712 0.783642 36652.5 4428.781 221.4332 25121.46 1251.339 58.3688 

7 0 0 0 0 0 0 0 0 0 

8 0.09406 0.01069 0.0039 0.02598 0.00119 0.00468 0.04846 0.00312 0.00996 

9 0.44219 0.00098 0 15.3885 0.323547 0.012548 10.60557 0.105731 0.00234 

1

0 
49.3238 0.09766 0 27229.0 293.4965 0.722656 9233.248 39.06087 1.36357 

A 0.98842 0.999893 0.999998 0.36018 0.976361 0.999627 0.655709 0.993533 
0.99989

9 

Table 15: Standard Error (alpha=0.05) of Cumulative Time in State for the Nine Use Cases 

S UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 

1 54.0413 25.63603 20.806927 128.689 458.6283 219.3030 184.8870 177.1719 

108.406

1 

2 0.5206 0.4011 0.7582 0.2728 0.3856 0.6317 0.4579 0.4355 0.7836 

3 47.7744 26.0467 20.9827 146.946 346.58 225.428 113.355 167.343 109.964 

4 0.01364 0.008931 0.004485 0.00643 0.003586 0.006098 0.014215 0.000765 0.00592 

5 0.21827 0.03558 0.02292 0.32728 0.17359 0.11659 0.23309 0.10955 0.05251 

6 15.0511 2.201358 0.5452965 188.010 138.15027 26.15954 159.7461 55.86048 10.7571 

7 0 0 0 0 0 0 0 0 0 

8 0.0159 0.0062 0.0041 0.01 0.0016 0.0064 0.0102 0.0037 0.0066 

9 0.04699 0.00191 0 0.28084 0.03692 0.00982 0.14724 0.02415 0.00316 

1
0 5.32583 0.191403 0 226.063 36.234844 1.169738 135.2700 10.09050 2.25778 

A 
1.767 
E-04 

1.087 
E-05 

9.2 
E-07 

2.1974 
E-03 

8.072  
E-04 

4.352 
E-05 

2.1125 
E-03 

2.728 
E-04 

1.746 
E-05 

Table 14 can be of great importance in pre-deployment preparations as it can tell the system 

designers where to focus in order to handle the common case scenarios. For instance, none of the 

UCs has entered S7 (all 3 modules hit by SEU) due to the very low MTTR compared to the high 
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MTTF in the soft fault case. This analysis can impact design decisions such as the interfacing 

between the scrubber and the FEs or the number of ports in the reconfiguration ROM, as the 

system is highly unlikely to scrub three FEs at the same time. Similar conclusions can be drawn 

about S9 and S10 for UC3, and so on.  

The availability of the nine UCs are reported in the last column of Table 14, it is clear that the 

demanding conditions can greatly impact the system availability to levels below the accepted 

state-of-the-art standards (UC4: A=36%, UC7: A=65.6%). A mission operating in such harsh 

conditions must be equipped with quick repair mechanisms to be able to process the rapid arrival 

rate, and thus be able to produce relatively higher availability rates such as UC1: A=98.8%.  

The impact of lengthy repair is also demonstrated in Table 14. A rapid repair will move the 

system from 98.6% availability under worst conditions, to three nines under moderate 

conditions, to 6 nines under favorable conditions. This difference, yet apparently negligible at a 

100% scale, can make the difference in mission-critical applications that require the highest 

possible availability levels, especially when the mission is long enough to make these ones of 

tenths grow into hundreds of hours of system downtimes, as we will show shortly. Similarly, the 

impact of mission conditions on the performance of a particular fault-tolerance approach is great; 

such impact can be demonstrated by scrutinizing the results of UC 4, 5, and 6 which all utilize 

lengthy repair mechanisms. The mission conditions can elevate the system availability from 36% 

to 99.9%, making a huge impact on the mission success rate. 
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Table 14 only shows the cumulative time at the end of the simulation. To further explain the 

behavior of the system, we plot the cumulative downtime of each use case versus the mission 

time.  The UCs need to be grouped by FH because the hard fault rate will impact the maximum 

mission time. So, under the most demanding conditions of 10% of the LUT impacted by hard 

faults each year, the system can live for 10 years maximum, after which all LUTs will be 

impacted by faults.  

Figure 19 shows the cumulative downtime of the system with time. The first two figures, 

corresponding to the demanding and moderate conditions, are plotted on logarithmic Y-axis due 

to the huge divergence in cumulative downtime of quick, moderate, and lengthy repairs. For 

instance Figure 19.A shows that the mission that is equipped with quick repair mechanism 

resulted in 1,000 hours of system downtime, whereas a system with lengthy repair resulted in 

more than 60,000 hours of downtime, confirming the importance of efficient hard-fault repairs in 

SMART. 

On the other hand, Figure 19.C depicts the favorable mission conditions, it was plotted on a liner 

scale because of the relatively marginal difference between the use cases with the rapid and 

lengthy repairs. Even after running for 60 years, the system with the lengthy repair only 

cumulated approximately 225 hours of downtime. One can argue that in such favorable 

conditions a hard-fault repair mechanism would not be required, but this is really dependent on 

the mission type. If this is an imagining application aiming to capture explorative images then we 

might agree, but if the FE is designed for a more critical application, such as a power controller 
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or security-critical encryption circuit, then 225 hours, a little more than 9 days, can be really a 

significant period of time that can jeopardize the mission success rate. 
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C: Favorable Conditions 

 

Figure 19: Cumulative Downtime under the Nine Use Cases 

 

Figure 20 shows the availability of the nine use cases throughout the mission life time. The 

impact of the hard-fault rate (mission conditions) on the system availability is readily 

demonstrated. The system with lengthy repair shows A<0.4 under demanding conditions (Figure 

20.A), close to 0.98 under moderate conditions (Figure 20.B), and 0.9996 under favorable 

conditions (Figure 20.C). The availability of the use cases is also affected by the repair time as 

shown in the three figures, especially when the fault rate is high to push RARS toward faulty 

states without a repair mechanism with an MTTR that is low enough to bring it back to the 

healthy states. 
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A: Demanding Condition 
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C: Favorable Conditions 

 

Figure 20: Availability under the Nine Use Cases 
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exploitation of the reconfiguration property of the FPGA to downgrade the redundancy level to 

duplex, with discrepancy monitoring to detect faults. A less desirable stats of the system in seen 

in S2 and S3, where the system is still available via triplex configuration of RARS, yet consume 

more power and area than S1, availability in these two states is exactly equal to S1 availability, 

but the system is less reliable as it cannot handle any further faulty FEs. The remaining states 

from S4 to S10 represent the least desirable system condition where it expends the triplex power 

and area yet is not sufficiently available. A design goal of SMART is to minimize the time spent 

in S4 to S10. 

 

 

Figure 21: Percentage of Time in Each State under the Nine Use Cases 
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Another important conclusion that can be drawn from Figure 21 is that the faulty states that are 

actually traversed throughout the mission lifetime are the ones that comprise hard faults, which 

are S3, S6, and S10. This can be attributed to the high MTTR for hard faults compared to soft 

faults. The states that feature soft faults are visibly negligible (though they were actually 

traversed), because SMART is able to exit them in very short time by applying PR-based 

scrubbing. In fact, Table 14 shows that S7 which represents three soft-faulty FEs was never 

visited even with very long simulation times (60 years), a clear indication that conventional 

repair techniques can efficiently handle soft faults, steering the attention to hard-fault repair as a 

vital requirement for autonomous fault-handling in mission critical systems running in harsh 

environments. 

Finally, to quantify the aggregation of the states of RARS, Figure 22 depicts the percentage of 

time spent on each of the operation phases under the nine use cases. (A) with lower power and 

area represents S1, (A) with high power and area combines S2 and S3, whereas (1-A) 

corresponds to states S4-S10. UC 3 with favorable conditions and rapid repair has almost 

negligible (1-A) presence, UCs 5 and 7 with demanding conditions and lengthy and intermediate 

repair, respectively, are the ones that spend time in (1-A) more than in (A), other use cases show 

mixed behaviors that correlates to the reaction time to faults and their arrival rates. Such figure 

can be constructed based on the mission expected conditions and the fault-tolerance system 

prototype results to predict the availability and the overhead associated with a particular mission, 

such level of prediction and control is greatly desired in multi-million missions that are required 

to maintain their objectives according  to high standards.  
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Figure 22: Operational Phases Distribution under the Nine Use Cases 
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Referring to the CTMC experiment in the previous section, we define Time in State 1 (TS1) as the 

period of time in which RARS is in S1 and thus offers power and area saving over TMR while 

providing the same level of availability. The component difference between RARS and TMR is 

shown in Figure 23 below. Operating in S1 (Duplex) will save the overhead of one FE and one 

Voter, but will still consume extra overhead for the AE component. Running in the triplex mode 

(1- TS1) will cause RARS to expend more power and area than TMR because of the added 

overhead of the AE, which is not required in a conventional TMR. 
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Figure 23: Component Differences between RARS and TMR 

Let the quantities of interest be denoted as shown in Table 16: 

Table 16: Overhead Analysis Quantities Definition 

Term Definition 

OFE Overhead of one FE 

OAE Overhead of AE (without the voter component) 

OV Overhead of the voter 

OTMR Overhead of the TMR 

ORARS Overhead of RARS 

ODX Overhead of RARS when it runs the duplex mode 

OTX Overhead of RARS when it runs the triplex mode 

OS Overhead saving by using RARS over conventional TMR 
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The Overhead of RARS is a weighted average controlled by TS1: 

                           (1)  

The duplex overhead is two times the FE overhead plus the AE overhead, whereas the triplex 

overhead is three times the FE overhead plus the AE and the voters overhead: 

              (2)  

 

                  (3)  

 

 

The goal is to calculate the overhead savings of RARS compared to TMR.  

 

   
          

    
 (4)  

 

6.3.1. Experimental Setup 

We have selected power and area as the two overhead metrics of interest in this work due to their 

quantifiable nature and direct impact on mission resources, and then we have compared RARS to 

various TMR configurations in term of the expected dynamic power consumption and the area 

requirements. We employed XPA [19] to measure the dynamic power consumption for the 

different system components. The XPA is part of the Xilinx ISE design suite and provides a way 



119 

to analyze the power profile of post-PAR designs, which is an advantage over the other 

alternative tool, Xilinx Power Estimators (XPE) [19], which relies only on mapping reports and 

thus ignores the details of the placement and routing in estimating power consumption. As for 

area requirement, the Xilinx flow generates the PAR report that includes a detailed description of 

the number of LUTs and other FPGA constructs that the design uses.  

The power and area results for the edge detection application that we developed were extracted 

experimentally from the XPA and the PAR reports. As for the TMR benchmark results that we 

intend to compare against, we have employed the automated design triplication tool, BL-TMR 

[18], which is a JAVA-based open-source tool that handles the generation of redundancy in 

FPGA designs in order to improve system availability. 

The BL-TMR tool is an EDIF-based one, which means that its primary input is the EDIF file, 

which is a non vendor-specific format to represent and exchange netlists and schematics of 

electronic circuits. EDIF generation is embedded in the Xilinx flow using the NGD2EDIF tool 

that can generate EDIF representation of the design from the Native Generic Database (NGD) 

file. The resulting EDIF file can undergo the triplication process of BL-TMR to generate the 

triplicated EDIF, which can be translated back to the Xilinx process file formats using the 

EDIF2NGD tool. This custom triplication flow is depicted in Figure 24 below, where the normal 

Xilinx flow is interrupted right after it generates the NGD file in order to apply the triplication 

using the BL-TMR redundancy generation flow. 
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Figure 24: Custom TMR-Insertion Flow Based on Integrated BL-TMR and Xilinx Flows 

The BL-TMR redundancy generation flow starts by executing the JAVA JEdifBuild tool, which 

takes the EDIF file as converted by NGD2EDIF and generates an intermediate jedif file that will 

be used throughout the redundancy injection process. Then, the jedif file is analyzed using the 

JEdifAnalyze tool in order to learn the Input Output Buffers (IOBs) and the feedback paths of the 

design, the resulting analysis is stored in a circuit description file (cdesc) for further use by the 

tool.  

Then, the JEdifNMRSelection tool is executed to select which parts of the user circuit to 

replicate. This tool is run in passes, each pass aims to perform further replication selection steps, 

including the redundancy degree (duplication or triplication) or the replication options (clocks, 



121 

IO, instances, etc…). The output of this tool is written to a replication description file (.rdesc) for 

further processing by the tool.  

After that, the JEdifVoterSelection tool is invoked to decide the locations of the voters that will 

be inserted to accomplish triplication, using different voter insertion algorithm. Finally, the 

JEdifNMR tool is invoked to actually triplicate the design based on the specified options in all 

the previous steps. The triplicated design is saved into an EDIF file and can be ported back to the 

Xilinx flow using the EDIF2NGD tool. 

In order to establish enough confidence when comparing RARS to other triplication approaches, 

we employed various triplication settings along with various voter insertion algorithms. The 

following list depicts the TMR configurations that will be used in the comparison. 

Voter Insertion location: 

1. Triplicate Logic (TL): Only internal logic, including clock signals, will be triplicated, 

without triplication of the IOs  

2. Triplicate Logic and Input ports (TLI): The logic and the input ports will be triplicated 

3. Triplicate Logic and Output ports (TLO): the logic and the output ports will be triplicated 

4. Triplicate Logic, Input, and Output ports (TLIO): Triplicates all logic, input, and output 

signals. 
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Voter Insertion Algorithm: 

1. Voters before Every Flip-Flop (FF) Algorithm: This algorithm will place a voter before 

the data input of every FF. The algorithm is very simple and does not require heavy 

analysis of the design, it guarantees that only one voter will be inserted in any timing 

path, reducing the negative timing impact of the triplication [18] 

2. Voters after Every FF Algorithm: Similar to the previous algorithm, but inserts the voter 

after the FF. This has produced the best timing results out of 15 benchmark designs [18] 

3. Basic Strongly Connected Components (SCC) Decomposition Algorithm: Applies 

Kosaraju algorithm [18] to remove all feedbacks from the SCC. Runs quickly but 

produces bad timing results compared to the other algorithms because it allows more than 

one voter in the timing path. 

4. Highest Fanout SCC Decomposition Algorithm: Reduces the number of voters using a 

heuristic search to find nets with high fanout as candidate places to insert voters. 

5. Highest FF Fanout SCC Decomposition Algorithm: Combines 4 and 2, it guarantees that 

only one highest fanout voter is inserted per timing path, by inserting it after the FF 

outputs, resulting in cutting more voters and thus protecting the timing paths and saving 

more area.    
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6. Highest FF Fanin Input: Finds the highest fan-in FF in the SCC that is a legal voter 

location. 

7. Highest FF Fanin Output: Same as 6, but inserts the voter after the identified FF. 

This has resulted in         triplicated designs, shown in Table 17, as benchmarks to be 

used in the comparison against RARS. 

6.3.2. Experimental Results 

The BL-TMR tool was run 28 times to generate triplicated designs of the FEs with the 

specification listed in Table 17. The resulting designs were first analyzed using the Xilinx PAR 

reporting tools to calculate the area overhead of each benchmark. The full results are shown in 

Table 18. We rely on the “Total equivalent gate count” as generated by the Xilinx tool to be the 

area overhead metric in this experiment. Benchmark number 5 (Highest Flip-Flop Fanout SCC 

Decomposition, Logic Only) resulted in the least number of gates, meaning it is the top design in 

the area category out of the 28 benchmarks. 

The expected used area in RARS is a function of TS1, ODX, and OTX, as shown in Eq.1. TS1 will 

be first theoretically set to different values of interest to analyze the behavior of RARS as an 

area-saver redundancy-based fault tolerance method. It will be later set to the values reported 

under the nine UCs that we presented in the CTMC experiments in the previous section to 

actually calculate RARS area requirements under those conditions.  
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But to start with, ODX and OTX must be calculated by synthesizing the sub-modules of RARS 

independently and generating the Xilinx PAR reports accordingly. The results of the FE, AE, and 

Voter areas are shown in Table 19. 

Table 17: 28 BL-TMR Triplicated Edge Detector Benchmarks 

Benchmark 

Triplication 

Location Voter Insertion Algorithm 

1 

logic only 

 

Before Every Flip-Flop 

2 After Every Flip-Flop 

3 Basic Strongly Connected Components (SCC) Decomposition 

4 Highest Fanout SCC Decomposition 

5 Highest Flip-Flop Fanout SCC Decomposition 

6 Highest Flip-Flop Fanin Input 

7 Highest Flip-Flop Fanin Output 

8 

logic and input 

ports 

 

Before Every Flip-Flop 

9 After Every Flip-Flop 

10 Basic Strongly Connected Components (SCC) Decomposition 

11 Highest Fanout SCC Decomposition 

12 Highest Flip-Flop Fanout SCC Decomposition 

13 Highest Flip-Flop Fanin Input 

14 Highest Flip-Flop Fanin Output 

15 

logic and output 

ports 

 

Before Every Flip-Flop 

16 After Every Flip-Flop 

17 Basic Strongly Connected Components (SCC) Decomposition 

18 Highest Fanout SCC Decomposition 

19 Highest Flip-Flop Fanout SCC Decomposition 

20 Highest Flip-Flop Fanin Input 

21 Highest Flip-Flop Fanin Output 

22 

logic, input, and 

output ports 
 

Before Every Flip-Flop 

23 After Every Flip-Flop 

24 Basic Strongly Connected Components (SCC) Decomposition 

25 Highest Fanout SCC Decomposition 

26 Highest Flip-Flop Fanout SCC Decomposition 

27 Highest Flip-Flop Fanin Input 

28 Highest Flip-Flop Fanin Output 
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Table 18: Area Results of the Twenty Eight Benchmarks 

Benchmark Slices 

4 

input 

LUTs 

Logic 4 

input LUTs 

Route-thru 4 

input LUTs 

bonded 

IOBs 
BUFG 

Total equivalent 

gate count 

1 1,294 2,148 1,878 270 63 1 20,629 

2 1,320 2,144 1,991 153 63 1 21,307 

3 1319 2148 1932 216 63 1 20,953 

4 1237 2006 1787 219 63 1 20,083 

5 1182 1925 1769 156 63 1 19,975 

6 1260 2079 1809 270 63 1 20,215 

7 1185 1928 1772 156 63 1 19,993 

8 1297 2173 1903 270 107 3 20,779 

9 1323 2145 1992 153 107 3 21,313 

10 1323 2149 1933 216 107 3 20,959 

11 1240 2007 1788 219 107 3 20,089 

12 1185 1926 1770 156 107 3 19,981 

13 1264 2080 1810 270 107 3 20,221 

14 1188 1929 1773 156 107 3 19,999 

15 1343 2229 1959 270 145 1 21,771 

16 1,416 2,289 2,136 153 145 1 22,833 

17 1,357 2,109 1,893 216 145 1 21,375 

18 1,256 1,980 1,761 219 145 1 20,583 

19 1,200 1,899 1,743 156 145 1 20,475 

20 1,304 2,037 1,767 270 145 1 20,619 

21 1,203 1,902 1,746 156 145 1 20,493 

22 1,370 2,253 1,983 270 189 3 21,915 

23 1,434 2,289 2,136 153 189 3 22,833 

24 1,388 2,109 1,893 216 189 3 21,375 

25 1,275 1,980 1,761 219 189 3 20,583 

26 1,218 1,899 1,743 156 189 3 20,475 

27 1,339 2,037 1,767 270 189 3 20,619 

28 1,221 1,902 1,746 156 189 3 20,493 
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Table 19: Area Results of RARS Sub-Modules 

 

Substituting the values in Eq.2 and Eq.3, ADX=15,115 gates, ATX=22,793 gates. ARARS can be 

calculated for any given TS1.  Table 20 shows ARARS for various TS1 and the saving over 

benchmark 5 that has the smallest area out of the 28 benchmarks. 

Table 20: RARS Area Savings over Benchamrk Five for Different TS1 Values 

TS1 

ARARS  

(in Gates) 

Area Saving of RARS  

over Benchmark 5 

0% 22793 -14.11% 

1% 22716.22 -13.72% 

10% 22025.2 -10.26% 

20% 21257.4 -6.42% 

30% 20489.6 -2.58% 

36% 20028.92 -0.27% 

37% 19952.14 0.11% 

40% 19721.8 1.27% 

50% 18954 5.11% 

60% 18186.2 8.96% 

70% 17418.4 12.80% 

80% 16650.6 16.64% 

90% 15882.8 20.49% 

98% 15268.56 23.56% 

99% 15191.78 23.95% 

100% 15115 24.33% 

 

Module Slices 

4 

input 

LUTs 

Logic 4 input 

LUTs 

route-thru 4 

input LUTs 

bonded 

IOBs 

BUF

Gs 

Total 

equivalent 

gate count 

One FE 348 616 526 90 64 1 6,495 

AE 

(without 

Voter) 

86 151 136 15 210 2 2,125 

Voter 71 107 107 0 169 1 1,183 
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One can see that the TS1 threshold after which RARS becomes beneficial in term of area is 37%. 

Missions that run 90% of the time in the Duplex mode (S1) can benefit from 20% area savings 

for the design example of the edge detector. To generalize the area saving potential over a 

spectrum of TS1values, we depict the relation between the total equivalent gate count of RARS 

and TS1. On top of that, we overlay the 28 triplication benchmarks area results on a secondary x-

axis, the results show that RARS will become more beneficial than all the TMR benchmarks 

when TS1 is approximately greater than 40%.  

 

 

Figure 25: RARS Area Overhead Relative to Twenty Eight Benchmarks 
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Next, the XPA tool was used to analyze the dynamic power consumption of the same 28 

benchmark designs. From the results that are reported in Table 21, it was noted that the dynamic 

power consumption is greatly affected by the presence of triplicated IO‟s, and thus the results of 

TLIO sets were only considered to select the power winner design to be fair to RARS, which 

triplicates the input and output ports. Therefore, the winning benchmark in the power category is 

benchmark 22 with 166.32 mWatt. 

 

Table 21: Power Results (in mWatt) for the Twenty Eight Benchmarks 

Benchmark Clock Input Output Logic Signals Total 

1 10.96 15.59 31.15 2.48 5.24 65.42 

2 11.19 15.59 31.15 1.23 4.19 63.35 

3 13.43 15.59 31.15 2.36 5.09 67.62 

4 12.14 15.59 31.15 1.99 4.55 65.42 

5 12.77 15.59 31.15 1.94 5.13 66.58 

6 12.49 15.59 31.15 2.45 5.26 66.94 

7 11.46 15.59 31.15 1.77 5.01 64.98 

8 21.01 46.76 31.15 3.89 3.39 106.2 

9 23.1 46.76 31.15 2.1 5.47 108.58 

10 19.25 46.76 31.15 3.22 4.87 105.25 

11 18.6 46.76 31.15 2.86 4.6 103.97 

12 18.24 46.76 31.15 2.8 5.54 104.49 

13 19.13 46.76 31.15 3.32 5.46 105.82 

14 16.48 46.76 31.15 2.63 5.21 102.23 

15 14.88 15.59 93.45 2.63 6.03 132.58 

16 12.07 15.59 93.45 1.67 4.26 127.04 

17 13.64 15.59 93.45 2.38 5.07 130.13 

18 14.01 15.59 93.45 2.03 4.83 129.91 

19 11.24 15.59 93.45 1.97 4.98 127.23 

20 13.96 15.59 93.45 2.47 5.07 130.54 

21 13.15 15.59 93.45 1.8 5.3 129.29 

22 18.89 46.76 93.45 3.05 4.17 166.32 

23 27 46.76 93.45 2.53 6.26 176 

24 21.7 46.76 93.45 3.24 5.56 170.71 

25 19.28 46.76 93.45 2.89 5.25 167.63 

26 21.7 46.76 93.45 2.84 5.83 170.58 

27 22.86 46.76 93.45 3.33 5.8 172.2 

28 18.95 46.76 93.45 2.67ss 5.7 167.53 
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Again, the same values were calculated for RARS sub-modules by synthesizing them 

independently and applying the XPA analysis to the resulting designs. The results, shown in 

Table 22, indicates that the majority of the dynamic power is consumed by the FE elements due 

to the amount of logic used in it compared to the AE and the Voter. The Voter and the AE 

consumed relatively equal amounts of dynamic power. 

Table 22: Power Results for RARS Sub-Modules 

Module Clock Input Output Logic Signals Total 

FE 6.2 15.59 31.15 1.11 1.69 55.74 

Voter 4.38 0 0 0.52 0.12 5.02 

AE (without Voter) 4.77 0 0 0.6 0.37 5.74 

 

Applying Eq.2 and Eq.3, we calculate PDX=117.22 mWatts and PTX=177.98 mWatts. PRARS can 

be calculated for any given TS1.  Table 23 shows PRARS for selected TS1 values and the power 

savings over benchmark 22 that consumed the least dynamic power in the eight TLIO 

benchmarks. The cutoff value for the power case is 20%, so any mission that stays in S1 for 

more than one fifth of the time will benefit from RARS to reduce power consumption while 

maintaining the same availability levels compared to the conventional TMR. 
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Table 23: RARS Power Savings over Design Twenty Two for Different TS1 Values 

TS1 Power 

Power Saving of RARS  

over Benchmark 22 

0% 177.98 -7.01% 

1% 177.3724 -6.65% 

10% 171.904 -3.36% 

19% 166.4356 -0.07% 

20% 165.828 0.30% 

30% 159.752 3.95% 

40% 153.676 7.60% 

50% 147.6 11.26% 

60% 141.524 14.91% 

70% 135.448 18.56% 

80% 129.372 22.22% 

90% 123.296 25.87% 

98% 118.4352 28.79% 

99% 117.8276 29.16% 

100% 117.22 29.52% 

 

Plotting the Power in mWatts versus TS1 will show linear savings with increased duplex time. In 

comparison with the 28 benchmarks, RARS can still be beneficial for power savings unless TLI 

or TL are used, but this would decrease the reliability of the design because not all IOBs are 

triplicated, introducing many failure points to the system.  
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Figure 26: RARS Power Overhead Relative to Twenty Eight Benchmarks 

 

Figure 27 depicts the percentage of power and area savings of RARS over the top two 

benchmarks, 5 and 22, except for the power of design 5 which does not include IOBs and thus 

produced very low power consumption at the expense of less reliability. All the three lines enter 

the positive region of the Y axis at TS1>37%. If the power is the main concern of the mission 

then any TS1>20% will mean that RARS will be more beneficial than any BL-TMR generated 

designs. 
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Figure 27: RARS Area and Power Savings Relative to the Top Two Benchmarks 

 

Note that the previous power analysis ignores the impact of the power consumption of the 

reconfiguration process. The power analysis aims to compare between the conventional TMR 

and the RARS approaches. This comparison only covers the organic hardware behavior of 

RARS; it does not actually include scrubbing for repairing soft faults or GA for repairing hard 

faults. We expect both TMR and RARS to follow the same reconfiguration pattern if they are 

designed to go into the scrubbing or the GA phases. In fact, RARS implement a TMR 

configuration when running the GA in order to use the discrepancy-based fitness evaluation 

feature. Thus, both approaches will be affected in the same fashion if the GA reconfiguration 

power consumption is considered.  
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As for the RARS Duplex-to-Triplex switching power, neglecting the reconfiguration process 

power consumption can only be acceptable if the configuration time is very low compared to the 

application running time, which can be achieved by two ways. 

First, by reducing the bitstream size through the use of PR rather than the full configuration 

approach. As we demonstrated in the experimental section, the bitstream size was reduced using 

the PR flow to 30.61 KB compared to 1.633 MB for the full static bitstream. This reduction in 

the CBS size led to decreasing the reconfiguration time to 1.8% of the original value, which 

should translate into comparable power saving during the reconfiguration process. 

Second, the configuration time can be vastly reduced by relying on the much-faster ICAP instead 

of the external configuration ports such as the JTAG. As mentioned previously, and in spite of 

the usage of the parallel Cable IV in the experimental setup, the intended deployment platform 

which will utilize the PowerPC processor will make use of the ICAP for all reconfigurations. The 

ICAP can reach download speed of up to 400MB/Sec compared to the 5MB/Sec for the parallel 

Cable IV that we used in experimental setup. The problem that faces most designers is that this 

speed is bounded by the limiting factor of fetching the CBS from the configuration memory into 

the ICAP with the same rate. Thus, the ICAP is able to support the maximum throughput of 400 

MB/Sec, but the bottleneck becomes how fast the application can fetch the configuration data 

from the memory. 

Several efforts in the literature have implemented CBS fetching mechanisms to match the speed 

of the ICAP. In [103], an implementation of BRAM next to the ICAP along with a finite state 
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machine (FSM) to drive the memory load operations into the ICAP are presented. The resulting 

system was able to write 4-byte words to the ICAP at a frequency of 100MHz, matching the 

maximum throughput made available by the ICAP. In [4], the lightweight hardware artNOC-

ICAP interface is developed to support fast Readback-Modify-Writeback (RMW) mechanism 

that achieves 40us configuration time per frame, again matching the maximum speed of the 

ICAP. Another successful approach to match the ICAP speed is presented in [104], based on 

Direct Memory Access (DMA) aided by master burst and BRAM caching techniques. Another 

extensive effort is demonstrated in [105] where the JTAG dynamic power consumption is 

measured via a digital oscilloscope from a Spartan III FPGA that does not have an ICAP 

interface. The reconfiguration time for a PR bitfile of 21KB was 34 ms, utilizing ICAP instead 

with a performance of 66MB/Sec on a Virtex II device would reduce the configuration time to 

0.32 ms, and this 99% reduction in configuration time would again yield considerable reduction 

in reconfiguration power. 

The final goal of this work is to combine the CTMC and the BL-TMR experiments into one 

holistic experiment that shows the expected savings of SMART over TMR in the nine use cases. 

We experimentally calculated the TS1 values of the nine UCs, and used these realistic values as 

an input to the weighted average in Eq.1 to calculate the area and power overhead of RARS 

under the nine UCs. The RARS expected values were compared against benchmarks 5 and 22 as 

the top designs in term of area and power, respectively. Table 24 shows the holistic experiment 

results, where TMR was the recommended approach over SMART only in UC4 and UC7. For 

the remaining use cases SMART consistently showed better power and area requirements.  The 

power savings ranged from 22% to 29%, whereas the area savings ranged from 17% to 24%. 
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Table 24: Combining Availability, Area, and Power Results 

UC 

S1  

(A, Low 

Power, 

low 

Area) 

S2, S3  

(A, High 

Power, 

High 

Area) 

S4-S10  

1-A, High 

Power, 

High 

Area) 

A  

(%) 

Avg 

Power 

Avg 

Area 

Power 

Savings 

over  

Design 

22 

Area 

Savings 

over  

Design 

5 

Recom-

mended 

Method 

1 86.704% 12.1379% 1.15828% 98.8417 125.3 15319.13 24.66% 19.22% SMART 

2 98.707% 1.28331% 0.01014% 99.9899 118 14284.5 29.05% 23.83% SMART 

3 99.833% 0.16663% 0.00012% 99.9999 117.3 14187.37 29.46% 24.27% SMART 

4 11.130% 24.8876% 63.9821% 36.0179 171.2 21833.57 -2.94% -9.83% TMR 

5 81.162% 16.5161% 2.32216% 97.6778 128.7 15796.86 22.64% 17.09% SMART 

6 97.522% 2.43057% 0.04736% 99.9526 118.7 14386.6 28.62% 23.38% SMART 

7 31.189% 34.3823% 34.4291% 65.5709 159 20104.55 4.38% -2.12% TMR 

8 90.189% 9.15584% 0.65490% 99.3451 123.2 15018.69 25.94% 20.56% SMART 

9 98.798% 1.19488% 0.00749% 99.9925 118 14276.64 29.08% 23.87% SMART 
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CHAPTER 7: CONCLUSION 

Reliability emerges as one of the most significant concerns in the new era of nano-scale devices 

[106]. Nano-electronic systems promise immense advancements in term of power, performance, 

area, and cost, making them ideal platforms to host many of the computing ideas that are yet to 

be explored in our modern days. However, existing reliability techniques might not be able to 

scale in compliance with the ever-shrinking device technology. Therefore, novel paradigms that 

exploit the massive underlying parallelism of the nano-scale devices might be needed. This 

dissertation explores the possibility of imparting self-x properties to enable these paradigms.  

7.1. Technical Summary 

The OC paradigm has been widely accepted as a potential model for future computing systems, 

where numerous independent computing agents can exchange sensory data and actuation 

knowledge to regulate system-level parameters, leading to the emergence of self-x properties that 

cannot be spotted at the individual component level. 

Therefore, an organically-inspired SMART approach was presented, which can adapt to runtime 

failures based on alternative configurations. This allows for use of a continuum of power and 

area utilizations versus reliability. The organic hardware layer provides decentralized awareness 

and control by means of distributed RARS module across the hardware fabric. The supervisory 

software layer provides the ability to assimilate hardware sensory information while providing 

vital centralization for decision-making. 
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RARS avoided the dilemma of choosing a fixed redundancy degree by deferring a commitment 

to a particular fault handling configuration until run-time. This approach, utilizing 

reconfigurability of SRAM-FPGAs, demonstrates an effective use of resources depending upon 

current mission conditions. TMR consumes three times the required resources to survive during 

the short periods of time when faults hit the application. RARS, in contrast, adapts to the various 

requirements at different stages of the mission by enabling just the right amount of spares. 

Unnecessary spares can be completely disabled or even replaced by other circuits. In the age of 

power-aware applications, where cooling and battery-life are as crucial as performance, RARS is 

able to save up to 30% of the power used by TMR, while still providing protection against 

transient and permanent faults. 

Offline repair is entirely undesirable in modern mission-critical applications whereby the system 

must show graceful degradation and partial ability to function even when being refurbished. 

Partial reconfiguration made it possible to keep the system online while under repair. It also 

enabled fast reconfiguration, reducing the repair time and increasing system availability. Finally, 

it allowed for the implementation of innovative solutions at the software layer, such as lazy 

scrubbing and intrinsic fitness evaluation.  

The software layer relied on a JTAG interface to communicate with the FPGA and to download 

partial bitfiles. This layer facilitated experiments with evolutionary repair where the fault 

recovery is not limited by the number of available spares. OGA, unlike other conventional GAs, 

supported features that are well-matched to the OC requirements. The model-free fitness 

function enabled the GA to be portable and scalable to fit any application domains. Direct 
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bitstream evolution reduced the mapping time of the genetic material into physical individuals, 

thereby boosting the performance of the GA. Finally, intrinsic evolution improved the accuracy 

of the GA because it allowed the evolution to happen on the actual hardware rather than a 

software model. 

7.2. Future Work 

Future work can target any aspects of SMART that were deemed out of the scope of this work, 

such as recovering faults in the AE. AE is considered as a golden element in this work, previous 

work by our research group has demonstrated successful methods to protect the voting logic 

[90]. Integration effort is considered to combine the two methods into one integrated system. 

Extending the power analysis to cover the GA process with the associated complexity of 

experimentally measuring and analytically modeling the configuration process power, can be 

another useful expansion to aid in predicting and controlling SMART in mission-critical 

deployments.  

A novel OGA based on Island-based GA (IGA) [64] can greatly contribute to the hard-fault self-

repair mechanisms of SMART. The proposed future work aims to map the islands of the IGA to 

dynamically reconfigurable FEs on the FPGA device. The goal is to grow and shrink the number 

of islands based on the availability of reconfigurable resources at any stage of the mission. 

Adding and removing islands will impact the MTTR of hard-faults and also change the 

dynamicity of the resource utilization of SMART.  
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For instance, if an island is to be retired due to fault scenarios or in order to utilize its 

reconfigurable resources for a different task, SMART needs to choose from many options 

regarding which island to retire and how to handle the individuals of that island. For example, 

SMART can retire the lowest fit island, which might be a costly decision if good building blocks 

of the GA are lost. It can also retire an island such that diversity-preservation is maximized. 

Another alternative is to retire any random island but rescue a selected set of individuals by 

migrating them to other islands. The question here becomes what are the selection criteria for 

these rescued individuals? Should that be fitness, diversity, or both? 

On the other hand, when SMART has a newly available reconfigurable block to make use of, and 

thus decides to populate a new island in order to expedite the evolutionary process, what would 

be the best way to construct the new island? Would that be creating a super island comprising the 

best performers across all other islands? Although this Pareto-preserving option seems optimal, it 

might not produce good solutions if the best performers across all islands have converged 

similarly, leading to a super island that lacks the genetic diversity to promote new innovative 

solutions. The other extreme alternative is to compose the island such that diversity is 

maximized, by analyzing the variance of selected individuals and picking the ones that are 

different from the rest. Randomly populating the new island with immigrants from other islands 

might lead to more diversity and thus promote better solutions  

These are all interesting question to answer, and we believe that IGA can be a rich field to 

analyze in the context of organic computing on reconfigurable devices due to its compatibility 

with the OC paradigm and its technical suitability for reconfigurable devices.  
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APPENDIX: COMMUNICATION PROTOCOL MESSAGES 
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This is a summary of the communication protocol messages 

Protocol Attribute Description 

Implementation Socket Communication 

Direction Bidirectional 

Communication Type Asynchronous (Producer/Consumer) 

Message – 1 
Message Name DISCREPANCY_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 

Message Format 

AE_ID FE_ID TMR FAULT_ ARTICULATION_ INPUTMSG_ CODE

5
Log2  |AE|

2 1 n- bit Functional Input

TIME_STAMP

TBD

 

Message Trigger(s) Discrepancy detected by the AE 

Message Description 

This message is sent whenever an AE detects discrepancy 

among its FEs. The TMR flag is used to specify the 

configuration of the organic unit when the discrepancy was 

detected. A TMR flag value of 1 indicates that the 3 FEs were 

simultaneously used in voting scheme, and the FE_ID in this 

case specifies the discrepant FE, whereas a 0 value indicates 

the original configuration of two online FEs and one Cold-

spare standby (duplex mode), the FE_ID reflects the address of 

the cold-standby FE in this case. The n-bit 

FAULT_ARTICULATION_INPUT provides the AS with the 

actual input that articulated the discrepancy; this could be 

useful for the Software layer and/or RM to regenerate the fault 

scenario during the refurbishment process. 

 

Message – 2 
Message Name FE_STATUS_REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 
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Message Format 

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

 

Message Trigger(s) Software layer initiated according to the Cognitive Layer logic. 

Message Description 

This message is sent from the Software layer to the organic 

layer to query the status of any number of FEs. The addresses 

of the AEs/FEs can be specifically provided to target specific 

FE or a broadcast address (e.g. address zero) can be used to 

query multiple FEs. For example, if the AE_ID is 3 and the 

FE_ID is 0, the AE that has the address of (3) has to respond 

with three FE_STATUS_REPORT messages (Message-3) for 

each one of its FEs. Also, if the AE_ID field is zero and the 

FE_ID is 2, all AEs in the organic layer have to report the 

status of their FE with the address 2. It is apparent that an 

FE_STATUS__REQUEST message with both AE_ID and 

FE_ID fields filled with zero means a full broadcast to the 

organic layer to send the status of every single FE to the 

cognitive layer. 

Message – 3 
Message Name FE_STATUS_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 

Message Format 

TIME_STAMP

TBD

AE_ID FE_ID STATUSMSG_CODE

5
Log2|AE|

2 3

 

Message Trigger(s) Response to Message-2 

Message Description 

Responding to Message-2, an AE has to send one 

FE_STATUS_REPORT message per FE to the Software layer. 

Contrary to message-2, The AE_ID and FE_ID fields cannot 

specify a broadcast address in this message; they have to 

explicitly indicate the sender identity. 

Message – 4 
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Message Name TMR_ACTIVATION_REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 

Message Format 

TIME_STAMP

TBD

AE_IDMSG _CODE

5
Log2  |AE|  

Message Trigger(s) 

Software layer initiated according to the Cognitive Layer logic. 

It could be due to performance degradation below the mission 

requirements for this organic unit (FEs and AE). 

 

Message Description 

Software layer can send this message to one/all AEs in the 

organic layer to trigger TMR configuration activation. The 

targeted AE(s) respond by activating TMR among FEs and 

confirm back by sending Message-5 

(TMR_ACTIVATION_REPORT) 

Message – 5 
Message Name TMR_ACTIVATION_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 

Message Format 

TIME _STAMP

TBD

AE_IDMSG_CODE

5
Log2  |AE|  

Message Trigger(s) 
- Response to Message-4 

- Autonomous response taken by the AE itself. 

Message Description 

Software layer described in message-4, this message is a 

confirmation from AE to Software layer that TMR has been 

configured among the three FEs Software layer requested or a 

notification to the Software layer that the AE has 

autonomously activated the TMR mode. 

Message – 6 
Message Name REFURBISH _REQUEST 

Message Type String 
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Message Source Software layer 

Message Destination Hardware layer 

Message Format 

TIME_STAMP

TBD

AE_ ID FE_IDMSG_CODE

5
Log2 |AE|

2

 

Message Trigger(s) 

Software layer initiated according to the Cognitive Layer logic. 

It could be due to one of the FEs was reported faulty, or due to 

performance degradation below the mission requirements. 

Message Description 

This message is sent from the Software layer whenever 

refurbishment is needed. For example this call can initiate 

running GA to repair faulty FE(s). The same principle of 

broadcast addressing described in Message-2 is applicable to 

this message.  

Message – 7 
Message Name REFURBISH _REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 

Message Format 
TIME_STAMP

TBD

AE_ID FE_IDMSG_ CODE

5
Log2 |AE|

2

FITNESS_ VALUE

Log2|Fitness|

 

Message Trigger(s) Refurbishment process is finished. 

Message Description 

This message is sent from the AE to Software layer upon 

refurbish completion. The final fitness value of the refurbished 

FE is reported in the message so that it can be used in future 

mission-specific decision making. 

Message – 8 
Message Name FE_STATUS_CHANGE _REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 
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Message Format 

TIME _STAMP

TBD

AE _ID FE_IDMSG_CODE

5
Log2  |AE|

2

STATUS

Log2|STATUS|

 

Message Trigger(s) 

- FE is put under-repair. 

- FE was refurbished and the Software layer decides that it is 

eligible to be put online. 

- FE has failed to be refurbished and claimed un-repairable and 

hence should be decommissioned 

Message Description 

The Software layer can send this message to change the status 

of FE(s). Broadcasting can be used to specify more than one 

FE in a single command, provided that they will be changed to 

the same status. The target AE will respond by changing the 

status of the addressed FE(s) and send a confirmation of the 

change to the Software layer (as described in Message-2). 

Message – 9 
Message Name PING _REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 

Message Format 

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2  |AE|  

Message Trigger(s) Software layer checks that the AE is alive. 

Message Description 

The Ping message is used by the Software layer to check the 

health of the AEs to check if it is minimally responsive. The 

broadcast addressing can be used to ping all the AEs in the 

organic layer. AEs respond to the Ping message by sending a 

PING_REPLY to the Software layer (As described in 

Message-10) 

Message – 10 
Message Name PING_REPLY 

Message Type String 

Message Source Hardware layer 
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Message Destination Software layer 

Message Format 

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2  |AE|  

Message Trigger(s) Response to Message-9 

Message Description 
This message is sent from the AE to the Software layer as a 

reply for the PING_REQUEST (Message-9).  

Message – 11 
Message Name RECONFIGURATION_REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 

Message Format 

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

CONFIG_ID_

TBD
 

Message Trigger(s) 

- AE is not responding properly (Any failure to respond such 

as ping failure)  

- Software layer decided to change the functionality of the 

organic unit. 

Message Description 

This message is sent from the Software layer to the AE(s) to 

change the configuration of the corresponding FE(s). The 

broadcast addressing can be used in this message. The AE will 

respond by downloading the requested configuration and reply 

with the RECONFIGURATION_REPORT message 

(Message-12)  

Message – 12 
Message Name RECONFIGURATION_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 
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Message Format 

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

 

Message Trigger(s) Response to Message-11 

Message Description 
This message is a response to the 

RECONFIGURATION_REQUEST (Message-11). 

Message – 13 
Message Name DUPLEX_ACTIVATION_REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 

Message Format 

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

 

Message Trigger(s) 

Take one FE offline in order to: refurbish, decommission, or 

switch back to normal duplex operation due to fault recovery 

achievement. 

Message Description 

As the Software layer has the capability to instruct Hardware 

layer to switch to TMR mode (Message-4), it can also switch it 

back to duplex mode under the situations mentioned above in 

(Message Triggers). FE_ID field specifies the FE module that 

will be taken offline (the other two FEs will be running in 

duplex mode) 

Message – 14 
Message Name DUPLEX_ACTIVATION_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 
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Message Format 

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

 

Message Trigger(s) Response to Message-13 

Message Description 

Once the AE changes the configuration to duplex mode, it 

reports back the new configuration to the Software layer, the 

FE_ID fields indicates the offline FE. 

Message – 15 
Message Name GET_OL_CONFIGURATION_REQUEST 

Message Type String 

Message Source Software layer 

Message Destination Hardware layer 

Message Format 

AE_IDMSG_CODE

5
Log2|AE|

TIME_STAMP

TBD

 

Message Trigger(s) 
Software layer initiated when it needs information about how 

the organic layer is organized 

Message Description 
The Software layer sends this message to request the 

configuration of the Organic Layer.  

Message – 16 
Message Name OL_CONFIGURATION_REPORT 

Message Type String 

Message Source Hardware layer 

Message Destination Software layer 

Message Format Adjacency list 
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Message Trigger(s) Response to message-15 

Message Description 

The Hardware layer sends this message to report the 

configuration of the Organic Layer, the organization of the 

organic units is sent in the format of an adjacency list. 
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