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ABSTRACT

Maintaining  coherence  between  the  independent  views  of  multiple  participants  at

distributed locations is essential in an Embedded Simulation environment.  Currently, the

Distributed Interactive Simulation (DIS) protocol maintains coherence by broadcasting

the  entity  state  streams  from  each  simulation  station.   In  this  dissertation,  a  novel

alternative to DIS that replaces the transmitting sources with local sources is developed,

validated, and assessed by analytical and experimental means.  

The  proposed  Concurrent  Model approach  reduces  the  communication  burden  to

transmission  of  only  synchronization  and  model-update  messages.   Necessary  and

sufficient  conditions  for  the  correctness  of  Concurrent  Models  in  a  discrete  event

simulation environment are established by developing Behavioral Congruence ΨB(EL, ER)

and Temporal Congruence ΨT(t, ER) functions.  They indicate model discrepancies with

respect to the simulation time t, and the local and remote entity state streams EL and ER,

respectively.  Performance benefits were quantified in terms of the bandwidth reduction

ratio  BR=N/I obtained from the  comparison of  the OneSAF Testbed Semi-Automated

Forces (OTBSAF) simulator under DIS requiring a total of N bits and a testbed modified

for the Concurrent Model approach which required I bits.  In the experiments conducted,
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a range of 100 ≤ BR ≤ 294 was obtained representing two orders of magnitude reduction

in simulation traffic.  

Investigation showed that the models rely heavily on the priority data structure of the

discrete event simulation and that performance of the overall simulation can be enhanced

by an additional 6% by improving the queue management.  A low run-time overhead,

self-adapting storage policy called the  Smart Priority Queue (SPQ) was developed and

evaluated  within  the  Concurrent  Model.   The  proposed SPQ policies  employ  a  low-

complexity linear queue for near head activities and a rapid-indexing variable binwidth

calendar queue for distant events. The SPQ configuration is determined by monitoring

queue access behavior using cost scoring factors and then applying heuristics to adjust

the organization of the underlying data structures. Results indicate that optimizing storage

to the spatial distribution of queue access can decrease HOLD operation cost between

25% and 250% over existing algorithms such as calendar queues.  Taken together, these

techniques  provide  an  entity  state  generation  mechanism  capable  of  overcoming  the

challenges of Embedded Simulation in harsh mobile communications environments with

restricted bandwidth, increased message latency, and extended message drop-outs.
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CHAPTER 1  INTRODUCTION

The  Concurrent  Model  (CM)  approach  for  embedded  simulation  is  a  technique  for

reducing  the  inter-platform  communications  requirements  of  Distributed  Interactive

Simulation  (DIS)  when  used  for  Embedded  Simulation  (ES).   This  dissertation  first

identifies critical aspects of performance and fidelity of  Embedded Simulation.  It then

introduces the CM approach as a proposed solution for the restrictive communications

requirements of mobile platforms using ES.  It then describes a prototype program to test

the proposed concept and reports on the results of the first phase of this program. 

1.1    Embedded Simulation  

Historically, computer modeling and simulation have been primarily used for three basic

purposes:

1. Analysis of behavior of completed events (i.e., understanding of significant,

incompletely understood events),

2. Prediction of future behavior of complex systems (i.e., design), and

3. Training in operation of equipment or mission accomplishment

These traditional applications of Modeling and Simulation are centered around advisory

functions,  typically  performed  off-line.  On  the  other  hand,  ES,  derives  significant

advantages from its use in operational real-time tasks.
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Embedded Simulation  (ES) is the integration of simulation technology with operational

systems, allowing the operators of those systems to interact with both the real world and

the virtual world as if both were integrated.  This provides the operator with capabilities

in the real world beyond his/her immediate perception range.  Furthermore, it allows for

high fidelity predictions of behavior of other elements in the real world, which would

improve  decision-making  in  tactical  or  strategic  contexts.  The  degree  of  real  world

replacement by the virtual  world is  dependent  on the application.   For example,  in  a

military system application, the envisioned concept would be as follows:

Embed the capability in the vehicle to allow a “virtual world” to be displayed to the

crew and to have virtual interaction with vehicle subsystems in support of Mission

Rehearsal, Battlefield Visualization, Command Coordination, and Training.

We expand on these below as they form the basis for the applications to be optimized:

•  Mission Rehearsal  — Rehearsal  or simulation  of  actions prior  to undertaking the

mission, on the operational equipment to be used in that specific mission, is a highly

desirable capability made possible by ES.  The extent of rehearsal could range from a

single  commanders  scenario  for  Course  Of  Action  Analysis,  to  having  all  crew

members participating in an exercise.

•  Environment  Visualization  —  ES  can  support  visualization  of  the  simulation

environment,  which   provides  significant  advantages  in  situational  awareness.

Visualization could be as simple as a display of unit and enemy locations on a two-

dimensional map based on the last reported locations/sightings.  More ambitiously, it

could  include  a  time-updated  best  estimate  of  the  locations/status  on  a  three-
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dimensional display with integrated current sensor data at sufficient resolution for all

critical decisions. 

•  Command Coordination — ES can be used to vary the graphical representation of

plans  to  the  automated  tracking  and  notification  of  coordination  events.   The

simulation of the execution of the commanders intent could be displayed to both the

commander and the units executing the commands.  If any differences occur between

the commanders intent and the execution the units would notify the commander of the

actual  execution  and  the  commander  would  either  acknowledge  their

recommendations or modify his commands.

•  Training — ES can  support having one member of the crew located at his station

refining his individual skills with simulated  crew members against simulated forces.

Furthermore,  the operational scenario could be simulated in a stationary vehicle and

through repeated executions of this scenario, be used as a drill to refine capabilities.  

The  study  of  embedded  simulation  technology  is  a  refinement  and  enhancement  of

simulation concepts for real-time use in the space and power constraints of operational

systems.  In the operational environment, embedded simulations will strive to convert

inputs from multiple sensors into a form to give the operators an enhanced interface with

their environment.  It  also includes the capability to project the future, and serve as a

basis  for  decision  aids.   Achievement  of  these  objectives  will  require  significant

capabilities  for  high  performance  communication  in  a  distributed  simulation

environment.
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1.2    Role of Communications in Embedded Simulation  

Communication mechanisms in an ES system must provide the means for the various

vehicles  involved  in  the  mission  to  share  the  benefits  of  the  distributed  simulation

resources.  This imposes real-time constraints on the bandwidth, latency and connectivity

of  the  data  transfer  mechanisms.   Realism  constraints  place  an  additional  burden  of

precise data ordering on this communications subsystem.  Current  computer  generated

force  systems  such  as  One  Semi-Automated  Force  (SAF)  (OneSAF)  Test  Bed

(OTBSAF) and Close Combat Tactical Trainer (CCTT) SAF (CCTTSAF) are designed to

provide only one model of each virtual player in the exercise.   Each of these models

periodically generate state information that is broadcast to all the other participants.  Live

players interact with these models by operating a vehicle simulator which generates the

state information in the same format.   In this environment, each entity is represented to

all the other entities by the sequence of state messages that are broadcast periodically.  As

long as the communications bandwidth is sufficient, and has minimal latency, entities can

be added to the ES exercise by including additional sources on the network.  To date

most of the work has been dedicated to providing adequate bandwidth and low latency,

using local area network technology and User Datagram Protocol (UDP) packets.  

1.3    Motivation for Concurrent Models  

A critical parameter impacting to the amount of bandwidth required is the frequency of

the entity state messages.   One method used to reduce this frequency is to use  dead

reckoning algorithms.  These techniques have proven sufficient for training with current
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systems such as OneSAF and CCTTSAF.  However, goals exists to continue to expand in

numbers, locations, and types of participants.  One expansion is in the number of entities

involved  in  a  given  training  exercise.   Another  is  to  have  entities  participate  from

locations worldwide.  A third is to have participation of crews from their actual vehicles

while they are moving.

During the assessment of the bandwidth requirement under current techniques  [Goblick

1996][Valle 1997] verses current capacity  [Bahr 1994A] it is apparent some significant

bandwidth  reductions  are  needed  to  achieve  the  goal  of  ES.   The  concurrent  model

approach [Bahr 1996] postulates taking the dead reckoning concept to the limit.  It does

this by assuming that it has clones of the interacting entities residing at each location.

Thereby, given that all clones are receiving the same stimuli at the same time they will

react to the stimuli in unison.  As long as this condition is maintained, no entity state

messages would need to be broadcast.  This has the potential to drastically reduce the

required update traffic on the network.  The network is then used primarily to introduce

new common information into the exercise,  much as a tactical  command and control

system is used to specify new objectives to be performed next.

The value of  ES is enhanced when the vehicle is free to move.  Hence the requirement

for wireless communications between the users of the simulation is originated.   Wireless

communications introduces additional impacts on bandwidth, latency and continuity over

the traditional Local Area Network (LAN) used for Distributed Interactive Simulation

(DIS) [Fullford 96].  While many new strategies are being developed to share more of the
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available  radio  spectrum  with  multiple  users  using  space,  time,  and  code  division

multiplexing techniques, the demand for this spectrum continues to expand even faster. 

In  addition,  the  use  of  wireless  communications  allows  the  participants  freedom  of

movement,  many  times  to  locations  unfavorable  for  communications.   Increased

emphasis has been placed on operation in the urban environment, where communications

can  be  problematic.   The  avoidance  of  line  of  site,  and  the  operation  in  the  urban

environment  with its  higher  incidence of  man made noise  all  contribute  to  situations

where  there  can  be  extensive  communications  outages,  or  reduction  in  the  available

bandwidth.  If a method can be developed that allows minimal disruption of command

and control  coordination  with  continued  situational  awareness  in  this  environment,  it

would greatly enhance the effectiveness of ES.  

Figure 1 provides a sketch showing the relationship between multiple entities labeled a

through x, who, while moving away from the stationary observer, are returning their state

message packets labeled Pa1 through PxN  over a shared wireless communications link. Pij

is the packet with  i  denoting the originating entity IDs  a  through  x, and  j denoting the

sequence numbers  of the packets  labeled  1 to  N.   Since this  communications  link is
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shared, if it is already in use by another entity, each remaining entity must queue up their

packets until the link becomes available.  The packet stream that is depicted in Figure 1

indicates a round-robin protocol in which each entity transmits its next packet in turn.

For ease of analysis, we will assume this type of channel sharing unless otherwise stated

throughout this dissertation.  Unless otherwise stated the observer is assumed to be some

finite distance away from the entities reporting their current state.

Figures  2,  3, and 4 display snapshots of a short scenario as displayed in the Plan View

Display  (PVD)  of  OTBSAF  [SAIC  2001B].   The  title  bar  of  the  window  gives

information about the computer running the simulation, the version of OTBSAF, exercise

and Persistent Object (PO) database numbers and the terrain database used.  The next bar

has a set of pulldown menus and a display of the current wall clock time.  The next bar

select various modes of use for this display.  The section on the left of the screen provides

buttons for the various units available for display on this station.  The major section of

7
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the  display  shows a  topographical  map  based  on  the  identified  terrain  database  at  a

selected Map Scale.  In Figure  2, this scale is 1:25,000.  Around the sides of the map

display  the  grid  is  labeled  with  Universal  Transverse  Mercator  (UTM)  map  grid

coordinates.  In this scenario a platoon designated “100A1” has been told to move “cross-

country” in a wedge formation along the route indicated by the line designated “r1.”

“Cross-country” is a term that signifies  a movement forward on the closest route along

the path depicted by the line allowed by the terrain as  opposed to “road march” that

signifies a movement forward on roads closest to the path depicted by the line.  Figure 2

shows the platoon in wedge formation approximately two minutes into the exercise.

Each vehicle's  position is  indicated by a  small  blue  icon approximating  the shape of

vehicle  but  at  an  enlarged  scale  sufficient  to  be  easily  viewed  on  the  display.   It's

orientation  approximates  the  vector  of  the  last  movement.   Even though the  route  is

indicated  as  a  straight  line,  the  platoon must  navigate  the  terrain  as  depicted  on  the

8
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topographical map.  Between the platoons current location and its objective indicated as

the terminal point of “r1” there is a river that must be crossed.  Figure 3 shows that the

platoon is using a bridge to cross the river and is continue toward its objective.  It shows

the map scale changed to 1:10,000 to show more detail about the bridge crossing.  Figure

4 shows the platoon about a minute from its objective, again at a zoomed in scale of

1:10,000.  Each grid line represents 1 kilometer.  This scenario will be used throughout

this dissertation to illustrate proposed communication techniques.

Figures  5,  6,  7, and  8 display four different  communications scenarios in the case of

limited bandwidth.  These figures are based on the previous exercise scenario, however

the plan view display has been cropped and expanded to show more detail about the total

scenario and the entity state reports verses the time they are received over the duration of

9
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the exercise.  The total exercise lasts about 12 minutes.  It starts at the locations indicated

by  the  vehicle  icons,  and  the  individual  vehicles  follow  the  paths  indicated  by  the

separate  colors.   Figure  5 displays  a  condition  where  communications  channel's

bandwidth is only 50% of that required to transmit all the data in real-time.   

In the case where all the messages are queued and transmitted as soon as possible, then

congestion results.  Congestion impacts the time that the message is received at a distant

observer.  The difference between time that the event occurs and the time that the event is

observed  is  called  observational  latency which  we  will  designate  as  tobserve.   The

component  of  tobserve
 that  is  due  to  the  waiting  time  to  put  the  message  on  the

communications link is designated as  twait.  In this set of four figures, we are assuming

that all other components of latency are negligible for this discussion.  As such the other

three figures show the observed time as equal to the transmitted time.  The observed time

T is depicted by T1 through T11 on all the figures corresponding to 1 through 11 minutes

10
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after the start of the exercise.  The left terminus of each line is the position of the vehicle

at the start of the exercise, and the right terminus is at the end of the exercise 11 minutes

and 58 seconds (0:11:58)  later.  A small triangle is placed on each path corresponding to

the observed position at each minute throughout the scenario.  Due to potential confusing

overlap not all positions are labeled, but each minute is indicated by a small triangle on

the corresponding path.  Note that since all the vehicles cross the same bridge, all paths

overlap at the bridge.  In Figure  5, the observed positions are further and further away

from the actual positions as indicated by the discrepancy in the location of the entities.

Since we assumed that the available bandwidth is 50% of that required  BWa = Ma/t =

0.5*BW = 0.5* M/t, at the end of the exercise only 50% of the data Ma = M/2 has been

received.  Where M is the number of messages and t is the time to deliver the messages

and BWa is the available bandwidth.  To deliver the remaining messages M/2 at the same

rate an equal amount of time t will be required.  Thus the final position is delayed a time

equal to the exercise duration.  The  twait for this message would be equal to the length of

the exercise  tex  = 0:11:58.  Assuming an uniform transmission rate the average waiting

this may be acceptable for post exercise analysis, it is not acceptable for any real-time

interactive  applications  such  as  those  proposed  for  embedded simulation.   Real  time

interaction requires  feedback within  the attention span of  the observer,  Based on my

observations over 20 years of instrumenting live simulations this is nominally within 2-3

seconds, and for many situations even shorter latencies are required.
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An alternative to message backup is to reduce the number of messages to correspond to

the available bandwidth by changing the rate of the information that is exchanged.  An

example of this approach is portrayed in Figure 6.  In this case, messages are staggered

using time division multiplexing such that the odd numbered vehicles transmitted at odd

times and the even numbered vehicles transmitted at even times.  Here there are only two

triangles representing the reported locations for each labeled time.  The position update

interval between each report is twice as long as would be otherwise if more bandwidth

was available.  This still leads to undesirable consequences due to inadequate bandwidth,

however,  it  may  be  preferable  than  allowing  backup  during  real-time  interaction.

Another technical challenge facing communication in ES is common in wireless links.

This  is  the  problem  of  message  dropouts.   Dropouts  are  the  condition  where  no

communication is possible due to interference, or  unavailable due to inadequate signal

strength.  Figure 7 depicts a message dropout between time T2 and T10.  The result is that
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no  position  reports  are  received  over  this  period  which  is  undesirable  for  both  post

exercise analysis and real-time interaction.

As a solution to these problems, Figure 8 represents the results for each of these scenarios

under the Concurrent Model Approach proposed in this dissertation.  As illustrated each

report that is used by the observer is behaviorally correct for the time of the report and

there is also no loss of information, because bandwidth requirements have been reduced.

This proposed solution utilizes the communications channel to transmit more effective

information based on entity behavior rather than entity position.  Thus, it can compensate

for longer latencies.  This approach was initiated to compensate for the differences in the

communications resources used for virtual simulations using the DIS protocol and live

simulations using highly customized special purpose protocols. Let N denote the number

of bytes required to transmit entity state information for a typical DIS scenario, and  I
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Figure 7.  Communications Message Dropouts



denote  the  number  of  bytes  required to  transmit  the  entity  state  information  for  an

equivalent live scenario.  The ratio BR = N/I which indicates the increase in traffic under

simulation environment can exceed BR > 100 [Goblick 1996] [Valle 1997] [Bahr 1994A].

Using BR=100 as a requirement for ES bandwidth ratio then a goal for the amount of data

transferred under the Concurrent Model Approach can be set to N/100, rather than N. In

addition, the packets that are transmitted under the Concurrent Model Approach are not

merely  position  reports,  but  scheduled  changes  to  model  parameters  that  indicate

properties to compensate for latency and message dropouts.  These additional properties

are among those that are developed in the dissertation to achieve  temporal congruence

and behavioral congruence between the originating entity state stream and the observed

entity state stream, as will be defined in Chapter 5.
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Figure 8.  Concurrent Model Reports



1.4    Contribution of Dissertation  

This dissertation develops and validates the Concurrent Model Approach as a method of

managing communication requirements and hiding the latency  in ES.  This establishes

the need for causality, repeatability, and synchronization in order to be feasible.  It uses

discrete  event  simulation,  normally  reserved  for  non-real-time  models,  to  provide

repeatable simulations in a real-time environment.  It establishes the validity of operating

an environmental  visualization in soft real-time as opposed to hard real-time,  thereby

allowing more efficient algorithms to maximize model size for the given computational

environment.  It introduces a novel data structure to maintain the most important events

in priority order during the simulation.  Finally it establishes, rationale for de-coupling

the display update rate from element position location calculations update rate, thereby

allowing a higher peak to average ratio for useful computations per clock cycle.  These

are  achieved  and  demonstrated  by  providing  a  testbed  that  can  continue  to  support

exploration and validation of the Concurrent Model Approach for additional applications.

Latency hiding is accomplished by performing time-critical computations on each local

platform,  rather  than computing them at  one  location  and broadcasting  the  results  to

others.  This change has the effect of reducing the characteristics of the communications

link impact on ES performance.  Discrete event simulation is used to allow computations

to be scheduled on an as needed basis as opposed to a cyclic basis prevalent in real-time

simulations.  However, this introduces the need for an efficient event list implementation

to  keep  the  scheduling  algorithm  from  dominating  the  execution  demands  of  the
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simulation.   The  use  of  discrete  event  simulation  ensures  that  all  computations  are

performed in the same order, thereby enabling causality, and repeatability.   

Using the testbed developed, the above concepts and rationale are then tested by applying

them to the application of  En route Mission Rehearsal [Lawlor 2002].  The scenario is

that during the multi-hour flight en route to a destination, the unit would rehearse its plan

as an ES exercise.  This is an ideal application for the concurrent model approach as it

requires wireless communications over long distances.  This particular application is for

the  concurrent  model  approach  is  to  allow  the  remote  operators  to  interact  with  the

deployed unit without requiring the real-time transmission of typical DIS traffic between

the participants.

The  event  list  capabilities  are  demonstrated  by  testing  with  various  event  insertion

distributions, and comparing results for the same set of distributions against most known

implementations in previous studies. [Ahn 1999][Ronngren 1997][Tan 2000]

1.5    Overview of Dissertation  

Chapter  2  covers  previous  work  relevant  to  this  dissertation.   It  discusses  previous

attempts at reducing the amount of information that is transmitted between participants of

a  DIS  exercise.  It  then  develops  methodologies  applied  to  causality  and  time

management, and characteristics of real-time, simulation-time and scheduling techniques.

Finally, Chapter 2 covers the background literature on event list management.
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Chapter 3 develops the problem description by introducing Embedded Simulation, the

required technologies, and its current status.  It then examines performance constraints

and computation versus resource tradeoffs for the three potential applications of force-on-

force training, en route mission rehearsal, and situational awareness.  It then examines the

use of OTBSAF as a testbed for these concepts, and finally looks at the limitations of

current  priority  queue  structures  for  application  for  the  proposed  Concurrent  Model

approach.

Chapter 4 presents the Concurrent Model approach by comparing it to dead-reckoning.  It

then explains the functions of each of the CM components. It then addresses the impact

on discrepancies between  modeled and measured results.  Finally it introduces the design

criteria critical to the various stages of  investigation of the concept. 

Chapter 5 presents the analytical relationships by providing the definitions, theorems and

proofs.  It initially defines the correctness characteristics of  Behavioral and Temporal

Congruence.  It ends by discussing the performance benefit characteristics of bandwidth

reduction, latency immunity and outage immunity.

 

Chapter 6 presents the constructs and mechanisms of the CM approach.  It addresses the

changes that need to be made to OTBSAF to explore the CM approach and details the

relationship between simulation-time and real-time and the characteristics of soft-real-

time used by the CM approach.  Finally it addresses the instrumentation of the Smart

Priority Queue and its integration into OTBSAF for the CM approach.
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Chapter 7 presents the experimental comparison of the alternatives investigated in this

dissertation.  It initially describes the experimental configurations of the Concurrent SAF,

the Remote SAF Operator, the Smart Priority Queue and statistical distributions used for

evaluation of the queue.  It then describes the  scenario used to drive the experiments for

the Concurrent SAF, and the Remote SAF Operator.  Finally it presents the experimental

results of each experiments.  

Chapter 8 summarizes the contribution of study, the major results and future work.  It

then presents the major results for bandwidth reduction and priority queues.   Finally it

introduces topics for future work with suggested approaches. 
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CHAPTER 2 PREVIOUS WORK

2.1    Overview  

Simulations whether live, virtual or constructive have become valuable tools for training,

mission rehearsal, and course of action analysis.  Initially they were developed, and used

for specific purposes.  Live simulation has been used for small team real-time training,

virtual  simulation  for  individual  and crew training on the  use  of  the  equipment,  and

constructive  simulation  for  command  and  control  training  or  war  planning.   As  the

simulations have improved, and the physical size of the computational resources continue

to shrink, the trend has been made to incorporate simulations with the actual operational

equipment.  The U.S. Army's Inter Vehicle Simulation Technology (INVEST) Science

and Technology Objective (STO) investigated the incorporation of previous developed

simulations  with  combat  vehicles  and  demonstrated  feasibility  of  providing  a  virtual

training environment in the vehicle [Bahr 1998] [Klingensmith 1998].  One outcome of

the INVEST-STO research was the need to address the communication requirements of

ES.  It  became apparent  that  the  current  DIS  paradigm of  using  only  one  generating

source  for  each  entity  could  exceed  the  capability  of  Wireless  Wide Area  Networks

(WWANs)  [CBO 2003] [Tiernan 1995] [Valle 1997].  The concurrent model approach
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changes  this  paradigm  to  multiple  local  generating  sources  for  each  entity  to  take

advantage of the technologies proven to work for local area networks.

Figure 9 provides a visual representation of the communications bandwidth hierarchy of

various strategies previously implemented to address the sharing of state data between the

different entities in a simulation.  The height of the pyramid is proportional to the added

complexity,  while  the  width  represents  the  required  bandwidth.   The  maximum

bandwidth is required when transmitting the data as it is generated as indicated by the

raw data level of the pyramid.  One can avoid transmitting some raw data by instead

generating simulated views as depicted by the second layer of the pyramid.  The Dead-

reckoning approach  can  reduce  the  simulation  bandwidth  by  an  order  of  magnitude

[Bassiouni 1997] and is commonly used on LANs.   VMGOES  pushes this reduction still

further by applying advanced modeling techniques using neural networks [Gerber 2001]

[Henninger 2000B].  The proposed Concurrent Model approach takes this to the limit by

eliminating the transmission of entity state data, but replacing it with local generation and

the communication of congruence information to maintain synchronization between all
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data generators.  Each of these previous works are reviewed in detail in subsections later

in this chapter.

To  establish  the  critical  issues  for  the  proposed  approach,  the  following  areas  are

investigated  in  this  dissertation.   First,  the  current  technologies  in  simulation

communications  reduction  strategies  are  reviewed.   Second,  the  problems  of

synchronizing multiple entity generators is assessed.  This investigation centered around

an in depth look at the area of causality and simulation time management, which pushed

for  further  exploration  into  the  issues  of  real-time  versus  simulation-time  scheduling

strategies.  As the scheduling strategy became of clearer importance, the priority queue

realization was found to be critical.  This motivated an improved data structure that could

improve the scalability and throughput of the task scheduler used in ES.

2.2    Communication Reduction Strategies  

These  first  two  approaches  address  taking  the  periodically  generated  entity  state

messages,  and  eliminating  those  that  do  not  add  significant  new  information  to  the

entities current state.  This adds moderate complexity to both ends of the transmission

stream, but reduces the amount of data that needs to be transferred from the source entity

to the observer.  The first of these is implemented in OTBSAF and is part of the baseline

value of N in the DIS stream.  
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2.2.1  DIS Dead-Reckoning

Dead-reckoning [Fullford 96], a term first coined for navigation, is an abstraction of the

physics of motion.  It is based on Newtonian Physics in that a moving object does not

change direction unless some force is applied.  In DIS, this concept is used to maintain

the communications of state information between various participants.  Each vehicle in

motion keeps detailed state information about its position and movement.  This is used to

populate a dead-reckoning model of itself and every other participant with which it may

interact.  Each time a vehicle needs to update the position of other participant vehicles  in

the simulation, it updates the position estimate by extrapolating a new position based on a

linear distance model x = vΔt + x0 where the elapsed time since the creation of the latest

information is  Δt and  v denotes the velocity and  x0 denotes previous position.  In the

simplest  case,  the  dead-reckoning model  is  based  on position,  time,  and the  velocity

vector  transmitted  by  the  other  participant.   To  make  sure  other  participants  in  the

exercise have a valid dead-reckoning model, each participant is constantly comparing its

own position with its own dead-reckoned position.  As long as the displacement between

the  two positions  does  not  vary more  than a  predetermined  threshold  then the  dead-

reckoning model is left unchanged.  Once this displacement exceeds the predetermined

threshold this participant broadcasts a message to all other participants that provides an

updated  time,  position,  and  velocity  vector  of  motion.   In  some  cases,  higher  order

models, using acceleration in addition to velocity, are used to try to reduce the number of

updates that are required  [Gerber 2001].  While  dead-reckoning reduces update traffic,
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more packets are required to be transmitted than can be supported in an ES environment

[Bahr 1996]. 

Figure 10 from  [Henninger  2000B] provides an example of  dead-reckoning.   In this

figure the true path is designated Ia and the dead-reckoned path is designated by Ib where

I denotes the integers 1.. 11 which represents different times.  At time  t1  both the true

path and the dead-reckoned path coincide.  At time  t3 the difference between the paths

exceeds the dead-reckoning threshold so entity state PDU is generated and the remote

user receives an updated position and velocity.  The path it generates corresponds the the

dead-reckoned path Ib.  Again at t6 the threshold is exceeded and again a new entity state

PDU is generated to update the remote paths.  The official exercise position is the paths
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generated by dead-reckoning as that is the only path transmitted on the network.  The

only simulation that sees the actual path is the local host.

Bassiouni  [Bassiouni  1997] shows  an  example  of  dead-reckoning  that  reports  a  data

reduction of 76 but states that generally the data reduction is greater than one order of

magnitude but varies dependent on the activities of the host and other exercise variables.

In the scenario shown in Chapter 1 we observed a reduction of between 10 to 15.   We

will  cover  this  in  additional  detail  during  our  comparison  to  the  Concurrent  Model

approach in Chapter 4.

2.2.2  Vehicle Model Generation and Optimization for Embedded Simulation

The Vehicle Model Generation and Optimization for Embedded Simulation (VMGOES)

project  [Gonzalez 1998] [Henninger 1998]  [Henninger 2000] concentrates on reducing

the communications bandwidth by providing higher fidelity models of manned vehicles.  

Henninger [Henninger 2000B] reports that the primary objective was to develop a neural

network based movement model that could be used in lieu of a Newtonian-based DIS

dead-reckoning  model  to  support  the  synchronization  of  the  entities  states  in  an

embedded  training  exercise.  In  support  of  this  objective,  a  coherent  framework  for

learning  and  testing  such  models  was  developed,  and  two  important  issues  were

addressed.  The  first  issue  was how to  effectively  model  a  near-term movement  skill

model  from real-time  data  and  how to  measure  the  performance  of  this  model.  The

second issue was whether this approach would generalize to human driving. The initial

models were developed in a simulated testbed environment.  First, the models were tested
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on movement methods that were not used in training, but similar to those used in training.

The  best  performing  models  in  the  first  case  gave  an  average  ESPDU  reduction  of

approximately 28% over current distributed simulation dead-reckoning methods.  They

generalized approach did not yield any reduction.  When this models were developed

using Subject Matter Expert (SME) generated data for testing that was not used in the

training of the neural network-based near-term movement models. The best performing

models,  in  this  instance,  resulted  in  an  estimated  ESPDU  reduction  of  67%.  Also

evaluated was the potential for generalization across drivers by applying the movement

models  developed from one  SME to  a  second individual.  The model  results,  in  this

instance, did not reduce ESPDUs.   From the CM approach viewpoint this yields two

important  observations.   First  that  better  models  can  be  achieved  over  the  current

OTBSAF implementations, and second trained SMEs tend to be better subjects than the

OTBSAF models.

Here, a system that extends the dead-reckoning concept to the behavioral level is used to

anticipate  position  changes,  this  provides  benefits  beyond  just  maintaining  current

velocity due to anticipating the operators behavior based on the context of the current

activities.   A methodology used called  Context-Based Reasoning, establishes that each

observable  behavior  has  its  own associated  actions  that  can  represented by an  active

context.    For example,  a tank, operated by a crew conducting a tactical  road march,

would be exhibiting behavior associated with following a road, such as being near the

road and proceeding in roughly the same direction as the road  [Gerber  2001].  Since

modeling the system based on each of the contexts, and the human reactions based on
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these  contexts  involves  significant  detail,  the  VMGOES  researchers  developed  the

models using a machine learning technique known as  Learning-by-Observation  which

was shown to be effective. 

Gerber  [Gerber  2001] reported  that  the  efficient  synchronization  of  human-controlled

ground  vehicle  with  a  VMGOES behavioral  model  was  demonstrated  in  a  ModSAF

testbed.   This  demonstrated  improvement  over  dead-reckoning.   He  also  reported

development of a  Learning-by-Observation methodology to infer low-level actions of a

ground vehicle  operator in real-time was successful  as well  as the establishment of a

software testbed to implement  and evaluate the concept.   The approach demonstrated

appears to provides a mechanism to link various networks together to provide a more

complete model.  One drawback to these approaches is they assumed no prior knowledge

of the subjects intent.  As shown in the next section some prior knowledge is available

and can help in the mechanization of CM approach. 

2.3    Synchronized Player Models   

Synchronized Player Models (SPM) research addressed an important element related to

the proposed Concurrent Model approach:  providing repeatable models.  Repeatability

was  obtained  by  modifying  the  predecessor  of  OTBSAF,  called  the  Modular  Semi-

Automated Forces (ModSAF), to provide a simulation that produced identical simulation

behavior on repeated runs.
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The  SPM  project  [McHale  1998] addressed  the  problem  of  providing  deterministic

Computer  Generated  Forces  (CGFs)  as  part  of  the  solution  to  reduce  the  need  for

communications.   Assuming  that  all  other  aspects  of  a  simulation  environment  are

synchronized, synchronization of the parallel models used by individual platforms can be

achieved by using a repeatable implementation of the CGF.  A CGF implementation is

said to be repeatable if the simulation events (e.g., vehicle location events, firing events,

damage events) occur at the same simulation time in each run of the same scenario.  The

SPM researchers chose to modify ModSAF to provide a repeatable mode of execution.

They  observed  that  repeatability  can  be  achieved  by  modifying  the  scheduling  of

simulation  events,  the  generation  of  stochastic  events,  and  the  control  of  distributed

events as follows.

First,  they  modified  ModSAF  3.0  by  changing  the  event  scheduling  by  essentially

severing the simulation to real-time clock dependency, altering the simulation queue to

be event driven, and leaving all non simulation functions on the system clock, while the

simulation functions advanced by the event driven clock.  They modified ModSAF to use

a repeatable random number sequence as long as the same seed is used for each run.

Variability  is  still  available simply by changing the seed at  the beginning of the run.

They chose to avoid the potential variations from network events by simply not running

in the network mode.  These modifications have been incorporated into the ModSAF

baseline  with ModSAF 4.0 and beyond.  The impact of this effort  on the Concurrent

Model will be discussed later in Section 3.5.1 and Section 4.3.2.

27



These initial tests of repeatable ModSAF were conducted by separate  executions were

ran for each scenario on the the same computer.  The data was collected to confirm that

identical location update, fire and damage events at exactly the same simulation time in

successive runs.  These were also compared to runs of the same scenario using standard

ModSAF.   While  the  standard  ModSAF  runs  exhibited  large  variations,  repeatable

ModSAF reported exactly the same information at the same time.  These results would

provide a important starting point for our Concurrent Model approach experiments, while

their warnings about problems in the networked environment invoked some concerns.

Several of their changes to standard ModSAF were important to the CM approach.  This

included segregation  of  behavior  and physical  model  update  functions  from the  user

interface and network functions.  The behavior and physical model update functions were

placed on the simulation-time queue and the network and physical model functions were

left on the real-time queue.
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Ourston  [Ourston  1998] reported  on  experiments  to  analyze  the  feasibility  of  a

knowledge based Difference Analysis Engine (DAE).  For this purpose they substituted a

human controller as indicated in Figure 11 for the CM approach DAE.  The function of

the DAE is discussed in Section 4.1.2.  In this role the Human operator performed  the

analysis and determined the corrections to the reference model to maintain congruence.

Their purpose was to determine the following:

•   Whether or not is was possible to maintain a reasonable coherence between the live

vehicle and its reference model,

•   What effect the complexity of the mission scenario had on the ability of control, and 

•   What effect the frequency of control updates (directly related to bandwidth) had on

the accuracy of control.

They were able to identify the desired level for control of the SPM reference model and

clones. The level of control that we selected was the behavioral control parameter level.

This level provided a sufficient degree of control to maintain synchronization between

the live and reference vehicles. They also found that simply allowing frequent reference

model corrections did not necessarily result in better synchronization. They discovered

that there needs to be a match between the accuracy of the reference model control and

the  frequency  of  update.  Fewer  but  more  accurate  corrections  provide  improved

synchronization when compared to more frequent but less accurate corrections. This is an

encouraging result in terms of the CM approach network bandwidth reduction objective,

as  it  implies  that  we  may  be  able  to  reduce  network  bandwidth  through  the  use  of

accurate corrections to the live vehicle clones. 
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2.4    Causality and Time Management  

In this section, we identify the various factors that contribute to congruence of simulated

models.   Congruence deals with those constraints that need to be satisfied to en sure

correctness in the resulting entity states generated by the remote generator.   We also

establish  Discrete  Event  Simulation  as  a  viable  technique  to  implement  the  remote

generators, as well as identify some of its potential limitations.

Causality is the concept that no event should appear to observers before the event that

causes it. For example, as shown in Figure 12, given the three entities A, B, and C where

entity A fires at B and sends a message indicating this event to both B and C at time t1.

The numbers indicate the time of the event, and the arrowheads indicate the arrival of the

message at the other entities.  The message arrives from A and B determines that the fire

event caused it to be destroyed and creates the destroyed event, which it then transmits to

A and  C.   A receives  the message  from  B in the appropriate  causal  order,  however,

because in variances in the communications network,  C receives the message about the

destroyed event prior to receiving the message about the fire event.  This last occurrence

is an instance of causal misorder which causes ramifications as a simulation progresses.
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The successor to DIS, called High Level Architecture (HLA)  [HLA 1996],  [Carothers

1997], [HLA 1998] provides various mechanisms to avoid causality problems.  If causal

event ordering was selected for the interface, the message from B to C would be delayed

as indicated by the dashed line in  Figure 12, until  after the delivery of the fire event

message.

Lamport  [Lamport  1978] shows  the  the  concept  of  “happening  before”  defines  an

invariant  partial  ordering  of  events  in  distributed  systems  that  can  be  extended  to

somewhat arbitrary total order.  He points out the problem with the “happened before

relationship,” when a system is unaware of all external relationships.  One solution is to

construct  a  system of  strong  clocks  which satisfies  the  following conditions.   Let  →

denote  the  happening  before  relationship  for  members  of  the  set  ζ.  For  any  events

a ,b∈ab  then a b .  Where a and b are discrete events and the function Π

(x) returns the timestamp for the event x.  Fujimoto [Fujimoto 1996] explains that HLA

provides four message ordering mechanisms in order of increased functionality they are

receive, priority, casual, and timestamp order.  Only the last two satisfy the relationship

illustrated in  Figure 12, and only the timestamp order satisfies Lamport's strong clock.

One problem with the mechanisms provided by HLA is they don't adequately address

real-time, as the real-time clock advances independent of any message traffic  [Fujimota

1996].  

Discrete event simulation is a technique where simulation time is advanced based on a

logical clock rather than a physical clock.  This simulation technique is one in which the
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state of the modeled system is broken into a sequence of discrete, but possibly random set

of simulated time points [Schriber 2001].  These time points are associated with events,

and at each event the entities are updated to reflect their state at that event time.  Since

these are unique points in time, once all states are updated, the clock can be advanced to

the next time that an entity has an event that would cause a change to its state.  The data

structure or queue that is used to keep track of the next time, is often referred to as the

event list.  The event list operation will be presented in Section 2.5.

Parallel implementations of Discrete Event Simulations [Fujimoto 1990] are available to

speed up the execution of the simulation.  However, causality and the need to en sure that

all the data required to properly calculate the new state of each entity can counteract the

gains of parallelism.  As a result there has been much work on resolving these conflicts,

they are usually classed as conservative such as the Chandy, Misra and Bryant approach,

or  optimistic such  as  the  Time  Warp  Mechanism  as  studied  in  [Lin  1991A],  or

alternatives such as discussed in  [Lin 1991B].  There is no clear consensus concerning

whether optimistic  or conservative synchronization perform better; indeed, the optimal

approach usually  depends on the application  [Fujimoto  1999].   Time management  in

distributed simulation has two major challenges, that of time anomalies, and repeatability

[Baker 1999].  Another problem that occurs with time management and discrete event

simulation  is  management  of  simultaneity  [Wieland  1999].   Wieland  defines  it  as

simultaneous  events  will  be  very  narrowly  defined  to  mean  two  or  more  events  of

identical type with identical time stamps, to be executed by the same logical process.

This causes a question for causality in how to break the tie, or how to resolve the correct
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solution when two entities use the others state to calculate their current state.  Currently,

OTBSAF assumes  the  input  data  to  occur  from a  previous  state  and  does  not  allow

current calculations to propagate so all simultaneous events use only data from earlier

timestamps.   Repeatability,  as  pointed  out  in  Section  2.3  remains  as  a  primary

consideration for causality and time management.  To address these issues we propose to

use strong clocks and synchronization.  Furthermore we plan on using rigid First in First

out  (FIFO)  ordering  for  simultaneous  events,  as  processing  time  may  move  initially

simultaneous chain of events to different  clock tics,  thus  endangering repeatability,  if

ordering is allowed to vary. 

2.5    Real-time, simulation-time, Scheduling, and Synchronization  

In the Section 2.4 we introduced Discrete Event Simulation as a simulation technique that

might  be used to satisfy our need for a remote entity state generator.  However, it is

primarily used with a logical clock rather than real-time simulation.  In this section, we

will  explore  techniques  to  use  this  type  of  simulator  in  real-time  and  the  additional

congruence factors required for correct operation in this domain.   We further subdivide

congruence into two categories called temporal congruence and behavioral congruence.

Temporal congruence addresses the factors that  impact the timeliness of the simulation

output,  and  behavioral  congruence  addresses  the  factors  that  impact  the  correct

interpretation of the output.  So they span both causality and simultaneity concerns.

Real-time  processing  defies  having  an  unique  definition  [Wise  1971],  [Mellichamp

1983], and [Laplante 1997], but relies on each author to develop a more precise definition

33



for a specific application area.  Real-time processing does refer to systems which depend

on several underlying principles.  Time is a very important parameter in all simulation

systems,  its  significance  varies  from synchronization  to other  processes that  occur  in

nature,  manufacturing,  or  communication;  to  being  a  key  competitive  component  of

products  that  depend  on  human  interaction  in  terms  of  responsiveness.   Real-time

processing for this dissertation is defined as constraining presentation of simulated cues

and signatures within a human discernible period consistent with physical reality.   This

is akin to a soft real-time definition whereby acceptable constraints can not be precisely

quantified but only judged by their effects.

Three possible  categories of real-time simulation, live, virtual and constructive each have

different real-time constraints.  Live simulation is training by simulation with the actual

equipment  or  equipment  surrogates,  in  a  training  area  similar  to  the  expected

performance locale.  In this case, the effects are simulated by various cues and signatures

to create the sounds and visual effects.  In this case, the simulation must generate these

cues in the same time frame as the actual devices would in use.  The second category,

virtual  simulation  primarily  refers  to  “manned  simulators,”  that  is  a  training  system

modeled after the actual operational equipment as far as the man machine interface but

not physically accomplishing the mission.  In this case the response of the system to the

man's manipulation of the system controls are simulated by changing “out the window”

displays and other sensual stimuli.  In this case all the stimuli are generated locally on the

simulator, but when used in the collective environment (more than one simulator used to

train a team working together) the actions initiated by one platform may also impact the
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“scene”  on  another  platform.   Similar  to  the  live  simulation  when  activities  on  one

platform  impact  additional  platforms  some  method  must  be  provided  to  initiate  the

generation of the appropriate changes on the remote platforms.  The real-time constraints

on scene generation depend on how fast  the scene can be generated with the desired

detail.  This then drives the frequency of scene update, called the frame rate.  Generally

the faster this frame rate, the smoother and more realistic the simulation appears.  The

other constraint is related to the physical system being simulated as it dictates the amount

of the scene that need to be updated.  The physical constraints are those related to both

linear and angular speed as they govern how much of the “out the window” scene must

be changed for a given time quantum.  The third category of simulation, constructive

simulation only requires time synchronization between entities  not real-time,  as it  not

used for real-time operator interaction.

Simulation-time on the other hand, is a logical time maintained by clocks in a simulation,

it can be faster or slower that real-time.  simulation-time primarily serves two functions,

one to establish the proper order to execute the events in a simulation, and the second is

to provide a relationship to how long in real-time the execution of events would take.   In

most  cases  simulation-time is  completely  independent  of  real-time,  however  in  some

training environments it needs to be synchronized with real-time.

Scheduling in real-time is a much studied area, primarily addressing the need to have

solutions available by a certain hard deadline.  If the deadline is not met in these systems

a catastrophic event may happen.  As indicated in the following references, these studies
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provide  some useful  insight  to  the  problems  addressed  by  this  dissertation,  but  only

indirectly.   Ballerina  [Balarin  1997] has  proposed  a  schedule  validation  scheme  for

reactive embedded systems.  If it shows a schedule to be valid, it is guaranteed, however

the converse is not true, it may be labeled invalid but still be valid.  While this may be

useful  during  development  of  individual  models  it  is  not  appropriate  for  dynamic

application.   Abbott  [Abbott  1992] discusses  performance  evaluation  of  real-time

database.  This has some properties similar to requirements of a real-time discrete event

simulation system in that it is transaction oriented, and for coherency purposes once a

transaction is started it must be completed.  Chou and  Borriello [Chou 1994] present a

scheduling algorithm for embedded reactive systems and introduce the idea of safe exit

points to  use  watchdog  constraints.   These  principles  may  apply  to  the  dynamic

adjustment of computation rate as introduced in Section 2.6, see Table 2.  Sun [Sun 1997]

provides  a  set  of  algorithms  for  bounding the  completion  time with arbitrary  release

times,  the  best  algorithm although  suitable  for  off-line  analysis  another  algorithm is

proposed  for  online  control.   This  is  another  potential  approach  to  the  dynamic

adjustment  of  computation  rate.  George  and  Minet  [George  1997] show  that  FIFO

ordering based on release times for real-time distributed systems has the advantage of

preserving consistency.  This is very important for causality.  Lehoczky [Lehoczky 1996]

proposes  an  alternate  approach  to  real-time  system  scheduling  which  promises  the

potential  of predictability  for  systems characterized by substantial  stochastic  behavior

while providing a much higher level of utilization than worst case analysis.  This may be

beneficial in the sizing of concurrent generator if performance becomes critical.  Sun and

Liu [Sun 1996] propose and compare three synchronization protocols for distributed real-
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time systems,  these are compared for average and worst case end to end response time.

This  analysis  assumes  that  the  distributed  processors  are  being allocated to  satisfy  a

workload that can be modeled as a set of periodic tasks, each of which consists of a chain

of sub-tasks executing on different processors.  In general, the review of these various

techniques confirmed the selection of the soft real-time approach.

Synchronization primarily applies to the clocks whether physical or logical, although it

can be generalized to the coordination of any activities.   By synchronizing the clocks

among  distributed  objects  the  coordination  of  activities  can  then  be  referenced  to

coordination  with  the  local  clock.   Hardware  synchronization  of  clocks  has  become

significantly easier in recent years, with both the advent of the Internet, and the Global

Positioning System (GPS).  Internet gives ready access to various standards organizations

and established standards for maintaining computer clocks to within few milliseconds.

GPS depends on knowing the time within a few microseconds and has very stable atomic

clocks in each satellite,  and a complex ground network that keeps them in long term

synchronization.  Since, the application area of this study is for embedded simulation it is

assumed that all of the platforms will have a GPS unit for navigation purposes that could

readily  provide  a  synchronizing  signal  for  the  simulation  clock.   Under  all

synchronization strategies, some method to manage the list of events is required.

2.6    Queuing   Strategies  

Discrete event simulation promises a strong potential for repeatable results given that the

events  can be kept  in  timestamp order.   In  [Bahr  1994B] it  was found that  in  some
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situations the performance of the priority queue data structure can have a major impact on

the overall simulation execution time.  Since the concurrent model approach requires the

simulation at many more locations than DIS, it is important that the scalability of the

simulation remain practical.   Thus, it is important to understand some of the potential

limits of the simulation process.   

Figure 13 illustrates the type of impact that different priority queue structures can have on

the  overall  efficiency  of  the  simulation,  especially  if  we  increase  the  size  of  the

simulation.  Figure 13 shows the situation where the nominal size of the most frequently

executed function of the simulation takes four times the time as the baseline priority

queue hold, later in this section we will explain the hold and why the length of the hold

varies  depending  on  the  architecture.   We  assumed  that  all  queues  had  the  same

38

Figure 13.  Increase in Computational Load Versus Events Queued
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performance for a queue size of 8 elements.  To simulate these 8 elements it takes the

equivalent of 32 baseline holds.  The first bar of each size cluster shows this time.  The

other three bars in each cluster represent the total time to simulate 8 elements plus the

overhead time of 8 holds.   Thus,  at  this common point the  three different  classes of

queues showed  a total of 32+8 = 40 or an overhead of 8/40 or 20% for this queue size.

The hold time for each element of priority queue can vary due to the number of elements

in a queue.  The amount of this variance is dependent on the architecture of the queue.

As the number of elements in the queue increases the time of each of the 8 overhead

holds  increase,  while  the  time  to  simulate  the  elements  remains  constant.  Thus  the

overhead  takes  a  greater  proportion  of  the  time.  The  three  remaining  bars  in  each

grouping show the effects on performance depending on the class of the priority queue

algorithms.   The  simplest  to  implement  class  exhibit  O(N)  performance,  where  N is

number of simulation events in the queue.  The next class is the O(Log(N)) which show

reasonable performance for moderately sized queues, and the most complex to implement

class of queues (O(1)) which exhibit near constant performance through some very large

queue sizes, as will be shown in the detailed discussions to follow.  Note that the O(N)

queue drops to less than 50% efficiency above queue sizes of 25 elements and O(log(N))

above queue sizes of 5000, while Order(1) queues maintain a constant efficiency.   Most

ES applications involve instantaneous queue sizes of  several thousand entries.

Table  1 presents the numerical values from Figure  13 that will be used in the example

calculations.   The following examples will illustrate the impact that this characteristic

could have on ES.  Table 2 provides a classification of entities based on distance or other
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factors and an execution profile to keep the observer aware of the entities yet keep the

amount of computation required within the capabilities of the target system.   

This classification is based on an assumption that the observer is generally more likely to

be impacted by closer entities than distant entities.  While each entity in general would

control a fixed area, the area available for occupation increases as a square of the distance

from the observer.  In addition if each entity can move at the same velocity, the time it

takes to reach the observer is proportional to the distance.  Thus, there is the potential for

more entities to exist at greater distances, but since it will take them longer to impact the

observer, the observer does not need to have the distant entities information updated as

often.  There are actually many factors that could be included in a prioritization scheme,

but this example is used to illustrate a method of allocating the computation resource
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Table 1.  Queue Percent of Computation for Given Queue Sizes

N           Order(N)        Order(log(N))           Order(1)
Overhead % of Base Value Overhead % of Base Value Overhead % of Base Value

8 8 100% 8 100% 8 100%
15 15 118% 10.42 106% 8 100%
25 25 143% 12.38 111% 8 100%
50 50 205% 15.05 118% 8 100%

100 100 330% 17.72 124% 8 100%
200 200 580% 20.38 131% 8 100%
500 500 1330% 23.91 140% 8 100%

1000 1000 2580% 26.58 146% 8 100%
2000 2000 5080% 29.24 153% 8 100%
5000 5000 12580% 32.77 162% 8 100%

10000 10000 25080% 35.43 169% 8 100%



based on a priority.   This approach would allow the monitoring of many more entities

than a constant priority.

Every scheduled operation on each entity has the overhead of a priority queue hold.  If

we take the simplest case of Table 2 of only computing the entity state for the Immediate

category of entities and keeping the assumption that computation time for each entity was

4 times the baseline hold, we can calculate the equivalent computations per second for

each queue.  Let us label the different queues from left to right of  Table 1  QO(N) , QO(logN) ,

and QO(1).  The number of equivalent operations for  QO(N)  = 2.05 * 750 = 1537,  QO(logN)  =

1.176 * 750 = 882,  QO(1) = 750.  By just using a more effective queuing strategy, it is

possible to allow the use of a higher resolution scenario with all the entities of  QO(1)   =

1500, or a lower resolution scenario including through the distant category with QO(logN) =

1.35 * 1300 = 1755 at the same computational load of the simplest queue structure.  Note

that to improve the computational performance a simulation, it is imperative to reduce the

computation  time  of  the  most  frequently  encountered  operations.   Thus,  the  basic

operation  of  the  event  queue  gains  significant  importance,  because  it  represents  a

significant portion of the inner loop of any simulation.  The remainder of this section will
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Table 2.  Prioritized Execution

Immediate Near Distant Outside Other Total
Number of Entities 50 100 250 600 4000 5000
Frequency of Comp 15 3 1 0.25 .0125
Computations/sec. 750 300 250 150 50 1500



concentrate  on  lineage  of  the  priority  queues  that  lead  to  the  one  developed  in  this

dissertation.

As previously suggested by Gonnet  [Gonnet 1976], some specific distributions of non-

uniform events can occur during a simulation that can impact the performance of the

event list  storage strategy.  Likewise,  Brown observed that queue  statistics  should be

continually monitored to determine which storage structure will minimize overhead for

the  particular  distribution  of  events  encountered  [Brown  1988].  Although  the

management  of  time-flow  in  the  simulation  can  be  handled  either  synchronously  or

asynchronously  [Emshoff 1970], the asynchronous scheduling is often preferred [Evans

1967].   In  this  case,  a  prioritized  list  of  future  events  must  be  maintained  so  that

individual tasks can be scheduled for execution at the appropriate time.  Thus efficient

implementations  of  the  priority  queue  can  be  key  to  an  efficient  mechanism  for

maintaining causality and repeatability.

A  standard  metric  for  comparison  of  the  relative  performance  of  an  event  list

management algorithm is the time required for a HOLD operation  [Vaucher 1975].  A

HOLD operation consists of first retrieving the event at the head of the scheduling queue,

then adding the delay for the new event to the current events time, and inserting the new

event into the appropriately prioritized location.  The HOLD operation is representative

of the total of the queueing operation for each event.  Measuring the time spent to execute

HOLD operations  provides  a  measure  of  event  list  overhead  during  simulation.   As

typically defined, a HOLD operation consists of  the combined time for insertion and
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removal  processes  for  a  pending  event.   Another  fundamental  task  used  to  assess

performance  is  the  DELETE operation  that  removes a  superseded event  which  is  no

longer pending.  DELETE operations can cause more severe performance degradation for

some priority queue strategies such as heaps.

In  a  priority  queue,  the  ordered  structure  of  the  elements  must  be  continuously

maintained according to their relative time for scheduled execution during the simulation.

For elements of equal priority, an accepted practice is to store them in First-In First-Out

order.  Figure  14 illustrates  the  various  structures  that  have  been  explored  for

implementing priority queues, including several linear, tree, and indexed data structures.

We will focus the discussion on linear and indexed structures as they form the basis for

the SPQ techniques.

43

Figure 14.  Priority Queue Taxonomy
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2.6.1  Linear List Priority Queues

Linear lists can be divided into subcategories of singly, multiply, and disjoint lists [Jones

1986].   The linear queue is formed by maintaining pointers  to the head and tail  of  a

singly-linked  list.    During  an  enqueuing  operation,  the  events  are  stored  in  their

prioritized location by repeatedly comparing the simulation time of the new event to the

previously stored values.  A new entry has its priority compared first with the priority of

the head element and if it is less than the head then it is immediately inserted as the new

head as shown in Figure 3.  Otherwise, it is compared to the tail.  If it is greater than or

equal to the tail then it is appended as the new tail of the list. If it is neither a new head

nor a tail, the priority is compared in succession with each next item in the list until it is

less than the succeeding entry.  Upon locating the correct point, the new entry is inserted

in the list by updating the corresponding pointers.  The primary advantage of this queue

structure is that head of the list is always available without searching, thereby simplifying

the removal portion of the hold operation.  Insertion and removal operations generally

require  two  pointer  updates.   The  disadvantage  is  that  successive  entries  must  be

examined until the correct entry is found for both en queue and arbitrary element delete

operations.

2.6.2  Indexed Lists

Indexed lists attempt to mitigate the drawbacks of linear queues by reducing the amount

of searching required to locate or insert  an item. Voucher and Duval  [Vaucher 1975]

introduced a time mapping algorithm called the  indexed list algorithm.  This algorithm
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consisted of a linear list for event storage and an array of pointers to a set of dummy

markers inserted into the list with the last pointing to the overflow area.  The markers are

a fixed-time interval apart and as the current simulation time passes them they are moved

forward into the overflow area and inserted into the list at the appropriate time-ordered

point.  In this implementation, time is represented by an integer variable, and no finer

subdivisions are allowed.  The time at which an event is scheduled can be used as an

index to select from the list into which the notice must be placed. With a FIFO priority

system, the new notice is placed at the end of the selected list, and no scan is necessary.

Although this  algorithm in  its  basic  state  must  be  generalized  in  order  to  be  widely

applicable,  the basic idea of grouping is useful to reduce the scan-time. However, the

implementation did not include a feedback mechanism for adjusting the spacing between

markers.  The last pointer in the array delimits the overflow portion of the list.

2.6.3  The Calendar Queue

Brown  [Brown 1988] introduced the Calendar Queue, which derives its name from its

structural  similarities  to  a  desk  calendar.   The  basic  concept  is  that  two arrays  hold

pointers to the head and tail elements of singly-linked lists of events.  Each element of the

list stores the priority of the event and a pointer to the next element.  As shown in Figure

15, the length of the array is equivalent to the number of days in a calendar year. The

figure depicts the queue with additional elements to illustrate storage in days 0 through 7.

The index of each array is equivalent to the count of number of  days since the beginning

of the year, i.e. entry 0 is the start of the year and entry  n-1  is the last cell in the year

where n is the number of days in the year.  Overflow of events on any day is taken care
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of  by  placing  the  elements  outside  the  current  year,  called  outyear elements,  in  the

appropriate  day  of  the  calendar  in  time  sequence.   The  index  is  calculated  as

(priority/day_size) modulo year_size, and converting to an integer value.  If year sizes are

kept as power of two, the modulo operation becomes a binary AND operation with a

mask value of  n-1 where n is the year size.  Interior to each day, the individual events

are kept in priority order by scanning the list and inserting the elements in the appropriate

location.

The key mechanism for calendar queue's improved performance over the linear queue is

that it reduces the average sequential search length to half number of elements in a bin as

compared to half the number of elements in the total list.  However, there is a price to pay

for this capability, and it consists of several factors.  The first is the basic bin selection

process or indexing, this requires conceptually a floating point multiply, a floating point
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Figure 15.  Calendar Queue
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to integer conversion and then an integer modulo operation in addition to the compare

and step, whereas, the linear search requires only comparison and advancing pointers.

Another  is  the  queue  resizing  cost,  which  requires  sampling  data  in  the  queue,  to

calculate distance between events and moving the data to the appropriately spaced bins.

The third is keeping track of the head element of the bin.  In the linear queue, the head is

always first in the list.  In the calendar queue, there are as many list heads as there are

bins.  In a model with smooth evenly spaced events, the next head is always near to the

current bin.  In a worst case, it can lead to searching for the earliest event over the entire

set of bins.  Since the Calendar Queue has become popular several modifications have

been proposed to improve its performance with specific event insertion distributions by

Ahn [Ahn 1999], Bahr [Bahr 1994B], Ronngren [Ronngren 1993],and Tan [Tan 2000].

2.6.4  Relative Performance

 Table 3 presents the results of a previous study by Jones which compared average and

worst-case performance of 11 different algorithms this showed performance advantages

for splay trees over a wide range of conditions and linked lists (linear queue) for short

lists  [Jones 1986].   Brown compared his  calendar  queue  experimentally  to  the linear

queue, and a queue implemented with a splay tree.  
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The calendar queue consistently outperformed the splay tree for the scenarios tested. In

fact,  the  calendar  queue  exhibited  nearly  constant-time  performance  for  many  queue

sizes, while splay tree execution time increased O(log n) or in worst case linearly with

queue size.  Ronnegren [Ronngren 1997] provided a comparative study which expanded

Jones' study by introducing additional queue implementations and additional event set

insertion distributions  to  highlight  the  differences of  commonly used priority  queues.

Figures 16, and 17 provides the results for the Calendar Queue which forms the basis of

comparison in Chapter 7.
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Table 3.  Results of Jones Study

Priority-queue

implementation

Code

sizea

Performance

Average          Worst 

Relative

speedb

Comments

Linked List 47 O(n) O(n) 11 Best for n < 10
Implicit heap 72 O(log n) O(log n) 8
Leftist tree 79 O(log n) O(log n) 9-10
Two list 104 O(n0.5) O(n) 9-10 Good for n < 200

Henriksen's 68 O(n0.5) O(n0.5)c 1-7 Stable

Binomial queue 188 O(log n) O(log n) 1-7
Pagoda 110 O(log n) O(n) 4-8 Delete in O(log n)
Skew heap, top down 56 O(log n) O(log n)c 5-7

Skew heap, bottom up 103 O(log n) O(log n)c 4-6 Delete in O(log n)

Splay tree 119 O(log n) O(log n)c 1-3 Stable

Pairing heap 84 O(log n) O(log n)c 3-6 Promote in O(1)

a The total lines of Pascal code for initqueue, emptyqueue, enqueue, and dequeue.

b 1 is fastest; 11 is slowest: 

c An amortized bound; single operations may take O(n) time.

 



In many simulation applications, event activity is not uniformly distributed throughout

the range of simulation time. Frequently,  the majority of activity occurs over a small

interval at any time, for example near the beginning of the queue.  This characteristic of

the event scheduling distribution can be used to optimize queue storage structure. For

example,  consider  a  case  study  [Bahr  1994A]  involving  simulation  of  a  distributed

communications system using YACSIM [Jump 1993].  In this case study, the Range Data

Measurement System (RDMS) for the U.S. Army was simulated where asynchronous

communication between 2,000 source entities takes place over shared data channels to a

central processing site.  Several processors received the data in parallel and prepared it
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Figure 16.  Mean access time for Calendar Queue and Classic Hold Experiments
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for retransmission in variously formatted data streams to other sites.  To gain insight into

placement and removal of activities on the event queue, several scenarios were simulated

and statistics were gathered [Bahr 1994B].

The choice of data structure used to maintain the event list can significantly impact the

efficiency of a discrete event simulation. In the case study of RDMS, the calendar queue

exhibited a cyclic nature and degradation under high head-end activity.  A representative

metric for the overhead required to support the distribution of event list activity is the

number  of  data  comparison  operations  for  each  event  insertion.   There  were

approximately  7.5  million  insertions  for  one  simulation  run.   Figure  18,  shows  the

distribution of the baseline linear queue which had 4.5 million insertions at the head of
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Figure 17.  Mean access time for Calendar Queue Up/Down experiments

M
ea

n
 a

cc
es

s 
ti

m
e 

μ
s 

   
   

   
   

   
   

   
   

   
 

Queue Size



the queue. The maximum search length was 2,301 and the majority of the events required

more than 10 comparisons, however that the majority of events occurred near the head. 

Figure  19 shows  the  improvement  offered  by  the  baseline  calendar  queue,  with  a

maximum search length of  95 comparisons. Thus, calendar queue effectively limits the
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Figure 18.  Distribution of search Length in DDC using a Linear Queue
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Figure 19.  Search Length Distribution in a Calendar Queue
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maximum amount of time for any given operation, however the majority of the events are

close to the head.  The above data confirms that the majority of event list activity occurs

near  the  head  end  of  the  queue.   In  [Bahr  1994B] analysis  and  experimental

measurements demonstrate scenarios with a high degree of head-end activity can occur

after  the  queue size has  reached steady state.   Since a  linear  list  has  lower traversal

overhead for near events, a simple linear queue can outperform the calendar queue in

simulation with a heavy head-end activity  In addition Tan  [Tan 2000] and Ahn  [Ahn

1999] also  proposed  different  adjustments  to  the  calendar  removing  some additional

weaknesses,  however none of these three alternatives  addressed a low overhead cost,

highly stable solution for a large range of event insertion and deletion distributions.
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CHAPTER 3  TECHNICAL PROBLEM DESCRIPTION 

The  primary  challenge  facing  Embedded  Simulation  is  same  as  that  of  Distributed

Interactive Simulation and situational awareness.  That is  maintaining a coherent view of

the virtual environment between all participants.  By taking a data-centric view then the

entire environment corresponds to an ensemble of data streams. We can further divide

this it sub-streams based on the volatility of the data.  The most dynamic of these sub-

streams is typically the entity state data, so we will refer to this as an Entity State Stream.

This decomposition will allow us address the coherence problem as one of determining

which  data  to  transfer  from  its  storage  location  to  the  viewing  location  within  the

constraints of the operational systems at hand.  In this dissertation, we propose a novel

approach  to  allowing  this  data  stream to  also  be  distributed  and/or  duplicated  when

needed to optimize  the  trade-offs  between computation  resources  and communication

bandwidth.

3.1    Background  

Embedded  simulation  has  been  shown to  be  both  cost  effective  [McDonald  1998A]

[McDonald 1998B] [McDonald 2000] as well providing the training where and when

needed [McDonald 1998A]. While much progress has been made in providing embedded

training in a static (vehicles parked and connected by wires) mode, it still hasn't reached
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the augmentative capabilities envisions by Bahr and Abate [Bahr 1997A] [Bahr 1997C]

[Bahr 1998] [Abate 1999].  These features all entailed un-tethered or dynamic operation,

along  with  the  need  to  maintain  realism  and  synchronization  between  distributed

simulators.  

In addition, operational systems keep getting more sophisticated, with longer ranges, and

that extend beyond the line of sight.  These new capabilities not only add to the training

burden, but also add to the required sophistication to represent those capabilities in the

virtual  world  and  thus  in  the  embedded  simulation.   Appendix   1   discusses  the

envisioned technologies required to implement the “total unit training” and   Appendix 2

reports on the current status of these technologies.  

3.2    Operational Constraints  

The performance constraints on an Embedded Simulation system are generally the same

as  those  present  in  a  similar  dedicated  DIS  system,  but  intensified  by  the  operating

environment  of  the  embedded  host.   Thus  they  have  similar  requirements  for

communications  and  responsiveness,  but  with  the  mobility  requirements  including

moving vehicles operating in a severe environment.  While the static systems use wired

LAN and ATM, technology the mobile training system has been limited to dedicated

instrumentation  systems  as  described  in  [Bahr  1994A] and  [Goblick  1996].    Three

representative dynamic application domains of embedded simulation are force-on-force

training,  en  route mission  rehearsal,  and  situation  awareness.   They  all  have  the

constraint of wireless communications and an ideal solution would be compatible with
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each.   The demand for bandwidth in wireless communications systems in ES systems is

greater than the current and future anticipated capability.  In cases when compression

techniques can be used to reduce the quantity of the data the choice is frequently made to

increase the amount of data provided rather than decrease the bandwidth [CBO 2003].

3.2.1  Force on Force Training Simulation.  

One of the primary difficulties in providing the interaction between Live and Virtual

objects is conveying the large amount of data between the respective entities for real-time

interaction [Goblick 96].  These exercises are primarily conducted at fixed installations

so an additional  physical  infrastructure  could  be provided to supplement  the wireless

system.  The largest current installation covers an area of 2,400 square Kilometers.  The

interaction is between maneuvering ES equipped vehicles as well as being supplemented

by virtual  entities.   Actual  environment,  sight,  sound,  and weather  further  impact  the

latency and bandwidth constraints in ES beyond baseline values.

3.2.2  En route Mission Rehearsal

This application is similar to the static training, however, it is conducted in or near the ES

equipped vehicles as they are being transported over long distances.  The opposing force

in the ES would normally be played by Semi Automated Force operators at  a distant

location so the communication occurs between the home base and the various transport

craft.  Here the interaction is entirely virtual, making it the primary candidate for initial

study described in this dissertation.
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3.2.3  Situational Awareness

The primary goal in this application is to keep the operators of the vehicles aware of

circumstances that could impact the successful completion of their mission, and for them

to  keep their  chain  of  command  aware  of  their  situation.   Again  a  key  constraint  is

communications.  However, at the same time as they and their commanders are sharing

information, they want their opponents unaware.  These two goals can be conflicting, and

tend to limit the bandwidth at their disposal, degrading the communication capacity.  A

second limitation is, even if the information is available, it may not be in a format that is

readily assimilated by the crew, and may not be recognized as pertinent to their current

situation,  or that  it  will  be pertinent in  the future.   This  imposes the most  restrictive

conditions  with  both  live  and  virtual  interaction.   This  application  provides  a  high

potential payoff in the enhancement of mission performance.

3.3    Computational and Communication Resource Tradeoffs  

Initial  experiments  involving  live  simulation  and  virtual  simulation  domains,  was

basically  seen  in  requirements  documents  for  Embedded  Simulation  systems  where

update rates for ground vehicles in live simulation were on the order of once every 5

seconds, while the software simulators for the virtual domain they were on the order of

50 times  per  second.   The specifications  for  the  live  simulations  were  driven by the

restrictions  of  available  technologies  within  the  available  radio  frequency  spectrum

allocations.   The  virtual  simulation  requirements  were  driven by  the  need  to  present

information at realistic frame rates within the less restrictive communications domain of
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local area networks.  Thus, these two domains specified a difference in communications

requirements  on  the  order  of  100-fold.   Latter  studies  have  reiterated  this  ratio.

Historically demand has soared to exceed capacity so even with the improvements in

communications technologies this 100-fold ratio has remained and is therefore interpreted

as a bandwidth objective .  Let N denote the number of bytes required to transmit entity

state information for a typical DIS scenario, and I denote the number of bytes required to

transmit the entity state information for an equivalent live scenario.  The ratio BR = N/I

which indicates the increase in traffic under simulation environment can exceed BR > 100

[Goblick  1996] [Valle  1997] [Bahr  1994A].  Using  BR=100  as  a  requirement  for  ES

bandwidth  ratio  then a  goal  for  the amount  of  data  transferred  under the Concurrent

Model Approach can be set to N/100, rather than N.

A second parameter that needs to be constrained is the event communications latency.

This is the time between the occurrence of an event and the report of that event to the

observers.  For embedded simulation, we generally classify these events as visual and

aural events, that is where the real event would be transmitted at near speed of light, or

those that are transmitted near speed of sound.  These can be relaxed as long as nominal

speed of a human reaction, and the nominal speed of a human logical decision process are

taken into account.  For example at a range of 1 kilometer a visual event would be seen in

about 3 microseconds, while the sound of  the firing event would not heard for 3 seconds.

On the other hand the arrival of a fired projectile could vary somewhere between 1-5

seconds depending on type.  An observer of the muzzle flash could react within about 0.5

seconds and possibly evade the fired projectile, whereas those sensing the sound of the
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firing could only prepare for a future event as the longer thought  process required to

identify  the  location  of  the  firing and its  potential  path  as  well  as  the  much shorter

interval left between the arrival of the projectile and the sound of its firing would prevent

evasion of  the current  round.  In the virtual  world,  all  transmission of events occurs

electronically.  In this case, the latency depends on the processing of the required code to

create and sense the event, the transmission speed and capacity of the links between the

sender of the event and the observer, as well as the queuing status or wait time for the

event to be transmitted over the link.  We will analyze these elements in detail in the

following sections.

3.4    Situation-related Communication  

An immense  amount  of  information  is  needed to  portray  the  current  situation  to  the

participants of either a training situation or operational situation.  In the live situation,

most of the information is available to the observer through his five senses.  It can also be

enhanced with electronic devices such as radar, thermal viewers, and chemical detectors.

To provide this same information in the virtual world we must create and communicate

stimuli for all sensors.  Table 4 provides a description of various sub-databases that might

be used to organize the information required to completely convey the current state of the

environment.   Column 1 provides the classes of data,  column 2 indicates  the relative

frequency of updates, and column 3 provides a description of the data elements and how

they are used.  The three classifications used in column 2 are S for static, M for may be

modified during an exercise, and H for highly dynamic information that changes on an
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individual participant basis.   We will refer to this highly dynamic data as  entity state

data, and it is currently conveyed as an entity state stream.  
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Table 4.  Situation Database

Data Set
Update
Type

Description

Terrain-database S

A detailed terrain and features data-base that allows models to exercise
the procedures  appropriate  to  the  environment.   Ground  vehicles  for
instance are blocked  by impassable  areas,  may be masked  by terrain
features or dust.  Can sink in dry lakes, etc.  This data-base replaces the
human observation of the terrain.

Threat-platform
models, sub-
models

M

The set of adaptive constructive models that are clones of the reference
models on the respective simulators/weapons platforms.  Parameters for
these models can vary from identifiers of functions, numerical values,
to identifiers of pre-tabulated characteristics.

Pre-defined
orders S

Standing orders, or orders issued prior to the start of the exercise.

Vulnerability data S Susceptibility of the local platform to the various threats, as well as the
susceptibility of the threat to the local platform.

Weather-data M Any  weather  related  information  that  can  impact  the  results  of  the
exercise.

Mine-field,
obstacle data M

Contains locations and types of  mines and other  obstacles.   Includes
visibility data.

Current state data

H Status  of  combat
team members:

Location  of  team  members  and  their  combat
status.

M Current  intelligence
information:

Contains  information  about  foe  above  and
beyond what sensors can provide.

H Status of each threat
platform:

Current status of each of the targets within field
of view.

M
Current orders: The  set  of  orders  that  govern  platform's

objectives  and  techniques  for  achieving  those
objectives.

Predetermined
parameters of all
potential inter-
actors

S

A data-base  of  all  players  identified  as  potential  participants  in  the
exercise.   This  allows  the  initialization  of  the  clones  based  on  an
identifier rather than by detailed transferred parameters.

Learned reaction
of local operator
and object against
each inter-actor 

M

A historical  data-base  used  by  the  DAE  subsystem  to  initialize  the
reference model. 



The concurrent model approach proposed in this dissertation modifies the DIS approach

of broadcasting a single entity state stream between all hosts to generating a congruent

stream at several hosts as indicated in Figure 20.  

In this Figure, we show two hosts each generating an entity state stream.  The local host

is also generating a set of congruence messages C  G ,t   that explicitly state the setup of

the generator and the time that this configuration becomes effective.  The remote host

then schedules the setup of the remote generator to coincide with the local generator at

the same time as the time.  C  is the congruence function for each entity for which the

state is to be generated.  It is dependent on G  which is the vector of all model parameters

that control a given entity, and  t  the time those parameters will start applying.  These

values are of Category M in the situation database.  Congruence functions also include all

messages being conveyed by the operators of the exercise.  If they are not scheduled by

the operator the local host will assign a time of execution te  = tc+δ based on the current

time tc plus a  δ  time based on an estimate of the worst case latency between the local

host and the remote host to en sure coincidence of the application of the messages.
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Figure 20.  Congruence Transfer Function
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In general  then the concurrent  model  approach depends on all  three categories of the

situation database.  Referring to Table 4 the static S dataset that is preloaded along with

the simulation prior to the start  of  the exercise.   The  M  dataset that  is transferred as

Congruence functions,  and the  H  stream that  is  generated  at  each host.   The  S data

provides the basic information that provides the foundation to the rest of the information.

The  M dataset provides the rules for generating the H stream, which in turn is used by

the DIS applications to provide the views for the observer.  In subsequent sections, it will

be shown how this can be realized in OTBSAF to dvelop the concurrent model approach.

This  will  then  be  used  to  quantify  the  impact  of  each  of  these  categories  on  the

communications  transmission  by  using  the  current  OTBSAF /  DIS  packet  sizes  and

frequencies as the baseline for comparison.

Congruence  depends  on  both  temporal  and behavioral  factors  being  maintained.   To

illustrate  the  factors,  if  all  the  factors  are  collapsed  into  two Boolean  variables,  one

indicating Temporal Congruence and one indicating Behavioral Congruence.  Expressing

these in a Karnaugh map as shown in Figure 21, showing an “and” relationship between
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Figure 21.  Congruence Karnaugh Map
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these two sets of factors.  If neither Temporal or Behavioral agreement is maintained then

congruence is not expected to hold true, but if the reactions are correct then why is it not

necessary for temporal agreement to hold true.  If reactions occur out of order they are no

longer reactions per se. Thus, timeliness is necessary as well.  Likewise even if reactions

occur at the right time if they are not correct then congruence fails to hold true.  Thus

congruence, doesn't hold true except when both Temporal  and  Behavioral factors are

true.  

The function for determining Temporal Congruence is denoted ΨT(t, ER) and the function

for Behavioral Congruence ΨB(EL, ER).  The Temporal Congruence function ΨT(t, ER) is

dependent on the timing t, and the output of the remote generator ER, while the

Behavioral Congruence function ΨB(EL, ER) is dependent on the relationship between the

output of the local generator EL and remote generator ER.  The truth function for each of

these relationships ΓT and ΓB are dependent on these functions remaining within limits.

So ΓT is true if ΨTO-δ≤ΨT≤ΨTO+δ otherwise it is false, and likewise ΓB is true if

ΨBO-δ≤ΨB≤ΨBO+δ otherwise it is false. The subscript O indicates the desired value. 

Figure 22 provides some examples of the types of graphical displays that might be used

to depict remote environments.  The two labeled VSAM processing, which stands for

Video Surveillance and Monitoring, are actual sensor and camera views which would lie

at the base of the communications pyramid shown in Figure 9.  The one labeled ModSAF

is a plan view or map based display with the entities displayed as stick figures currently

these are transmitted by the Dead-reckoning block of the pyramid.  
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The view labeled ModStealth is a three dimensional representation of the view from an

arbitrary viewpoint [Collins 2000].

As  as  example  of  computing  C  G ,t −1 ,  applications  already  exist  to  render  the

ModSAF and ModStealth  views based on terrain databases  and visual  models  of  the

objects and an entity state stream based on the DIS protocol.  As can be seen from these

examples, though the video or sensor views can provide increased detail, the value of this

detail is somewhat questionable.  In most cases the depiction of individual blades of grass

are irrelevant to the viewer.  Thus, the generated views provide the necessary information

at a much lower bandwidth.  This motivates the selection of the δ tolerance parameter.
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Figure 22.  Example Graphics Illustrating Tolerances



To take  advantage  of  the  current  rendering technology,  the  entity  state  data  must  be

present  as  a  DIS  protocol  stream  at  the  observer.   All  of  this  is  present  locally  for

standalone embedded training,  and available  on a  LAN for  static  embedded  training.

Category S data can be provided in advance of the exercise,   Category M data is not

currently  the  limiting  factor  in  latency  and  bandwidth  considerations  for  the

communications link.  So if category H data could be generated locally, this would make

the communications of category M data the requirements driver for the WAN.  Given that

it has already been found practical to include the simulation components for embedded

training on each remote platform, this dissertation focuses on the implications of trying to

synchronize multiple simulations in order to present a consistent view of the simulation-

space to all observers. 

3.5    OTBSAF as a Prototyping Testbed  

OTBSAF is a large scale constructive simulation system developed to portray elements

down to the individual platform or entity level.  Although a constructive simulation, it

provides  both logical  and real-time clocks so  it  can be  used for  real-time interactive

simulation  to portray additional  elements  in  an exercise  beyond those represented by

manned simulators.   For communicating with the manned simulators,  it  uses  the DIS

protocol.  Each entity is simulated by instantiating the appropriate model for that entity.

Initially, each entity assumes the default values for each parameter that can be modified

by the SAF operator.  Below we will describe OTBSAF distribution, and then explain its

application as a testbed.
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3.5.1  OTBSAF Simulation Framework

OTBSAF  version  1.0  [SAIC  2001A] is  distributed  with  over  5,000  pages  of

documentation describing 636 libraries and 5 applications.  The libraries  have over 1

million lines of executable code with 80% written in the “C” language and the majority

of the balance in Finite State Machine (FSMs).  The FSM  [SAIC 2001E] code generator

is an AWK script that translates the FSMs source files into C-language constructs.

Semi Automated Forces (SAF) a simulation system that can provide operator controlled

semi-automated  entities  that  can  maneuver  on  the  simulated  battlefield  similar  to  a

manned  simulator.   The  goal  of  OTBSAF  is  to  replicate  the  outward  behavior  of

simulated units and their component vehicle and weapon systems to a level of realism

sufficient for training and combat development [SAIC 2001C].   Utilization of OTBSAF

takes advantage of a large range of domain knowledge to model all simulated systems,

implementation knowledge including networking, and user interfaces, available from the

various organizations that use and adapt the SAF to their needs.

In order  to  modify a  system with OTBSAF's  complexity  it  is  necessary to grasp  the

design  methodology.   OTBSAF  was  designed  for  the  Replacement  of  Individual

Subsystems,  Hardware  Independence,  Programming  Language  Independence,

Distribution of Subsystems,  and Time Management  for scheduling of execution.  For

Replacement of Individual Subsystems, the methodology chose layering the architecture,

support for object-based programming, and definition of  rigorous interfaces.    To enable

the distribution of subsystems, OTBSAF uses two protocols.  The DIS protocol is used
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for sharing of entity appearance data and the PO protocol to ensure persistence of objects

despite  hardware failure.   Time management  was implemented to allow allocation of

computation resources to all  the services and subclasses of the layered system  [SAIC

2001C].

The  layered  characteristic  of  the  OTBSAF  led  to  the  implementation  of  services.

Distribution of information between the calling module and the service was implemented

in two ways.  The first was by polling the higher layer periodically for information about

a  state  change.   The  other  was  the  establishment  of  a  callback  mechanism  for  the

handling of a simulation event.  In this case, the higher layer module provides the lower

layer module a function to call, if the specified event occurs [SAIC 2001C].  

Data Driven Execution in OTBSAF refers to the system's use of data files (referred to as

reader [.rdr] files) to provide detailed descriptions and parameters of objects.  This allows

the characteristics and behavior of the objects to be changed without recompilation.  Not

only does this allow definition of the objects at creation time, in some cases it allows

reconfiguration  of  objects  during  run-time.   Together  these  features  were  used  to

facilitate  the  adaptation  of  OTBSAF  to  the  Concurrent  Model  Approach  of  this

dissertation.
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3.5.2  Application

OTBSAF is  distributed  between  SAFstation and  SAFsim components  as  indicated  in

Figure 23 derived from the User's Manual [SAIC 2001B].  SAFstations provide the run-

time user interface to the simulation, as many workstations as necessary can be used as

long as they reference the same DIS exercise number.  SAFsims provide the simulation

of entities.  Here as many computers as necessary to simulate the required number of

entities can be used on the same exercise.  SAFstations share control of entities among all

components that use the same PO database identifiers.  Different forces can be privately

controlled by using different PO database numbers identifiers while participating in the

same  exercise  number.   Thus,  this  enables  different  teams  to  interact  independently

within the same exercise.  More than one exercise can share the same network as long as

they use different exercise identifiers.  

Selections  of  static  values  for  the  total  execution  time  of  the  simulation  occur  at

invocation  of  OTBSAF.   This  includes  such  items  as  exercise  and  PO-database

identifiers,  the seed for the random number generator, and the configuration of OTBSAF
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Figure 23.  SAFstation and SAFsim Components



as a  station,  a  simulator,  or combined as a  pocket  SAF.   In addition,  more than one

instance of OTBSAF can be invoked on the same computer/workstation at the same time,

as long as memory and processor power can support the demand.

The static (S)  databases in Table  4 are provided by Terrain and Parameter Databases

block of Figure 23.  The moderate update (M) databases are provided by PO databases,

and the highly dynamic (H)  databases are provided by the exercise database.   When

using OTBSAF the changes to the M and H databases of Table 4 are realized accordingly

using the PO and Simulation packets of Figure 23.  

Table  5 provides  a  summary  of  the  packets  generated  by  OTBSAF  in  the  scenario

introduced in Chapter 1.  All the packets with “po_” as part of their name modify the PO

databases,  the rest of the packets modify the exercise database and are shared with other

DIS applications.  The second column of Table 5 provides the number of each packet that

was transmitted over the course of the exercise of 12 minutes duration.  The third column

presents the size of each message in bytes.  Those with fractional sizes were variable

length packets so the size represents the average length of all the packets of the given

type.  It was developed by taking the sum of the individual packet lengths divided by the

fourth column, which was determined experimentally and is covered in later chapters,

indicates whether this packet is used in maintaining congruence.  The relative frequency

in number of packets/second can be found by taking the entry in column 2 and dividing
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by 720 which is the number of seconds in the exercise.  The average bandwidth (BW)

required for the exercise can be calculated by summing the number of packets for each

entry times that entry's packets size in bytes times 8 the number of bits in a byte and

dividing by the exercise duration of 720 as follows: 

Note that the two most frequent entries in the table, entity_state, and po_variable are not

required to maintain congruence and as will be seen in chapter 7, not all of transmittals of
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Table 5.  Current Communications Packets

Congruence
acknowledge 24 32
aggregate_state 26 160
entity_state 4,059 176
po_delete_objects 1 52 Y
po_line 48 116
po_link 26 1,120 Y
po_objects_present 143 954
po_overlay 102 72 Y
po_parametric_input 116 90
po_parametric_input_holder 51 64
po_point 78 100 Y
po_simulator_present 141 100
po_task 1,150 122 Y
po_task_authorization 15 72
po_task_frame 147 247 Y
po_task_state 1,486 289 Y
po_unit 202 648 Y
po_variable 9,028 356
start_resume 6 44 Y
stop_freeze 12 40 Y
transmitter 780 104

OTBSaf Packet Type(O) Transmittals(N) Size(s)

BW=∑ N O⋅sO⋅8
Duration

=∑ N O⋅sO⋅8
720

=4,966,280∗8
720

=55,180bits / sec



even the types of packets needed for congruence will be required .  Also note that this is

for a very small scenario nowhere near the size indicated in Table  2 that could be of

interest for the situational awareness application.    Also, Table 5 does not include any of

the packets transmitted to initialize the simulators as this would be part of the parameter

database.  Other items that are not transmitted are the Terrain Databases, the one for this

exercise is 6 MBytes compressed or 60 MBytes expanded for use during the simulation.

Other parameter entries of about 43 MBytes.  High resolution terrain/feature databases

used to generate the three dimensional Mod-Stealth views of Figure 22, could approach 1

Gigabyte  after  being extracted  from an 80 Gigabyte  source  database.   Video data  to

generate images such as the VSAM views of Figure 22 for the full length of the exercise

of 12 minutes at 525-line television resolution and using MPEG compression would be

about 400 Mbytes for each view.  

So in review of  Figure 24, if we start with a single viewpoint the base of the pyramid

would start  at  186Megabits/sec using MPEG compression it  would drop to about 4.5

megabits/second.  Using simulation with pre-stored terrain and parameter databases we
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Figure 24.  WWLAN Data Reduction Pyramid with Data Rates
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could drop this to 167Kbits/sec and using dead-reckoning to 55,180 bits/sec and we are

proposing to drop it to below 550 bits per/sec.  Only the base section of the pyramid is

restricted to a single viewpoint.  Once the simulation domain is entered it is possible to

choose any arbitrary viewpoint and display multiple viewpoints at the same time.  

3.6       OTBSAF Scalability and Priority Queue Performance  

 In the previous sections, we have reviewed the benefits of in bandwidth reduction by

using simulation as a motivation for the concurrent model approach.  With the concurrent

model  approach,  we  introduced  the  need  for  maintaining  congruence.   This  section

addresses the needs of the physical implementation associated with the concurrent model

approach.   One of the problems inherent to the concurrent model approach is the need to

generate all the entities at each separate site.  This raises the question as to its feasibility.

How  much  processing  power  is  required?   This  question  has  existed  since  the

introduction  of  OTBSAF  and  its  predecessors,  one  such  study  for  MODSAF  3.0

presented the results shown in Table 6 as reported by Roberts et al [Roberts 1998].  
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Table 6.  ModSAF 3.0 Benchmark Results [Roberts 1998]

Number of
SAFsims

(Processors)

Total Entities
Modeled by all

SAFsims

Average Entities
Per Processor

1 160 160

2 264 132

4 384 96

8 640 80

15 720 48



This  study  was  based  on  a  16-node  Silicon  Graphics  Origin  2000  computer  where

separate SAFsims were invoked on each processor for the number of  processors shown

from 1 to a maximum of 15 processors.  These results were obtained from use of the

standard ModSAF benchmark.  All the processors in this study were identical.  Roberts

attributed the major source of this nonlinear scaling to the situation that each processor

had to dedicate more and more processing time to the increased number of Protocol Data

Units (PDUs) exchanged between SAFsims.  

To  update  these  results  to  personal  computers,  a  similar  test  using  the  OTBSAF

“-benchmark” option was used.  This option allows you to specify the number of platoons

to use in the benchmark, which thus increments the number of vehicle entities by four for

each platoon.  A heterogeneous system with three computers was used.  Host “bahrd”

was a Dell Inspiron 8000 laptop using a Pentium III processor running at 1 Ghz.  It had

0.5  Gbytes  memory  and  was  running  the  Linux  2.4.20  kernel.   Host  “bahr2”  was  a

generic desktop using an Athlon 2400+ processor with 0.75 Gbytes memory running the

Linux 2.4.22 kernel.  Host “bahr3” was another generic desktop using an Athlon 2600+

processor with 2.0 Gbytes memory running the Linux 2.6.7 kernel.  
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Table 7.  OTBSAF Benchmark Results

Host Machine 1 2 3
Bahrd 180 0 100
Bahr2 256 188 168
Bahr3 280 200 176

Total vehicles 280 388 444
Incremental 108 56

  Number of Processors 



Table  7 gives the result  of  these benchmarks.   The test  was conducted by iteratively

changing the values until the threshold between pass and fail was discovered.  The entries

in Table 7 reflect these results, where the first column identifies the computers by their

host-name,  the  second  column  shows  the  maximum  number  of  vehicles  when  each

computer  was operated  separately.   The  “Total  Vehicles”  row reflects  the  maximum

number of vehicles that could be generated by the respective number of computers.   The

third column reflects the results  of taking two computers at  a time,  and likewise the

fourth column represents taking all three computers at the same time.  The “Incremental”

row reflects the number of vehicles that were added to the exercise with the addition of

another computer.  These results again reflect the nonlinear scaling reported in the earlier

report.

The final report of the Synthetic Theater of War experiment conducted in 1994 [Tiernan

1995], identified similar  problems with scalability,  reporting the maximum number of

entities on a common network occurred with 10 computers.  They overcame the scaling

problems by  isolating  portions  of  the  network  and only  sharing  the  necessary  PDUs

between the different segments.  Other reported solutions reported making changes to the

OTBSAF/ModSAF architecture using for example only one copy of the PO database in a

shared memory common to all processors.  

One item to note from Table  7 is that the faster processor continued to support  more

entities,  implying  that  increased  computation  efficiency  can  contribute  to  the  total

number of entities that can be simulated.  Another item discovered in the experiments is
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that the speed of the LAN between the computers did not change the results, as both a 1

Gbit and a 100Mhz LAN were evaluated using “Bahr2” and “Bahr3”.  The laptop was

restricted to a 54 Mbit wireless link.  At least at this level of entity counts current LAN

technology is not the limiting factor.

To update the current state of the art even further, we had the opportunity to test a cluster

of gaming machines.   Two of these machines were based on AMD 64 Processor,  an

XP3000+  model,  and  a  Pentium 4  Processor.   All  three  of  these  machines  had  a  1

Gigabyte main memory, and ran at a 2 Ghz clock speed.  Table 8 provides the results of

this benchmarking effort.  Definitely the two AMD 64 machines identified as Bob and

Rednight were faster than the Pentium, however the Pentium fell midway between the 2

Athlon Processors  although their  model  numbers  indicated  they would be  faster  in  a

standard office benchmark.   The two AMD 64 machines actually did perform more than

1.5 times faster as proposed by their 3000+ model number.  Again note the non-linear

scaling reported in the other tests which motivate the following section.
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Table 8.  OTBSAF Benchmark Results - Part II

 Number of Processors
Host Machine 1 2 3

Redscull 268 0 148
Bob 412 276 244

Rednight 412 280 256
Total Vehicles 412 556 648

Incremental 144 92



Specifically,  in  Chapter  2  we  introduced  causality,  synchronization,  and  DES  as

important  tools  to  maintain  the  congruence  necessary  to  make  the  concurrent  model

approach feasible.  We also showed how the event queue's  priority queue data structure

could impact the execution efficiency of a simulation.  We showed that Order(1) priority

queue  had  distinct  advantages  over  Order(N)  and  Order(log  N)  implementations.

Currently OTBSAF uses a heap which is Order(log N) implementation.  We introduce

here an Order(1) implementation extending the author's previous work [Bahr 1994B], to

include head end optimizations and a high stability solution for a large range of event

insertion and deletion distributions. We will call this queue a Smart Priority Queue (SPQ)

because it uses bounded heuristics to dynamically adjust its structure to adapt to the event

distribution.  This approach improves the efficiency of the simulation and minimizes the

negative impact of some additional techniques of scaling such as prioritized frequency of

execution as indicated in Table 2 in Chapter 2 where additional events would be added to

priority  queue but not require as many model  executions and PDU generations.   The

number of events in a priority queue for a given number of entities  N in an exercise is

K*N  where  1<K<U.   K  is  a multiplier  characteristic  of  a  simulation  to represent  the

spawning of additional parallel events for each entity other than just a routine update.  An

example would be a routine status check at a much lower rate than the normal update.

Assume that  U representing an upper limit will be 10 or less depending on how many

parallel activities are scheduled during the processing of the  Nth entity.   Observations

during debugging of the SPQ implementation for OTBSAF captured a peak of about 10

scheduled events per entity, and routinely between 3 to 4 events per entity.  Together,

these results will be used to develop the Concurrent Model Approach in chapter 4.
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CHAPTER 4 CONCURRENT MODEL APPROACH TO EMBEDED

SIMULATION

One approach used  to  reduce the  communications  traffic  required  during  Distributed

Interactive Simulation (DIS) is the use of  dead-reckoning algorithms  [Dahman 1996].

Dead-reckoning takes advantage of knowledge of the physical behavior of entities which

dictates that moving bodies can only change speed or direction in certain  predictable

ways.  As long as the moving body does not deviate from this predicted route, there is no

need to send additional information from the source monitoring the movement to the

receiver using the motion information to determine the current location of the entity.

The DIS concept provides large number of entities by adding additional Semi-Automated

Forces stations (SAFstations).  As shown in the previous section, each SAFstation can

generate from 100 to 300 entities.  The current state of each entity is updated periodically

by the generating SAFstation.  The problem with this approach is the periodic update

traffic.  Although the  Concurrent Model still uses periodic updates, they are at a much

longer period between each update.

In  the  Concurrent  Model  approach,  the  principles  underlying  dead-reckoning  are

extended.  In dead-reckoning, at both the local source and remote receiver, an algorithm
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is executed based on the positioning information provided by the source to the receiver as

shown in Figure 25.  

The local source continues to compute the current position as indicated by the vector

Pm t =
1
2
A0 t 2 V 0 t P0  and  compare  that  to  the  measured  position  indicated  by

Pa , Aa , V a , t c .   As  long  as  the  calculated  position  is  within  certain  error  bounds

Pa−≤ Pm≤ Pa  then no updates are provided to the receiver.  Meanwhile, the remote

receiver calculates the predicted position Pm t =
1
2
Am t 2 V m t P0  and  uses it as the current

position  of  the  moving body,  as  it  has  confidence  that,  in  the  absence  of  correcting

information,  this position is  accurate within the error  bounds.   In this  case,  the dead

reckoning algorithm represents a model of moving-body positioning.  Thus, positioning

information is the parameter that is exchanged between two copies of the model.  In the
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Figure 25.  Dead-Reckoning
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above equations P t   is the position vector at time t.  A  is the acceleration vector, and

V  is the velocity vector.  Thus given the P0  the position at the start of the period and t

the change of time since the position was observed the new P t   can be determined.

In the Concurrent Model, dead reckoning is extended to predict the behavior interaction

between players. The approach uses pairs of full-platform models, rather than only sub-

element models.  The difference between this and the dead-reckoning approach is this

employs two high-fidelity models  S E m t =H  G0 , t   as indicated in Figure  26.  Ideally,

the  required  correction  data  S E 0 , G0 , tm  is  non-existent  if  the  behavior  model  is

sufficiently accurate.  At the source the observed data S E a , t c  where  is S E a  the state

vector  for  each  entity  E  as  actually  observed  as  indicated by  the  subscript  a  where

subscript m designates the model.  The initial time t0  is subtracted from the current time tc

to determine the change in time  t  which is used by the model to determine the models

current state vector.  As long as the  current modeled state vector S E m  stays within the
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Figure 26.  Concurrent Model
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acceptable range δ of  observed  vector S E a  there is no need to update the model.  If it

exceeds the acceptable range then the correction function G0=C  G0 , t c  must be applied to

determine a new  congruence vector G0  which will be applied at time tm which is a future

time computed by adding the latency correction time tl  to the current time.  This allows

both  the  local  source model  and remote  receiving model  S E 0 , G0 , tm  to  be  adjusted

concurrently.  Only the  revised initial  state  vector,  Congruence vector,  and designated

time  of  invocation  are  transmitted  to  the  receiver.   This minimizes  the  data  transfer

between the remote interactive parties, and yet maximizes responsiveness, while allowing

detailed  manipulation  of  articulated  components  at  the  local  level.   An  interactive

situation  requires  pairs  of  models  for  each  participant.   Essentially,  the  respective

platform is cloned on the target platform.  An exact clone would respond identically as

the simulated platform and crew, since it is collocated with the target there would be no

measurable delays, thus resulting in the highest fidelity simulation.  In actuality, cloning

the crew and platform is impossible, but cloning a model is routine.  Thus, the proposal is

to place a high fidelity model of the simulated crew and platform on that platform, and in

a closed-loop environment  tune  that  model  to  match the  capabilities  of  the  platform.

Concurrently,  place a clone of the model  on interacting objects and,  in an open loop

environment,  apply  the  same  corrections  made  to  the  reference  model  to  its  clone,

thereby keeping it a clone of the reference model.

The  early  research  on  the  Concurrent  Model  Approach  was  split  between  multiple

research teams.  SAIC corporation explored the adaptation of Modular Semi-Automated

Forces  (ModSAF) to the  concurrent  model  approach  [McHale  1998] [Ourston  1998].
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Gonzalez, DeMara, and Geogiopolos developed smarter models  [Gonzalez 1998].  It is

assumed that high-fidelity models/simulations will be available, differences between the

player  platform  can  be  detected,  models  can  be  adjusted  to  minimize  the  errors  of

prediction  and  technology  will  provide  the  necessary,  cost  effective,  computational

resources [Petrasko 1993].  Even with these assumptions the Concurrent Model Approach

is still  highly dependent on maintaining coherency between the reference models and

their clones.  

The focus of this dissertation is then on:  

(1) How scheduling can be synchronized to maintain concurrency.

(2) How  concurrency  can  be  maintained  in  a  multithreaded  environment  to  allow

scalability.

(3) What  technological  capabilities  are  required,  in  terms  of  data  storage,

computational capability, and communication bandwidth.

(4) Generalization of the approach for application to other uses.  The goal is to allow

each  platform  maximum  independence  to  adapt  to  its  unique  demands  while

maintaining the coherency between the reference models and their clones.

By using concurrent models clones at both ends of the communications link, we can also

compensate for delays in the feedback loop.  The error detection and correction loop

would exist only at the source end and the receiving end would operate-open ended by

just utilizing the correction parameters sent from the source end.   There always exists the

possibility that the correction parameters sent to the receiving end could be lost or have
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errors so some method of verification will have to be employed.  The goal is to tune the

model to where it accurately emulates the crew and platform being modeled.  This is

much different from just changing the output to agree with reference system.  It means

analyzing  the  error  to  determine  what  model  manipulations  are  required  so the  error

would not have occurred.  In view of the situation where we have humans in the loop, we

will never have a perfect predictive model of behavior so in this case the goal would be to

minimize the average error. 

As introduced earlier in this paper, even if we had perfect models and the error correction

data was non existent  then, there would remain a requirement  for communications of

other information between the field platforms and the rest of the participants.  What the

Concurrent Model concept achieves is a reduction to the minimum data while removing

transmission  delays  from  apparent  reaction  times.   The  data  that  is  required  to  be

transmitted is primarily  shared data.  There is initially information that  could be pre-

stored at each entity, such as, terrain database, expected weather conditions, the set of

generic models, and force composition.  During the exercise, this information would have

to be supplemented by new orders, intelligence information, and changes of status of any

player in the field of view.

At times we adopt a one-on-one trainee interaction whereas for each platform it is in

reality  a  team-on-team  environment.   To  cope  with  the  team  interaction  issue,  the

requirement for models executing  on each platform must be extended to include one for

81



each player in the field of view.  However, this does not increase the number of required

reference models, as all clones of player would be subject to the same correction data. 

4.1    Player Units (PU)  

The Player Unit (PU) could be a person, a manned platform, an unmanned vehicle or a

simulation of such an object.  The key characteristics are that it is independent, capable of

making  decisions,  and  interacts  with  other  units.   Communications  between  units  is

wireless  as  any  hardwired  system is  part  of  a  larger  unit.   Interaction  can  be  either

threatening or supportive. 
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Figure 27:  CRM
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4.1.1  Concurrent Remote Model (CRM).

The  Concurrent  Remote  Model (CRM)  shifts  the  transfer  of  data  away  from  the

interaction parameters to be primarily the typical Interaction Situation Information, with

model tuning parameters as required.  The interaction information as depicted in Figure

27 still exists and is available in greater quantity, higher precision, and with less delay

than  by  either  of  the  previous  methods.   The  difference  is,  all  this  information  is

generated locally at each platform.  The CRM platform consists of the major elements

identified in Figure 27.  They are the object simulator or object system and its requisite

instrumentation.  The Difference Analysis Engine (DAE) that replaces the comparator in

the  dead-reckoning approach.   The Adaptive  Reference  Model  (ARM) that  serves  as

either the reference model or a clone of the reference model and the situation database.

Each of these blocks is described in more detail in the following sections.  As illustrated

in Figure 27, the play of the simulator or the manned platform is only noted locally, the

play of  the  reference  model  is  the  “official”  view of  the  interaction.   This  allows a

consistent view across the exercise while still allowing individual evaluation to take place

at  the  platform  level.   Since  the  reference  model  and  all  of  clones  are  changed

synchronously,  they  play  the  same for  a  given situation  regardless  of  location.   The

maintenance of the situation database thereby becomes the primary purpose of the PU

communications  network.   Since  this  database  should  be  the  same  on  any  platform

participating in the same conflict location, the information on this link can be broadcast

to all platforms.   
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In comparison to the normal DIS network, all the communications labeled  activity and

updates in Figure 27 would be transferred over the wireless PU communications network

instead of just the updates.  This is in addition to the normal operational traffic of the

players.  The goal is to reduce the updates to a fraction of the normal traffic, whereas DIS

traffic would tend to be an order of magnitude larger as discussed later.

4.1.2  Difference Analysis Engine (DAE)

The  DAE  is  the  element  that  compares  the  performance  of  the  simulator  with  the

reference model and develops the parameters that are passed to the reference model and

its remote entity clones.  It develops the parameters that are used to adapt the ARM.  This

is the primary place where the states as defined by the simulation or object system are

used.   The status  reported to the rest  of the interacting elements is  the output  of the

reference model.  However, in this subsystem, the results from the platform system are

treated as absolutely correct, the results of the reference model are considered as flawed

if differences occur.  The parameters generated from its analysis will be used at some

time in the future.  This delta between current time and future time is design dependent

but  can  be  large  enough to  ensure  correct  transfer  to  all  clones.   It  is  assumed  that

changes  will  be  made  to  the  clones  synchronously  with  the  reference  model.   The

synchronous time base will probably be based on a global time-base such as GPS time.

Next to a object/simulation, this is probably the most highly customized portion of  the

concept.  This subsystem depends on internal knowledge of how the object/simulator

generates results,  how the reference model  generates  results,  and what  the prescribed

solution is.  It also takes advantage of the operators' history to improve its predictions.
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This is the subsystem that uses Artificial Intelligence techniques to determine why the

parameters need to be changed and what changes to make.  This subsystem learns how a

specific manned object performs, converts that knowledge into a set of parameters that it

transfers to models of the object, and expects those models to perform as if they were

clones of the manned object.

4.1.3  Adaptive Reference Model (ARM)

The Adaptive Reference Model (ARM) is the element that will be cloned to serve as the

reference  model  and  the  remote  entity  models.   It  is  anticipated  that  this  model  is

constructed from a set of generic modules.  Along with this would be parameters that

would differentiate this particular object system from the others in its class.  In addition

to  the object  system  capabilities  model,  operator  model  is  included.   This  gets  into

modeling  things  such  as  reaction  time,  target  recognition,  driving  tendencies,  and

impulsiveness.   This  would  be  an  unbounded  task  except  that  characteristics  of  the

physical platform and training narrow the range.  Other modeling required is for those

characteristics that tend to vary over the course of the interaction, or due to changes in

capability  during  the  simulation.   A  key  characteristic  of  these  models  is  that  the

performance of the model  can be adjusted in real-time during use.   The model  must

continuously generate as an output state, all outputs that determine the location and status

of the object system and its operators.  All parameter changes to this model are applied

synchronously to the reference model  and all clones.  That is,  parameter changes are

received with the time that they are to be applied.  Then when the prescribed time is

reached the changes are made.  The reference model directly interacts with clones of the
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target systems, while the clones interact with the reference models of the target systems.

The state as generated by the reference model is taken as the state of the platform used.

4.1.4  Instrumentation for Player Units

The  instrumentation for PUs is the set of sensors that are used to determine the state of

the  Objects  Platform  and  its  operators.   It  must  provide  the  location  and  time

measurement, stores status, and articulated components status of the platform.  The stores

would include for example fuel  for any vehicle  based ES.  While this information is

readily available on simulators, instrumentation will probably have to be added to most

live  platforms.   Future  research  is  proposed  to  determine  the  required  accuracy  and

resolution of these sensors.

4.1.5  Situation Database

The Situation Database is data that is stored on each platform required for concurrent

simulation to work.  Assuming that a model can always adapt more precise information

to the level of detail that it requires, the level of detail required for each element is that

required by the most discerning live platform or the reference model.  Component data-

bases would include such items as depicted in Table 4.  Items such as Terrain-database,

Threat-platform  models,  Pre-defined  orders,  Vulnerability  data,  and  Predetermined

parameters are all quasi-static. That is they must be identical for all Player Units, but the

changes are outside the scope of this discussion.  Items such as weather data, and obstacle
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data, and learned reactions would be considered low-dynamic elements that would have

minimal impact on network capacity.  

The goal is to separate situation database information from dynamic components which

can be generated locally  by models.  The OTBSAF elements that would make up the

Situation Database would be the DIS database, the PO database, the Terrain database, and

the Parameter database.  The first two are dynamic and the last two are provided/selected

at simulation initiation. The DIS database provides the dynamic state of each simulated

object, while the PO database provides command and control information, such as unit

makeup, orders, and other parameters.

4.2    Processing of Discrepant Results  

The  primary  results  used  for  battle  assessment  is  the  states  generated  by  the  clone

reference model.  These results should be identical at all sites as they are synchronously

updated for all copies and they participate in the same simulation.  They only interact

with  other  reference  clones.   The  only  place  other  results  are  observed  are  at  the

individual players and their local DAE.  These results may be used for evaluation of the

model,  but will  primarily be used early in the development cycle.  The DAE uses the

results to adjust the reference model and its clones, so the disagreement is noted and will

influence future results.  For this reason, it would be beneficial if the model parameters

could be transferred with the trainees from exercise to exercise.  The comparison of the

trainees to clones responses can be made available for individual assessment independent

of the exercise results.  No matter how perfect the clone, there exists the possibility that
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results achieved by the simulator or live platform differs from the reference model.  Some

key items that were kept in mind while deciding how important their congruence would

be  and determining the congruence truth thresholds are:

· This is a simulation whether live or virtual trainees are involved.

· The degree of agreement needed  between both views of the interaction.

· If the ES objective evaluates actual  interaction or a response to training.

If corrective actions are desired, they should be inserted as realistically as possible within

the normal response times of human interaction to avoid negative training.  All of these

factors provide room for engineering tradeoffs, while still meeting the end users needs.

A basic premise of the concurrent model approach is that the clone models executing in

other platforms will perform identically with their reference model.   Even if the models

give repeatable results for the same set of inputs, it does not guarantee that at any given

time the results are the same.  Two other constraints are required.  The same data must be

presented to the clones in the same sequence as the reference model and the clones must

be at the same point of execution at that time.  The most direct approach at guaranteeing

these constraints are met, is to have each clone processor be identical to the reference

processor  and having them execute  from the  same clock from the  same data  stream.

However, this would defeat the purpose of using the clones.  The purpose of using the

clones  is  to  allow  the  generation  of  the  same  output  stream  at  physically  separated

locations at the same time.  This physical separation in some cases could be thousands of

kilometers away.  A second function of using the clones is to allow interaction with other

elements of the simulation within the natural reaction times of the human operators.  A
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third characteristic of these clones is that  they can be dynamically changed to give a

different result to the same data source to realize adaptive behavior.  Let the set of output

states be denoted as O, input states as I, reference models as r and clones as c with the

present state as n.   For each change of output state from Or
n  of the reference model to

Or
n+1 the states  Or

n = Oc
n and  Or

n+1 = Oc
n+1 must hold true for all clones of the given

reference model.  Furthermore, there must be no human perceptible difference in the time

of occurrence of the state changes between any of the models including all clones and the

reference.   Since model c is a clone of model r then Ir
n = Ic

n and Ir
n+1 = Ic

n+1 must also

hold true.  For the purposes of training these states do not have to be exact, but rather

within an envelope dictated by the ES application.  This envelope is dependent on the

required fidelity to achieve objectives.  For this reason these equations can be restated as

Or
n ± δ = Oc

n , Or
n+1 ± δ = Oc

n+1 ,  Ir
n ± δ = Ic

n and Ir
n+1 ± δ  = Ic

n+1.  This allowable error

term  must  be  specified  before  exact  performance  expressions  can  be  determined.

However,   a   set  of  expressions  can  be  postulated,  incorporated  into  a  simulation,

exercised  and  presented  to  Subject  Matter  Experts  (SME)  to  gain  insight  on  the

magnitude sensitivity.  Upon completion of this experimental cycle the equations can be

refined to a set of design criteria.  The first step of this experimental design process is to

postulate  a  design,  then  examine  this  design  for  error  sources  and  develop  these

equations.  The next step would be model this set of error equations and examine their

cross dependencies.  After this initial design refinement, the postulated changes could be

incorporated into OTBSAF and sample runs presented to SMEs for further assessment of

relative importance.
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4.3    Concurrent Model Approach Design Criteria  

In the Concurrent Model approach, each platform has a set of models that interact during

the training exercise.  Figure 28 shows multiple CRM platforms that are participating in a

collective training exercise.  

Each one with his own set of models and his own copy of the situation database.  The

challenge here is to maintain the coherency between the platforms within error  δ.  In

chapter 3 we introduced the congruence functions  ΨT and  ΨB   and their corresponding
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Figure 28:  Collective Interaction under Concurrent Model approach
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truth functions  ΓT and ΓB.  The is for the local host to dynamically adjust the congruence

vector G0  to keep  ΓT  and ΓB TRUE.

4.3.1  General Criteria

The proposed coherency strategy is as follows:

1. Each reference model will broadcast an entity state message that includes both a time

tagged model parameter set and a separately tagged model status set on a periodic

basis at least three orders of magnitude less frequent than the local updates.

2. On a event-driven basis, an entity state message will be broadcast to correct both the

status and the model parameters based on DAE discrepancy sensing.

3. Each system will have a real-time clock locked to GPS time.

4. Each player platform will be responsible to update data to the current time based on

model parameters and the difference between tagged time and current time.

5. Local Model release times will be based on the Real-time clock.

6. Local Model tick rates will be adjusted on a integer multiple of a base period basis, to

best meet the demands of the local system.

7. tick rates are to be adjusted on a dynamic basis to ensure that local calculations stay at

near real-time.

8. All  pseudo  random  number  generators  are  advanced  on  the  base  period.   All

calculations will be adjusted to minimize the impact of dynamic scheduling.  Ideally

all random numbers will be replaced by fixed values.
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The rational behind each Concurrent Model strategy element is as follows:

1. The periodic broadcast provides a known base state to correct for any clone drift, and

also provides the information necessary to add a new entity into a vehicles area of

concern.  Since this change may generate a ripple effect on calculations, it needs to be

at a frequency that only increases total processing load by a small percentage.  For

example if, the additional processing required per periodic update is 10 times greater

that  of normal  tick processing and its  rate  is  10-3 of  the normal tick,  the average

processing load has only increased by 1%.  Separate time tags allow for freedom on

order and processing priority.

2. Event driven processing is used near real-time corrections and keeps errors within a

pre-defined delta.  

3. Each system needs GPS for position determination already so this provides a low cost

approach of providing time stability at a level where its error contribution is relatively

insignificant.  Most parameters are rate based so time differences are always a term in

each state update.

4. This allows each platform to update its state based on the data currently available to

it.   Since  it  has  a  highly  stable  time source,  the  update  becomes  independent  of

transmission and processing delays.

5. It is assumed that processing will be based on a priority queue with time as a priority.

Information should be processed as soon after it is scheduled as possible.
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6. Some  model  factors  are  based  on  counts  or  increments  in  order  to  simplify

corrections required to compensate for dynamic loading.  A similar simplified scheme

is used to account for time base differences. 

7. Normally, models are processed on a periodic basis, but due to external events the

amount of processing required can change.  To get the best precision, the number of

updates needs to be adjusted based on external activity. 

8. Pseudo-random number generators are used to provide variety in training scenarios.

Yet, for coherency purposes each vehicle needs to be able replicate the activities of

the reference models independent of the local vehicles tick rate. This is a tradeoff

issue that must be carefully clarified with the end user.

Once  a  suitable  scheduling  system  has  been  developed,  this  system  is  used  for

experiments  in  multithreading  on  a  local  network  to  establish  the  validity  of  local

processor scalability.   ModSAF has already been demonstrated to be scaleable from a

distributed  computer  viewpoint,  but  its  current  single  threaded  architecture  with

scheduling at the application level does not allow it to take full advantage of modern

Symmetric Multiprocessing computers  which  use  multiple  processors  to  share  the

computation load.  

4.3.2  Remote SAF Operator

The Remote SAF Operator is an application that demonstrates the capability of meeting

several  key  criteria  of  the  concurrent  model  approach by  modifying  OTBSAF.   The
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remote SAF operator requires that an operator at one location controls semi-automated

forces that are interacting with other players conducting Mission Rehearsal en route to a

trouble spot.  In this case, there is a clone pair of simulations at the operators location and

with the deployed unit.  Communications between the two model sets is via a multi-hop

wireless  system  to  aircraft  en-route  to  the  trouble  spot.   Thus,  it  takes  concurrent

simulations, one to provide the SAF entities for the Mission Rehearsal, and the other to

provide feedback to the operators.  Latency must be  hid to avoid having the operators

wait for the commands to reach the aircraft, initiate the action of the simulated entities,

and send entity state packets back to be displayed on their screens.  Instead, the local

simulation provides that feedback.  Communications bandwidth can be reduced because

the  entity  state  packets  do  not  need  to  be  sent  back  to  the  operators.   real-time

synchronization  is  required  to  keep  the  clocks  in  sync  at  both  sites,  and  repeatable

performance for both sets of models must be maintained.

The Remote SAF Application as implemented for this dissertation does not demonstrate

the complete Concurrent  Model approach.  It's primary focus is on demonstrating the

communications  reduction  potential  of  this  approach.   A  GPS  based  clock  was  not

available,  and  it  would  require  a  more  extensive  modification  to  OTBSAF  to  be

incorporated.  This was not critical at this stage of investigation.  In addition, the use of

the DAE and feedback have had some initial exploration by VMGOES [Henninger 1998]

[Gerber 2001]and SAIC [Ourston 1998], and further work in this area should be explored

in the future.  Furthermore, although some preliminary investigation was conducted on

the criteria and implementation it was only partially implemented at this time. 
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The primary focus of of this investigation is the tradeoffs between bandwidth reduction

and  the  impact  of  congruence.   OTBSAF  provides  a  vehicle  for  investigating  these

capabilities, but its extensive use of random numbers needs further investigation beyond

the tested alternatives.  SAIC used a non-network approach for Repeatable SAF, and the

Concurrent  SAF  experiment  used  a  single  master  random  number  generator.   Both

showed  success  in  repeatability,  but  were  lacking  in  other  aspects  of  the  complete

Concurrent Model approach. 
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CHAPTER 5 ANALYTICAL RELATIONSHIPS  IN

COMMUNICATION MECHANISMS

To  demonstrate  properties  of  the  the  Concurrent  Model  approach,  we  first  require

temporal  congruence  and  behavioral  congruence  between  two  entity  state  streams  at

physically distinct locations using a communications channel, C, with a finite bandwidth

of B bits per second and exhibiting characteristic latency of tl  and behavioral generators

GL and  Gr.   The  initial  congruence  parameter  vector  G0  is  updated  to  correct  these

generators as needed to maintain congruence.
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Figure 29.  Concurrent Model Analysis
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Figure  29 added  the  details  of  Figure  26 to  Figure  20 to  illustrate  how  the  earlier

introduced concepts relate.  In this case, it is given that the Local Host generating entity

state stream S E L  information is separated by some physical distance d from the remote

location where the Remote Host is generating the entity state stream S E R  information.

For the  Remote Host there is both a  H  G0 , t   generator component and a  C  G0 , t −1

control  component.   The subscript  a  denotes  measured  or  actual  values,  whereas  the

subscript  m  denotes model generated values.  Subscript  0  denotes initial  values.   The

control  signals  are  sent  over  the  communications  link  C,  which  is  limited  by  its

characteristics B, and tl, from the Local Host to the Remote Host.  We provide theorems

governing the following classes of characteristics:

•   Correctness characteristics:  the factors that determine congruence, and

•   Performance benefit characteristics: bandwidth and latency assessments.

5.1    Correctness Characteristics  

Definition 5.1.1:  Congruence. 

Congruence is achieved between two entity state streams S E L , and S E R  when the

views generated from those streams allow the independent  observer to react  to those

views in a correct and timely manner.  The standard for correct and timely are based on

the observer's reaction to the same views if they were generated by a single stream in a

DIS environment.  Congruence is subdivided into Behavioral Congruence and Temporal

Congruence.  Thus Γ =  ΓB ^  ΓT  where Γ  is the Congruence Truth function and ^ denotes
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conjunction.   ΓB is  the Behavioral  Congruence Truth function and  ΓT  is  the Temporal

Congruence Truth function 

Definition 5.1.1.a:  Behavioral Congruence.

Behavioral Congruence is achieved between two entity state streams S E L  and S E R

when the view generated by remote receiver matches the view generated by the local

source  within  an  acceptable  tolerance  δ.   Let  ΨB(EL,  ER)  denote the  behavioral

congruence function, then ΓB   is said to be TRUE if   ΨB0-δ≤ΨB≤ΨB0+δ  otherwise it is

FALSE.   ΓB is  the  truth  function  for  behavioral  congruence,   δ is  one  half  of  the

acceptable range, and ΨB0 is the desired value.

 

Definition 5.1.1.b:  Temporal Congruence.

Temporal Congruence is achieved between two entity state streams S E L  and  S E R

when the view generated by remote receiver occurs within the same timeframe as the

view generated by the local source.  When ΨT(t, ER) is the temporal congruence function,

then ΓT evaluates to TRUE if ΨT0-δ≤ΨT ≤ΨT0 +δ otherwise it is FALSE.  ΓT  is the truth

function for temporal congruence,  δ is one half of the acceptable range, and ΨT0 is the

desired value.

Definition 5.1.2:  Simultaneity.

Simultaneity is defined as the scheduling of  two or more events at the same simulation

time.  
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Definition 5.1.3:  Causality.

Causality is the property that no event should appear to the observer prior to any event

that caused it.  No simultaneous event can exhibit causality for another event scheduled at

the same time.

Definition 5.1.4:  Strong clocks.

Strong clocks satisfy the following relationship introduced by  [Lamport 1978].  Let  →

denote  the  happening  before  relationship  for  members  of  the  set  ζ.  For  any  events

a ,b∈ab  then a b .  Where  a and  b are discrete events and the function

Π x   returns the timestamp for the event x. 

Definition 5.1.5:  Repeatability.

Repeatability is the property that states for every instance of a model 

S E mt =H  G0 , t   given the same set of parameters and state, it must generate the same

output, irrespective of physical location or clock time.  Here the time parameter for the

model is the change in time since the previous update, not the wall clock time.

Definition 5.1.6:  Soft Real-time Scheduling.

Soft Real-time Scheduling is defined to be a process scheduling methodology where the

process is not initiated until the real-time clock reaches the scheduled time, however, it

all processes are executed that are scheduled at that time in some sequential order until

they are all completed.  This means that the processes are not guaranteed to be executed

at the scheduled time, but are guaranteed not to be executed before that time.  Soft Real-
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time  Scheduling  also  guarantees  that  all  processes  scheduled  for  an  earlier  time  are

completed  before  any  subsequent  process  is  executed.   This  methodology  will  be

elaborated later using Figure 30 and its related discussion.

Definition 5.1.7.  Simulation time.

Simulation time is the logical time maintained by a discrete event simulation, and refers

to the scheduled time of the last event selected for execution.  It remains constant until

the  next  event  is  scheduled  for  execution.   A  simulation  implementing  this  strategy

satisfies the the requirements for provision of a strong clock.

The properties of Concurrent Models are analyzed under the following assumptions:

(1) The priority queue provides strict First-In First-Out (FIFO) ordering for all equal

priority events.

(2) The real-time clock maintained at  both source and receiver are synchronized to

GPS time.

Theorem 5.1.1.  Necessary and Sufficient Conditions for Behavioral Congruency.

S E L  is behaviorally congruent to  S E R  if  the models are repeatable and they are

given the same inputs in the same order. 

Proof.  Given that the models are repeatable, this implies they will generate the same

outputs given the same inputs.  By requiring the priority queue to preserve FIFO ordering

in the presence of simultaneity, this maintains ordering even when events with the same
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priority  are  processed  sequentially.   Thus,  they  will  remain in the same order  in  the

remote execution as the local execution even if  the next scheduled iteration occurs at

different  clocks  as  long as  the  time step  increment  i is  the  same.   With  this  strong

ordering causality is also maintained because a→b , then (a+ i)→(b+ i) for all event pairs

(a,b).    Where →  denotes the happening before relationship of the strong clock.

Theorem 5.1.2.  Temporal Congruency 

S E L  is  temporally  congruent  to  S E R  if  the  simulations  are  soft  real-time

synchronized to global time such as GPS time, and all changes are received  s seconds

before scheduled execution time,  and are processed in the same order as transmitted.

Where s is congruence setup time.

Proof.   Given that  the  simulations  are  synchronized  to  GPS time,  which  has  higher

resolution than the OTBSAF one millisecond clock, then individual simulation times can

be advanced an identical real-time rate.  As long as S E 0 , G0 , tm  are received s seconds

before scheduled execution time, soft real-time synchronization guarantees all processes

will be executed after the scheduled time and in clock order.  As long the changes are

tagged sequentially, the receiving system can properly order them within the same clock

period.  Since this is again a strong clock ordering causality is still  maintained.   The

processing time required to compute C  G0 , t −1  must be no more than  s seconds.
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5.2    Performance Benefit Characteristics  

Performance  benefits  of  the  concurrent  model  approach  address  the  primary

characteristics  of  a  communications  system.   Those are  bandwidth  and latency.   The

concurrent model approach is postulated to address the limitations of a communications

system used for mobile systems operating.  The focus is on either a satellite-based or a

multi-hop  wireless  network.   These  systems  tend  to  have  restricted  bandwidths  for

simulation traffic and long latencies.  As such the objective is an approach that has a

reduced  bandwidth  demand,  can  operate  with  extended  latencies,  and  mitigates  the

impact of communications outages.

Definition 5.2.1:  Reduced Bandwidth Ratio.

Reduced Bandwidth Ratio denoted by BR is the ratio of the bandwidth used by current the

DIS  approach  over  the  bandwidth  required  for  the  postulated  Concurrent  Model

approach.  In this case, the number of bits N transmitted on the network for local traffic

divided by the number of bits  I transmitted between the local and remote generators of

the concurrent model approach yielding  BR = N/I.

Definition 5.2.2:  Latency Hiding.

Latency Hiding is the combination of providing low latency solutions for highly dynamic

state changes, and latency compensation techniques for other changes.  Latency hiding

techniques compensate for when the messages are present in the network but delayed due

to transmission characteristics.
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Definition 5.2.3:  Outage immunity.

Outage  immunity  is  the  situation where the output  of  the  remote  site  continues with

minimal  degradation  during  periods  of  communication  outage.   Outage  immunity

techniques compensate for situations when messages are lost or not transmitted due to a

loss of transmission capability.

The  concurrent  model  approach  provides  data  reduction  by  transmitting  only  those

packets necessary to update the models.  It does not send any entity state packets, and

only a subset of the persistent object packets.  From Table 5 we see that only 10 of the 21

categories of messages are transmitted.  Furthermore, in Chapter 7 we will see that only a

small percentage of  packets in the transmitted categories are needed on a regular basis.

Theorem 5.2.1:  The concurrent model approach provides reduced bandwidth demand.

Proof.  N is the sum of all local packets transmitted.  I is the sum of the packets required

to maintain congruence.   From  Table  5,  it  is  clear that  I  is  a subset  of  N,  therefore

BR=N / I  is greater than unity so BR1 .

Simulations latency is the length of time it takes for a message about an event to travel

from one simulator to  a remote simulator.  It  includes various communications  delays

such as protocol formatting, amount of other traffic on the link, number of links/hops

between simulations and transmission time.  Other factors include reliability and routing.
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Reliability influences the average latency as a retransmission may be required before the

message is received by the remote simulation.  Routing delays are prevalent in wireless

systems where the route is subject to change as the systems move as given by the total

time:  

T tot=t prott waitN hop thoptdistt rel  

where:

t prot  =  time required to format the message according to the protocol,

t wait  =  time caused by waiting for link due to contention,

N hop  =  average number of hops times the 

thop  = average delay per hop, 

tdist  =  per hop fly time due to physical length of links,

t rel  =  average time to correct an error in a message times the expected number of

errors per message.

Theorem 5.2.2.   The  concurrent  model  approach  provides  a  latency  hiding  ratio  of

.

Proof:   The  concurrent  model  approach generates  high  dynamic  states  at  the  remote

location  thereby  reducing latency to  that  of  a  local  network.   The  concurrent  model

approach compensates for the latency of other changes by scheduling them far enough in

the future so they can be executed in synchronism.  Thereby meeting both requirements

of the definition.
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Theorem 5.2.3.  The concurrent model approach provides outage immunity ratio of up to 

BR.

Proof:  The concurrent model approach generates high dynamic states at the remote site.

Once this generation is started it continues until changed by new commands.  As opposed

to  the  current  system which  generates  the  high  dynamic  states  at  the  local  site  and

transmits them to the remote site.  If communications is dropped the state information is

lost until communications is reestablished.  Thus the concurrent model approach provides

outage immunity as it continues to provide high dynamic state information even during

communications drop outs.  As long as the communications system at least provides the

capacity for the Congruency data the system will continue to operate. 
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CHAPTER 6  CONCURRENT MODEL CONSTRUCTS AND

MECHANISMS 

6.1    Background  

Concurrent Model Constructs and Mechanisms were initially developed around an initial

premise that the Remote SAF Operator (RSAFO) is capable of isolating the commands

generated during the simulation.  Thus, only those packets that initiated the commands

would be transmitted from one simulation to the other.  As discussed in Chapter 3, the

architecture did not readily yield a definitive answer on how this could be integrated into

the extensive OTBSAF code.  This led to the necessity to develop techniques to track

down what action initiated which packet generation and identify all the other modules

that activated the generation of similar packets, so to determine where to isolate them.  

The first approach was to assume that the command packets would be unique, and only

that subset of packets could be filtered from the total packet stream.  This proved to be

problematic because only some could be isolated, and not to a significant  level.   The

second approach was to consider the user interface.  For each button pushed it is noted in

which  routines  ultimately  generate  a  command  packet.   This  proved  to  be  difficult

because of they layered approach with a mixture of polling and callbacks separating the
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services and the originating functions, and the reuse of libraries to accomplish similar

functions.  This investigation through public and private interfaces certainly introduced

some of the challenges imposed by an object-oriented programming solution adopted by

OTBSAF.  

The evolved investigation system consisted of a significant use of greps nested inside

of  for loops  traversing  the  many  libraries,  coupled  with  the  setting  of  judicious

breakpoints  inside  of  dynamically-debugged instantiations  of  multiple  communicating

processes.   Reverting to the command line interface of the operating system inside a

window, coupled with the Dynamic Debugging Tool called ddd provided the necessary

environment.  A further aid was to take advantage of the documentation that was created

in  “texinfo”  format  to  ultimately  combine  all  the  documentation  into  one  large

hyperlinked  file  of  5,200+  pages.   Having  this  documentation  allowed  the  ready

transversal from top level discussion down to the Programers Reference Manual  [SAIC

2001E] details and back.  It also allowed the use of the internal find command to locate

other possible using modules.

6.2    Integrated Model Execution  

OTBSAF uses one main program depending on command line options to function in one

of three modes.  The first SAFstation or -gui mode provides the user/operator interface.

This is the key operational mode for collecting the external commands at runtime.  The

second  SAFsim or -sim mode operates in the simulation-only mode, which generates

all the entities and provides the update packets that are eventually graphically displayed
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on the SAFstation.  The third or default mode is a pocket SAF that has both functions

combined in one executable.   The use of  the same executable  to  operate in  all  three

modes made it necessary in some cases to identify the mode of operation in order to

properly  isolate  the  modifications.   In addition,  the  same libraries  are  used for  other

applications.   Where  possible,  changes  were  made  to  OTBSAF that  only  required  a

command line  parameter  to differentiate  between concurrent  model  operation and the

distribution version.  Those changes are discussed here.  Any other specialized functions

that were created will be discussed in Section 6.3.  

Some of the modifications for the SPM [McHale 1998], were required for the RSAFO.

These include isolation of display update functions based on fixed real-time increments.

They are based on an update rate and not a sequence of events.  They avoid referencing

event generating functions which could adversely affect causality using the simulation-

time clock.  Using the same seed for multiple invocations of the simulation to generate

the same sequence of random numbers was retained.  Isolation from the network was

abandoned for RSAFO by necessity, as RSAFO needed to generate entity state streams.

Scheduling was changed to enable discrete event simulation that would advance based on

a fixed relationship to the real-time clock.  Simulation-time will not advance before this

relationship is met.  We provide scaled to real-time in this mode, but not independent

from real-time.  The real-time clock is used to advance the discrete event scheduler from

a release time viewpoint.  Figure 30 provides a graphical representation of the provided

capabilities.  
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The top line represents a real-time tick of once every 10 milliseconds.  The second line is

scaled to a 2 times real-time rate.  The third line is scaled to 1/2 times the real-time rate.

Each timeline is annotated with simulation-time events occurring at the indicated tick on

the lines.  Point  A represents the first event as occurring at time 0.07 sec.,  In line one

scaled to real-time this will occur at 0.07 seconds in real-time.  On the second line scaled

at twice rate,  while it  occurs as 0.07 seconds simulation-time, it  is executed at  0.035

seconds in real-time.  On the third line, scaled at half rate, it occurs at 0.14 seconds in

real-time.  

At  point  B  in  Figure  30 there is  a  situation  where the event  at  simulation-time 0.10

requires  a  physical  time  to  execute  longer  than  the  next  clock  tick.   Since  this  is  a

physical execution period, it takes the same time interval in real-time independent of the

scaling,  although  the  start  of  event  at  simulation-time  0.10  occurs  at  the  scheduled

simulation-time, the next event scheduled at 0.11 occurs as quickly afterwards as it can.

This  has  a  ripple  effect  on  each  successive  event  until  total  execution  period  of  all

successive events matches the passage of the event stream.  On line, one this occurs until

simulation-time/real-time reaches 0.17 sec.,  on line two this occurs at  simulation-time
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Figure 30.  Real-Time and simulation-time Relationship
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0.40 and real-time 0.20, while on line three the only event delayed is the event at time

0.11 seconds.  

Point C on the timelines depicts the situation when more than one event is scheduled at

simulation-time 0.45 seconds  In this case, the events are executed as fast as possible.  In

the real-time and half  rate case they do not delay the next scheduled event.  However in

the twice rate case they again cause a simulation-time ripple out until the 0.50 second

event.  This example also indicates to obtain a similar  effect as  “as-fast-as-you-can”

simulation.  Thus, the Concurrent Model uses a scaled clock that advances faster than the

discrete event scheduler can advance to provide an equivalent mode of operation to the

OTBSAF “-fast_time” option.    

Next, a separate communications channel was established to allow the SAF operator's

SAFstation to communicate with the remote SAFstation as shown in Figure 36.  For the

purposes of this study, it was implemented as a separate named pipe for each receive and

send function.  The name is relative to the invoking directory so multiple pairs of named

pipes can be established.  Connection between the pipes is established external to the

simulation.   This  enabled  using  a  tee connector  that  allowed  the  tapping  of  the

information being sent between the separate simulations for recording the traffic.  It also

allows  various  filters  to  be  used  as  necessary  to  match  the  chosen  communications

medium and protocol.  For this study, the direct connection with a  tee was used.  To

allow asynchronous reception, the receive function was scheduled as a periodic task that

checked for the presence of data in a buffer, and if present, empties the buffer prior to
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returning control to the scheduler.  If a partial message is received then it performs an OS

sched_yield to  allow another  task  to  run.  The repetition  rate  of  receive  function

needs to be high enough not cause the remote send to block.  The send function executes

as needed until the buffer is full or all data is transferred.  If the buffer is full, it blocks

until it can send the message.  

To maintain hardware configuration independence at the respective sites, it is imperative

to allow the PO databases to  be independent.   While the vehicle  identifiers  from the

operator 's viewpoint must be consistent, the assignment of vehicle to simulator, and etc.

should be independent.  Thus, the receive function is given the responsibility to perform

the mapping of  the Vehicle  identifiers  to the  PO identifiers  and simulator  identifiers.

Since, the various PO PDUs use nested fields, the receive functions parse these fields to

map all of their entries.

6.3    Isolated Model Functions  

In observing the operation of the SAFstation, it was found that changes were introduced

to the simulations by modifying the PO database either by creating a new database object

or changing an existing object.  These changes are then transmitted to all systems using

the same PO database.  For the concurrent  model approach, only the initiated actions

need to be shared between simulations.  Furthermore, repetitive transmission of changes

is not desired as it would interfere with the simulations of the second concurrent system.

Modifications were necessary to further isolate the execution paths of routines to only

those directly initiated by the human operator, not those initiated by the simulation or
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recursive execution of the same code.  In addition, the originating SAFstation needed to

complete local operations as well as transmit the changes to the remote SAFstation.  

The remote SAFstation needs to receive to changes from the originating SAFstation and

merge those into the local database.  To allow independent startup and configuration of

systems  at  both  locations,  it  was  necessary  to  provide  an  object/simulator  mapping

methodology.  This involved parsing the appropriate fields of each object and mapping

the  values  from  the  originating  SAFstation  environment  to  the  remote  SAFstation

environment.   This  mapping  was  primarily  initiated  upon  the  receipt  of  the

create_new_describe_object entry. In some cases entries that were created by a

SIMstation, would need to be modified.  In this case they were assumed to be hashed into

entries by the same displacement on both the originating and remote SAFstations, and

mappings for the missing entry and all intervening entries were created in the mapping
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Figure 31:  PO object Modification



table by retaining that relationship.   To-date,  that  has  proved sufficient  to handle the

mapping requirement.

For  robustness  purposes,  OTBSAF  transmits  all  PO  PDUs  10  times  at  one  second

intervals after each change is made.  This conflicts with the objectives and assumptions

of the Concurrent Model approach and could be eliminated from the information being

transmitted  between  the  concurrent  SAFstations.   Therefore,  similar  functions  were

implemented as indicated in  Figure 31, to separate those PDUs that were sent to both

local and remote networks, and those only sent locally.  In some cases, the only location

to make such a distinction was at a higher level than in the PO library.  In this case, a new

but similar function was created so that the appropriate action could be selected at the

higher  level.   All  functions  that  call  po_send_new  or

changed_describe_object_pdu are appropriate for establishing the SAFstation

PO database,  those functions are listed in files under libpo.  Three new functions

were created to isolate SAFstation operations to use a pipe between master and clone as

identified with the extension of  _pipe to their name.

6.4    Smart Priority Queue Data Structure  

In order to accommodate non-uniform distribution of event list activity,  we developed

and evaluated several different structures based on modifications of the calendar queue.

Once  the  benefits  were  fully  understood,  a  distribution-adaptive  data  structure  was

developed  to  provide  stable  performance  across  a  wide  range  of  distributions  [Bahr

2004].
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The characteristics of the RDMS model emphasized that an optimal queue structure for

event list management requires low overhead for the accesses that occur most frequently,

for example, head insertion and deletion.  Furthermore,  the structure should incur the

minimum number of comparisons for insertions.  In addition, the list structure must be

capable of accommodating rapid arbitrary deletes.  The usage distribution can be difficult

to describe analytically and its characteristics can change throughout a simulation run.

However, a user of discrete event simulator  or library of simulator  tools need not be

burdened with the selection of the appropriate priority queue structure for a particular

simulation.  Ideally, the priority queue used for event list management should be close to

optimum  for  all  expected  distributions.   To  satisfy  these  objectives,  a  dynamically-

adaptable  queue structure  is  required  to  consistently  meet  the  following  performance

goals:

• minimize  the  total  number  of  operations  required  to  access  the  most  frequently

scheduled events,

• reduce the overhead cost  of sample taking,  resizing,  and finding the new head, by

reducing their frequency of invocation, and

• perform threshold testing only when beneficial. 

Nonetheless, adaptive mechanisms create the potential for oscillation.  Although Brown

identified the potential for oscillation, models used in his experiments did not excite that

condition.   In  an adaptive  algorithm,  the  cost  of  employing feedback  during  discrete

event  simulation  directly  increases  simulation  overhead,  i.e.  the  same  processor  is

employed  for  both  the  direct  actions  and  the  feedback  operations.   So  a  realistic
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assessment of performance of an adaptive strategy needs to take the additional overhead

from feedback into account.

Notably,  the data  structure  with the  least  absolute  operation cost  is  the linear  singly-

linked list.  However, the linked list loses its performance advantage if its length exceeds

about 10 entries  [Jones 1986], so an indexed structure such as a calendar queue can limit

the list  length,  yet  still  accommodate  the entries  that  overflow this length.   Calendar

queue  performance  can  be  adjusted  by  altering  the  width  and  number  of  bins.   The

primary  disadvantages  of  adaptive  structures  are  the  three  components  of  overhead:

sensing,  evaluation,  and adjustment.   This  penalty  can be reduced by minimizing the

number of operations executed in the primary execution path and then amortizing high-

cost routines such as adjustment over a large number of HOLD operations.  The working

of the SPQ Figure 32 en queue operation can be explained using the flowchart in Figure

33. 
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Figure 32.  Smart Priority Queue (SPQ)
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The SPQ structure of Figure 30 differs from the Calendar Queue of Figure 15 in that it is

a linear queue with an overflow structure of a modified Calendar Queue.   The linear

queue is identified as headlist and calendar queue as overflow array in Figure

32.  The difference in the overflow array from the normal Calendar Queue is that

the second pointer to each bin points to the last entry of the current year and is identified

as the ceil pointer in the array, instead of pointing to the last entry in each bin such as

the  tail pointer  in  Figure 15.    The SPQ en queue operation accommodates  these

changes  as  demonstrated  in  Figure  33 by  having  separate  branches  to  accommodate

entries in the  headlist or the overflow structure,  which is  subdivided for

insertions  before  or  after  the ceil pointer.   Counters  are  provided  in  the  branches

(linear_head, linear_dist, and overflow) to keep track of the number of

insertions  and the  number  of  overly  long  scans  (head_over, bin_over, and

bin_ceil_over).  These counters are used in the OptimizeQueue block to provide

the information used by the heuristics to decide which adjustments are indicated.  Note

that  the OptimizeQueue block is  only executed if  a  dynamic activity  threshold  is

exceeded.   The thresholds are only adjusted by the OptimizeQueue block.  Additional

routines  not  diagrammed  that  are  part  of  the  hold  operation,  are GetHead and

FindHead.  GetHead is  called  every  time  the  simulation  clock  advances,  the

majority of the time this is simply removal of the first element of the headlist leaving

the next element as the head.  The next most frequent operation occurs each time the

headlist is emptied.  In this case, the next bin of the overflow structure is transferred

to the headlist.  This is accomplished by setting the head pointer equal to the  bin

head pointer and the tail  pointer equal to the  bin ceil pointer.  The  bin head
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Figure 33.  SPQ Insert Operation
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pointer  is  then set  equal  to  the next element of the  bin ceil list  and  bin ceil

pointer is moved to point to the last element in the list of the next year.  The element

pointed to by the tail pointer then has its next pointer set to NULL.  If the next bin does

not  have  any current  year  elements,  the FindHead routine  is  called.   This  routine

locates the next  nearest  element  in the queue and adjusts  all  the bin head and ceil

pointers  to  the new current year.   For most  queue distributions, FindHead is  rarely

called.   The New_bin_count counter  is  provided to  keep  track  of  the  number  of

headlist changes and the get-head counter is provided to track the total

number  of  deletes  from the  head of the list.   The FindHead  routine  provides two

additional  counters  to  provide  additional  feedback  on  the  event  distribution  in  the

overflow structure these are skip bin and search which report the number of bins

skipped to find the next element, and in the case where there are no elements were found

in  the  current  year,  that  a  search  for  the  lowest  element  of  all  the  bins  had  to  be

conducted.

6.4.1  Activity Feedback Counters

The first three activity counters allow tracking of the individual paths and calculation of

queue  size  and  average  insertion  cost.   New_bin_count allows  the  calculation  of

average number of  get-head operations per  head_list change.  If this number is

too  low  then  it  indicates  that  the  bin-width  is  too  narrow.   The  head_over and

bin_over indicators are counts that give an indication of  the  bin_width being too

wide  and  indicates  an  increase  in  the  average  number  of  compares  per  insertion.

Bin_tail_over is an indication that the calendar year is too short i.e., not enough
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bins. This also indicates an increased number of compare operations.  Skipped-count

is another indicator of narrow bins as well as an indicator of bursty data.  It reflects the

additional hold cost used in calculating optimal queue configuration.  Search gives an

indication of large gaps in data and has a cost proportional to  the year-size or number of

bins.  This indicator triggers the recalculation of the number of bins.

6.4.2  Sensing Cost

The first cost of an adaptive algorithm is sensing.  In Brown's case, he chose tracking of

the queue size.  For the SPQ case, since we also wanted to check other characteristics as

well, the counts for each path were maintained separately.   Different combinations of

these  counts  could  be  used  to  determine  queue  size,  activity,  and  where  excessive

operations occurred. Yet, we sought to keep the complexity of tracking information at the

same level  as Brown's.   The other  costs  can be  reduced  by  periodic  sampling.   The

sampling strategy used is based on the observation that a change in the structure of the

event  list  is  not  necessary  until  the  distribution  has  substantially  changed  its

characteristics.  This is indicated by either excessive compares required for insertion, or

excessive number of bins traversed between successive head lists.  Therefore, insertion

compare counts are monitored, and if they exceed a threshold, further tests are invoked.

Likewise the number of bin changes are also monitored.

The SPQ is designed to minimize  the total  number of queue overhead operations  by

reducing the equivalent number of compares in the most frequently executed operations.

The most frequent operation, other than examining the head of the queue, is removal of
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the head element.  The overhead other than the counting operations over a linear list, is

that the next pointer indicates a end of list every time the head list empties.  This signals

the SPQ to transfer the following bin from the overflow structure to the head list.  To

optimize the queue, it is possible to trade off the frequency of changing the head list to

the  number  of  elements  searched  in the  head list.   For  this  purpose,  the  head list  is

initialized to contain 5 elements as a minimum to invoke this tax at most 20% of the time.

The second factor is to minimize the number of operations required to move the list from

the next bin to the head list.  This was improved by having a pointer to the last element in

the current year maintained during insertion.  The result is to transfer the bin head and tail

pointers to the head list and then setting the bin pointers to the head and tail of the next

year.  On the average the latter step requires one additional compare operation.  In the

case study due to the high insertion activity rates close to the head, this adjustment was

found to occur even less than this design goal at only 7% of the HOLD operations.

The next most frequent operation was insertion at the head of the queue.  In this case, the

SPQ behaves the same as the linear list with only one compare required.  The next choice

is to determine whether the new priority will be inserted in the head list or the overflow.

Once the decision is made to place the event in the overflow structure, the SPQ operates

very similar to the calendar queue.  The result of using a separate head list is that for all

elements stored in the calendar structure there are two additional compares, but over 50%

of the insertions have been avoided. Bin hashing calculations and all head deletes are

recouped in the bin indexing operation.   Another enhancement over the calendar queue is

that the second pointer into each bin is not strictly a tail pointer, but rather a pointer to the
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head or the last entry in the current calendar year.  This adds one additional compare for

those events inserted over a calendar year away, but minimizes the number of compares

required to transfer bin data to the head list. Insertions over a calendar year away occur

rarely by the resizing design of the calendar queue.

Each list body insertion is monitored for the number of compares required to find the

insertion point.  If this exceeds a threshold value then further evaluation is initiated.  The

first  test  performed in the evaluation is to determine whether enough operations have

occurred  since  the  last  restructuring  of  the  queue  for  a  new restructuring  to  provide

potential  benefit.   This  is  a  simple  threshold  comparison  based  on  values  calculated

during the previous restructuring.  This test serves as a damping function to en sure the

SPQ doesn't spend more operations adapting than it can save by restructuring.

6.4.3  Filtering Costs.

The second cost is analysis or filtering.  In Brown's case it was a simple threshold test:  if

the queue size was greater or less than the thresholds, queue resizing was required.   For

SPQ, heuristics are used to first determine whether a change is required and second what

the parameter values should be for the resizing.

Six  counters  are  used  to  monitor  the  performance.   These  are  linear_head,

linear_dist,  overflow,  delete_count,  get_count, and

new_bin_count.   The first three of these reside in the separate branches taken in the

priority queue for any insertion.  The last is incremented every time a bin is moved to the
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head list to minimize the cost of tracking the queue performance.  All other monitoring is

invoked  only  when  an  insertion  occurs  outside  of  the  expected  range.   These  are

considered  overflow conditions  and  are  recorded  by  sensor  counters  for  each  of  the

following conditions:

• Head_over:  an insertion occurs in the head-list that takes over 5 compares. 

• Bin_over:  an insertion occurs in a bin that takes over 4 compares.  

• Bin_ceil_over: an  insertion  occurs  on  the  end  of  bin-list  that  takes  over  3

compares.  

• Skip_count: the number of empty bins skipped, and

• Search: the number of times a search had to be performed to find a new queue

head.  

When any overflow condition occurs, the first level of testing occurs.  This first level is

simply to determine if adequate activity has occurred in the queue to justify a change.  It

is  a  threshold  that  is  proportional  to  the  queue  size  denoted  by  N.  This  test  is  a

comparison of the sum of the activity counters to the threshold.  The second test is to

determine if the operational cost to make a change is less than the cost of allowing the

overflows to continue.  If the threshold is exceeded then optimizing calculations are made

to determine the predicted queue parameters.   These are filtered and compared to the

current parameters and if the changes indicate improved queue performance the queue is

adjusted.   In  all  cases,  the  expected  performance  improvement  should  outweigh  the

operational cost of making the change.
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6.4.4  Correction Costs

The  final  cost  of  feedback  is  correction.   This  is  very  expensive  since  it  means

configuring a queue with corrected parameters then moving the contents from the old

queue to the new one or adjusting existing contents accordingly.  Another consideration

for feedback is response time, or how soon are adjustments made after the distribution

changes.   To  make  the  queue  more  responsive  if  a  change  is  required,  the  activity

threshold is reduced to a factor only several times larger than the current queue size from

previously used nominal value of 100,000 operations.  This has an effect of doubling the

threshold  until  it  exceeds  100,000,  which  is  then  used  as  the  steady  state  sampling

threshold.  All heuristics have been grouped into one module for easier tailoring. The cost

factors  used  in  the  cost  minimization  heuristics  were  determined  experimentally  by

measuring the execution time of the individual operations and them normalizing them to

the  equivalent  of  the  time taken to  perform one additional  compare  on a  linked list.

These costs are provided in Table 9.  Here B is the number of bins and N is the current

queue size.
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Table 9.  Comparison Equivalent for Optimization Calculations

Operation Cost (normalized to compare equivalent)
Head_over  7
Bin_over  9
bin_ceil_over 10
Skip_bin  6
New_bins  4
Search 3 * B
Width 100
Resize 6 * N



6.5    Integration of SPQ in OTBSAF  

The  general  SPQ  was  implemented  in  extended  precision  floating  point  or  the  C-

language DOUBLE datatype for the event priority.  The OTBSAF clock used a 32-bit

unsigned integer.  This required a re-implementation of the SPQ.  In addition, the initial

implementation  was  modeled  to  some  extent  on  the  YACSIM  [Jump  1993]

implementation which included the queue entry pointers as part of the activity or entity

record.  OTBSAF used a general queue structure based on an array and therefore simply

passed a pointer to the requesting entity and its priority as parameters in the function call.

The  receiving  function  then  stored  these  in  the  heap,  shrinking  and  expanding  as

necessary.  Thus, the SPQ was modified to accommodate the OTBSAF calling structure

and the integer priorities.  Another implication of the Integer clock/priority is a somewhat

limited range of values.  Analysis of OTBSAF's scheduler showed that indeed it would

have multiple entries of the same priority.  OTBSAF used a millisecond resolution clock,

and used 67 millisecond update cycle.  For any more than 67 entities, this would imply

that more than one entity had to be updated each millisecond, thus multiple entities would

have to be scheduled with the same priority.  This was rarely the case in the floating point

implementation.  The test cases of the SPQ were prepared for the general case so they

were all based on floating point.  One desirable characteristic of floating point numbers is

their range tends to be self-scaling, this is not the case for the integer implementation.

Thus all the comparison test cases for the OTBSAF implementations had to be scaled to

fit that environment.
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The revised implementation thus incorporated the following changes:

•  A revised hashing implementation for integers,

•  Creation  of  queue  entry  pool  for  providing  storage  for  queued  entities  and  their

priority,

•  Implementation of first in first out pointers for equal priority entries, and

•  Addition of a test for equality during queue insertion.   

Figure 34 provides a diagram illustrating the changes to the SPQ required for OTBSAF,

including pointers for the equality lists heq and teq, for the head and tail of each equality

list.  Initially the first change is both the bin width and priorities are all integers, the bin

width in Figure 34 is set to 10.  The other changes are the handling of equal priorities.

Priorities 19, 33, and 101 each illustrate a different case.  Priority 33 is in the bin as part

of the current year.  
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Figure 34.  Revised SPQ for OTBSAF
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In this case the next pointer points to the entry with priority 34 with the heq, and the teq

pointers both pointing to the next priority 33 entry.  The next pointer of the last priority

33  entry points to  NULL or the empty location indicating the end of that equality list.

During the insertion of any other entry into bin 3, it is only compared to the priority 33

entry once and then skips to the priority 34 entry.  In the case of priority 19 entry, it is the

last entry of the current year so the ceil pointer points to the first priority 19 entry as the

second entry is part of an equality list and is only referenced when either the first equal

entry is removed or a delete operation of its data is required.  Like the priority 33 entry,

both the heq and teq pointers point to second member of the equality list.  All entries to

an equality list  are made to the  teq,  and all  removals from the  heq  except the earlier

mentioned deletes.  Priority entry 101 illustrates the case when more than one additional

entry is required.  In this case, the heq points to the first equality entry, and teq points to

the last equality entry and all intervening are tied to the successive entries by the  next

pointers.  

During  debugging  of  this  implementation  with  OTBSAF,  instances  of  more  than  40

entries  for  the  same  priority  were  observed.   Another  advantage  of  this  method  of

equality storage is that the whole equality list is manipulated as a single entry for queue

resizing, and minimum priority searches etc.  The implementation of the equality list as a

FIFO list is important for repeatability purposes as established in theorem 5.1.  
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CHAPTER 7 EXPERIMENTAL COMPARISON OF ALTERNATIVES

7.1    Experimental Configurations  

OTBSAF is being used to demonstrate the concurrent model approach.   The prototype

developed has many of the characteristics postulated for the Concurrent Model approach.

In addition, it models the elements of the simulation down to the individual entities as

opposed to unit level of most constructive models.  It also provides several scheduling,

strategies, and queues that can be used for validating the concepts.  

7.1.1  Concurrent SAF

To prepare OTBSAF to demonstrate the concepts, various modifications had to be made.

The initial experiments were aimed at verifying that two separate simulations could be

ran  simultaneously  in  real-time  and  generate  identical  data.   The  first  step  was  to

incorporate the modifications recommended by SAIC for repeatable SAF.  The next was

to modify the scheduler to use release time, real-time scheduling, and to synchronize the

simulation clock to the real-time clock.  The last modification was made to the random

number generator to provide the same random number to both simulations.  This entailed

setting up one simulator as a master and the second as a slave.  The master generates the

random numbers used both locally as well as transmitted to the slave to used for the
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slaves calculations.  Another approach on synchronizing the random numbers was just to

use the same seed for both simulations and count  on them to remain in sync for the

simulation run.  To generate two identical runs, a scenario was prepared and saved.  A

simulation run was set up by loading the same scenario in both simulators,  initialized

with the same random number seed and then synchronized the start of the simulation.

Results from these initial runs indicated that the information required for setting up and

synchronizing both simulations to generate identical data was much less than the amount

of data generated by the simulations.   The quantity of random numbers required was

small in relation to the other data to set up the simulation, but required the master to lead

the slave in execution.  Further experiments would concentrate on using the common

seed approach rather than a single random number source.  These master slave runs used

OTBSAF as Pocket SAFs for connivence as it took fewer computers and processes.

The first experiments were conducted with two modified Pocket SAFs.  Two separate

loggers for the Pocket SAFs were executed as separate processes on computer A with

synchronization traffic transferred via the pipe from the master Pocket SAF which is set

as (Exercise 1, Database 1) which separates the packets from those generated by the slave

pocket SAF  which is set as (Exercise 2, Database 2).  The loggers reside on computer B

where they monitor  the Ethernet  traffic  generated by the simulations on computer A.

Post simulation runs for the packets collected during each exercise were compared and

they were found to have the same position at the same time for the entire simulation run.
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7.1.2  Remote SAF Operator

The  next  step  of  validating  the  Concurrent  Model  approach  was  to  introduce  the

Operator-in-the-loop  into  the  experiments.    This  would  provide  two  additional

advantages.  It would demonstrate the benefits and feasibility of using the Concurrent

Model approach for a remote SAF operator application, as well as using a human-being

for the DAE function.  Using a human operator for the DAE function could satisfy the

enhanced situational awareness application, as well as provide a basis for a knowledge

base approach for automating the function.

The  initial  challenge  was  to  determine  the  minimum  data  necessary  to  cause  both

simulations to generate the same output.  Observing that the only independent source of
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Figure 35:  Concurrent SAF



change to the simulation would be introduced by the Operator-in-the-Loop, the OTBSAF

interface  to  the  operator  would  be  that  source.   This  interface  is  provided  by  the

SAFstation or GUI.  The Pocket SAF mixes both simulation generated changes as well as

operator initiated changes.  This appeared to be a disadvantage as it could require more

hardware platforms, however it was found that both a SAFstation and a SAFsim could be

ran in a multitasking mode on the same hardware, although requiring more memory it

could still serve to isolate the operator generated changes from the simulation generated

changes while using a single hardware platform.  
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Figure 36:  Remote SAF Operator



In the second set of experiments, the pocket SAFs were replaced by separate SAFstation

and SAFsim processes.  The SAFstations communicated via the DIS protocol across the

Ethernet as a normal OTBSAF exercise.  As provided by OTBSAF, separate exercises

and  databases  allow  separation  of  the  simulations.   For  connivence,  the  concurrent

SAFstations are executed on the same processor with the inter-process communication

occurring via a pipe.  The transactions occurring for each exercise are logged by the

respective  loggers.   To  compare  the  transactions  of  the  exercises  to  the  transactions

between the concurrent simulations, the packets are converted to the same format. 

7.1.3  SPQ used for Case Study

Initial performance comparisons were based on total user time over the execution of the

model for a repeated simulation run.  The results demonstrate the improvement gained

from the changes to the queue implementation.  Since the data listed indicates the wall

clock execution time of the entire simulation, queuing overhead is just one component.

Thus, a 21.8% reduction in wall clock time for the entire simulation by using SPQ rather

than calendar queue is  quite significant.   This is  due to the event processing time of

simulation  events  remaining  constant  while  the  queuing  overhead  continues  to  be

reduced.  For this reason, and to further determine whether additional changes may be

beneficial, the queue implementations were further instrumented as described below.
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7.1.3.1    Queue Instrumentation.  

For each path through the queue maintenance routines, overhead statistic counters were

added.  When this path included a loop structure, the loop count was included.  Counts

for paths with no loops were accumulated and reported for the total simulation.  Paths

with  loops  had  their  results  reported  upon  exit  from the  loop.   The  results  will  be

presented in  Table 13. Figure 18, 19, and 47 provide the distributions in graphical form.
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Table 10.  Statistical Counter definitions

Counter Description
Linear_head The number of insertions at the head of a linear list
Index_head The number of insertions at the head of a bin found after calculating

the index.
New_headbin The number of insertions at the head of the queue for the calendar

queue and also part of the index head count.
Linear_tail The number of insertions at the tail of a linear list.
Index_tail The number of insertions at the tail of a bin found after calculating

the index.
Index_empty The number of insertions into a previously empty bin. 
Linear_distrib The number of insertions in the interior of a linear list.  The average

number of elements into the list where the insertion took place.
Index_distrib The number  of  insertions  in  the  interior  of  a  calendar  bin.   The

average number of elements into the bin where the insertion took
place.

Get_head_linear The number of element removals from the head of the linear queue
as the event is activated.

Get_head_bin The  number  of  element  removals  from the  head  of  the  calendar
queue as the event is activated.

Get_head_empty The number of times the get_head action empties a bin.



7.1.3.2    Statistic Counter Definitions.  

To collect statistics counters were used in various paths.  These counters are only present

if selected at compile time.  Each counter is described in Table 10.   There are 6 counters

related to head-of-queue operations, 2 related to tail-of-queue operations, 2 related to the

distribution, and 1 indicating the first addition to a bin.

7.1.4  SPQ Evaluation with Statistical Distributions.

The first question the modeling tool designer or an advanced modeler would ask is how

will  the  SPQ benefit  a  discrete  event  simulation  application.   In  terms  of  execution

overhead, SPQ can exhibit less overhead and be better behaved than other alternatives.

The  case  study  in  Section  2.6.4,  the  design  of  the  SPQ  in  Section  6.4,  and  the

experimental results presented in Section 7.3.3 provided greater insight into the dynamics

of Queue utilization.  In this section, we provide the simulation designer with additional

data to make an informed decision on priority queue management policies.

An  important  issue  is  understanding  why  the  model  exhibited  a  head-end  skewed

distribution.  The RDMS model consisted of several sources of messages that were being

transferred though the network to multiple destinations.  This drove the nominal queue

size as there was at least one event queued for each source for the life of the simulation.

This  basically  made the model  well-behaved from Calendar  Queue  length viewpoint,

however, it had the hidden characteristic that short events were not introduced until after

the size of the queue was stabilized.  Shorter HOLDs were introduced as each message

transferred through the network, and became more common as they competed for fewer
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and fewer resources.  Initially,  they competed for one of 39 communication channels,

which shared 3 I/O processors which communicated over one high speed parallel bus.

Naturally the one bus could only keep up with all the traffic if it was utilized by each

transaction for a  short  duration.   This bus contention was the source  for the smallest

queue advance steps and since it only had the 3 I/O processors competing for the bus at

any given time, at most there were only 3 extremely short holds present in the queue at a

given instant.  Since the bin width was computed by averaging over 25 samples, these

short holds were swamped out by the longer ones already in the queue.  This lead to a

head list that had a lot of activity near the front of the queue.  It also explains why the

linear queue improved to an average insertion of 176 compares instead of the expected

N=3000/2 =1500 compares based on the nominal Queue size.  These observations are

readily apparent once the modeler is alerted to the performance sensitivities of the event

list structure.  The total simulated time period is driven by long holds, for example the

length of the call in a Personal Communications System (PCS). The most frequent steps

are usually the much shorter events such as the signaling, and switching overhead events,

or the intermixing of digital traffic with the standard voice traffic [Larocque 1996].  

While Erickson[Erickson 2000] showed that the Calendar Queue could be optimized in

the static case, Ronngren  [Ronngren 1997] demonstrated that some distributions could

expose the weaknesses of the Calendar Queue.  The SPQ, while optimized for the case

where 50% of the insertions occur near the head of the Queue, it was also developed to

take advantage of the strengths of the Calendar Queue while minimizing the impact of it's

weaknesses.   Utilizing  the  event  list  insertion  distributions  described  by  Ronngren
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[Ronngren 1997] we have compared the SPQ to the Calendar Queue.   We have also

included  a  distribution  that  approximates  the  input  distribution  of  the  RDMS  model

presented in Section 2.6.4.   

7.2    Description of Scenarios  

The scenarios  used  to test  these  concepts  were  various  platoon movements  about  10

minutes in duration.  Results appeared equivalent for various locations of the map.  The

one used to collect the data for presentation here is indicated in Figure 37.  

In this case, it shows the screen shots for two exercises operating with 2 different PO

databases.  In the title bar of the upper screen, it is identified as  Exercise 1 using  PO

Database 1 on the Ft. Knox terrain database.  The lower screen is identified as Exercise 2

using  PO Database 2 again on the  Ft. Knox terrain database.  This is a platoon cross

country march along the route indicated as the line route r1 on the map background.  In

the upper right hand corner, there is the presentation of the real-time clock in Greenwich

Meridian Time (GMT) to the nearest second.  Since each screen is updated independently

they could possibly vary by a second depending on the instant of capture.  The symbol

and ID that is partially cut off on the left side of each screen identifies the unit as an

armor platoon 100A with tanks 100A11, 100A12, 100A13, and 100A14.  The tanks are

starting in a wedge formation at the left end of r1.  This route crosses a natural barrier, a

river, which the platoon will negotiate by using the bridge where the road crosses the

river.  In this case although the real-time clock is moving, the units are in position, but

waiting for the order to move as indicated by the highlighted button just to the left of the

135



clock  display.   This  was  the  technique  used  to  delay  the  start  of  the  test  run  until

everything is orientated for data capture.  The above screens are actually the setup for the

Remote SAF Operator, but are very similar for to those used for the first experiment the

Concurrent SAF as well.
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Figure 37.  Screen Shot 1



7.3    Presentation of Results  

The next four sections presents the experimental results gathered in the evaluation of the

Concurrent  Model  approach and priority  queue data  structures.   First,  we present  the

results of the Concurrent SAF experiment.  Second, we present the results of the RSAFO

experiments for two different scenarios.  Next we present the experimental results for the

generalized SPQ data structure in comparison to the Calendar Queue, and finally, we

present the execution results of an integer adaptation of the SPQ to be used as a priority

queue for OTBSAF.

7.3.1  Concurrent SAF

Two data sets were collected for the Concurrent SAF.  They included the logs of each

independent  simulation,  and  a  copy  of  the  data  transferred  over  the  pipe  between

simulations.  Since the goal was for both simulations to indicate the same exact behavior,

the  comparison  of  the  data  points  was  somewhat  uninteresting  upon  success.   With

success, the difference in location for all the points measured was 0, as was the average,

and standard deviation.  This was true for all four vehicles for a run of about ten minutes

and about 700 position updates.  However, the results on the data transferred between the

two simulations,was rather disappointing.  While the total bytes transferred were reduced

by  75%,  the  number  of   packets  was  the  same  order  of  magnitude  as  the  number

messages logged.  In this case, the ratio was about 2 messages for every random number

that  was generated.   This  totaled  about  400 messages.   One observation on the  data

collected was that in many cases there was more than one message for the same vehicle
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with the same timestamp and the same location.  This number was not the same for both

simulations,  even  though  when  the  duplicates  were  eliminated,  there  were  the  same

number of reported data points. 

7.3.2  Remote SAF Operator

The data collected for the RSAFO, was the data transmission logs of each independent

simulation, a copy of all the data transferred over the pipe between the two simulations

and a sequence of screen shots showing the SAF Operator display for the concurrent

exercises.  In this case, the data transferred over the network and through the pipes had

the same format.  This allowed a packet-to-packet comparison of each source.  Table 11
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Table 11.  Message Counts for Remote Operator

Message Type Local Remote Pipe
acknowledge 24 36
aggregate_state 26 26
entity_state 4,059 3,517
po_delete_objects 1 1 1
po_line 48 52
po_link 26 26 1
po_objects_present 143 143
po_overlay 102 102 6
po_parametric_input 116 116
po_parametric_input_holder 51 52
po_point 78 78 1
po_simulator_present 141 141
po_task 1,150 1,153 15
po_task_authorization 15 15 1
po_task_frame 147 147 15
po_task_state 1,486 1,495 9
po_unit 202 202 6
po_variable 9,028 9,000
start_resume 6 6 1
stop_freeze 12 12 4
transmitter 780 784
TOTAL 17,641 17,104 60



shows the  results  of  this  comparison.   Message  types are  the  DIS204 message  types

[IEEE 1995] as translated from the message headers.  The packets transmitted from the

Local  source are the same as standard OTBSAF without modification and thus providing

the baseline for comparison.  The Local column refers to the messages transferred as

exercise one, and the Remote column refers to the messages transferred in exercise two.

The Pipe column refers to the messages transferred from exercise one to exercise two

over  the  pipe.   The  result  of  interest  for  dropout  immunity  in  that  the  last  message

transferred through the pipe  occurred  at  relative  time=:01:35.683 of the  total  relative

time=:12:54.806 of  the  exercise.    Thus,  for  this  scenario  the  pipe  between  the  two

generators only had to be available for the first 96 seconds.  One problem we had was as

reported in [Cheung 1994] with the DIS timestamp implementation.  They do not seem to

properly  implemented  for  clock  synchronization.   We were  able  to  identify  common

points in each data stream that we used for evaluation synchronization.  We were able to

adjust the timestamps for further comparisons.   This did rule out latency experimentation

at this time.

The key item of these results is the ratio of the total number of the messages transferred

on the local network which was 17,641 in the first column versus the those transferred

over the pipe which was 60 in the third column.  This yields a packet reduction ratio of

294-fold.  This is greater than two orders of magnitude improvement and is in the range

envisioned for the Concurrent Model Approach.  While there are some variations in the

results that can be explored, in most cases the number of remote messages is very close to
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the number of local messages,  and the results as portrayed on the following series of

screen shots is also indicative of the desired behavior by maintaining congruence. 

Table 12 provides another snapshot into the relative performance of Concurrent Model

approach.   This  was  captured  during  the  running  of  the  benchmark  for  10  platoons

containing a total of 40 vehicles.  The total execution time of this scenario was 4 minutes

and 40 seconds.  It was also a situation of intense object creation.  In this case, the packet

ratio fell to 74.54-fold although the bytes transmitted ratio was Br =N/I = 7.5 MB/93.8

KB = 190-fold.   The  remote  pipe  was  not  run  due  to  the  difficulties  in  getting  the

benchmark to run with independent SAFgui and SAFsim stations.  These problems were
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Table 12.  Message counts for Benchmark

Local Pipe
Message Type Packets Bytes/Tot Bytes/Per Packets Bytes/Tot Bytes/Per
aggregate_state 119 19,040 160
detonation 404 41,334 102
entity_state 8,788 1,546,688 176
fire 404 38,784 96
po_delete_objects 106 4,576 43
po_fire_parameters 642 349,248 544 72 2,304 32
po_line 464 62,592 135 12 1,008 84
po_link 132 147,840 1,120 12 1,152 96
po_objects_present 5 5,848 1,170
po_overlay 1,272 91,584 72 60 4,320 72
po_parametric_input 1,614 542,656 336 48 3,072 64
po_parametric_input_holder 1,032 66,048 64 48 2,496 52
po_point 573 57,300 100
po_simulator_present 35 3,500 100
po_task 9,870 1,250,304 127 204 13,872 68
po_task_frame 1,639 400,532 244 180 43,920 244
po_task_state 13,144 5,106,848 389 96 5,376 56
po_unit 2,640 1,710,720 648 120 16,320 136
po_variable 17,007 6,096,276 358
signal 388 27,936 72
transmitter 3,234 336,336 104
TOTALS 63,512 17,905,990 852 93,840
RATIO (Local/Pipe) 75 191



similar to those reported by Roberts  [Roberts 1998].  A key difference in this scenario

over  the  one  reported  in  Table  11 is  the  unrealistically  short  move  to  engagement

scenario employed to quickly stress the system as indicated by the inversely balanced

ratio of task state to entity state messages.

Congruence for this scenario is demonstrated visually by the series of screen shots shown

in Figure 37, Figure 38, and Figures 54 through Figure 61, that are described below and

presented here and in the Appendix.  Analysis of the data is presented in Figures  39

through Figure 46.  We will continue the discussion of that data after the description of

the screen shots.

The scenario started with the configuration depicted in Figure 37 with time advancing as

shown by the GMT clock and the vehicles moving as indicated by their positions on the

map display.  In Figure 54, the vehicles are shown after they have arrived at the starting

point of their route and re-orientate into their wedge formation.  In Figure 55. they adjust

their route to head toward the bridge. Figures 56, and Figure 57 show them continuing to

the bridge.  Figure 58 through Figure 38 are at a different scale that the earlier figures.

Figure  58 shows them crossing the  bridge  and  Figure  38 shows them reaching  their

destination at the far end of route r1.
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Congruence is evaluated for this scenario from a behavioral viewpoint.  We are define a

behavioral  congruence  function ΨB(EL,  ER)= x L−x R
2 yL− yR

2 z L−z R
2  for  each

sample, for each vehicle.  Since ΨB is a magnitude, the ΓB truth function evaluates to ΓB is

TRUE if  and only if      Ψ B ≤  δ  and FALSE otherwise.  For this discussion,  δ = 25
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Figure 38.  Screen Shot 10



meters is selected as it represents an acceptable tolerance for the application.  Figure 39

through Figure 42 are plots of ΨB versus t for each vehicle displayed in the screen shots.

Note that three of the vehicles had short periods of time where  ΨB exceeded  δ  with a

where  n denotes the total number of samples for each vehicle  was     ΨB
ave  of A11 =

3.333,  ΨB
ave of A12 = 3.620, ΨB

ave of A13 = 1.090,  ΨB
ave of A14 = 3.395 with the average

for all vehicles combined yielding Ψb
ave= 2.859.
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Figure 39.  Behavioral Congruence for Vehicle A11

Figure 40.  Behavioral Congruence for Vehicle A12

worst case of about 47 meters.  The average behavioral congruence  ΨB
ave =  ∑i=1

n

Bi

n

testtime



Figure 43 through Figure 46 provide the percentages of ΨB vs δ  for each vehicle.  Note

that over 90% of the samples exhibit a  δ within 5 meters and less than 1% exceed 25

meters.  The value of an acceptable δ would be established to meet the  needs of the user.

For  this  demonstration,  25 meters  was established as it  is  close  enough to  select  the

correct vehicle.  At d=25 meters there is no loss of generality because deviations below

this  are  are approaching the limitations  of position location systems.   Only since the

advent of GPS could we even get within 25 meters except with very precise surveying

techniques.   The most probable cause for the observed deviations, is the variation of the

random numbers used by the two generators.  Although seeded to start with the same
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Figure 41.  Behavioral Congruence for Vehicle A13

Figure 42.  Behavioral Congruence for Vehicle A14



value, the effects of collisions on the network could cause a change in the sequence used

by the individual models.
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Figure 43.  Congruence Histogram for Vehicle A11
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Figure 44.  Congruence Histogram for Vehicle A12

Figure 45.  Congruence Histogram for Vehicle A13



7.3.3  SPQ

Since Congruence was shown to be maintained using the Concurrent Model approach,

the  research  focus  now  shifts  to  processing  optimization.  To  establish  a  basis  of

comparison, it is possible to discuss cost of operations in terms of equivalent linear queue

sizes.  For most models the developer of the model can roughly estimate the equivalent

linear  queue  length  for  the  steady  state  operation.   We  intend  to  show  that  this

implementation has a relatively small penalty for short queue sizes and is of  O(1) after

the average length exceeds the cost of the indexing operation.
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Figure 46.  Congruence Histogram for Vehicle A14



As shown in  Table 13, the calendar queue outperforms the linear queue for the RDMS

simulation by reducing the the number of comparisons (Figure 18, and  19) required to

insert  into the body of the queue.  The SPQ further improves performance by taking

advantage of the low overhead of the linear queue for the getheadlinear operation.

It further reduces the number of compares, as shown in Figure 47, to insert events in the

body of the queue.  Both the calendar and SPQ queues introduce additional costs for
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Table 13.  Path Counts and Comparison Equivalents

OPERATION LINEAR CALENDAR SPQ
Linear_head 4.52M 4.52M
Index_head 4.64M 726K
newheadbin 4.52M 527K
lineartail 879 303K
indextail 89.6K 495K
indexempty 263K
lineardistrib*average 2.82M*176 655K*2.31
indexdistrib*average 2.62M*10.9 373K*2.76
TOTAL
INSERTIONS 7.35M 7.36M 7.35M
Total Index 7.36M 1.59M
Compare 497.60M 28.69M 2.54M
getheadlinear 7.35M 7.35M
getheadbin 7.35M
TOTAL
DELETIONS 7.35M 7.35M 7.35M
findheaddist
ave

70
1.01

19.8K
2.02

width samples 108
width change 3
resize change 10 4
TOTAL
Compare Equivalent 536M 155M 53.3M



monitoring and adjustment, but this is more than compensated for by the reduction in the

number of compares required to order the queue. 

 

Figure 48 provides the performance of the SPQ for 10 different distributions for queue

sizes varying from 25 events to 500,000 events.  Figure 49 provides the results for the

Calendar Queue for the same distributions for the queue sizes of 25 events to 50,000

events.   Note  the  substantial  performance  advantage  for  the  SPQ  with  the  RDMS

distribution  as  expected,  while  it  avoids  the  problems  with  the  Camel  distribution.

Figures 50, and 51 show the performance for the Up/Down trials where each distribution

is used to fill the Queue then successive get head operations are performed until the

Queue is emptied.  In this  case,  the SPQ outperforms the Calendar Queue because it

doesn't resize until the queue either has large numbers of compares on insertion or skips

large numbers of bins on the get head operation.
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Figure 47.  Search Length Distribution in a SPQ
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Figure 48.  SPQ Performance for Classic Hold
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Figure 49.  Calendar Queue for Classic Hold
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Figure 50.  SPQ Performance In Up/Down
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Figure 51.  Calendar Queue Performance for Up/Down
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7.3.4  SPQ Integrated into OTBSAF

Two situations were evaluated to determine SPQ's benefits to OTBSAF and ultimately to

the concurrent model approach.  Initially, the OTBSAF priority queue was replaced with

the SPQ and the resulting version of otherwise standard OTBSAF was benchmarked on

the same computer originally used in Chapter 3 for Table 7.  In this case, it was only ran

on the fastest computer Bahr3.  The same procedures were used as used previously for

the  earlier  benchmarks,  except  in  this  case  they  were  repeated  for  each  version  of

OTBSAF 10 times.  Again OTBSAF topped out at 70 platoons or 280 vehicles for all

iterations.  The modified OTBSAF topped out at 75 platoons or 300 vehicles for 3 of the

iterations and 74 platoons or 296 vehicles for the other 7 iterations.  We can interpret

these results as an improvement in vehicle capacity of 6%.

To directly compare the performance of the two priority queues, a configuration similar

to that used for the general SPQ study was established.  Since both of these queues used

integer priorities, the distributions had to be scaled and converted to integers.  To verify

the conversion, the revised SPQ results were compared to those presented in Figure 48,

and  found  to  be  comparable.   In  this  case,  we  measured  the  queue  performance  by

preloading an array with all the priority increments prior to starting the get minimum

insert the new entity at priority minimum plus the previously stored value.  The goal was

to minimize the amount of time to create the values used in the next cycle.  The results

are shown in Figures  52 and Figure  53, for the average hold times for nine different

queue sizes from 250 entries to 100,000 entries for 10 different distributions.  As shown,

the SPQ was much faster than the conventional Priority Queue which required from 1.9
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to 10.84 times as long with an average of 4.23 times as long over all the different queue

sizes and distributions.
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CHAPTER 8 CONCLUSIONS 

8.1    Summary  

The Concurrent Model approach addressed in this dissertation is an advanced simulation

technique developed to address the tradeoffs between continuous updated status of all

elements and the limitations on the availability of that information due to the restrictions

of bandwidth, delay, and dropouts.   This dissertation has shown through analysis and

experimental results that local models can generate the desired information with a much

lower update rate than DIS-based.  Furthermore, techniques for generating the required

number  of  entities  were  postulated  and  explored.   This  technique  made  use  of  the

Discrete Event Simulation approach and the basic data structure used for implementation

of  a  Discrete  Event  Simulation,  the  event  list  or  priority  queue,  was  explored  and

significantly refined.   

The SPQ was shown to be stable and give improved performance for a large class of

distributions commonly used to compare event list implementations.  It was incorporated

into  the  OTBSAF scheduler  where  it  again  showed that  it  measurably  improved the

performance of the application.   By using the operation cost  minimizing approach to
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bound  the  knowledge  based  heuristics  it  provides  a  superior  near  constant  time

performance priority queue algorithm.  

The  modifications  to  the  initial  SPQ  algorithm  for  integration  into  OTBSAF

demonstrated  its  effectiveness  when  applied  to  an  integer  restricted  resolution  clock

environment.  The addition of equality FIFO lists as part of the structure maintained the

O(1) performance while providing strong clocking  characteristics required for efficient

repeatable simulations used in the Concurrent Model Approach.

8.2    Major Results  

The concurrent model approach was developed and applied to the Remote SAF Operator

application.   To address scaleability and efficiency of  the concurrent model approach, a

superior priority  queue,  the  SPQ,  was  developed  as  an  event  list  for  discrete  event

simulation.  The Concurrent SAF experiments demonstrated that repeatability could be

ensured  by  using  a  single  random number  source.   However,  it  did  not  provide  the

performance benefits that were seen in the RSAFO.

8.2.1  Bandwidth Reduction

First, the theorems for Temporal  Congruence  ΨT(t, ER)  and Behavioral Congruence  ΨB

(EL, ER) were established and proven as the correctness factors of this approach.  It was

proven that the Necessary and Sufficient Conditions for Behavioral Congruency are “

S E L  is behaviorally congruent to  S E R  if  the models are repeatable and they are
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given the same inputs in the same order.”  It was also proven that Temporal congruency

is obtained when “ S E L  is temporally congruent to  S E R  if the simulations are soft

real-time  synchronized  to  GPS  time,  and  all  changes  are  received  s seconds  before

scheduled execution time, and are processed in the same order as transmitted.   Where s is

congruence setup time.”

Next  using  the  RSAFO  application,  it  was  demonstrated  that  the  Concurrent  Model

Approach could provide the  ratio  BR=190-fold  improvement  over  the  dead reckoning

approach.  This was demonstrated by modifying OTBSAF to serve as human interface

and local and remote simulations of the concurrent model approach.  Experimentally it

was  demonstrated  that  BR exceeded 100 by  various  factors  depending  on  nature  and

length of the scenarios.  

For the RSAFO application we chose a magnitude Behavioral Congruence function of

ΨB(EL, ER)= x L−x R
2 yL− yR

2z L−z R
2  for each sample, for each vehicle.  Since ΨB

is a magnitude, the ΓB truth function evaluates to ΓB is TRUE if  and only if      Ψ B ≤  δ

and  FALSE  otherwise.   The  chosen  deviation  allowed  was   δ  =  25 meters.   The

computed  average deviation was Ψb
ave= 2.859.  The individual deviations were within 5

metes over 90% of the samples.  And the models maintained congruence over 99% of the

time.
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Theorems for Bandwidth reduction, latency and dropout immunity were established and

proven as the performance factors for this approach.   It was proven that “The concurrent

model  approach provides reduced bandwidth demand.”  The demonstrated bandwidth

reduction is more than adequate to enable feasible mixed live and virtual training with

Embedded Simulation.   It was proven that  “The concurrent model approach provides a

latency hiding ratio of  t prott wait

T tot

.”  Latency hiding provides realism while using globally

distributed  participants  in  the  exercise.   It  was  proven  that   “The  concurrent  model

approach provides outage immunity  ratio  of  up to BR.”   Dropout  immunity  provides

benefits  for  both  training  and  enhanced  situational  awareness.  For  the  RSAFO test

scenario the scenario was totally immune to any outage that occurred after the first 96

seconds  as  no  further  data  was  required  to  complete  the  remote  generation  of  the

scenario. 

8.2.2  Order(1) Priority Queue

Since since short HOLD time events can occur much more frequently in a simulation

than long HOLD times, adaptive queue management techniques that capitalize on this

characteristic  can  significantly  reduce  queue  overhead.   Adaptive  techniques  were

successfully applied by developing the SPQ to allow nearly constant time performance

for these distributions.   An important  characteristic  is  low-overhead sensing of queue

performance, which in turn triggered the adaptive measures required to bring the queue

back within the optimal range of operation.  A key benefit of these results is that they
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allow the prospective user to have confidence that the event queuing distribution will not

drastically change the execution time of the simulation model.

SPQ performance whether analyzed from an operation count or a timing exercise, can

show a reduction in overhead of greater than 50% in comparison to the calendar queue,

and will  perform no worse  than the better  of  the linear  queue or the  calendar queue

individually.  Analysis of  the SPQ shows that it  will perform comparably to a linear

queue for less than eight events and will exhibit nearly constant time performance for

larger queue sizes.  SPQ performance can be shown to be better than that expected for

binary queues with less complexity in the primary paths of execution. The SPQ performs

well  not  only  for  the  distribution  of  the  case  study  but  also  for  the  distributions

commonly used to compare queue performance for the event list application.

The  modified  SPQ  as  applied  to  OTBSAF  again  demonstrated  a  performance

improvement.  It provided a 6% percent increase in the number of vehicles that could be

simulated.   It  did  this  by  improving  the  efficiency  of  the  primary  event  list  used  in

OTBSAF.  In queue performance comparisons it provided execution time reductions of

from 47.3% to 90.8% with a mean of  76.4% over the various test distributions.  Thus, on

the average the SPQ only took 23.6% of the execution time as compared to the priority

queue  supplied  with  OTBSAF to  perform  the  overhead  function  of  maintaining  the

execution order for the simulation.
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8.3    Future Work  

Follow on work would include developing automated techniques to convert an operators

interactions with his equipment to commands and parameter changes to a SAF model that

represents the operators system in the situation database.  A suggested approach would be

to adapt model based reasoning as a method of determining the factors for the congruence

stream G0  for individual entities.  

Remote  SAF uses  independent  random number  generators  with  a  common seed,  but

postulates multiple simulators to provide the total view.  It also postulates independent

simulation rates at various sites.  This would imply different random number sequences

unless a different method of synchronization is employed.  Another alternative would be

to only use a random numbers for the SAF source and to use the most likely values for

each  of  the  clones,  then  issue  corrections  when  the  congruence  delta  exceeded

predetermined  thresholds.   Development  of  application  resilient  techniques  to  the

implementation  of  random  characteristics  in  the  concurrent  model  approach  while

maintaining  congruence  is  essential  for  the  extension  of  this  approach  to  extended

training scenarios.   For situational awareness applications, random numbers should be

replaced by fixed values.  For training purposes a random host simulation with feedback

correction  for  the  clones  or  highly  synchronized  pseudo-random generators  could  be

investigated to provide the desired divergence. 
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Additional work needs to be performed to implement latency compensation.  The current

DIS timestamp generation capabilities of OTBSAF are not sufficient for this purpose.

Follow-on work for the SPQ includes tuning the heuristics for special cases where the

dynamics of the distribution raise the average insertion cost appreciably.  
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APPENDIX:  EMBEDDED SIMULATION SYSTEMS
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System Environment 

The  primary  purpose  of  a  combat  vehicle  is  enable  the  user/operator  to  perform his

combat  mission more effectively.   While  training  certainly  contributes  to  the  combat

effectiveness of the equipment crew, it is not the primary purpose of the combat system.

Therefore ,  any additions, or modifications to the system for training purposes has to

compete  for  space,  power  and  weight  against  other  possible  mission  enhancement

modifications.  However, if the training technology can be incorporated from a dual use

viewpoint, that is mission enhancement as well as training enhancement, it becomes a

very desirable candidate for system inclusion.   For this  reason,  most of the proposed

technologies are being addressed, not only from training enhancement purposes, but also

from mission enhancement potential.  In addition, anytime the training system can take

advantage  of  existing  combat  equipment  components,  or  the  modifications  will  not

seriously impact space, power, weight, and reliability the training role in itself provides

increased effectiveness for the equipment.   Yet, as a component of the system it must

survive  the  same environment  of  the  system and if  it  fails  in  must  not  decrease  the

reliability of the system for its primary mission.
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Advanced Technologies for Embedded Simulations 

The technologies  being developed as  part  of  creating  useful  and powerful  embedded

simulations should address all significant issues integrating simulation technology with

operational systems which include:

1.  Sensor fusion – Sensor  data,  from electronic  to  human,  will  have  to  be  fused

together in the simulation environment to provide the warfighter with an intuitive

view of the situation.

2.  Visualization – Visualization of the different elements of the situation must be

designed in such a way as to be ergonomically appropriate for the warfighter.  

3.  Human  behavior  representation  –  Much  of  the  modeling  and  simulation  will

involve human behaviors.  While Computer Generated Forces (CGF) technology is

becoming mature, techniques to gather and learn the appropriate behaviors are still

quite primitive.  This will be necessary to quickly create the forces necessary to

visualize  the  real  world  through  the  virtual  world.   Furthermore,  inclusion  of

emotions,  degraded  states  and  variability  of  performance  will  also  need  to  be

incorporated.

4.  Real-time simulation – In an operational context, real-time performance that is,

bounded response time, will most definitely be a requirement. 

5. Computer  Networking  –  Much  of  the  data  exchanges  will  be  done  on  an

operational internet where communications between warfighters at all levels and in

all directions will have to be made securely, reliably and fast.  Enhancements to
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current distributed simulation protocols such as HLA will have to be made to make

them operation-ready.

6.  Wireless  Communications  -  The  inter-unit  communication  will  be  performed

within the constraints of wireless protocols.

Advanced Technologies for Embedded Simulations Current Status

Over the period of October of 1996 through September of 2001 Headquarters  United

States  Army  Simulation,  Training,  and  Instrumentation  Command  (STRICOM)

concluded  a  research  program  addressing  the  technologies  for  embedded  simulation

called  the  Inter-Vehicle  Embedded  Simulation  Technology  Science  and  Technology

Objective (INVEST-STO) [Bahr 1997A] [Bahr 1997C] [Bahr 1998] [Bahr 2002].  This

Science and Technology Objective investigated the following technologies with the listed

results.

All  of  the  functions  of  training  case  1  have  been  demonstrated  on  multiple  combat

vehicles  that  include  the  Marine  LAV  [Riley  2000],  the  Army's  Abrams  Tank

[Klingensmith  1998] and  Bradley  Fighting  Vehicle.   In  addition  to  the  standalone

capabilities they have also been  networked together with components [Pollock 1999] of

the  Close  Combat  Tactical  Training  (CCTT)  environment  and  used  for  collective

training. The technologies required for the merge of live and virtual simulations have

been studied but still need considerable development.  In most cases concepts have been

164



demonstrated, but not at a level sufficient for engineering development. Individual areas

are discussed below:

a.  Geometric  pairing:   A training/operational  testing instrumentation system based on

GPS  Interferometry  has  been  developed  and  in  use  by  the  National  Guard.   This

geometric paring system was developed by SRI.

b.  Aim point determination:  As Shiavone reports [Schiavone 2000] [Dolezal 1998] the

concept  has been demonstrated but further analysis of  the targeting output  of sensor

systems is required.  This will  require collection of targeting information from actual

combat systems.

c. High definition terrain database:  The JFTB has demonstrated the collection of 1 meter

resolution databases with processing completed within 24 hours of the flights for data

collection.  The integration of this information into Simulation databases still needs to be

investigated.  With the inclusion of onboard sensors in modern combat vehicles we need

to  develop  technologies  to  integrate  in  near  real-time  updated  information  with  the

prepared databases.

d. Live Virtual Terrain Registration:  Gelenbe et al [Gelenbe 2000] have demonstrated a

method of registering a virtual scene with a a live view to the level necessary to allow

virtual targets to inserted in the live view with sufficient resolution for training.  Better

databases  could  improve  this  technique,  but  this  technique  does  not  require  the

sophisticated instrumentation of previously demonstrated techniques.
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e.  Communication  reduction  techniques:  Progress  has  been  demonstrated  on  the

Concurrent Player Model approach [Bahr 1996] as reported by McHale and Braudaway

in  [McHale 1998] [Ourston 1998].  Current work has demonstrated  two independent

platforms maintaining duplicate scenarios with very low synchronization costs.  This is

expected to be demonstrated by providing for remote SAF operation within the next year.

Henninger et al [Henninger 2000] have reported techniques for improving models to be

used for this purpose.
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Figure 54.  Screen Shot 2
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Figure 55.  Screen Shot 3
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Figure 56.  Screen Shot 4
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Figure 57.  Screen Shot 5
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Figure 58.  Screen Shot 6
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Figure 59.  Screen Shot 7
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