
DATA BANDWIDTH REDUCTION TECHNIQUES FOR DISTRIBUTED
EMBEDDED SIMULATION USING CONCURRENT BEHAVIOR

MODELS

Major Professor: Ronald F. DeMara

by

HUBERT ARTHUR BAHR
B.S.E.,University of Oklahoma, 1972

M.S. Cp.E., University Central Florida, 1994

Fall Term
2004

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

UMI Number: 3163589

3163589
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ABSTRACT

Maintaining coherence between the independent views of multiple participants at

distributed locations is essential in an Embedded Simulation environment. Currently, the

Distributed Interactive Simulation (DIS) protocol maintains coherence by broadcasting

the entity state streams from each simulation station. In this dissertation, a novel

alternative to DIS that replaces the transmitting sources with local sources is developed,

validated, and assessed by analytical and experimental means.

The proposed Concurrent Model approach reduces the communication burden to

transmission of only synchronization and model-update messages. Necessary and

sufficient conditions for the correctness of Concurrent Models in a discrete event

simulation environment are established by developing Behavioral Congruence ΨB(EL, ER)

and Temporal Congruence ΨT(t, ER) functions. They indicate model discrepancies with

respect to the simulation time t, and the local and remote entity state streams EL and ER,

respectively. Performance benefits were quantified in terms of the bandwidth reduction

ratio BR=N/I obtained from the comparison of the OneSAF Testbed Semi-Automated

Forces (OTBSAF) simulator under DIS requiring a total of N bits and a testbed modified

for the Concurrent Model approach which required I bits. In the experiments conducted,

ii

a range of 100 ≤ BR ≤ 294 was obtained representing two orders of magnitude reduction

in simulation traffic.

Investigation showed that the models rely heavily on the priority data structure of the

discrete event simulation and that performance of the overall simulation can be enhanced

by an additional 6% by improving the queue management. A low run-time overhead,

self-adapting storage policy called the Smart Priority Queue (SPQ) was developed and

evaluated within the Concurrent Model. The proposed SPQ policies employ a low-

complexity linear queue for near head activities and a rapid-indexing variable binwidth

calendar queue for distant events. The SPQ configuration is determined by monitoring

queue access behavior using cost scoring factors and then applying heuristics to adjust

the organization of the underlying data structures. Results indicate that optimizing storage

to the spatial distribution of queue access can decrease HOLD operation cost between

25% and 250% over existing algorithms such as calendar queues. Taken together, these

techniques provide an entity state generation mechanism capable of overcoming the

challenges of Embedded Simulation in harsh mobile communications environments with

restricted bandwidth, increased message latency, and extended message drop-outs.

iii

TABLE OF CONTENTS

LIST OF FIGURES..viii

LIST OF TABLES..xi

LIST OF ACRONYMS...xii

CHAPTER 1 INTRODUCTION..1

1.1 Embedded Simulation..1

1.2 Role of Communications in Embedded Simulation...4

1.3 Motivation for Concurrent Models..4

1.4 Contribution of Dissertation...15

1.5 Overview of Dissertation...16

CHAPTER 2 PREVIOUS WORK...19

2.1 Overview..19

2.2 Communication Reduction Strategies..21

2.2.1 DIS Dead-Reckoning..22

2.2.2 Vehicle Model Generation and Optimization for Embedded Simulation......24

2.3 Synchronized Player Models ...26

2.4 Causality and Time Management...30

2.5 Real-time, simulation-time, Scheduling, and Synchronization..............................33

2.6 Queuing Strategies...37

iv

2.6.1 Linear List Priority Queues..44

2.6.2 Indexed Lists..44

2.6.3 The Calendar Queue...45

2.6.4 Relative Performance...47

CHAPTER 3 TECHNICAL PROBLEM DESCRIPTION ..53

3.1 Background..53

3.2 Operational Constraints..54

3.2.1 Force on Force Training Simulation. ..55

3.2.2 En route Mission Rehearsal..55

3.2.3 Situational Awareness..56

3.3 Computational and Communication Resource Tradeoffs......................................56

3.4 Situation-related Communication..58

3.5 OTBSAF as a Prototyping Testbed..64

3.5.1 OTBSAF Simulation Framework...65

3.5.2 Application...67

3.6 OTBSAF Scalability and Priority Queue Performance..71

CHAPTER 4 CONCURRENT MODEL APPROACH TO EMBEDED SIMULATION....

76

4.1 Player Units (PU)...82

4.1.1 Concurrent Remote Model (CRM)...83

4.1.2 Difference Analysis Engine (DAE)..84

4.1.3 Adaptive Reference Model (ARM)..85

4.1.4 Instrumentation for Player Units..86

v

4.1.5 Situation Database..86

4.2 Processing of Discrepant Results...87

4.3 Concurrent Model Approach Design Criteria..90

4.3.1 General Criteria..91

4.3.2 Remote SAF Operator..93

CHAPTER 5 ANALYTICAL RELATIONSHIPS IN COMMUNICATION

MECHANISMS...96

5.1 Correctness Characteristics..97

5.2 Performance Benefit Characteristics..102

CHAPTER 6 CONCURRENT MODEL CONSTRUCTS AND MECHANISMS106

6.1 Background..106

6.2 Integrated Model Execution...107

6.3 Isolated Model Functions...111

6.4 Smart Priority Queue Data Structure...113

6.4.1 Activity Feedback Counters...118

6.4.2 Sensing Cost...119

6.4.3 Filtering Costs..121

6.4.4 Correction Costs...123

6.5 Integration of SPQ in OTBSAF...124

CHAPTER 7 EXPERIMENTAL COMPARISON OF ALTERNATIVES127

7.1 Experimental Configurations...127

7.1.1 Concurrent SAF..127

7.1.2 Remote SAF Operator..129

vi

7.1.3 SPQ used for Case Study..131

7.1.3.1 Queue Instrumentation..132

7.1.3.2 Statistic Counter Definitions...133

7.1.4 SPQ Evaluation with Statistical Distributions..133

7.2 Description of Scenarios..135

7.3 Presentation of Results...137

7.3.1 Concurrent SAF..137

7.3.2 Remote SAF Operator..138

7.3.3 SPQ...147

7.3.4 SPQ Integrated into OTBSAF..152

CHAPTER 8 CONCLUSIONS ..154

8.1 Summary..154

8.2 Major Results...155

8.2.1 Bandwidth Reduction...156

8.2.2 Order(1) Priority Queue...157

8.3 Future Work...159

APPENDIX: EMBEDDED SIMULATION SYSTEMS..161

LIST OF REFERENCES...175

vii

LIST OF FIGURES

Figure 1. Entity to Observer Communications...6

Figure 2. Scenario: Four Vehicles En route while Participating in an ES exercise...........7

Figure 3. Scenario: Bridge Crossing Requiring Change in Relative Position...................8

Figure 4. Scenario: Reestablishing Relative Positions Before Approaching Destination

Location ..9

Figure 5. Communications Congestion at Time Intervals T1 through T11......................10

Figure 6. Communications Reduction Improving Estimate of Vehicle Location............12

Figure 7. Communications Message Dropouts...13

Figure 8. Concurrent Model Reports..14

Figure 9. WWLAN Data Reduction Pyramid...20

Figure 10. Dead-Reckoning Example Path Display...23

Figure 11. SPM Human Surrogate DAE...28

Figure 12. Scenario demonstrating causal event ordering [Fujimoto 1998].....................30

Figure 13. Increase in Computational Load Versus Events Queued................................38

Figure 14. Priority Queue Taxonomy...43

Figure 15. Calendar Queue...46

Figure 16. Mean access time for Calendar Queue and Classic Hold Experiments...........49

Figure 17. Mean access time for Calendar Queue Up/Down experiments.......................50

viii

Figure 18. Distribution of search Length in DDC using a Linear Queue.........................51

Figure 19. Search Length Distribution in a Calendar Queue..51

Figure 20. Congruence Transfer Function..60

Figure 21. Congruence Karnaugh Map...61

Figure 22. Example Graphics Illustrating Tolerances..63

Figure 23. SAFstation and SAFsim Components...67

Figure 24. WWLAN Data Reduction Pyramid with Data Rates......................................70

Figure 25. Dead-Reckoning..77

Figure 26. Concurrent Model..78

Figure 27: CRM..82

Figure 28: Collective Interaction under Concurrent Model approach..............................90

Figure 29. Concurrent Model Analysis...96

Figure 30. Real-Time and simulation-time Relationship..109

Figure 31: PO object Modification...112

Figure 32. Smart Priority Queue (SPQ)..115

Figure 33. SPQ Insert Operation...117

Figure 34. Revised SPQ for OTBSAF..125

Figure 35: Concurrent SAF...129

Figure 36: Remote SAF Operator...130

Figure 37. Screen Shot 1...136

Figure 38. Screen Shot 10...142

Figure 39. Behavioral Congruence for Vehicle A11..143

Figure 40. Behavioral Congruence for Vehicle A12..143

ix

Figure 41. Behavioral Congruence for Vehicle A13..144

Figure 42. Behavioral Congruence for Vehicle A14..144

Figure 43. Congruence Histogram for Vehicle A11...145

Figure 44. Congruence Histogram for Vehicle A12...146

Figure 45. Congruence Histogram for Vehicle A13...146

Figure 46. Congruence Histogram for Vehicle A14...147

Figure 47. Search Length Distribution in a SPQ..149

Figure 48. SPQ Performance for Classic Hold...150

Figure 49. Calendar Queue for Classic Hold..150

Figure 50. SPQ Performance In Up/Down...151

Figure 51. Calendar Queue Performance for Up/Down...151

Figure 52. SPQ Integer Performance for Classic Hold...153

Figure 53. OTBSAF PQ Performance for Classic Hold...153

Figure 54. Screen Shot 2...167

Figure 55. Screen Shot 3...168

Figure 56. Screen Shot 4...169

Figure 57. Screen Shot 5...170

Figure 58. Screen Shot 6...171

Figure 59. Screen Shot 7...172

Figure 60. Screen Shot 8...173

Figure 61. Screen Shot 9...174

x

LIST OF TABLES

Table 1. Queue Percent of Computation for Given Queue Sizes.....................................40

Table 2. Prioritized Execution..41

Table 3. Results of Jones Study..48

Table 4. Situation Database..59

Table 5. Current Communications Packets...69

Table 6. ModSAF 3.0 Benchmark Results [Roberts 1998]..71

Table 7. OTBSAF Benchmark Results...72

Table 8. OTBSAF Benchmark Results - Part II...74

Table 9. Comparison Equivalent for Optimization Calculations....................................123

Table 10. Statistical Counter definitions...132

Table 11. Message Counts for Remote Operator..138

Table 12. Message counts for Benchmark..140

Table 13. Path Counts and Comparison Equivalents..148

xi

LIST OF ACRONYMS

xii

ARM Adaptive Reference Model

CCTTSAF Close Combat Tactical Trainer Semi-Automated Force

CM Concurrent Model

CRM Concurrent Remote Model

DAE Difference Analysis Engine

DES Discrete Event Simulation

DIS Distributed Interactive Simulation

ES Embedded Simulation

FIFO First-In First-Out

FSM Finite State Machine

GMT Greenwich Meridian Time

GPS Global Positioning System

GPS Inter Vehicle Simulation Technology

LAN Local Area Network

M&S Modeling and Simulation

ModSAF Modular Semi-Automated Force

OneSAF One Semi-Automated Force

OTBSAF OneSAF Testbed Semi-Automated Force

PDU Protocol Data Unit

PO Persistent Object

xiii

PVD Plan View Display

SAF Semi-Automated Force

SME Subject Matter Expert

STO Science and Technology Objective

UDP User Datagram Protocol

UTM Universal Transverse Mercator

WAN Wide Area Network

WWAN Wireless Wide Area Network

CHAPTER 1 INTRODUCTION

The Concurrent Model (CM) approach for embedded simulation is a technique for

reducing the inter-platform communications requirements of Distributed Interactive

Simulation (DIS) when used for Embedded Simulation (ES). This dissertation first

identifies critical aspects of performance and fidelity of Embedded Simulation. It then

introduces the CM approach as a proposed solution for the restrictive communications

requirements of mobile platforms using ES. It then describes a prototype program to test

the proposed concept and reports on the results of the first phase of this program.

1.1 Embedded Simulation

Historically, computer modeling and simulation have been primarily used for three basic

purposes:

1. Analysis of behavior of completed events (i.e., understanding of significant,

incompletely understood events),

2. Prediction of future behavior of complex systems (i.e., design), and

3. Training in operation of equipment or mission accomplishment

These traditional applications of Modeling and Simulation are centered around advisory

functions, typically performed off-line. On the other hand, ES, derives significant

advantages from its use in operational real-time tasks.

1

Embedded Simulation (ES) is the integration of simulation technology with operational

systems, allowing the operators of those systems to interact with both the real world and

the virtual world as if both were integrated. This provides the operator with capabilities

in the real world beyond his/her immediate perception range. Furthermore, it allows for

high fidelity predictions of behavior of other elements in the real world, which would

improve decision-making in tactical or strategic contexts. The degree of real world

replacement by the virtual world is dependent on the application. For example, in a

military system application, the envisioned concept would be as follows:

Embed the capability in the vehicle to allow a “virtual world” to be displayed to the

crew and to have virtual interaction with vehicle subsystems in support of Mission

Rehearsal, Battlefield Visualization, Command Coordination, and Training.

We expand on these below as they form the basis for the applications to be optimized:

• Mission Rehearsal — Rehearsal or simulation of actions prior to undertaking the

mission, on the operational equipment to be used in that specific mission, is a highly

desirable capability made possible by ES. The extent of rehearsal could range from a

single commanders scenario for Course Of Action Analysis, to having all crew

members participating in an exercise.

• Environment Visualization — ES can support visualization of the simulation

environment, which provides significant advantages in situational awareness.

Visualization could be as simple as a display of unit and enemy locations on a two-

dimensional map based on the last reported locations/sightings. More ambitiously, it

could include a time-updated best estimate of the locations/status on a three-

2

dimensional display with integrated current sensor data at sufficient resolution for all

critical decisions.

• Command Coordination — ES can be used to vary the graphical representation of

plans to the automated tracking and notification of coordination events. The

simulation of the execution of the commanders intent could be displayed to both the

commander and the units executing the commands. If any differences occur between

the commanders intent and the execution the units would notify the commander of the

actual execution and the commander would either acknowledge their

recommendations or modify his commands.

• Training — ES can support having one member of the crew located at his station

refining his individual skills with simulated crew members against simulated forces.

Furthermore, the operational scenario could be simulated in a stationary vehicle and

through repeated executions of this scenario, be used as a drill to refine capabilities.

The study of embedded simulation technology is a refinement and enhancement of

simulation concepts for real-time use in the space and power constraints of operational

systems. In the operational environment, embedded simulations will strive to convert

inputs from multiple sensors into a form to give the operators an enhanced interface with

their environment. It also includes the capability to project the future, and serve as a

basis for decision aids. Achievement of these objectives will require significant

capabilities for high performance communication in a distributed simulation

environment.

3

1.2 Role of Communications in Embedded Simulation

Communication mechanisms in an ES system must provide the means for the various

vehicles involved in the mission to share the benefits of the distributed simulation

resources. This imposes real-time constraints on the bandwidth, latency and connectivity

of the data transfer mechanisms. Realism constraints place an additional burden of

precise data ordering on this communications subsystem. Current computer generated

force systems such as One Semi-Automated Force (SAF) (OneSAF) Test Bed

(OTBSAF) and Close Combat Tactical Trainer (CCTT) SAF (CCTTSAF) are designed to

provide only one model of each virtual player in the exercise. Each of these models

periodically generate state information that is broadcast to all the other participants. Live

players interact with these models by operating a vehicle simulator which generates the

state information in the same format. In this environment, each entity is represented to

all the other entities by the sequence of state messages that are broadcast periodically. As

long as the communications bandwidth is sufficient, and has minimal latency, entities can

be added to the ES exercise by including additional sources on the network. To date

most of the work has been dedicated to providing adequate bandwidth and low latency,

using local area network technology and User Datagram Protocol (UDP) packets.

1.3 Motivation for Concurrent Models

A critical parameter impacting to the amount of bandwidth required is the frequency of

the entity state messages. One method used to reduce this frequency is to use dead

reckoning algorithms. These techniques have proven sufficient for training with current

4

systems such as OneSAF and CCTTSAF. However, goals exists to continue to expand in

numbers, locations, and types of participants. One expansion is in the number of entities

involved in a given training exercise. Another is to have entities participate from

locations worldwide. A third is to have participation of crews from their actual vehicles

while they are moving.

During the assessment of the bandwidth requirement under current techniques [Goblick

1996][Valle 1997] verses current capacity [Bahr 1994A] it is apparent some significant

bandwidth reductions are needed to achieve the goal of ES. The concurrent model

approach [Bahr 1996] postulates taking the dead reckoning concept to the limit. It does

this by assuming that it has clones of the interacting entities residing at each location.

Thereby, given that all clones are receiving the same stimuli at the same time they will

react to the stimuli in unison. As long as this condition is maintained, no entity state

messages would need to be broadcast. This has the potential to drastically reduce the

required update traffic on the network. The network is then used primarily to introduce

new common information into the exercise, much as a tactical command and control

system is used to specify new objectives to be performed next.

The value of ES is enhanced when the vehicle is free to move. Hence the requirement

for wireless communications between the users of the simulation is originated. Wireless

communications introduces additional impacts on bandwidth, latency and continuity over

the traditional Local Area Network (LAN) used for Distributed Interactive Simulation

(DIS) [Fullford 96]. While many new strategies are being developed to share more of the

5

available radio spectrum with multiple users using space, time, and code division

multiplexing techniques, the demand for this spectrum continues to expand even faster.

In addition, the use of wireless communications allows the participants freedom of

movement, many times to locations unfavorable for communications. Increased

emphasis has been placed on operation in the urban environment, where communications

can be problematic. The avoidance of line of site, and the operation in the urban

environment with its higher incidence of man made noise all contribute to situations

where there can be extensive communications outages, or reduction in the available

bandwidth. If a method can be developed that allows minimal disruption of command

and control coordination with continued situational awareness in this environment, it

would greatly enhance the effectiveness of ES.

Figure 1 provides a sketch showing the relationship between multiple entities labeled a

through x, who, while moving away from the stationary observer, are returning their state

message packets labeled Pa1 through PxN over a shared wireless communications link. Pij

is the packet with i denoting the originating entity IDs a through x, and j denoting the

sequence numbers of the packets labeled 1 to N. Since this communications link is

6

Figure 1. Entity to Observer Communications

Entity
bP

b1
P

b2
P

bN
...

Entity
xP

x1
P

x2
P

xN
...

P
a1

P
b1

P
x1

...

Entity
aP

a1
P

a2
P

aN
...

P
a2

P
b2

P
x2

... P
aN

P
bN

P
xN

...

...

...Observer

shared, if it is already in use by another entity, each remaining entity must queue up their

packets until the link becomes available. The packet stream that is depicted in Figure 1

indicates a round-robin protocol in which each entity transmits its next packet in turn.

For ease of analysis, we will assume this type of channel sharing unless otherwise stated

throughout this dissertation. Unless otherwise stated the observer is assumed to be some

finite distance away from the entities reporting their current state.

Figures 2, 3, and 4 display snapshots of a short scenario as displayed in the Plan View

Display (PVD) of OTBSAF [SAIC 2001B]. The title bar of the window gives

information about the computer running the simulation, the version of OTBSAF, exercise

and Persistent Object (PO) database numbers and the terrain database used. The next bar

has a set of pulldown menus and a display of the current wall clock time. The next bar

select various modes of use for this display. The section on the left of the screen provides

buttons for the various units available for display on this station. The major section of

7

Figure 2. Scenario: Four Vehicles En route while Participating in an ES exercise

the display shows a topographical map based on the identified terrain database at a

selected Map Scale. In Figure 2, this scale is 1:25,000. Around the sides of the map

display the grid is labeled with Universal Transverse Mercator (UTM) map grid

coordinates. In this scenario a platoon designated “100A1” has been told to move “cross-

country” in a wedge formation along the route indicated by the line designated “r1.”

“Cross-country” is a term that signifies a movement forward on the closest route along

the path depicted by the line allowed by the terrain as opposed to “road march” that

signifies a movement forward on roads closest to the path depicted by the line. Figure 2

shows the platoon in wedge formation approximately two minutes into the exercise.

Each vehicle's position is indicated by a small blue icon approximating the shape of

vehicle but at an enlarged scale sufficient to be easily viewed on the display. It's

orientation approximates the vector of the last movement. Even though the route is

indicated as a straight line, the platoon must navigate the terrain as depicted on the

8

Figure 3. Scenario: Bridge Crossing Requiring Change in Relative Position

topographical map. Between the platoons current location and its objective indicated as

the terminal point of “r1” there is a river that must be crossed. Figure 3 shows that the

platoon is using a bridge to cross the river and is continue toward its objective. It shows

the map scale changed to 1:10,000 to show more detail about the bridge crossing. Figure

4 shows the platoon about a minute from its objective, again at a zoomed in scale of

1:10,000. Each grid line represents 1 kilometer. This scenario will be used throughout

this dissertation to illustrate proposed communication techniques.

Figures 5, 6, 7, and 8 display four different communications scenarios in the case of

limited bandwidth. These figures are based on the previous exercise scenario, however

the plan view display has been cropped and expanded to show more detail about the total

scenario and the entity state reports verses the time they are received over the duration of

9

Figure 4. Scenario: Reestablishing Relative Positions Before Approaching Destination
Location

the exercise. The total exercise lasts about 12 minutes. It starts at the locations indicated

by the vehicle icons, and the individual vehicles follow the paths indicated by the

separate colors. Figure 5 displays a condition where communications channel's

bandwidth is only 50% of that required to transmit all the data in real-time.

In the case where all the messages are queued and transmitted as soon as possible, then

congestion results. Congestion impacts the time that the message is received at a distant

observer. The difference between time that the event occurs and the time that the event is

observed is called observational latency which we will designate as tobserve. The

component of tobserve
 that is due to the waiting time to put the message on the

communications link is designated as twait. In this set of four figures, we are assuming

that all other components of latency are negligible for this discussion. As such the other

three figures show the observed time as equal to the transmitted time. The observed time

T is depicted by T1 through T11 on all the figures corresponding to 1 through 11 minutes

10

Figure 5. Communications Congestion at Time Intervals T1 through T11

after the start of the exercise. The left terminus of each line is the position of the vehicle

at the start of the exercise, and the right terminus is at the end of the exercise 11 minutes

and 58 seconds (0:11:58) later. A small triangle is placed on each path corresponding to

the observed position at each minute throughout the scenario. Due to potential confusing

overlap not all positions are labeled, but each minute is indicated by a small triangle on

the corresponding path. Note that since all the vehicles cross the same bridge, all paths

overlap at the bridge. In Figure 5, the observed positions are further and further away

from the actual positions as indicated by the discrepancy in the location of the entities.

Since we assumed that the available bandwidth is 50% of that required BWa = Ma/t =

0.5*BW = 0.5* M/t, at the end of the exercise only 50% of the data Ma = M/2 has been

received. Where M is the number of messages and t is the time to deliver the messages

and BWa is the available bandwidth. To deliver the remaining messages M/2 at the same

rate an equal amount of time t will be required. Thus the final position is delayed a time

equal to the exercise duration. The twait for this message would be equal to the length of

the exercise tex = 0:11:58. Assuming an uniform transmission rate the average waiting

this may be acceptable for post exercise analysis, it is not acceptable for any real-time

interactive applications such as those proposed for embedded simulation. Real time

interaction requires feedback within the attention span of the observer, Based on my

observations over 20 years of instrumenting live simulations this is nominally within 2-3

seconds, and for many situations even shorter latencies are required.

11

time tave =
∑

i=1, N

t i

N
 = tex/2 = 0:5:59, where ti = twait for each individual message. While

An alternative to message backup is to reduce the number of messages to correspond to

the available bandwidth by changing the rate of the information that is exchanged. An

example of this approach is portrayed in Figure 6. In this case, messages are staggered

using time division multiplexing such that the odd numbered vehicles transmitted at odd

times and the even numbered vehicles transmitted at even times. Here there are only two

triangles representing the reported locations for each labeled time. The position update

interval between each report is twice as long as would be otherwise if more bandwidth

was available. This still leads to undesirable consequences due to inadequate bandwidth,

however, it may be preferable than allowing backup during real-time interaction.

Another technical challenge facing communication in ES is common in wireless links.

This is the problem of message dropouts. Dropouts are the condition where no

communication is possible due to interference, or unavailable due to inadequate signal

strength. Figure 7 depicts a message dropout between time T2 and T10. The result is that

12

Figure 6. Communications Reduction Improving Estimate of Vehicle Location

no position reports are received over this period which is undesirable for both post

exercise analysis and real-time interaction.

As a solution to these problems, Figure 8 represents the results for each of these scenarios

under the Concurrent Model Approach proposed in this dissertation. As illustrated each

report that is used by the observer is behaviorally correct for the time of the report and

there is also no loss of information, because bandwidth requirements have been reduced.

This proposed solution utilizes the communications channel to transmit more effective

information based on entity behavior rather than entity position. Thus, it can compensate

for longer latencies. This approach was initiated to compensate for the differences in the

communications resources used for virtual simulations using the DIS protocol and live

simulations using highly customized special purpose protocols. Let N denote the number

of bytes required to transmit entity state information for a typical DIS scenario, and I

13

Figure 7. Communications Message Dropouts

denote the number of bytes required to transmit the entity state information for an

equivalent live scenario. The ratio BR = N/I which indicates the increase in traffic under

simulation environment can exceed BR > 100 [Goblick 1996] [Valle 1997] [Bahr 1994A].

Using BR=100 as a requirement for ES bandwidth ratio then a goal for the amount of data

transferred under the Concurrent Model Approach can be set to N/100, rather than N. In

addition, the packets that are transmitted under the Concurrent Model Approach are not

merely position reports, but scheduled changes to model parameters that indicate

properties to compensate for latency and message dropouts. These additional properties

are among those that are developed in the dissertation to achieve temporal congruence

and behavioral congruence between the originating entity state stream and the observed

entity state stream, as will be defined in Chapter 5.

14

Figure 8. Concurrent Model Reports

1.4 Contribution of Dissertation

This dissertation develops and validates the Concurrent Model Approach as a method of

managing communication requirements and hiding the latency in ES. This establishes

the need for causality, repeatability, and synchronization in order to be feasible. It uses

discrete event simulation, normally reserved for non-real-time models, to provide

repeatable simulations in a real-time environment. It establishes the validity of operating

an environmental visualization in soft real-time as opposed to hard real-time, thereby

allowing more efficient algorithms to maximize model size for the given computational

environment. It introduces a novel data structure to maintain the most important events

in priority order during the simulation. Finally it establishes, rationale for de-coupling

the display update rate from element position location calculations update rate, thereby

allowing a higher peak to average ratio for useful computations per clock cycle. These

are achieved and demonstrated by providing a testbed that can continue to support

exploration and validation of the Concurrent Model Approach for additional applications.

Latency hiding is accomplished by performing time-critical computations on each local

platform, rather than computing them at one location and broadcasting the results to

others. This change has the effect of reducing the characteristics of the communications

link impact on ES performance. Discrete event simulation is used to allow computations

to be scheduled on an as needed basis as opposed to a cyclic basis prevalent in real-time

simulations. However, this introduces the need for an efficient event list implementation

to keep the scheduling algorithm from dominating the execution demands of the

15

simulation. The use of discrete event simulation ensures that all computations are

performed in the same order, thereby enabling causality, and repeatability.

Using the testbed developed, the above concepts and rationale are then tested by applying

them to the application of En route Mission Rehearsal [Lawlor 2002]. The scenario is

that during the multi-hour flight en route to a destination, the unit would rehearse its plan

as an ES exercise. This is an ideal application for the concurrent model approach as it

requires wireless communications over long distances. This particular application is for

the concurrent model approach is to allow the remote operators to interact with the

deployed unit without requiring the real-time transmission of typical DIS traffic between

the participants.

The event list capabilities are demonstrated by testing with various event insertion

distributions, and comparing results for the same set of distributions against most known

implementations in previous studies. [Ahn 1999][Ronngren 1997][Tan 2000]

1.5 Overview of Dissertation

Chapter 2 covers previous work relevant to this dissertation. It discusses previous

attempts at reducing the amount of information that is transmitted between participants of

a DIS exercise. It then develops methodologies applied to causality and time

management, and characteristics of real-time, simulation-time and scheduling techniques.

Finally, Chapter 2 covers the background literature on event list management.

16

Chapter 3 develops the problem description by introducing Embedded Simulation, the

required technologies, and its current status. It then examines performance constraints

and computation versus resource tradeoffs for the three potential applications of force-on-

force training, en route mission rehearsal, and situational awareness. It then examines the

use of OTBSAF as a testbed for these concepts, and finally looks at the limitations of

current priority queue structures for application for the proposed Concurrent Model

approach.

Chapter 4 presents the Concurrent Model approach by comparing it to dead-reckoning. It

then explains the functions of each of the CM components. It then addresses the impact

on discrepancies between modeled and measured results. Finally it introduces the design

criteria critical to the various stages of investigation of the concept.

Chapter 5 presents the analytical relationships by providing the definitions, theorems and

proofs. It initially defines the correctness characteristics of Behavioral and Temporal

Congruence. It ends by discussing the performance benefit characteristics of bandwidth

reduction, latency immunity and outage immunity.

Chapter 6 presents the constructs and mechanisms of the CM approach. It addresses the

changes that need to be made to OTBSAF to explore the CM approach and details the

relationship between simulation-time and real-time and the characteristics of soft-real-

time used by the CM approach. Finally it addresses the instrumentation of the Smart

Priority Queue and its integration into OTBSAF for the CM approach.

17

Chapter 7 presents the experimental comparison of the alternatives investigated in this

dissertation. It initially describes the experimental configurations of the Concurrent SAF,

the Remote SAF Operator, the Smart Priority Queue and statistical distributions used for

evaluation of the queue. It then describes the scenario used to drive the experiments for

the Concurrent SAF, and the Remote SAF Operator. Finally it presents the experimental

results of each experiments.

Chapter 8 summarizes the contribution of study, the major results and future work. It

then presents the major results for bandwidth reduction and priority queues. Finally it

introduces topics for future work with suggested approaches.

18

CHAPTER 2 PREVIOUS WORK

2.1 Overview

Simulations whether live, virtual or constructive have become valuable tools for training,

mission rehearsal, and course of action analysis. Initially they were developed, and used

for specific purposes. Live simulation has been used for small team real-time training,

virtual simulation for individual and crew training on the use of the equipment, and

constructive simulation for command and control training or war planning. As the

simulations have improved, and the physical size of the computational resources continue

to shrink, the trend has been made to incorporate simulations with the actual operational

equipment. The U.S. Army's Inter Vehicle Simulation Technology (INVEST) Science

and Technology Objective (STO) investigated the incorporation of previous developed

simulations with combat vehicles and demonstrated feasibility of providing a virtual

training environment in the vehicle [Bahr 1998] [Klingensmith 1998]. One outcome of

the INVEST-STO research was the need to address the communication requirements of

ES. It became apparent that the current DIS paradigm of using only one generating

source for each entity could exceed the capability of Wireless Wide Area Networks

(WWANs) [CBO 2003] [Tiernan 1995] [Valle 1997]. The concurrent model approach

19

changes this paradigm to multiple local generating sources for each entity to take

advantage of the technologies proven to work for local area networks.

Figure 9 provides a visual representation of the communications bandwidth hierarchy of

various strategies previously implemented to address the sharing of state data between the

different entities in a simulation. The height of the pyramid is proportional to the added

complexity, while the width represents the required bandwidth. The maximum

bandwidth is required when transmitting the data as it is generated as indicated by the

raw data level of the pyramid. One can avoid transmitting some raw data by instead

generating simulated views as depicted by the second layer of the pyramid. The Dead-

reckoning approach can reduce the simulation bandwidth by an order of magnitude

[Bassiouni 1997] and is commonly used on LANs. VMGOES pushes this reduction still

further by applying advanced modeling techniques using neural networks [Gerber 2001]

[Henninger 2000B]. The proposed Concurrent Model approach takes this to the limit by

eliminating the transmission of entity state data, but replacing it with local generation and

the communication of congruence information to maintain synchronization between all

20

Figure 9. WWLAN Data Reduction Pyramid

Raw Video and Sensor Data

Dead-reckoning Updates

Concurrent
Model

Updates
VMGOES Predictions

Simulated Views

Increasing

Bandwidth

 Demand

Increasing
Model

Knowledge
and

Fidelity

data generators. Each of these previous works are reviewed in detail in subsections later

in this chapter.

To establish the critical issues for the proposed approach, the following areas are

investigated in this dissertation. First, the current technologies in simulation

communications reduction strategies are reviewed. Second, the problems of

synchronizing multiple entity generators is assessed. This investigation centered around

an in depth look at the area of causality and simulation time management, which pushed

for further exploration into the issues of real-time versus simulation-time scheduling

strategies. As the scheduling strategy became of clearer importance, the priority queue

realization was found to be critical. This motivated an improved data structure that could

improve the scalability and throughput of the task scheduler used in ES.

2.2 Communication Reduction Strategies

These first two approaches address taking the periodically generated entity state

messages, and eliminating those that do not add significant new information to the

entities current state. This adds moderate complexity to both ends of the transmission

stream, but reduces the amount of data that needs to be transferred from the source entity

to the observer. The first of these is implemented in OTBSAF and is part of the baseline

value of N in the DIS stream.

21

2.2.1 DIS Dead-Reckoning

Dead-reckoning [Fullford 96], a term first coined for navigation, is an abstraction of the

physics of motion. It is based on Newtonian Physics in that a moving object does not

change direction unless some force is applied. In DIS, this concept is used to maintain

the communications of state information between various participants. Each vehicle in

motion keeps detailed state information about its position and movement. This is used to

populate a dead-reckoning model of itself and every other participant with which it may

interact. Each time a vehicle needs to update the position of other participant vehicles in

the simulation, it updates the position estimate by extrapolating a new position based on a

linear distance model x = vΔt + x0 where the elapsed time since the creation of the latest

information is Δt and v denotes the velocity and x0 denotes previous position. In the

simplest case, the dead-reckoning model is based on position, time, and the velocity

vector transmitted by the other participant. To make sure other participants in the

exercise have a valid dead-reckoning model, each participant is constantly comparing its

own position with its own dead-reckoned position. As long as the displacement between

the two positions does not vary more than a predetermined threshold then the dead-

reckoning model is left unchanged. Once this displacement exceeds the predetermined

threshold this participant broadcasts a message to all other participants that provides an

updated time, position, and velocity vector of motion. In some cases, higher order

models, using acceleration in addition to velocity, are used to try to reduce the number of

updates that are required [Gerber 2001]. While dead-reckoning reduces update traffic,

22

more packets are required to be transmitted than can be supported in an ES environment

[Bahr 1996].

Figure 10 from [Henninger 2000B] provides an example of dead-reckoning. In this

figure the true path is designated Ia and the dead-reckoned path is designated by Ib where

I denotes the integers 1.. 11 which represents different times. At time t1 both the true

path and the dead-reckoned path coincide. At time t3 the difference between the paths

exceeds the dead-reckoning threshold so entity state PDU is generated and the remote

user receives an updated position and velocity. The path it generates corresponds the the

dead-reckoned path Ib. Again at t6 the threshold is exceeded and again a new entity state

PDU is generated to update the remote paths. The official exercise position is the paths

23

Figure 10. Dead-Reckoning Example Path Display

generated by dead-reckoning as that is the only path transmitted on the network. The

only simulation that sees the actual path is the local host.

Bassiouni [Bassiouni 1997] shows an example of dead-reckoning that reports a data

reduction of 76 but states that generally the data reduction is greater than one order of

magnitude but varies dependent on the activities of the host and other exercise variables.

In the scenario shown in Chapter 1 we observed a reduction of between 10 to 15. We

will cover this in additional detail during our comparison to the Concurrent Model

approach in Chapter 4.

2.2.2 Vehicle Model Generation and Optimization for Embedded Simulation

The Vehicle Model Generation and Optimization for Embedded Simulation (VMGOES)

project [Gonzalez 1998] [Henninger 1998] [Henninger 2000] concentrates on reducing

the communications bandwidth by providing higher fidelity models of manned vehicles.

Henninger [Henninger 2000B] reports that the primary objective was to develop a neural

network based movement model that could be used in lieu of a Newtonian-based DIS

dead-reckoning model to support the synchronization of the entities states in an

embedded training exercise. In support of this objective, a coherent framework for

learning and testing such models was developed, and two important issues were

addressed. The first issue was how to effectively model a near-term movement skill

model from real-time data and how to measure the performance of this model. The

second issue was whether this approach would generalize to human driving. The initial

models were developed in a simulated testbed environment. First, the models were tested

24

on movement methods that were not used in training, but similar to those used in training.

The best performing models in the first case gave an average ESPDU reduction of

approximately 28% over current distributed simulation dead-reckoning methods. They

generalized approach did not yield any reduction. When this models were developed

using Subject Matter Expert (SME) generated data for testing that was not used in the

training of the neural network-based near-term movement models. The best performing

models, in this instance, resulted in an estimated ESPDU reduction of 67%. Also

evaluated was the potential for generalization across drivers by applying the movement

models developed from one SME to a second individual. The model results, in this

instance, did not reduce ESPDUs. From the CM approach viewpoint this yields two

important observations. First that better models can be achieved over the current

OTBSAF implementations, and second trained SMEs tend to be better subjects than the

OTBSAF models.

Here, a system that extends the dead-reckoning concept to the behavioral level is used to

anticipate position changes, this provides benefits beyond just maintaining current

velocity due to anticipating the operators behavior based on the context of the current

activities. A methodology used called Context-Based Reasoning, establishes that each

observable behavior has its own associated actions that can represented by an active

context. For example, a tank, operated by a crew conducting a tactical road march,

would be exhibiting behavior associated with following a road, such as being near the

road and proceeding in roughly the same direction as the road [Gerber 2001]. Since

modeling the system based on each of the contexts, and the human reactions based on

25

these contexts involves significant detail, the VMGOES researchers developed the

models using a machine learning technique known as Learning-by-Observation which

was shown to be effective.

Gerber [Gerber 2001] reported that the efficient synchronization of human-controlled

ground vehicle with a VMGOES behavioral model was demonstrated in a ModSAF

testbed. This demonstrated improvement over dead-reckoning. He also reported

development of a Learning-by-Observation methodology to infer low-level actions of a

ground vehicle operator in real-time was successful as well as the establishment of a

software testbed to implement and evaluate the concept. The approach demonstrated

appears to provides a mechanism to link various networks together to provide a more

complete model. One drawback to these approaches is they assumed no prior knowledge

of the subjects intent. As shown in the next section some prior knowledge is available

and can help in the mechanization of CM approach.

2.3 Synchronized Player Models

Synchronized Player Models (SPM) research addressed an important element related to

the proposed Concurrent Model approach: providing repeatable models. Repeatability

was obtained by modifying the predecessor of OTBSAF, called the Modular Semi-

Automated Forces (ModSAF), to provide a simulation that produced identical simulation

behavior on repeated runs.

26

The SPM project [McHale 1998] addressed the problem of providing deterministic

Computer Generated Forces (CGFs) as part of the solution to reduce the need for

communications. Assuming that all other aspects of a simulation environment are

synchronized, synchronization of the parallel models used by individual platforms can be

achieved by using a repeatable implementation of the CGF. A CGF implementation is

said to be repeatable if the simulation events (e.g., vehicle location events, firing events,

damage events) occur at the same simulation time in each run of the same scenario. The

SPM researchers chose to modify ModSAF to provide a repeatable mode of execution.

They observed that repeatability can be achieved by modifying the scheduling of

simulation events, the generation of stochastic events, and the control of distributed

events as follows.

First, they modified ModSAF 3.0 by changing the event scheduling by essentially

severing the simulation to real-time clock dependency, altering the simulation queue to

be event driven, and leaving all non simulation functions on the system clock, while the

simulation functions advanced by the event driven clock. They modified ModSAF to use

a repeatable random number sequence as long as the same seed is used for each run.

Variability is still available simply by changing the seed at the beginning of the run.

They chose to avoid the potential variations from network events by simply not running

in the network mode. These modifications have been incorporated into the ModSAF

baseline with ModSAF 4.0 and beyond. The impact of this effort on the Concurrent

Model will be discussed later in Section 3.5.1 and Section 4.3.2.

27

These initial tests of repeatable ModSAF were conducted by separate executions were

ran for each scenario on the the same computer. The data was collected to confirm that

identical location update, fire and damage events at exactly the same simulation time in

successive runs. These were also compared to runs of the same scenario using standard

ModSAF. While the standard ModSAF runs exhibited large variations, repeatable

ModSAF reported exactly the same information at the same time. These results would

provide a important starting point for our Concurrent Model approach experiments, while

their warnings about problems in the networked environment invoked some concerns.

Several of their changes to standard ModSAF were important to the CM approach. This

included segregation of behavior and physical model update functions from the user

interface and network functions. The behavior and physical model update functions were

placed on the simulation-time queue and the network and physical model functions were

left on the real-time queue.

28

Figure 11. SPM Human Surrogate DAE

Ourston [Ourston 1998] reported on experiments to analyze the feasibility of a

knowledge based Difference Analysis Engine (DAE). For this purpose they substituted a

human controller as indicated in Figure 11 for the CM approach DAE. The function of

the DAE is discussed in Section 4.1.2. In this role the Human operator performed the

analysis and determined the corrections to the reference model to maintain congruence.

Their purpose was to determine the following:

• Whether or not is was possible to maintain a reasonable coherence between the live

vehicle and its reference model,

• What effect the complexity of the mission scenario had on the ability of control, and

• What effect the frequency of control updates (directly related to bandwidth) had on

the accuracy of control.

They were able to identify the desired level for control of the SPM reference model and

clones. The level of control that we selected was the behavioral control parameter level.

This level provided a sufficient degree of control to maintain synchronization between

the live and reference vehicles. They also found that simply allowing frequent reference

model corrections did not necessarily result in better synchronization. They discovered

that there needs to be a match between the accuracy of the reference model control and

the frequency of update. Fewer but more accurate corrections provide improved

synchronization when compared to more frequent but less accurate corrections. This is an

encouraging result in terms of the CM approach network bandwidth reduction objective,

as it implies that we may be able to reduce network bandwidth through the use of

accurate corrections to the live vehicle clones.

29

2.4 Causality and Time Management

In this section, we identify the various factors that contribute to congruence of simulated

models. Congruence deals with those constraints that need to be satisfied to en sure

correctness in the resulting entity states generated by the remote generator. We also

establish Discrete Event Simulation as a viable technique to implement the remote

generators, as well as identify some of its potential limitations.

Causality is the concept that no event should appear to observers before the event that

causes it. For example, as shown in Figure 12, given the three entities A, B, and C where

entity A fires at B and sends a message indicating this event to both B and C at time t1.

The numbers indicate the time of the event, and the arrowheads indicate the arrival of the

message at the other entities. The message arrives from A and B determines that the fire

event caused it to be destroyed and creates the destroyed event, which it then transmits to

A and C. A receives the message from B in the appropriate causal order, however,

because in variances in the communications network, C receives the message about the

destroyed event prior to receiving the message about the fire event. This last occurrence

is an instance of causal misorder which causes ramifications as a simulation progresses.

30

Figure 12. Scenario demonstrating causal event ordering [Fujimoto 1998].

Vehicle B

Time (real-time)Time (real-time)

Fire event

Delayed

Vehicle C

Vehicle A
t

1

t
3

t
4

t
5

t
2

t
6

t
4

Destroyed event

The successor to DIS, called High Level Architecture (HLA) [HLA 1996], [Carothers

1997], [HLA 1998] provides various mechanisms to avoid causality problems. If causal

event ordering was selected for the interface, the message from B to C would be delayed

as indicated by the dashed line in Figure 12, until after the delivery of the fire event

message.

Lamport [Lamport 1978] shows the the concept of “happening before” defines an

invariant partial ordering of events in distributed systems that can be extended to

somewhat arbitrary total order. He points out the problem with the “happened before

relationship,” when a system is unaware of all external relationships. One solution is to

construct a system of strong clocks which satisfies the following conditions. Let →

denote the happening before relationship for members of the set ζ. For any events

a ,b∈ab then a b . Where a and b are discrete events and the function Π

(x) returns the timestamp for the event x. Fujimoto [Fujimoto 1996] explains that HLA

provides four message ordering mechanisms in order of increased functionality they are

receive, priority, casual, and timestamp order. Only the last two satisfy the relationship

illustrated in Figure 12, and only the timestamp order satisfies Lamport's strong clock.

One problem with the mechanisms provided by HLA is they don't adequately address

real-time, as the real-time clock advances independent of any message traffic [Fujimota

1996].

Discrete event simulation is a technique where simulation time is advanced based on a

logical clock rather than a physical clock. This simulation technique is one in which the

31

state of the modeled system is broken into a sequence of discrete, but possibly random set

of simulated time points [Schriber 2001]. These time points are associated with events,

and at each event the entities are updated to reflect their state at that event time. Since

these are unique points in time, once all states are updated, the clock can be advanced to

the next time that an entity has an event that would cause a change to its state. The data

structure or queue that is used to keep track of the next time, is often referred to as the

event list. The event list operation will be presented in Section 2.5.

Parallel implementations of Discrete Event Simulations [Fujimoto 1990] are available to

speed up the execution of the simulation. However, causality and the need to en sure that

all the data required to properly calculate the new state of each entity can counteract the

gains of parallelism. As a result there has been much work on resolving these conflicts,

they are usually classed as conservative such as the Chandy, Misra and Bryant approach,

or optimistic such as the Time Warp Mechanism as studied in [Lin 1991A], or

alternatives such as discussed in [Lin 1991B]. There is no clear consensus concerning

whether optimistic or conservative synchronization perform better; indeed, the optimal

approach usually depends on the application [Fujimoto 1999]. Time management in

distributed simulation has two major challenges, that of time anomalies, and repeatability

[Baker 1999]. Another problem that occurs with time management and discrete event

simulation is management of simultaneity [Wieland 1999]. Wieland defines it as

simultaneous events will be very narrowly defined to mean two or more events of

identical type with identical time stamps, to be executed by the same logical process.

This causes a question for causality in how to break the tie, or how to resolve the correct

32

solution when two entities use the others state to calculate their current state. Currently,

OTBSAF assumes the input data to occur from a previous state and does not allow

current calculations to propagate so all simultaneous events use only data from earlier

timestamps. Repeatability, as pointed out in Section 2.3 remains as a primary

consideration for causality and time management. To address these issues we propose to

use strong clocks and synchronization. Furthermore we plan on using rigid First in First

out (FIFO) ordering for simultaneous events, as processing time may move initially

simultaneous chain of events to different clock tics, thus endangering repeatability, if

ordering is allowed to vary.

2.5 Real-time, simulation-time, Scheduling, and Synchronization

In the Section 2.4 we introduced Discrete Event Simulation as a simulation technique that

might be used to satisfy our need for a remote entity state generator. However, it is

primarily used with a logical clock rather than real-time simulation. In this section, we

will explore techniques to use this type of simulator in real-time and the additional

congruence factors required for correct operation in this domain. We further subdivide

congruence into two categories called temporal congruence and behavioral congruence.

Temporal congruence addresses the factors that impact the timeliness of the simulation

output, and behavioral congruence addresses the factors that impact the correct

interpretation of the output. So they span both causality and simultaneity concerns.

Real-time processing defies having an unique definition [Wise 1971], [Mellichamp

1983], and [Laplante 1997], but relies on each author to develop a more precise definition

33

for a specific application area. Real-time processing does refer to systems which depend

on several underlying principles. Time is a very important parameter in all simulation

systems, its significance varies from synchronization to other processes that occur in

nature, manufacturing, or communication; to being a key competitive component of

products that depend on human interaction in terms of responsiveness. Real-time

processing for this dissertation is defined as constraining presentation of simulated cues

and signatures within a human discernible period consistent with physical reality. This

is akin to a soft real-time definition whereby acceptable constraints can not be precisely

quantified but only judged by their effects.

Three possible categories of real-time simulation, live, virtual and constructive each have

different real-time constraints. Live simulation is training by simulation with the actual

equipment or equipment surrogates, in a training area similar to the expected

performance locale. In this case, the effects are simulated by various cues and signatures

to create the sounds and visual effects. In this case, the simulation must generate these

cues in the same time frame as the actual devices would in use. The second category,

virtual simulation primarily refers to “manned simulators,” that is a training system

modeled after the actual operational equipment as far as the man machine interface but

not physically accomplishing the mission. In this case the response of the system to the

man's manipulation of the system controls are simulated by changing “out the window”

displays and other sensual stimuli. In this case all the stimuli are generated locally on the

simulator, but when used in the collective environment (more than one simulator used to

train a team working together) the actions initiated by one platform may also impact the

34

“scene” on another platform. Similar to the live simulation when activities on one

platform impact additional platforms some method must be provided to initiate the

generation of the appropriate changes on the remote platforms. The real-time constraints

on scene generation depend on how fast the scene can be generated with the desired

detail. This then drives the frequency of scene update, called the frame rate. Generally

the faster this frame rate, the smoother and more realistic the simulation appears. The

other constraint is related to the physical system being simulated as it dictates the amount

of the scene that need to be updated. The physical constraints are those related to both

linear and angular speed as they govern how much of the “out the window” scene must

be changed for a given time quantum. The third category of simulation, constructive

simulation only requires time synchronization between entities not real-time, as it not

used for real-time operator interaction.

Simulation-time on the other hand, is a logical time maintained by clocks in a simulation,

it can be faster or slower that real-time. simulation-time primarily serves two functions,

one to establish the proper order to execute the events in a simulation, and the second is

to provide a relationship to how long in real-time the execution of events would take. In

most cases simulation-time is completely independent of real-time, however in some

training environments it needs to be synchronized with real-time.

Scheduling in real-time is a much studied area, primarily addressing the need to have

solutions available by a certain hard deadline. If the deadline is not met in these systems

a catastrophic event may happen. As indicated in the following references, these studies

35

provide some useful insight to the problems addressed by this dissertation, but only

indirectly. Ballerina [Balarin 1997] has proposed a schedule validation scheme for

reactive embedded systems. If it shows a schedule to be valid, it is guaranteed, however

the converse is not true, it may be labeled invalid but still be valid. While this may be

useful during development of individual models it is not appropriate for dynamic

application. Abbott [Abbott 1992] discusses performance evaluation of real-time

database. This has some properties similar to requirements of a real-time discrete event

simulation system in that it is transaction oriented, and for coherency purposes once a

transaction is started it must be completed. Chou and Borriello [Chou 1994] present a

scheduling algorithm for embedded reactive systems and introduce the idea of safe exit

points to use watchdog constraints. These principles may apply to the dynamic

adjustment of computation rate as introduced in Section 2.6, see Table 2. Sun [Sun 1997]

provides a set of algorithms for bounding the completion time with arbitrary release

times, the best algorithm although suitable for off-line analysis another algorithm is

proposed for online control. This is another potential approach to the dynamic

adjustment of computation rate. George and Minet [George 1997] show that FIFO

ordering based on release times for real-time distributed systems has the advantage of

preserving consistency. This is very important for causality. Lehoczky [Lehoczky 1996]

proposes an alternate approach to real-time system scheduling which promises the

potential of predictability for systems characterized by substantial stochastic behavior

while providing a much higher level of utilization than worst case analysis. This may be

beneficial in the sizing of concurrent generator if performance becomes critical. Sun and

Liu [Sun 1996] propose and compare three synchronization protocols for distributed real-

36

time systems, these are compared for average and worst case end to end response time.

This analysis assumes that the distributed processors are being allocated to satisfy a

workload that can be modeled as a set of periodic tasks, each of which consists of a chain

of sub-tasks executing on different processors. In general, the review of these various

techniques confirmed the selection of the soft real-time approach.

Synchronization primarily applies to the clocks whether physical or logical, although it

can be generalized to the coordination of any activities. By synchronizing the clocks

among distributed objects the coordination of activities can then be referenced to

coordination with the local clock. Hardware synchronization of clocks has become

significantly easier in recent years, with both the advent of the Internet, and the Global

Positioning System (GPS). Internet gives ready access to various standards organizations

and established standards for maintaining computer clocks to within few milliseconds.

GPS depends on knowing the time within a few microseconds and has very stable atomic

clocks in each satellite, and a complex ground network that keeps them in long term

synchronization. Since, the application area of this study is for embedded simulation it is

assumed that all of the platforms will have a GPS unit for navigation purposes that could

readily provide a synchronizing signal for the simulation clock. Under all

synchronization strategies, some method to manage the list of events is required.

2.6 Queuing Strategies

Discrete event simulation promises a strong potential for repeatable results given that the

events can be kept in timestamp order. In [Bahr 1994B] it was found that in some

37

situations the performance of the priority queue data structure can have a major impact on

the overall simulation execution time. Since the concurrent model approach requires the

simulation at many more locations than DIS, it is important that the scalability of the

simulation remain practical. Thus, it is important to understand some of the potential

limits of the simulation process.

Figure 13 illustrates the type of impact that different priority queue structures can have on

the overall efficiency of the simulation, especially if we increase the size of the

simulation. Figure 13 shows the situation where the nominal size of the most frequently

executed function of the simulation takes four times the time as the baseline priority

queue hold, later in this section we will explain the hold and why the length of the hold

varies depending on the architecture. We assumed that all queues had the same

38

Figure 13. Increase in Computational Load Versus Events Queued

8 15 25 50 100 200 500 1000 2000 5000 10000

10

100

1000

10000

SimulationFunction

Order(N) queuing

Order(log(N)) queuing

Order(1) queuing

Event List Size (elements)

S
im

ul
a

tio
n

+
 O

ve
rh

e
a

d
(h

ol
ds

)

performance for a queue size of 8 elements. To simulate these 8 elements it takes the

equivalent of 32 baseline holds. The first bar of each size cluster shows this time. The

other three bars in each cluster represent the total time to simulate 8 elements plus the

overhead time of 8 holds. Thus, at this common point the three different classes of

queues showed a total of 32+8 = 40 or an overhead of 8/40 or 20% for this queue size.

The hold time for each element of priority queue can vary due to the number of elements

in a queue. The amount of this variance is dependent on the architecture of the queue.

As the number of elements in the queue increases the time of each of the 8 overhead

holds increase, while the time to simulate the elements remains constant. Thus the

overhead takes a greater proportion of the time. The three remaining bars in each

grouping show the effects on performance depending on the class of the priority queue

algorithms. The simplest to implement class exhibit O(N) performance, where N is

number of simulation events in the queue. The next class is the O(Log(N)) which show

reasonable performance for moderately sized queues, and the most complex to implement

class of queues (O(1)) which exhibit near constant performance through some very large

queue sizes, as will be shown in the detailed discussions to follow. Note that the O(N)

queue drops to less than 50% efficiency above queue sizes of 25 elements and O(log(N))

above queue sizes of 5000, while Order(1) queues maintain a constant efficiency. Most

ES applications involve instantaneous queue sizes of several thousand entries.

Table 1 presents the numerical values from Figure 13 that will be used in the example

calculations. The following examples will illustrate the impact that this characteristic

could have on ES. Table 2 provides a classification of entities based on distance or other

39

factors and an execution profile to keep the observer aware of the entities yet keep the

amount of computation required within the capabilities of the target system.

This classification is based on an assumption that the observer is generally more likely to

be impacted by closer entities than distant entities. While each entity in general would

control a fixed area, the area available for occupation increases as a square of the distance

from the observer. In addition if each entity can move at the same velocity, the time it

takes to reach the observer is proportional to the distance. Thus, there is the potential for

more entities to exist at greater distances, but since it will take them longer to impact the

observer, the observer does not need to have the distant entities information updated as

often. There are actually many factors that could be included in a prioritization scheme,

but this example is used to illustrate a method of allocating the computation resource

40

Table 1. Queue Percent of Computation for Given Queue Sizes

N Order(N) Order(log(N)) Order(1)
Overhead % of Base Value Overhead % of Base Value Overhead % of Base Value

8 8 100% 8 100% 8 100%
15 15 118% 10.42 106% 8 100%
25 25 143% 12.38 111% 8 100%
50 50 205% 15.05 118% 8 100%

100 100 330% 17.72 124% 8 100%
200 200 580% 20.38 131% 8 100%
500 500 1330% 23.91 140% 8 100%

1000 1000 2580% 26.58 146% 8 100%
2000 2000 5080% 29.24 153% 8 100%
5000 5000 12580% 32.77 162% 8 100%

10000 10000 25080% 35.43 169% 8 100%

based on a priority. This approach would allow the monitoring of many more entities

than a constant priority.

Every scheduled operation on each entity has the overhead of a priority queue hold. If

we take the simplest case of Table 2 of only computing the entity state for the Immediate

category of entities and keeping the assumption that computation time for each entity was

4 times the baseline hold, we can calculate the equivalent computations per second for

each queue. Let us label the different queues from left to right of Table 1 QO(N) , QO(logN) ,

and QO(1). The number of equivalent operations for QO(N) = 2.05 * 750 = 1537, QO(logN) =

1.176 * 750 = 882, QO(1) = 750. By just using a more effective queuing strategy, it is

possible to allow the use of a higher resolution scenario with all the entities of QO(1) =

1500, or a lower resolution scenario including through the distant category with QO(logN) =

1.35 * 1300 = 1755 at the same computational load of the simplest queue structure. Note

that to improve the computational performance a simulation, it is imperative to reduce the

computation time of the most frequently encountered operations. Thus, the basic

operation of the event queue gains significant importance, because it represents a

significant portion of the inner loop of any simulation. The remainder of this section will

41

Table 2. Prioritized Execution

Immediate Near Distant Outside Other Total
Number of Entities 50 100 250 600 4000 5000
Frequency of Comp 15 3 1 0.25 .0125
Computations/sec. 750 300 250 150 50 1500

concentrate on lineage of the priority queues that lead to the one developed in this

dissertation.

As previously suggested by Gonnet [Gonnet 1976], some specific distributions of non-

uniform events can occur during a simulation that can impact the performance of the

event list storage strategy. Likewise, Brown observed that queue statistics should be

continually monitored to determine which storage structure will minimize overhead for

the particular distribution of events encountered [Brown 1988]. Although the

management of time-flow in the simulation can be handled either synchronously or

asynchronously [Emshoff 1970], the asynchronous scheduling is often preferred [Evans

1967]. In this case, a prioritized list of future events must be maintained so that

individual tasks can be scheduled for execution at the appropriate time. Thus efficient

implementations of the priority queue can be key to an efficient mechanism for

maintaining causality and repeatability.

A standard metric for comparison of the relative performance of an event list

management algorithm is the time required for a HOLD operation [Vaucher 1975]. A

HOLD operation consists of first retrieving the event at the head of the scheduling queue,

then adding the delay for the new event to the current events time, and inserting the new

event into the appropriately prioritized location. The HOLD operation is representative

of the total of the queueing operation for each event. Measuring the time spent to execute

HOLD operations provides a measure of event list overhead during simulation. As

typically defined, a HOLD operation consists of the combined time for insertion and

42

removal processes for a pending event. Another fundamental task used to assess

performance is the DELETE operation that removes a superseded event which is no

longer pending. DELETE operations can cause more severe performance degradation for

some priority queue strategies such as heaps.

In a priority queue, the ordered structure of the elements must be continuously

maintained according to their relative time for scheduled execution during the simulation.

For elements of equal priority, an accepted practice is to store them in First-In First-Out

order. Figure 14 illustrates the various structures that have been explored for

implementing priority queues, including several linear, tree, and indexed data structures.

We will focus the discussion on linear and indexed structures as they form the basis for

the SPQ techniques.

43

Figure 14. Priority Queue Taxonomy

Priority Queue Data Structure

Linear Tree Indexed

singly
linked

multiply
linked

disjoint
lists

fully
ordered

partially
ordered

direct 2 level multilevel

calendar
(internal)

doubly
linked

two
list

Splay heap IL TL calendar

2.6.1 Linear List Priority Queues

Linear lists can be divided into subcategories of singly, multiply, and disjoint lists [Jones

1986]. The linear queue is formed by maintaining pointers to the head and tail of a

singly-linked list. During an enqueuing operation, the events are stored in their

prioritized location by repeatedly comparing the simulation time of the new event to the

previously stored values. A new entry has its priority compared first with the priority of

the head element and if it is less than the head then it is immediately inserted as the new

head as shown in Figure 3. Otherwise, it is compared to the tail. If it is greater than or

equal to the tail then it is appended as the new tail of the list. If it is neither a new head

nor a tail, the priority is compared in succession with each next item in the list until it is

less than the succeeding entry. Upon locating the correct point, the new entry is inserted

in the list by updating the corresponding pointers. The primary advantage of this queue

structure is that head of the list is always available without searching, thereby simplifying

the removal portion of the hold operation. Insertion and removal operations generally

require two pointer updates. The disadvantage is that successive entries must be

examined until the correct entry is found for both en queue and arbitrary element delete

operations.

2.6.2 Indexed Lists

Indexed lists attempt to mitigate the drawbacks of linear queues by reducing the amount

of searching required to locate or insert an item. Voucher and Duval [Vaucher 1975]

introduced a time mapping algorithm called the indexed list algorithm. This algorithm

44

consisted of a linear list for event storage and an array of pointers to a set of dummy

markers inserted into the list with the last pointing to the overflow area. The markers are

a fixed-time interval apart and as the current simulation time passes them they are moved

forward into the overflow area and inserted into the list at the appropriate time-ordered

point. In this implementation, time is represented by an integer variable, and no finer

subdivisions are allowed. The time at which an event is scheduled can be used as an

index to select from the list into which the notice must be placed. With a FIFO priority

system, the new notice is placed at the end of the selected list, and no scan is necessary.

Although this algorithm in its basic state must be generalized in order to be widely

applicable, the basic idea of grouping is useful to reduce the scan-time. However, the

implementation did not include a feedback mechanism for adjusting the spacing between

markers. The last pointer in the array delimits the overflow portion of the list.

2.6.3 The Calendar Queue

Brown [Brown 1988] introduced the Calendar Queue, which derives its name from its

structural similarities to a desk calendar. The basic concept is that two arrays hold

pointers to the head and tail elements of singly-linked lists of events. Each element of the

list stores the priority of the event and a pointer to the next element. As shown in Figure

15, the length of the array is equivalent to the number of days in a calendar year. The

figure depicts the queue with additional elements to illustrate storage in days 0 through 7.

The index of each array is equivalent to the count of number of days since the beginning

of the year, i.e. entry 0 is the start of the year and entry n-1 is the last cell in the year

where n is the number of days in the year. Overflow of events on any day is taken care

45

of by placing the elements outside the current year, called outyear elements, in the

appropriate day of the calendar in time sequence. The index is calculated as

(priority/day_size) modulo year_size, and converting to an integer value. If year sizes are

kept as power of two, the modulo operation becomes a binary AND operation with a

mask value of n-1 where n is the year size. Interior to each day, the individual events

are kept in priority order by scanning the list and inserting the elements in the appropriate

location.

The key mechanism for calendar queue's improved performance over the linear queue is

that it reduces the average sequential search length to half number of elements in a bin as

compared to half the number of elements in the total list. However, there is a price to pay

for this capability, and it consists of several factors. The first is the basic bin selection

process or indexing, this requires conceptually a floating point multiply, a floating point

46

Figure 15. Calendar Queue

next
datanext

data

7.1
7.3

next
data

7.5

next
data

37.5

next
datanext

data

12.2
12.8

next
data

20.2

next
datanext

datanext
datanext

datanext
datanext

data

3.3

3.3

3.4
3.8

11.9

19.1

next
datanext

datanext
datanext

datanext
datanext

data

2.0

2.3

2.5
10.1

10.1

26.1
next
datanext

datanext
datanext

datanext
datanext

data

1.3

1.5

1.7
1.9

1.9

9.5

next
datanext

datanext
datanext

datanext
datanext

data

0.1

0.2

0.3
0.5

0.9

8.4

head | tail head | tail head | tail head | tail head | tail head | tail head | tail head | tail

0 1 2 3 4 5 6 7

bin array

to integer conversion and then an integer modulo operation in addition to the compare

and step, whereas, the linear search requires only comparison and advancing pointers.

Another is the queue resizing cost, which requires sampling data in the queue, to

calculate distance between events and moving the data to the appropriately spaced bins.

The third is keeping track of the head element of the bin. In the linear queue, the head is

always first in the list. In the calendar queue, there are as many list heads as there are

bins. In a model with smooth evenly spaced events, the next head is always near to the

current bin. In a worst case, it can lead to searching for the earliest event over the entire

set of bins. Since the Calendar Queue has become popular several modifications have

been proposed to improve its performance with specific event insertion distributions by

Ahn [Ahn 1999], Bahr [Bahr 1994B], Ronngren [Ronngren 1993],and Tan [Tan 2000].

2.6.4 Relative Performance

 Table 3 presents the results of a previous study by Jones which compared average and

worst-case performance of 11 different algorithms this showed performance advantages

for splay trees over a wide range of conditions and linked lists (linear queue) for short

lists [Jones 1986]. Brown compared his calendar queue experimentally to the linear

queue, and a queue implemented with a splay tree.

47

The calendar queue consistently outperformed the splay tree for the scenarios tested. In

fact, the calendar queue exhibited nearly constant-time performance for many queue

sizes, while splay tree execution time increased O(log n) or in worst case linearly with

queue size. Ronnegren [Ronngren 1997] provided a comparative study which expanded

Jones' study by introducing additional queue implementations and additional event set

insertion distributions to highlight the differences of commonly used priority queues.

Figures 16, and 17 provides the results for the Calendar Queue which forms the basis of

comparison in Chapter 7.

48

Table 3. Results of Jones Study

Priority-queue

implementation

Code

sizea

Performance

Average Worst

Relative

speedb

Comments

Linked List 47 O(n) O(n) 11 Best for n < 10
Implicit heap 72 O(log n) O(log n) 8
Leftist tree 79 O(log n) O(log n) 9-10
Two list 104 O(n0.5) O(n) 9-10 Good for n < 200

Henriksen's 68 O(n0.5) O(n0.5)c 1-7 Stable

Binomial queue 188 O(log n) O(log n) 1-7
Pagoda 110 O(log n) O(n) 4-8 Delete in O(log n)
Skew heap, top down 56 O(log n) O(log n)c 5-7

Skew heap, bottom up 103 O(log n) O(log n)c 4-6 Delete in O(log n)

Splay tree 119 O(log n) O(log n)c 1-3 Stable

Pairing heap 84 O(log n) O(log n)c 3-6 Promote in O(1)

a The total lines of Pascal code for initqueue, emptyqueue, enqueue, and dequeue.

b 1 is fastest; 11 is slowest:

c An amortized bound; single operations may take O(n) time.

In many simulation applications, event activity is not uniformly distributed throughout

the range of simulation time. Frequently, the majority of activity occurs over a small

interval at any time, for example near the beginning of the queue. This characteristic of

the event scheduling distribution can be used to optimize queue storage structure. For

example, consider a case study [Bahr 1994A] involving simulation of a distributed

communications system using YACSIM [Jump 1993]. In this case study, the Range Data

Measurement System (RDMS) for the U.S. Army was simulated where asynchronous

communication between 2,000 source entities takes place over shared data channels to a

central processing site. Several processors received the data in parallel and prepared it

49

Figure 16. Mean access time for Calendar Queue and Classic Hold Experiments

M
ea

n
 a

cc
es

s
ti

m
e

μs

Queue Size

for retransmission in variously formatted data streams to other sites. To gain insight into

placement and removal of activities on the event queue, several scenarios were simulated

and statistics were gathered [Bahr 1994B].

The choice of data structure used to maintain the event list can significantly impact the

efficiency of a discrete event simulation. In the case study of RDMS, the calendar queue

exhibited a cyclic nature and degradation under high head-end activity. A representative

metric for the overhead required to support the distribution of event list activity is the

number of data comparison operations for each event insertion. There were

approximately 7.5 million insertions for one simulation run. Figure 18, shows the

distribution of the baseline linear queue which had 4.5 million insertions at the head of

50

Figure 17. Mean access time for Calendar Queue Up/Down experiments

M
ea

n
 a

cc
es

s
ti

m
e

μ
s

Queue Size

the queue. The maximum search length was 2,301 and the majority of the events required

more than 10 comparisons, however that the majority of events occurred near the head.

Figure 19 shows the improvement offered by the baseline calendar queue, with a

maximum search length of 95 comparisons. Thus, calendar queue effectively limits the

51

Figure 18. Distribution of search Length in DDC using a Linear Queue

0 500 1000 1500 2000 2500
0.1

1

10

100

10
4

10
5

10
6

10
7

4.5*10
6

Search Length (Number of Comparisons)

1000

N
u

m
be

r
o

f
Ev

en
ts

Figure 19. Search Length Distribution in a Calendar Queue

0 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1000

104

105

106

Search Length (Number of Comparisons)

N
u

m
be

r
o

f
Ev

en
ts

maximum amount of time for any given operation, however the majority of the events are

close to the head. The above data confirms that the majority of event list activity occurs

near the head end of the queue. In [Bahr 1994B] analysis and experimental

measurements demonstrate scenarios with a high degree of head-end activity can occur

after the queue size has reached steady state. Since a linear list has lower traversal

overhead for near events, a simple linear queue can outperform the calendar queue in

simulation with a heavy head-end activity In addition Tan [Tan 2000] and Ahn [Ahn

1999] also proposed different adjustments to the calendar removing some additional

weaknesses, however none of these three alternatives addressed a low overhead cost,

highly stable solution for a large range of event insertion and deletion distributions.

52

CHAPTER 3 TECHNICAL PROBLEM DESCRIPTION

The primary challenge facing Embedded Simulation is same as that of Distributed

Interactive Simulation and situational awareness. That is maintaining a coherent view of

the virtual environment between all participants. By taking a data-centric view then the

entire environment corresponds to an ensemble of data streams. We can further divide

this it sub-streams based on the volatility of the data. The most dynamic of these sub-

streams is typically the entity state data, so we will refer to this as an Entity State Stream.

This decomposition will allow us address the coherence problem as one of determining

which data to transfer from its storage location to the viewing location within the

constraints of the operational systems at hand. In this dissertation, we propose a novel

approach to allowing this data stream to also be distributed and/or duplicated when

needed to optimize the trade-offs between computation resources and communication

bandwidth.

3.1 Background

Embedded simulation has been shown to be both cost effective [McDonald 1998A]

[McDonald 1998B] [McDonald 2000] as well providing the training where and when

needed [McDonald 1998A]. While much progress has been made in providing embedded

training in a static (vehicles parked and connected by wires) mode, it still hasn't reached

53

the augmentative capabilities envisions by Bahr and Abate [Bahr 1997A] [Bahr 1997C]

[Bahr 1998] [Abate 1999]. These features all entailed un-tethered or dynamic operation,

along with the need to maintain realism and synchronization between distributed

simulators.

In addition, operational systems keep getting more sophisticated, with longer ranges, and

that extend beyond the line of sight. These new capabilities not only add to the training

burden, but also add to the required sophistication to represent those capabilities in the

virtual world and thus in the embedded simulation. Appendix 1 discusses the

envisioned technologies required to implement the “total unit training” and Appendix 2

reports on the current status of these technologies.

3.2 Operational Constraints

The performance constraints on an Embedded Simulation system are generally the same

as those present in a similar dedicated DIS system, but intensified by the operating

environment of the embedded host. Thus they have similar requirements for

communications and responsiveness, but with the mobility requirements including

moving vehicles operating in a severe environment. While the static systems use wired

LAN and ATM, technology the mobile training system has been limited to dedicated

instrumentation systems as described in [Bahr 1994A] and [Goblick 1996]. Three

representative dynamic application domains of embedded simulation are force-on-force

training, en route mission rehearsal, and situation awareness. They all have the

constraint of wireless communications and an ideal solution would be compatible with

54

each. The demand for bandwidth in wireless communications systems in ES systems is

greater than the current and future anticipated capability. In cases when compression

techniques can be used to reduce the quantity of the data the choice is frequently made to

increase the amount of data provided rather than decrease the bandwidth [CBO 2003].

3.2.1 Force on Force Training Simulation.

One of the primary difficulties in providing the interaction between Live and Virtual

objects is conveying the large amount of data between the respective entities for real-time

interaction [Goblick 96]. These exercises are primarily conducted at fixed installations

so an additional physical infrastructure could be provided to supplement the wireless

system. The largest current installation covers an area of 2,400 square Kilometers. The

interaction is between maneuvering ES equipped vehicles as well as being supplemented

by virtual entities. Actual environment, sight, sound, and weather further impact the

latency and bandwidth constraints in ES beyond baseline values.

3.2.2 En route Mission Rehearsal

This application is similar to the static training, however, it is conducted in or near the ES

equipped vehicles as they are being transported over long distances. The opposing force

in the ES would normally be played by Semi Automated Force operators at a distant

location so the communication occurs between the home base and the various transport

craft. Here the interaction is entirely virtual, making it the primary candidate for initial

study described in this dissertation.

55

3.2.3 Situational Awareness

The primary goal in this application is to keep the operators of the vehicles aware of

circumstances that could impact the successful completion of their mission, and for them

to keep their chain of command aware of their situation. Again a key constraint is

communications. However, at the same time as they and their commanders are sharing

information, they want their opponents unaware. These two goals can be conflicting, and

tend to limit the bandwidth at their disposal, degrading the communication capacity. A

second limitation is, even if the information is available, it may not be in a format that is

readily assimilated by the crew, and may not be recognized as pertinent to their current

situation, or that it will be pertinent in the future. This imposes the most restrictive

conditions with both live and virtual interaction. This application provides a high

potential payoff in the enhancement of mission performance.

3.3 Computational and Communication Resource Tradeoffs

Initial experiments involving live simulation and virtual simulation domains, was

basically seen in requirements documents for Embedded Simulation systems where

update rates for ground vehicles in live simulation were on the order of once every 5

seconds, while the software simulators for the virtual domain they were on the order of

50 times per second. The specifications for the live simulations were driven by the

restrictions of available technologies within the available radio frequency spectrum

allocations. The virtual simulation requirements were driven by the need to present

information at realistic frame rates within the less restrictive communications domain of

56

local area networks. Thus, these two domains specified a difference in communications

requirements on the order of 100-fold. Latter studies have reiterated this ratio.

Historically demand has soared to exceed capacity so even with the improvements in

communications technologies this 100-fold ratio has remained and is therefore interpreted

as a bandwidth objective . Let N denote the number of bytes required to transmit entity

state information for a typical DIS scenario, and I denote the number of bytes required to

transmit the entity state information for an equivalent live scenario. The ratio BR = N/I

which indicates the increase in traffic under simulation environment can exceed BR > 100

[Goblick 1996] [Valle 1997] [Bahr 1994A]. Using BR=100 as a requirement for ES

bandwidth ratio then a goal for the amount of data transferred under the Concurrent

Model Approach can be set to N/100, rather than N.

A second parameter that needs to be constrained is the event communications latency.

This is the time between the occurrence of an event and the report of that event to the

observers. For embedded simulation, we generally classify these events as visual and

aural events, that is where the real event would be transmitted at near speed of light, or

those that are transmitted near speed of sound. These can be relaxed as long as nominal

speed of a human reaction, and the nominal speed of a human logical decision process are

taken into account. For example at a range of 1 kilometer a visual event would be seen in

about 3 microseconds, while the sound of the firing event would not heard for 3 seconds.

On the other hand the arrival of a fired projectile could vary somewhere between 1-5

seconds depending on type. An observer of the muzzle flash could react within about 0.5

seconds and possibly evade the fired projectile, whereas those sensing the sound of the

57

firing could only prepare for a future event as the longer thought process required to

identify the location of the firing and its potential path as well as the much shorter

interval left between the arrival of the projectile and the sound of its firing would prevent

evasion of the current round. In the virtual world, all transmission of events occurs

electronically. In this case, the latency depends on the processing of the required code to

create and sense the event, the transmission speed and capacity of the links between the

sender of the event and the observer, as well as the queuing status or wait time for the

event to be transmitted over the link. We will analyze these elements in detail in the

following sections.

3.4 Situation-related Communication

An immense amount of information is needed to portray the current situation to the

participants of either a training situation or operational situation. In the live situation,

most of the information is available to the observer through his five senses. It can also be

enhanced with electronic devices such as radar, thermal viewers, and chemical detectors.

To provide this same information in the virtual world we must create and communicate

stimuli for all sensors. Table 4 provides a description of various sub-databases that might

be used to organize the information required to completely convey the current state of the

environment. Column 1 provides the classes of data, column 2 indicates the relative

frequency of updates, and column 3 provides a description of the data elements and how

they are used. The three classifications used in column 2 are S for static, M for may be

modified during an exercise, and H for highly dynamic information that changes on an

58

individual participant basis. We will refer to this highly dynamic data as entity state

data, and it is currently conveyed as an entity state stream.

59

Table 4. Situation Database

Data Set
Update
Type

Description

Terrain-database S

A detailed terrain and features data-base that allows models to exercise
the procedures appropriate to the environment. Ground vehicles for
instance are blocked by impassable areas, may be masked by terrain
features or dust. Can sink in dry lakes, etc. This data-base replaces the
human observation of the terrain.

Threat-platform
models, sub-
models

M

The set of adaptive constructive models that are clones of the reference
models on the respective simulators/weapons platforms. Parameters for
these models can vary from identifiers of functions, numerical values,
to identifiers of pre-tabulated characteristics.

Pre-defined
orders S

Standing orders, or orders issued prior to the start of the exercise.

Vulnerability data S Susceptibility of the local platform to the various threats, as well as the
susceptibility of the threat to the local platform.

Weather-data M Any weather related information that can impact the results of the
exercise.

Mine-field,
obstacle data M

Contains locations and types of mines and other obstacles. Includes
visibility data.

Current state data

H Status of combat
team members:

Location of team members and their combat
status.

M Current intelligence
information:

Contains information about foe above and
beyond what sensors can provide.

H Status of each threat
platform:

Current status of each of the targets within field
of view.

M
Current orders: The set of orders that govern platform's

objectives and techniques for achieving those
objectives.

Predetermined
parameters of all
potential inter-
actors

S

A data-base of all players identified as potential participants in the
exercise. This allows the initialization of the clones based on an
identifier rather than by detailed transferred parameters.

Learned reaction
of local operator
and object against
each inter-actor

M

A historical data-base used by the DAE subsystem to initialize the
reference model.

The concurrent model approach proposed in this dissertation modifies the DIS approach

of broadcasting a single entity state stream between all hosts to generating a congruent

stream at several hosts as indicated in Figure 20.

In this Figure, we show two hosts each generating an entity state stream. The local host

is also generating a set of congruence messages C  G ,t  that explicitly state the setup of

the generator and the time that this configuration becomes effective. The remote host

then schedules the setup of the remote generator to coincide with the local generator at

the same time as the time. C is the congruence function for each entity for which the

state is to be generated. It is dependent on G which is the vector of all model parameters

that control a given entity, and t the time those parameters will start applying. These

values are of Category M in the situation database. Congruence functions also include all

messages being conveyed by the operators of the exercise. If they are not scheduled by

the operator the local host will assign a time of execution te = tc+δ based on the current

time tc plus a δ time based on an estimate of the worst case latency between the local

host and the remote host to en sure coincidence of the application of the messages.

60

Figure 20. Congruence Transfer Function

Local
Host

Remote
Host

Entity State StreamEntity State Stream

C  G ,t −1C  G ,t 

S E L S E R

Communication
Network

In general then the concurrent model approach depends on all three categories of the

situation database. Referring to Table 4 the static S dataset that is preloaded along with

the simulation prior to the start of the exercise. The M dataset that is transferred as

Congruence functions, and the H stream that is generated at each host. The S data

provides the basic information that provides the foundation to the rest of the information.

The M dataset provides the rules for generating the H stream, which in turn is used by

the DIS applications to provide the views for the observer. In subsequent sections, it will

be shown how this can be realized in OTBSAF to dvelop the concurrent model approach.

This will then be used to quantify the impact of each of these categories on the

communications transmission by using the current OTBSAF / DIS packet sizes and

frequencies as the baseline for comparison.

Congruence depends on both temporal and behavioral factors being maintained. To

illustrate the factors, if all the factors are collapsed into two Boolean variables, one

indicating Temporal Congruence and one indicating Behavioral Congruence. Expressing

these in a Karnaugh map as shown in Figure 21, showing an “and” relationship between

61

Figure 21. Congruence Karnaugh Map

Incongruence

TF
Behavioral Agreement

T

F

A
g
r
e
e
m
e
n
t

Incongruence

Congruence

Incongruence
T
e
m
p
o
r
a
l

these two sets of factors. If neither Temporal or Behavioral agreement is maintained then

congruence is not expected to hold true, but if the reactions are correct then why is it not

necessary for temporal agreement to hold true. If reactions occur out of order they are no

longer reactions per se. Thus, timeliness is necessary as well. Likewise even if reactions

occur at the right time if they are not correct then congruence fails to hold true. Thus

congruence, doesn't hold true except when both Temporal and Behavioral factors are

true.

The function for determining Temporal Congruence is denoted ΨT(t, ER) and the function

for Behavioral Congruence ΨB(EL, ER). The Temporal Congruence function ΨT(t, ER) is

dependent on the timing t, and the output of the remote generator ER, while the

Behavioral Congruence function ΨB(EL, ER) is dependent on the relationship between the

output of the local generator EL and remote generator ER. The truth function for each of

these relationships ΓT and ΓB are dependent on these functions remaining within limits.

So ΓT is true if ΨTO-δ≤ΨT≤ΨTO+δ otherwise it is false, and likewise ΓB is true if

ΨBO-δ≤ΨB≤ΨBO+δ otherwise it is false. The subscript O indicates the desired value.

Figure 22 provides some examples of the types of graphical displays that might be used

to depict remote environments. The two labeled VSAM processing, which stands for

Video Surveillance and Monitoring, are actual sensor and camera views which would lie

at the base of the communications pyramid shown in Figure 9. The one labeled ModSAF

is a plan view or map based display with the entities displayed as stick figures currently

these are transmitted by the Dead-reckoning block of the pyramid.

62

The view labeled ModStealth is a three dimensional representation of the view from an

arbitrary viewpoint [Collins 2000].

As as example of computing C  G ,t −1 , applications already exist to render the

ModSAF and ModStealth views based on terrain databases and visual models of the

objects and an entity state stream based on the DIS protocol. As can be seen from these

examples, though the video or sensor views can provide increased detail, the value of this

detail is somewhat questionable. In most cases the depiction of individual blades of grass

are irrelevant to the viewer. Thus, the generated views provide the necessary information

at a much lower bandwidth. This motivates the selection of the δ tolerance parameter.

63

Figure 22. Example Graphics Illustrating Tolerances

To take advantage of the current rendering technology, the entity state data must be

present as a DIS protocol stream at the observer. All of this is present locally for

standalone embedded training, and available on a LAN for static embedded training.

Category S data can be provided in advance of the exercise, Category M data is not

currently the limiting factor in latency and bandwidth considerations for the

communications link. So if category H data could be generated locally, this would make

the communications of category M data the requirements driver for the WAN. Given that

it has already been found practical to include the simulation components for embedded

training on each remote platform, this dissertation focuses on the implications of trying to

synchronize multiple simulations in order to present a consistent view of the simulation-

space to all observers.

3.5 OTBSAF as a Prototyping Testbed

OTBSAF is a large scale constructive simulation system developed to portray elements

down to the individual platform or entity level. Although a constructive simulation, it

provides both logical and real-time clocks so it can be used for real-time interactive

simulation to portray additional elements in an exercise beyond those represented by

manned simulators. For communicating with the manned simulators, it uses the DIS

protocol. Each entity is simulated by instantiating the appropriate model for that entity.

Initially, each entity assumes the default values for each parameter that can be modified

by the SAF operator. Below we will describe OTBSAF distribution, and then explain its

application as a testbed.

64

3.5.1 OTBSAF Simulation Framework

OTBSAF version 1.0 [SAIC 2001A] is distributed with over 5,000 pages of

documentation describing 636 libraries and 5 applications. The libraries have over 1

million lines of executable code with 80% written in the “C” language and the majority

of the balance in Finite State Machine (FSMs). The FSM [SAIC 2001E] code generator

is an AWK script that translates the FSMs source files into C-language constructs.

Semi Automated Forces (SAF) a simulation system that can provide operator controlled

semi-automated entities that can maneuver on the simulated battlefield similar to a

manned simulator. The goal of OTBSAF is to replicate the outward behavior of

simulated units and their component vehicle and weapon systems to a level of realism

sufficient for training and combat development [SAIC 2001C]. Utilization of OTBSAF

takes advantage of a large range of domain knowledge to model all simulated systems,

implementation knowledge including networking, and user interfaces, available from the

various organizations that use and adapt the SAF to their needs.

In order to modify a system with OTBSAF's complexity it is necessary to grasp the

design methodology. OTBSAF was designed for the Replacement of Individual

Subsystems, Hardware Independence, Programming Language Independence,

Distribution of Subsystems, and Time Management for scheduling of execution. For

Replacement of Individual Subsystems, the methodology chose layering the architecture,

support for object-based programming, and definition of rigorous interfaces. To enable

the distribution of subsystems, OTBSAF uses two protocols. The DIS protocol is used

65

for sharing of entity appearance data and the PO protocol to ensure persistence of objects

despite hardware failure. Time management was implemented to allow allocation of

computation resources to all the services and subclasses of the layered system [SAIC

2001C].

The layered characteristic of the OTBSAF led to the implementation of services.

Distribution of information between the calling module and the service was implemented

in two ways. The first was by polling the higher layer periodically for information about

a state change. The other was the establishment of a callback mechanism for the

handling of a simulation event. In this case, the higher layer module provides the lower

layer module a function to call, if the specified event occurs [SAIC 2001C].

Data Driven Execution in OTBSAF refers to the system's use of data files (referred to as

reader [.rdr] files) to provide detailed descriptions and parameters of objects. This allows

the characteristics and behavior of the objects to be changed without recompilation. Not

only does this allow definition of the objects at creation time, in some cases it allows

reconfiguration of objects during run-time. Together these features were used to

facilitate the adaptation of OTBSAF to the Concurrent Model Approach of this

dissertation.

66

3.5.2 Application

OTBSAF is distributed between SAFstation and SAFsim components as indicated in

Figure 23 derived from the User's Manual [SAIC 2001B]. SAFstations provide the run-

time user interface to the simulation, as many workstations as necessary can be used as

long as they reference the same DIS exercise number. SAFsims provide the simulation

of entities. Here as many computers as necessary to simulate the required number of

entities can be used on the same exercise. SAFstations share control of entities among all

components that use the same PO database identifiers. Different forces can be privately

controlled by using different PO database numbers identifiers while participating in the

same exercise number. Thus, this enables different teams to interact independently

within the same exercise. More than one exercise can share the same network as long as

they use different exercise identifiers.

Selections of static values for the total execution time of the simulation occur at

invocation of OTBSAF. This includes such items as exercise and PO-database

identifiers, the seed for the random number generator, and the configuration of OTBSAF

67

Figure 23. SAFstation and SAFsim Components

as a station, a simulator, or combined as a pocket SAF. In addition, more than one

instance of OTBSAF can be invoked on the same computer/workstation at the same time,

as long as memory and processor power can support the demand.

The static (S) databases in Table 4 are provided by Terrain and Parameter Databases

block of Figure 23. The moderate update (M) databases are provided by PO databases,

and the highly dynamic (H) databases are provided by the exercise database. When

using OTBSAF the changes to the M and H databases of Table 4 are realized accordingly

using the PO and Simulation packets of Figure 23.

Table 5 provides a summary of the packets generated by OTBSAF in the scenario

introduced in Chapter 1. All the packets with “po_” as part of their name modify the PO

databases, the rest of the packets modify the exercise database and are shared with other

DIS applications. The second column of Table 5 provides the number of each packet that

was transmitted over the course of the exercise of 12 minutes duration. The third column

presents the size of each message in bytes. Those with fractional sizes were variable

length packets so the size represents the average length of all the packets of the given

type. It was developed by taking the sum of the individual packet lengths divided by the

fourth column, which was determined experimentally and is covered in later chapters,

indicates whether this packet is used in maintaining congruence. The relative frequency

in number of packets/second can be found by taking the entry in column 2 and dividing

68

total number of save=
∑
i=1

N

si

N
 packets , where si is the size of the individual packets. The

by 720 which is the number of seconds in the exercise. The average bandwidth (BW)

required for the exercise can be calculated by summing the number of packets for each

entry times that entry's packets size in bytes times 8 the number of bits in a byte and

dividing by the exercise duration of 720 as follows:

Note that the two most frequent entries in the table, entity_state, and po_variable are not

required to maintain congruence and as will be seen in chapter 7, not all of transmittals of

69

Table 5. Current Communications Packets

Congruence
acknowledge 24 32
aggregate_state 26 160
entity_state 4,059 176
po_delete_objects 1 52 Y
po_line 48 116
po_link 26 1,120 Y
po_objects_present 143 954
po_overlay 102 72 Y
po_parametric_input 116 90
po_parametric_input_holder 51 64
po_point 78 100 Y
po_simulator_present 141 100
po_task 1,150 122 Y
po_task_authorization 15 72
po_task_frame 147 247 Y
po_task_state 1,486 289 Y
po_unit 202 648 Y
po_variable 9,028 356
start_resume 6 44 Y
stop_freeze 12 40 Y
transmitter 780 104

OTBSaf Packet Type(O) Transmittals(N) Size(s)

BW=∑ N O⋅sO⋅8
Duration

=∑ N O⋅sO⋅8
720

=4,966,280∗8
720

=55,180bits / sec

even the types of packets needed for congruence will be required . Also note that this is

for a very small scenario nowhere near the size indicated in Table 2 that could be of

interest for the situational awareness application. Also, Table 5 does not include any of

the packets transmitted to initialize the simulators as this would be part of the parameter

database. Other items that are not transmitted are the Terrain Databases, the one for this

exercise is 6 MBytes compressed or 60 MBytes expanded for use during the simulation.

Other parameter entries of about 43 MBytes. High resolution terrain/feature databases

used to generate the three dimensional Mod-Stealth views of Figure 22, could approach 1

Gigabyte after being extracted from an 80 Gigabyte source database. Video data to

generate images such as the VSAM views of Figure 22 for the full length of the exercise

of 12 minutes at 525-line television resolution and using MPEG compression would be

about 400 Mbytes for each view.

So in review of Figure 24, if we start with a single viewpoint the base of the pyramid

would start at 186Megabits/sec using MPEG compression it would drop to about 4.5

megabits/second. Using simulation with pre-stored terrain and parameter databases we

70

Figure 24. WWLAN Data Reduction Pyramid with Data Rates

Raw Video 186-4.5 Mbits/sec

Dead-reckon 55 Kbits/sec

Concurrent
Model 550

bits/sec
VMGOES 40 Kbits/sec

Simulated 167 Kbits/sec

Increasing

Bandwidth

 Demand

Increasing
Model

Knowledge
and

Fidelity

could drop this to 167Kbits/sec and using dead-reckoning to 55,180 bits/sec and we are

proposing to drop it to below 550 bits per/sec. Only the base section of the pyramid is

restricted to a single viewpoint. Once the simulation domain is entered it is possible to

choose any arbitrary viewpoint and display multiple viewpoints at the same time.

3.6 OTBSAF Scalability and Priority Queue Performance

 In the previous sections, we have reviewed the benefits of in bandwidth reduction by

using simulation as a motivation for the concurrent model approach. With the concurrent

model approach, we introduced the need for maintaining congruence. This section

addresses the needs of the physical implementation associated with the concurrent model

approach. One of the problems inherent to the concurrent model approach is the need to

generate all the entities at each separate site. This raises the question as to its feasibility.

How much processing power is required? This question has existed since the

introduction of OTBSAF and its predecessors, one such study for MODSAF 3.0

presented the results shown in Table 6 as reported by Roberts et al [Roberts 1998].

71

Table 6. ModSAF 3.0 Benchmark Results [Roberts 1998]

Number of
SAFsims

(Processors)

Total Entities
Modeled by all

SAFsims

Average Entities
Per Processor

1 160 160

2 264 132

4 384 96

8 640 80

15 720 48

This study was based on a 16-node Silicon Graphics Origin 2000 computer where

separate SAFsims were invoked on each processor for the number of processors shown

from 1 to a maximum of 15 processors. These results were obtained from use of the

standard ModSAF benchmark. All the processors in this study were identical. Roberts

attributed the major source of this nonlinear scaling to the situation that each processor

had to dedicate more and more processing time to the increased number of Protocol Data

Units (PDUs) exchanged between SAFsims.

To update these results to personal computers, a similar test using the OTBSAF

“-benchmark” option was used. This option allows you to specify the number of platoons

to use in the benchmark, which thus increments the number of vehicle entities by four for

each platoon. A heterogeneous system with three computers was used. Host “bahrd”

was a Dell Inspiron 8000 laptop using a Pentium III processor running at 1 Ghz. It had

0.5 Gbytes memory and was running the Linux 2.4.20 kernel. Host “bahr2” was a

generic desktop using an Athlon 2400+ processor with 0.75 Gbytes memory running the

Linux 2.4.22 kernel. Host “bahr3” was another generic desktop using an Athlon 2600+

processor with 2.0 Gbytes memory running the Linux 2.6.7 kernel.

72

Table 7. OTBSAF Benchmark Results

Host Machine 1 2 3
Bahrd 180 0 100
Bahr2 256 188 168
Bahr3 280 200 176

Total vehicles 280 388 444
Incremental 108 56

 Number of Processors

Table 7 gives the result of these benchmarks. The test was conducted by iteratively

changing the values until the threshold between pass and fail was discovered. The entries

in Table 7 reflect these results, where the first column identifies the computers by their

host-name, the second column shows the maximum number of vehicles when each

computer was operated separately. The “Total Vehicles” row reflects the maximum

number of vehicles that could be generated by the respective number of computers. The

third column reflects the results of taking two computers at a time, and likewise the

fourth column represents taking all three computers at the same time. The “Incremental”

row reflects the number of vehicles that were added to the exercise with the addition of

another computer. These results again reflect the nonlinear scaling reported in the earlier

report.

The final report of the Synthetic Theater of War experiment conducted in 1994 [Tiernan

1995], identified similar problems with scalability, reporting the maximum number of

entities on a common network occurred with 10 computers. They overcame the scaling

problems by isolating portions of the network and only sharing the necessary PDUs

between the different segments. Other reported solutions reported making changes to the

OTBSAF/ModSAF architecture using for example only one copy of the PO database in a

shared memory common to all processors.

One item to note from Table 7 is that the faster processor continued to support more

entities, implying that increased computation efficiency can contribute to the total

number of entities that can be simulated. Another item discovered in the experiments is

73

that the speed of the LAN between the computers did not change the results, as both a 1

Gbit and a 100Mhz LAN were evaluated using “Bahr2” and “Bahr3”. The laptop was

restricted to a 54 Mbit wireless link. At least at this level of entity counts current LAN

technology is not the limiting factor.

To update the current state of the art even further, we had the opportunity to test a cluster

of gaming machines. Two of these machines were based on AMD 64 Processor, an

XP3000+ model, and a Pentium 4 Processor. All three of these machines had a 1

Gigabyte main memory, and ran at a 2 Ghz clock speed. Table 8 provides the results of

this benchmarking effort. Definitely the two AMD 64 machines identified as Bob and

Rednight were faster than the Pentium, however the Pentium fell midway between the 2

Athlon Processors although their model numbers indicated they would be faster in a

standard office benchmark. The two AMD 64 machines actually did perform more than

1.5 times faster as proposed by their 3000+ model number. Again note the non-linear

scaling reported in the other tests which motivate the following section.

74

Table 8. OTBSAF Benchmark Results - Part II

 Number of Processors
Host Machine 1 2 3

Redscull 268 0 148
Bob 412 276 244

Rednight 412 280 256
Total Vehicles 412 556 648

Incremental 144 92

Specifically, in Chapter 2 we introduced causality, synchronization, and DES as

important tools to maintain the congruence necessary to make the concurrent model

approach feasible. We also showed how the event queue's priority queue data structure

could impact the execution efficiency of a simulation. We showed that Order(1) priority

queue had distinct advantages over Order(N) and Order(log N) implementations.

Currently OTBSAF uses a heap which is Order(log N) implementation. We introduce

here an Order(1) implementation extending the author's previous work [Bahr 1994B], to

include head end optimizations and a high stability solution for a large range of event

insertion and deletion distributions. We will call this queue a Smart Priority Queue (SPQ)

because it uses bounded heuristics to dynamically adjust its structure to adapt to the event

distribution. This approach improves the efficiency of the simulation and minimizes the

negative impact of some additional techniques of scaling such as prioritized frequency of

execution as indicated in Table 2 in Chapter 2 where additional events would be added to

priority queue but not require as many model executions and PDU generations. The

number of events in a priority queue for a given number of entities N in an exercise is

K*N where 1<K<U. K is a multiplier characteristic of a simulation to represent the

spawning of additional parallel events for each entity other than just a routine update. An

example would be a routine status check at a much lower rate than the normal update.

Assume that U representing an upper limit will be 10 or less depending on how many

parallel activities are scheduled during the processing of the Nth entity. Observations

during debugging of the SPQ implementation for OTBSAF captured a peak of about 10

scheduled events per entity, and routinely between 3 to 4 events per entity. Together,

these results will be used to develop the Concurrent Model Approach in chapter 4.

75

CHAPTER 4 CONCURRENT MODEL APPROACH TO EMBEDED

SIMULATION

One approach used to reduce the communications traffic required during Distributed

Interactive Simulation (DIS) is the use of dead-reckoning algorithms [Dahman 1996].

Dead-reckoning takes advantage of knowledge of the physical behavior of entities which

dictates that moving bodies can only change speed or direction in certain predictable

ways. As long as the moving body does not deviate from this predicted route, there is no

need to send additional information from the source monitoring the movement to the

receiver using the motion information to determine the current location of the entity.

The DIS concept provides large number of entities by adding additional Semi-Automated

Forces stations (SAFstations). As shown in the previous section, each SAFstation can

generate from 100 to 300 entities. The current state of each entity is updated periodically

by the generating SAFstation. The problem with this approach is the periodic update

traffic. Although the Concurrent Model still uses periodic updates, they are at a much

longer period between each update.

In the Concurrent Model approach, the principles underlying dead-reckoning are

extended. In dead-reckoning, at both the local source and remote receiver, an algorithm

76

is executed based on the positioning information provided by the source to the receiver as

shown in Figure 25.

The local source continues to compute the current position as indicated by the vector

Pm t =
1
2
A0 t 2 V 0 t P0 and compare that to the measured position indicated by

Pa , Aa , V a , t c . As long as the calculated position is within certain error bounds

Pa−≤ Pm≤ Pa then no updates are provided to the receiver. Meanwhile, the remote

receiver calculates the predicted position Pm t =
1
2
Am t 2 V m t P0 and uses it as the current

position of the moving body, as it has confidence that, in the absence of correcting

information, this position is accurate within the error bounds. In this case, the dead

reckoning algorithm represents a model of moving-body positioning. Thus, positioning

information is the parameter that is exchanged between two copies of the model. In the

77

Figure 25. Dead-Reckoning

t=t
c
-t

o

If

Then Continue
Else

Local Host

t=t
c
-t

m

If New Message
Then Update Parameters

Else
Continue

Remote Host

Network

Pa , Aa , V a , t c

P0 , A0 , V 0 , tm

Pmt =
1
2
A0 t 2 V 0 t P0

Pa−≤ Pm≤ Pa

t
m
=t

o
=t

c

P0= Pa , A0= Aa , V 0= V a

Pm t =
1
2
Am t 2 V m t P0Communication

above equations P t  is the position vector at time t. A is the acceleration vector, and

V is the velocity vector. Thus given the P0 the position at the start of the period and t

the change of time since the position was observed the new P t  can be determined.

In the Concurrent Model, dead reckoning is extended to predict the behavior interaction

between players. The approach uses pairs of full-platform models, rather than only sub-

element models. The difference between this and the dead-reckoning approach is this

employs two high-fidelity models S E m t =H  G0 , t  as indicated in Figure 26. Ideally,

the required correction data S E 0 , G0 , tm is non-existent if the behavior model is

sufficiently accurate. At the source the observed data S E a , t c where is S E a the state

vector for each entity E as actually observed as indicated by the subscript a where

subscript m designates the model. The initial time t0 is subtracted from the current time tc

to determine the change in time t which is used by the model to determine the models

current state vector. As long as the current modeled state vector S E m stays within the

78

Figure 26. Concurrent Model

t=t
c
-t

o

If

Then Continue
Else

Local Host

t=t
c
-t

m

If New Message
Then Update at t

m

With
Else

Continue

Remote Host

Network

S E a , t c

S E 0 , G0 , tm

S E mt =H  G0 , t 

S E a−≤S E m≤S E a

t
m
=t

c
+t

l

S E 0=S E a , G0=C  G0 , t c

S E m t =H  G0 , t 

C  G0 , t −1

S E a−≤S E m≤S E a

Communication

acceptable range δ of observed vector S E a there is no need to update the model. If it

exceeds the acceptable range then the correction function G0=C  G0 , t c must be applied to

determine a new congruence vector G0 which will be applied at time tm which is a future

time computed by adding the latency correction time tl to the current time. This allows

both the local source model and remote receiving model S E 0 , G0 , tm to be adjusted

concurrently. Only the revised initial state vector, Congruence vector, and designated

time of invocation are transmitted to the receiver. This minimizes the data transfer

between the remote interactive parties, and yet maximizes responsiveness, while allowing

detailed manipulation of articulated components at the local level. An interactive

situation requires pairs of models for each participant. Essentially, the respective

platform is cloned on the target platform. An exact clone would respond identically as

the simulated platform and crew, since it is collocated with the target there would be no

measurable delays, thus resulting in the highest fidelity simulation. In actuality, cloning

the crew and platform is impossible, but cloning a model is routine. Thus, the proposal is

to place a high fidelity model of the simulated crew and platform on that platform, and in

a closed-loop environment tune that model to match the capabilities of the platform.

Concurrently, place a clone of the model on interacting objects and, in an open loop

environment, apply the same corrections made to the reference model to its clone,

thereby keeping it a clone of the reference model.

The early research on the Concurrent Model Approach was split between multiple

research teams. SAIC corporation explored the adaptation of Modular Semi-Automated

Forces (ModSAF) to the concurrent model approach [McHale 1998] [Ourston 1998].

79

Gonzalez, DeMara, and Geogiopolos developed smarter models [Gonzalez 1998]. It is

assumed that high-fidelity models/simulations will be available, differences between the

player platform can be detected, models can be adjusted to minimize the errors of

prediction and technology will provide the necessary, cost effective, computational

resources [Petrasko 1993]. Even with these assumptions the Concurrent Model Approach

is still highly dependent on maintaining coherency between the reference models and

their clones.

The focus of this dissertation is then on:

(1) How scheduling can be synchronized to maintain concurrency.

(2) How concurrency can be maintained in a multithreaded environment to allow

scalability.

(3) What technological capabilities are required, in terms of data storage,

computational capability, and communication bandwidth.

(4) Generalization of the approach for application to other uses. The goal is to allow

each platform maximum independence to adapt to its unique demands while

maintaining the coherency between the reference models and their clones.

By using concurrent models clones at both ends of the communications link, we can also

compensate for delays in the feedback loop. The error detection and correction loop

would exist only at the source end and the receiving end would operate-open ended by

just utilizing the correction parameters sent from the source end. There always exists the

possibility that the correction parameters sent to the receiving end could be lost or have

80

errors so some method of verification will have to be employed. The goal is to tune the

model to where it accurately emulates the crew and platform being modeled. This is

much different from just changing the output to agree with reference system. It means

analyzing the error to determine what model manipulations are required so the error

would not have occurred. In view of the situation where we have humans in the loop, we

will never have a perfect predictive model of behavior so in this case the goal would be to

minimize the average error.

As introduced earlier in this paper, even if we had perfect models and the error correction

data was non existent then, there would remain a requirement for communications of

other information between the field platforms and the rest of the participants. What the

Concurrent Model concept achieves is a reduction to the minimum data while removing

transmission delays from apparent reaction times. The data that is required to be

transmitted is primarily shared data. There is initially information that could be pre-

stored at each entity, such as, terrain database, expected weather conditions, the set of

generic models, and force composition. During the exercise, this information would have

to be supplemented by new orders, intelligence information, and changes of status of any

player in the field of view.

At times we adopt a one-on-one trainee interaction whereas for each platform it is in

reality a team-on-team environment. To cope with the team interaction issue, the

requirement for models executing on each platform must be extended to include one for

81

each player in the field of view. However, this does not increase the number of required

reference models, as all clones of player would be subject to the same correction data.

4.1 Player Units (PU)

The Player Unit (PU) could be a person, a manned platform, an unmanned vehicle or a

simulation of such an object. The key characteristics are that it is independent, capable of

making decisions, and interacts with other units. Communications between units is

wireless as any hardwired system is part of a larger unit. Interaction can be either

threatening or supportive.

82

Figure 27: CRM

D A E

Activity

Activity

PU 4 Clone

•••

PU 3 Clone

PU 2 Clone

PU N Clone

Interacting Activity

Updates

Player Unit Communication Network
Command

Updates

A R M
PU1 Clone Reference

Model
Software

PU 1 Platform System

Crew Object/
Simulation

Situation Database

4.1.1 Concurrent Remote Model (CRM).

The Concurrent Remote Model (CRM) shifts the transfer of data away from the

interaction parameters to be primarily the typical Interaction Situation Information, with

model tuning parameters as required. The interaction information as depicted in Figure

27 still exists and is available in greater quantity, higher precision, and with less delay

than by either of the previous methods. The difference is, all this information is

generated locally at each platform. The CRM platform consists of the major elements

identified in Figure 27. They are the object simulator or object system and its requisite

instrumentation. The Difference Analysis Engine (DAE) that replaces the comparator in

the dead-reckoning approach. The Adaptive Reference Model (ARM) that serves as

either the reference model or a clone of the reference model and the situation database.

Each of these blocks is described in more detail in the following sections. As illustrated

in Figure 27, the play of the simulator or the manned platform is only noted locally, the

play of the reference model is the “official” view of the interaction. This allows a

consistent view across the exercise while still allowing individual evaluation to take place

at the platform level. Since the reference model and all of clones are changed

synchronously, they play the same for a given situation regardless of location. The

maintenance of the situation database thereby becomes the primary purpose of the PU

communications network. Since this database should be the same on any platform

participating in the same conflict location, the information on this link can be broadcast

to all platforms.

83

In comparison to the normal DIS network, all the communications labeled activity and

updates in Figure 27 would be transferred over the wireless PU communications network

instead of just the updates. This is in addition to the normal operational traffic of the

players. The goal is to reduce the updates to a fraction of the normal traffic, whereas DIS

traffic would tend to be an order of magnitude larger as discussed later.

4.1.2 Difference Analysis Engine (DAE)

The DAE is the element that compares the performance of the simulator with the

reference model and develops the parameters that are passed to the reference model and

its remote entity clones. It develops the parameters that are used to adapt the ARM. This

is the primary place where the states as defined by the simulation or object system are

used. The status reported to the rest of the interacting elements is the output of the

reference model. However, in this subsystem, the results from the platform system are

treated as absolutely correct, the results of the reference model are considered as flawed

if differences occur. The parameters generated from its analysis will be used at some

time in the future. This delta between current time and future time is design dependent

but can be large enough to ensure correct transfer to all clones. It is assumed that

changes will be made to the clones synchronously with the reference model. The

synchronous time base will probably be based on a global time-base such as GPS time.

Next to a object/simulation, this is probably the most highly customized portion of the

concept. This subsystem depends on internal knowledge of how the object/simulator

generates results, how the reference model generates results, and what the prescribed

solution is. It also takes advantage of the operators' history to improve its predictions.

84

This is the subsystem that uses Artificial Intelligence techniques to determine why the

parameters need to be changed and what changes to make. This subsystem learns how a

specific manned object performs, converts that knowledge into a set of parameters that it

transfers to models of the object, and expects those models to perform as if they were

clones of the manned object.

4.1.3 Adaptive Reference Model (ARM)

The Adaptive Reference Model (ARM) is the element that will be cloned to serve as the

reference model and the remote entity models. It is anticipated that this model is

constructed from a set of generic modules. Along with this would be parameters that

would differentiate this particular object system from the others in its class. In addition

to the object system capabilities model, operator model is included. This gets into

modeling things such as reaction time, target recognition, driving tendencies, and

impulsiveness. This would be an unbounded task except that characteristics of the

physical platform and training narrow the range. Other modeling required is for those

characteristics that tend to vary over the course of the interaction, or due to changes in

capability during the simulation. A key characteristic of these models is that the

performance of the model can be adjusted in real-time during use. The model must

continuously generate as an output state, all outputs that determine the location and status

of the object system and its operators. All parameter changes to this model are applied

synchronously to the reference model and all clones. That is, parameter changes are

received with the time that they are to be applied. Then when the prescribed time is

reached the changes are made. The reference model directly interacts with clones of the

85

target systems, while the clones interact with the reference models of the target systems.

The state as generated by the reference model is taken as the state of the platform used.

4.1.4 Instrumentation for Player Units

The instrumentation for PUs is the set of sensors that are used to determine the state of

the Objects Platform and its operators. It must provide the location and time

measurement, stores status, and articulated components status of the platform. The stores

would include for example fuel for any vehicle based ES. While this information is

readily available on simulators, instrumentation will probably have to be added to most

live platforms. Future research is proposed to determine the required accuracy and

resolution of these sensors.

4.1.5 Situation Database

The Situation Database is data that is stored on each platform required for concurrent

simulation to work. Assuming that a model can always adapt more precise information

to the level of detail that it requires, the level of detail required for each element is that

required by the most discerning live platform or the reference model. Component data-

bases would include such items as depicted in Table 4. Items such as Terrain-database,

Threat-platform models, Pre-defined orders, Vulnerability data, and Predetermined

parameters are all quasi-static. That is they must be identical for all Player Units, but the

changes are outside the scope of this discussion. Items such as weather data, and obstacle

86

data, and learned reactions would be considered low-dynamic elements that would have

minimal impact on network capacity.

The goal is to separate situation database information from dynamic components which

can be generated locally by models. The OTBSAF elements that would make up the

Situation Database would be the DIS database, the PO database, the Terrain database, and

the Parameter database. The first two are dynamic and the last two are provided/selected

at simulation initiation. The DIS database provides the dynamic state of each simulated

object, while the PO database provides command and control information, such as unit

makeup, orders, and other parameters.

4.2 Processing of Discrepant Results

The primary results used for battle assessment is the states generated by the clone

reference model. These results should be identical at all sites as they are synchronously

updated for all copies and they participate in the same simulation. They only interact

with other reference clones. The only place other results are observed are at the

individual players and their local DAE. These results may be used for evaluation of the

model, but will primarily be used early in the development cycle. The DAE uses the

results to adjust the reference model and its clones, so the disagreement is noted and will

influence future results. For this reason, it would be beneficial if the model parameters

could be transferred with the trainees from exercise to exercise. The comparison of the

trainees to clones responses can be made available for individual assessment independent

of the exercise results. No matter how perfect the clone, there exists the possibility that

87

results achieved by the simulator or live platform differs from the reference model. Some

key items that were kept in mind while deciding how important their congruence would

be and determining the congruence truth thresholds are:

· This is a simulation whether live or virtual trainees are involved.

· The degree of agreement needed between both views of the interaction.

· If the ES objective evaluates actual interaction or a response to training.

If corrective actions are desired, they should be inserted as realistically as possible within

the normal response times of human interaction to avoid negative training. All of these

factors provide room for engineering tradeoffs, while still meeting the end users needs.

A basic premise of the concurrent model approach is that the clone models executing in

other platforms will perform identically with their reference model. Even if the models

give repeatable results for the same set of inputs, it does not guarantee that at any given

time the results are the same. Two other constraints are required. The same data must be

presented to the clones in the same sequence as the reference model and the clones must

be at the same point of execution at that time. The most direct approach at guaranteeing

these constraints are met, is to have each clone processor be identical to the reference

processor and having them execute from the same clock from the same data stream.

However, this would defeat the purpose of using the clones. The purpose of using the

clones is to allow the generation of the same output stream at physically separated

locations at the same time. This physical separation in some cases could be thousands of

kilometers away. A second function of using the clones is to allow interaction with other

elements of the simulation within the natural reaction times of the human operators. A

88

third characteristic of these clones is that they can be dynamically changed to give a

different result to the same data source to realize adaptive behavior. Let the set of output

states be denoted as O, input states as I, reference models as r and clones as c with the

present state as n. For each change of output state from Or
n of the reference model to

Or
n+1 the states Or

n = Oc
n and Or

n+1 = Oc
n+1 must hold true for all clones of the given

reference model. Furthermore, there must be no human perceptible difference in the time

of occurrence of the state changes between any of the models including all clones and the

reference. Since model c is a clone of model r then Ir
n = Ic

n and Ir
n+1 = Ic

n+1 must also

hold true. For the purposes of training these states do not have to be exact, but rather

within an envelope dictated by the ES application. This envelope is dependent on the

required fidelity to achieve objectives. For this reason these equations can be restated as

Or
n ± δ = Oc

n , Or
n+1 ± δ = Oc

n+1 , Ir
n ± δ = Ic

n and Ir
n+1 ± δ = Ic

n+1. This allowable error

term must be specified before exact performance expressions can be determined.

However, a set of expressions can be postulated, incorporated into a simulation,

exercised and presented to Subject Matter Experts (SME) to gain insight on the

magnitude sensitivity. Upon completion of this experimental cycle the equations can be

refined to a set of design criteria. The first step of this experimental design process is to

postulate a design, then examine this design for error sources and develop these

equations. The next step would be model this set of error equations and examine their

cross dependencies. After this initial design refinement, the postulated changes could be

incorporated into OTBSAF and sample runs presented to SMEs for further assessment of

relative importance.

89

4.3 Concurrent Model Approach Design Criteria

In the Concurrent Model approach, each platform has a set of models that interact during

the training exercise. Figure 28 shows multiple CRM platforms that are participating in a

collective training exercise.

Each one with his own set of models and his own copy of the situation database. The

challenge here is to maintain the coherency between the platforms within error δ. In

chapter 3 we introduced the congruence functions ΨT and ΨB and their corresponding

90

Figure 28: Collective Interaction under Concurrent Model approach

* * * PU N

PU 2

Situation Database

PU 1 Platform System

PU 3 Clone

PU 4 Clone

PU N Clone

PU 2 Clone

●●●

D A E

Activity

Activity

Interacting Activity

PU Communication Network

Command Updates
Updates

PUI 1 Clone Reference

Model
Software

A R M

Crew Object/
Simulation

truth functions ΓT and ΓB. The is for the local host to dynamically adjust the congruence

vector G0 to keep ΓT and ΓB TRUE.

4.3.1 General Criteria

The proposed coherency strategy is as follows:

1. Each reference model will broadcast an entity state message that includes both a time

tagged model parameter set and a separately tagged model status set on a periodic

basis at least three orders of magnitude less frequent than the local updates.

2. On a event-driven basis, an entity state message will be broadcast to correct both the

status and the model parameters based on DAE discrepancy sensing.

3. Each system will have a real-time clock locked to GPS time.

4. Each player platform will be responsible to update data to the current time based on

model parameters and the difference between tagged time and current time.

5. Local Model release times will be based on the Real-time clock.

6. Local Model tick rates will be adjusted on a integer multiple of a base period basis, to

best meet the demands of the local system.

7. tick rates are to be adjusted on a dynamic basis to ensure that local calculations stay at

near real-time.

8. All pseudo random number generators are advanced on the base period. All

calculations will be adjusted to minimize the impact of dynamic scheduling. Ideally

all random numbers will be replaced by fixed values.

91

The rational behind each Concurrent Model strategy element is as follows:

1. The periodic broadcast provides a known base state to correct for any clone drift, and

also provides the information necessary to add a new entity into a vehicles area of

concern. Since this change may generate a ripple effect on calculations, it needs to be

at a frequency that only increases total processing load by a small percentage. For

example if, the additional processing required per periodic update is 10 times greater

that of normal tick processing and its rate is 10-3 of the normal tick, the average

processing load has only increased by 1%. Separate time tags allow for freedom on

order and processing priority.

2. Event driven processing is used near real-time corrections and keeps errors within a

pre-defined delta.

3. Each system needs GPS for position determination already so this provides a low cost

approach of providing time stability at a level where its error contribution is relatively

insignificant. Most parameters are rate based so time differences are always a term in

each state update.

4. This allows each platform to update its state based on the data currently available to

it. Since it has a highly stable time source, the update becomes independent of

transmission and processing delays.

5. It is assumed that processing will be based on a priority queue with time as a priority.

Information should be processed as soon after it is scheduled as possible.

92

6. Some model factors are based on counts or increments in order to simplify

corrections required to compensate for dynamic loading. A similar simplified scheme

is used to account for time base differences.

7. Normally, models are processed on a periodic basis, but due to external events the

amount of processing required can change. To get the best precision, the number of

updates needs to be adjusted based on external activity.

8. Pseudo-random number generators are used to provide variety in training scenarios.

Yet, for coherency purposes each vehicle needs to be able replicate the activities of

the reference models independent of the local vehicles tick rate. This is a tradeoff

issue that must be carefully clarified with the end user.

Once a suitable scheduling system has been developed, this system is used for

experiments in multithreading on a local network to establish the validity of local

processor scalability. ModSAF has already been demonstrated to be scaleable from a

distributed computer viewpoint, but its current single threaded architecture with

scheduling at the application level does not allow it to take full advantage of modern

Symmetric Multiprocessing computers which use multiple processors to share the

computation load.

4.3.2 Remote SAF Operator

The Remote SAF Operator is an application that demonstrates the capability of meeting

several key criteria of the concurrent model approach by modifying OTBSAF. The

93

remote SAF operator requires that an operator at one location controls semi-automated

forces that are interacting with other players conducting Mission Rehearsal en route to a

trouble spot. In this case, there is a clone pair of simulations at the operators location and

with the deployed unit. Communications between the two model sets is via a multi-hop

wireless system to aircraft en-route to the trouble spot. Thus, it takes concurrent

simulations, one to provide the SAF entities for the Mission Rehearsal, and the other to

provide feedback to the operators. Latency must be hid to avoid having the operators

wait for the commands to reach the aircraft, initiate the action of the simulated entities,

and send entity state packets back to be displayed on their screens. Instead, the local

simulation provides that feedback. Communications bandwidth can be reduced because

the entity state packets do not need to be sent back to the operators. real-time

synchronization is required to keep the clocks in sync at both sites, and repeatable

performance for both sets of models must be maintained.

The Remote SAF Application as implemented for this dissertation does not demonstrate

the complete Concurrent Model approach. It's primary focus is on demonstrating the

communications reduction potential of this approach. A GPS based clock was not

available, and it would require a more extensive modification to OTBSAF to be

incorporated. This was not critical at this stage of investigation. In addition, the use of

the DAE and feedback have had some initial exploration by VMGOES [Henninger 1998]

[Gerber 2001]and SAIC [Ourston 1998], and further work in this area should be explored

in the future. Furthermore, although some preliminary investigation was conducted on

the criteria and implementation it was only partially implemented at this time.

94

The primary focus of of this investigation is the tradeoffs between bandwidth reduction

and the impact of congruence. OTBSAF provides a vehicle for investigating these

capabilities, but its extensive use of random numbers needs further investigation beyond

the tested alternatives. SAIC used a non-network approach for Repeatable SAF, and the

Concurrent SAF experiment used a single master random number generator. Both

showed success in repeatability, but were lacking in other aspects of the complete

Concurrent Model approach.

95

CHAPTER 5 ANALYTICAL RELATIONSHIPS IN

COMMUNICATION MECHANISMS

To demonstrate properties of the the Concurrent Model approach, we first require

temporal congruence and behavioral congruence between two entity state streams at

physically distinct locations using a communications channel, C, with a finite bandwidth

of B bits per second and exhibiting characteristic latency of tl and behavioral generators

GL and Gr. The initial congruence parameter vector G0 is updated to correct these

generators as needed to maintain congruence.

96

Figure 29. Concurrent Model Analysis

S E a , t c

S E 0 , G0 , tm

S E mt =H  G0 , t 

S E a−≤S E m≤S E a

t
m
=t

c
+t

lc

S E 0=S E a , G0=C  G0 , t c

S E m t =H  G0 , t 

C  G0 , t −1

S E a−≤S E m≤S E a

t=t
c
-t

o

If

Then Continue
Else

Local Host

t=t
c
-t

m

If New Message
Then Update at t

m

With
Else

Continue

Remote Host

Entity State Stream L Entity State Stream R

Communication
Network
S E 0 , G0 , tm

C  G0 , t −1

S E m t =H  G0 , t 

S E a−≤S E m≤S E a

t
m
=t

c
+t

l

S E 0=S E a , G0=C  G0 , t c

S E mt =H  G0 , t 

S E a , t c

C[B,t
l
]

Figure 29 added the details of Figure 26 to Figure 20 to illustrate how the earlier

introduced concepts relate. In this case, it is given that the Local Host generating entity

state stream S E L information is separated by some physical distance d from the remote

location where the Remote Host is generating the entity state stream S E R information.

For the Remote Host there is both a H  G0 , t  generator component and a C  G0 , t −1

control component. The subscript a denotes measured or actual values, whereas the

subscript m denotes model generated values. Subscript 0 denotes initial values. The

control signals are sent over the communications link C, which is limited by its

characteristics B, and tl, from the Local Host to the Remote Host. We provide theorems

governing the following classes of characteristics:

• Correctness characteristics: the factors that determine congruence, and

• Performance benefit characteristics: bandwidth and latency assessments.

5.1 Correctness Characteristics

Definition 5.1.1: Congruence.

Congruence is achieved between two entity state streams S E L , and S E R when the

views generated from those streams allow the independent observer to react to those

views in a correct and timely manner. The standard for correct and timely are based on

the observer's reaction to the same views if they were generated by a single stream in a

DIS environment. Congruence is subdivided into Behavioral Congruence and Temporal

Congruence. Thus Γ = ΓB ^ ΓT where Γ is the Congruence Truth function and ^ denotes

97

conjunction. ΓB is the Behavioral Congruence Truth function and ΓT is the Temporal

Congruence Truth function

Definition 5.1.1.a: Behavioral Congruence.

Behavioral Congruence is achieved between two entity state streams S E L and S E R

when the view generated by remote receiver matches the view generated by the local

source within an acceptable tolerance δ. Let ΨB(EL, ER) denote the behavioral

congruence function, then ΓB is said to be TRUE if ΨB0-δ≤ΨB≤ΨB0+δ otherwise it is

FALSE. ΓB is the truth function for behavioral congruence, δ is one half of the

acceptable range, and ΨB0 is the desired value.

Definition 5.1.1.b: Temporal Congruence.

Temporal Congruence is achieved between two entity state streams S E L and S E R

when the view generated by remote receiver occurs within the same timeframe as the

view generated by the local source. When ΨT(t, ER) is the temporal congruence function,

then ΓT evaluates to TRUE if ΨT0-δ≤ΨT ≤ΨT0 +δ otherwise it is FALSE. ΓT is the truth

function for temporal congruence, δ is one half of the acceptable range, and ΨT0 is the

desired value.

Definition 5.1.2: Simultaneity.

Simultaneity is defined as the scheduling of two or more events at the same simulation

time.

98

Definition 5.1.3: Causality.

Causality is the property that no event should appear to the observer prior to any event

that caused it. No simultaneous event can exhibit causality for another event scheduled at

the same time.

Definition 5.1.4: Strong clocks.

Strong clocks satisfy the following relationship introduced by [Lamport 1978]. Let →

denote the happening before relationship for members of the set ζ. For any events

a ,b∈ab then a b . Where a and b are discrete events and the function

Π x  returns the timestamp for the event x.

Definition 5.1.5: Repeatability.

Repeatability is the property that states for every instance of a model

S E mt =H  G0 , t  given the same set of parameters and state, it must generate the same

output, irrespective of physical location or clock time. Here the time parameter for the

model is the change in time since the previous update, not the wall clock time.

Definition 5.1.6: Soft Real-time Scheduling.

Soft Real-time Scheduling is defined to be a process scheduling methodology where the

process is not initiated until the real-time clock reaches the scheduled time, however, it

all processes are executed that are scheduled at that time in some sequential order until

they are all completed. This means that the processes are not guaranteed to be executed

at the scheduled time, but are guaranteed not to be executed before that time. Soft Real-

99

time Scheduling also guarantees that all processes scheduled for an earlier time are

completed before any subsequent process is executed. This methodology will be

elaborated later using Figure 30 and its related discussion.

Definition 5.1.7. Simulation time.

Simulation time is the logical time maintained by a discrete event simulation, and refers

to the scheduled time of the last event selected for execution. It remains constant until

the next event is scheduled for execution. A simulation implementing this strategy

satisfies the the requirements for provision of a strong clock.

The properties of Concurrent Models are analyzed under the following assumptions:

(1) The priority queue provides strict First-In First-Out (FIFO) ordering for all equal

priority events.

(2) The real-time clock maintained at both source and receiver are synchronized to

GPS time.

Theorem 5.1.1. Necessary and Sufficient Conditions for Behavioral Congruency.

S E L is behaviorally congruent to S E R if the models are repeatable and they are

given the same inputs in the same order.

Proof. Given that the models are repeatable, this implies they will generate the same

outputs given the same inputs. By requiring the priority queue to preserve FIFO ordering

in the presence of simultaneity, this maintains ordering even when events with the same

100

priority are processed sequentially. Thus, they will remain in the same order in the

remote execution as the local execution even if the next scheduled iteration occurs at

different clocks as long as the time step increment i is the same. With this strong

ordering causality is also maintained because a→b , then (a+ i)→(b+ i) for all event pairs

(a,b). Where → denotes the happening before relationship of the strong clock.

Theorem 5.1.2. Temporal Congruency

S E L is temporally congruent to S E R if the simulations are soft real-time

synchronized to global time such as GPS time, and all changes are received s seconds

before scheduled execution time, and are processed in the same order as transmitted.

Where s is congruence setup time.

Proof. Given that the simulations are synchronized to GPS time, which has higher

resolution than the OTBSAF one millisecond clock, then individual simulation times can

be advanced an identical real-time rate. As long as S E 0 , G0 , tm are received s seconds

before scheduled execution time, soft real-time synchronization guarantees all processes

will be executed after the scheduled time and in clock order. As long the changes are

tagged sequentially, the receiving system can properly order them within the same clock

period. Since this is again a strong clock ordering causality is still maintained. The

processing time required to compute C  G0 , t −1 must be no more than s seconds.

101

5.2 Performance Benefit Characteristics

Performance benefits of the concurrent model approach address the primary

characteristics of a communications system. Those are bandwidth and latency. The

concurrent model approach is postulated to address the limitations of a communications

system used for mobile systems operating. The focus is on either a satellite-based or a

multi-hop wireless network. These systems tend to have restricted bandwidths for

simulation traffic and long latencies. As such the objective is an approach that has a

reduced bandwidth demand, can operate with extended latencies, and mitigates the

impact of communications outages.

Definition 5.2.1: Reduced Bandwidth Ratio.

Reduced Bandwidth Ratio denoted by BR is the ratio of the bandwidth used by current the

DIS approach over the bandwidth required for the postulated Concurrent Model

approach. In this case, the number of bits N transmitted on the network for local traffic

divided by the number of bits I transmitted between the local and remote generators of

the concurrent model approach yielding BR = N/I.

Definition 5.2.2: Latency Hiding.

Latency Hiding is the combination of providing low latency solutions for highly dynamic

state changes, and latency compensation techniques for other changes. Latency hiding

techniques compensate for when the messages are present in the network but delayed due

to transmission characteristics.

102

Definition 5.2.3: Outage immunity.

Outage immunity is the situation where the output of the remote site continues with

minimal degradation during periods of communication outage. Outage immunity

techniques compensate for situations when messages are lost or not transmitted due to a

loss of transmission capability.

The concurrent model approach provides data reduction by transmitting only those

packets necessary to update the models. It does not send any entity state packets, and

only a subset of the persistent object packets. From Table 5 we see that only 10 of the 21

categories of messages are transmitted. Furthermore, in Chapter 7 we will see that only a

small percentage of packets in the transmitted categories are needed on a regular basis.

Theorem 5.2.1: The concurrent model approach provides reduced bandwidth demand.

Proof. N is the sum of all local packets transmitted. I is the sum of the packets required

to maintain congruence. From Table 5, it is clear that I is a subset of N, therefore

BR=N / I is greater than unity so BR1 .

Simulations latency is the length of time it takes for a message about an event to travel

from one simulator to a remote simulator. It includes various communications delays

such as protocol formatting, amount of other traffic on the link, number of links/hops

between simulations and transmission time. Other factors include reliability and routing.

103

Reliability influences the average latency as a retransmission may be required before the

message is received by the remote simulation. Routing delays are prevalent in wireless

systems where the route is subject to change as the systems move as given by the total

time:

T tot=t prott waitN hop thoptdistt rel

where:

t prot = time required to format the message according to the protocol,

t wait = time caused by waiting for link due to contention,

N hop = average number of hops times the

thop = average delay per hop,

tdist = per hop fly time due to physical length of links,

t rel = average time to correct an error in a message times the expected number of

errors per message.

Theorem 5.2.2. The concurrent model approach provides a latency hiding ratio of

.

Proof: The concurrent model approach generates high dynamic states at the remote

location thereby reducing latency to that of a local network. The concurrent model

approach compensates for the latency of other changes by scheduling them far enough in

the future so they can be executed in synchronism. Thereby meeting both requirements

of the definition.

104

t prott wait

T tot

Theorem 5.2.3. The concurrent model approach provides outage immunity ratio of up to

BR.

Proof: The concurrent model approach generates high dynamic states at the remote site.

Once this generation is started it continues until changed by new commands. As opposed

to the current system which generates the high dynamic states at the local site and

transmits them to the remote site. If communications is dropped the state information is

lost until communications is reestablished. Thus the concurrent model approach provides

outage immunity as it continues to provide high dynamic state information even during

communications drop outs. As long as the communications system at least provides the

capacity for the Congruency data the system will continue to operate.

105

CHAPTER 6 CONCURRENT MODEL CONSTRUCTS AND

MECHANISMS

6.1 Background

Concurrent Model Constructs and Mechanisms were initially developed around an initial

premise that the Remote SAF Operator (RSAFO) is capable of isolating the commands

generated during the simulation. Thus, only those packets that initiated the commands

would be transmitted from one simulation to the other. As discussed in Chapter 3, the

architecture did not readily yield a definitive answer on how this could be integrated into

the extensive OTBSAF code. This led to the necessity to develop techniques to track

down what action initiated which packet generation and identify all the other modules

that activated the generation of similar packets, so to determine where to isolate them.

The first approach was to assume that the command packets would be unique, and only

that subset of packets could be filtered from the total packet stream. This proved to be

problematic because only some could be isolated, and not to a significant level. The

second approach was to consider the user interface. For each button pushed it is noted in

which routines ultimately generate a command packet. This proved to be difficult

because of they layered approach with a mixture of polling and callbacks separating the

106

services and the originating functions, and the reuse of libraries to accomplish similar

functions. This investigation through public and private interfaces certainly introduced

some of the challenges imposed by an object-oriented programming solution adopted by

OTBSAF.

The evolved investigation system consisted of a significant use of greps nested inside

of for loops traversing the many libraries, coupled with the setting of judicious

breakpoints inside of dynamically-debugged instantiations of multiple communicating

processes. Reverting to the command line interface of the operating system inside a

window, coupled with the Dynamic Debugging Tool called ddd provided the necessary

environment. A further aid was to take advantage of the documentation that was created

in “texinfo” format to ultimately combine all the documentation into one large

hyperlinked file of 5,200+ pages. Having this documentation allowed the ready

transversal from top level discussion down to the Programers Reference Manual [SAIC

2001E] details and back. It also allowed the use of the internal find command to locate

other possible using modules.

6.2 Integrated Model Execution

OTBSAF uses one main program depending on command line options to function in one

of three modes. The first SAFstation or -gui mode provides the user/operator interface.

This is the key operational mode for collecting the external commands at runtime. The

second SAFsim or -sim mode operates in the simulation-only mode, which generates

all the entities and provides the update packets that are eventually graphically displayed

107

on the SAFstation. The third or default mode is a pocket SAF that has both functions

combined in one executable. The use of the same executable to operate in all three

modes made it necessary in some cases to identify the mode of operation in order to

properly isolate the modifications. In addition, the same libraries are used for other

applications. Where possible, changes were made to OTBSAF that only required a

command line parameter to differentiate between concurrent model operation and the

distribution version. Those changes are discussed here. Any other specialized functions

that were created will be discussed in Section 6.3.

Some of the modifications for the SPM [McHale 1998], were required for the RSAFO.

These include isolation of display update functions based on fixed real-time increments.

They are based on an update rate and not a sequence of events. They avoid referencing

event generating functions which could adversely affect causality using the simulation-

time clock. Using the same seed for multiple invocations of the simulation to generate

the same sequence of random numbers was retained. Isolation from the network was

abandoned for RSAFO by necessity, as RSAFO needed to generate entity state streams.

Scheduling was changed to enable discrete event simulation that would advance based on

a fixed relationship to the real-time clock. Simulation-time will not advance before this

relationship is met. We provide scaled to real-time in this mode, but not independent

from real-time. The real-time clock is used to advance the discrete event scheduler from

a release time viewpoint. Figure 30 provides a graphical representation of the provided

capabilities.

108

The top line represents a real-time tick of once every 10 milliseconds. The second line is

scaled to a 2 times real-time rate. The third line is scaled to 1/2 times the real-time rate.

Each timeline is annotated with simulation-time events occurring at the indicated tick on

the lines. Point A represents the first event as occurring at time 0.07 sec., In line one

scaled to real-time this will occur at 0.07 seconds in real-time. On the second line scaled

at twice rate, while it occurs as 0.07 seconds simulation-time, it is executed at 0.035

seconds in real-time. On the third line, scaled at half rate, it occurs at 0.14 seconds in

real-time.

At point B in Figure 30 there is a situation where the event at simulation-time 0.10

requires a physical time to execute longer than the next clock tick. Since this is a

physical execution period, it takes the same time interval in real-time independent of the

scaling, although the start of event at simulation-time 0.10 occurs at the scheduled

simulation-time, the next event scheduled at 0.11 occurs as quickly afterwards as it can.

This has a ripple effect on each successive event until total execution period of all

successive events matches the passage of the event stream. On line, one this occurs until

simulation-time/real-time reaches 0.17 sec., on line two this occurs at simulation-time

109

Figure 30. Real-Time and simulation-time Relationship
Sim-Clock @ ½ X Real-Time

Sim-Clock @ Real-Time

Sim-Clock @ 2 X Real-Time

A

A

A

B C

C

CB

B

t

t

t

0.40 and real-time 0.20, while on line three the only event delayed is the event at time

0.11 seconds.

Point C on the timelines depicts the situation when more than one event is scheduled at

simulation-time 0.45 seconds In this case, the events are executed as fast as possible. In

the real-time and half rate case they do not delay the next scheduled event. However in

the twice rate case they again cause a simulation-time ripple out until the 0.50 second

event. This example also indicates to obtain a similar effect as “as-fast-as-you-can”

simulation. Thus, the Concurrent Model uses a scaled clock that advances faster than the

discrete event scheduler can advance to provide an equivalent mode of operation to the

OTBSAF “-fast_time” option.

Next, a separate communications channel was established to allow the SAF operator's

SAFstation to communicate with the remote SAFstation as shown in Figure 36. For the

purposes of this study, it was implemented as a separate named pipe for each receive and

send function. The name is relative to the invoking directory so multiple pairs of named

pipes can be established. Connection between the pipes is established external to the

simulation. This enabled using a tee connector that allowed the tapping of the

information being sent between the separate simulations for recording the traffic. It also

allows various filters to be used as necessary to match the chosen communications

medium and protocol. For this study, the direct connection with a tee was used. To

allow asynchronous reception, the receive function was scheduled as a periodic task that

checked for the presence of data in a buffer, and if present, empties the buffer prior to

110

returning control to the scheduler. If a partial message is received then it performs an OS

sched_yield to allow another task to run. The repetition rate of receive function

needs to be high enough not cause the remote send to block. The send function executes

as needed until the buffer is full or all data is transferred. If the buffer is full, it blocks

until it can send the message.

To maintain hardware configuration independence at the respective sites, it is imperative

to allow the PO databases to be independent. While the vehicle identifiers from the

operator 's viewpoint must be consistent, the assignment of vehicle to simulator, and etc.

should be independent. Thus, the receive function is given the responsibility to perform

the mapping of the Vehicle identifiers to the PO identifiers and simulator identifiers.

Since, the various PO PDUs use nested fields, the receive functions parse these fields to

map all of their entries.

6.3 Isolated Model Functions

In observing the operation of the SAFstation, it was found that changes were introduced

to the simulations by modifying the PO database either by creating a new database object

or changing an existing object. These changes are then transmitted to all systems using

the same PO database. For the concurrent model approach, only the initiated actions

need to be shared between simulations. Furthermore, repetitive transmission of changes

is not desired as it would interfere with the simulations of the second concurrent system.

Modifications were necessary to further isolate the execution paths of routines to only

those directly initiated by the human operator, not those initiated by the simulation or

111

recursive execution of the same code. In addition, the originating SAFstation needed to

complete local operations as well as transmit the changes to the remote SAFstation.

The remote SAFstation needs to receive to changes from the originating SAFstation and

merge those into the local database. To allow independent startup and configuration of

systems at both locations, it was necessary to provide an object/simulator mapping

methodology. This involved parsing the appropriate fields of each object and mapping

the values from the originating SAFstation environment to the remote SAFstation

environment. This mapping was primarily initiated upon the receipt of the

create_new_describe_object entry. In some cases entries that were created by a

SIMstation, would need to be modified. In this case they were assumed to be hashed into

entries by the same displacement on both the originating and remote SAFstations, and

mappings for the missing entry and all intervening entries were created in the mapping

112

Figure 31: PO object Modification

table by retaining that relationship. To-date, that has proved sufficient to handle the

mapping requirement.

For robustness purposes, OTBSAF transmits all PO PDUs 10 times at one second

intervals after each change is made. This conflicts with the objectives and assumptions

of the Concurrent Model approach and could be eliminated from the information being

transmitted between the concurrent SAFstations. Therefore, similar functions were

implemented as indicated in Figure 31, to separate those PDUs that were sent to both

local and remote networks, and those only sent locally. In some cases, the only location

to make such a distinction was at a higher level than in the PO library. In this case, a new

but similar function was created so that the appropriate action could be selected at the

higher level. All functions that call po_send_new or

changed_describe_object_pdu are appropriate for establishing the SAFstation

PO database, those functions are listed in files under libpo. Three new functions

were created to isolate SAFstation operations to use a pipe between master and clone as

identified with the extension of _pipe to their name.

6.4 Smart Priority Queue Data Structure

In order to accommodate non-uniform distribution of event list activity, we developed

and evaluated several different structures based on modifications of the calendar queue.

Once the benefits were fully understood, a distribution-adaptive data structure was

developed to provide stable performance across a wide range of distributions [Bahr

2004].

113

The characteristics of the RDMS model emphasized that an optimal queue structure for

event list management requires low overhead for the accesses that occur most frequently,

for example, head insertion and deletion. Furthermore, the structure should incur the

minimum number of comparisons for insertions. In addition, the list structure must be

capable of accommodating rapid arbitrary deletes. The usage distribution can be difficult

to describe analytically and its characteristics can change throughout a simulation run.

However, a user of discrete event simulator or library of simulator tools need not be

burdened with the selection of the appropriate priority queue structure for a particular

simulation. Ideally, the priority queue used for event list management should be close to

optimum for all expected distributions. To satisfy these objectives, a dynamically-

adaptable queue structure is required to consistently meet the following performance

goals:

• minimize the total number of operations required to access the most frequently

scheduled events,

• reduce the overhead cost of sample taking, resizing, and finding the new head, by

reducing their frequency of invocation, and

• perform threshold testing only when beneficial.

Nonetheless, adaptive mechanisms create the potential for oscillation. Although Brown

identified the potential for oscillation, models used in his experiments did not excite that

condition. In an adaptive algorithm, the cost of employing feedback during discrete

event simulation directly increases simulation overhead, i.e. the same processor is

employed for both the direct actions and the feedback operations. So a realistic

114

assessment of performance of an adaptive strategy needs to take the additional overhead

from feedback into account.

Notably, the data structure with the least absolute operation cost is the linear singly-

linked list. However, the linked list loses its performance advantage if its length exceeds

about 10 entries [Jones 1986], so an indexed structure such as a calendar queue can limit

the list length, yet still accommodate the entries that overflow this length. Calendar

queue performance can be adjusted by altering the width and number of bins. The

primary disadvantages of adaptive structures are the three components of overhead:

sensing, evaluation, and adjustment. This penalty can be reduced by minimizing the

number of operations executed in the primary execution path and then amortizing high-

cost routines such as adjustment over a large number of HOLD operations. The working

of the SPQ Figure 32 en queue operation can be explained using the flowchart in Figure

33.

115

Figure 32. Smart Priority Queue (SPQ)

next
datanext

data

7.1
7.3

next
data

7.5

next
data

37.5

next
datanext

data

12.2
12.8

next
data

20.2

next
datanext

datanext
datanext

datanext
datanext

data

3.3

3.3

3.4
3.8

11.9

19.1

next
datanext

datanext
datanext

datanext
datanext

data

2.0

2.3

2.5
10.1

10.1

26.1
next
datanext

datanext
datanext

datanext
datanext

data

1.3

1.5

1.7
1.9

1.9

9.5

next
data

head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil

0 1 2 3 4 5 6 7

overflow array

8.4

next
datanext

datanext
datanext

datanext
data

0.1

0.2

0.3
0.5

0.9

headlist

head

tail

The SPQ structure of Figure 30 differs from the Calendar Queue of Figure 15 in that it is

a linear queue with an overflow structure of a modified Calendar Queue. The linear

queue is identified as headlist and calendar queue as overflow array in Figure

32. The difference in the overflow array from the normal Calendar Queue is that

the second pointer to each bin points to the last entry of the current year and is identified

as the ceil pointer in the array, instead of pointing to the last entry in each bin such as

the tail pointer in Figure 15. The SPQ en queue operation accommodates these

changes as demonstrated in Figure 33 by having separate branches to accommodate

entries in the headlist or the overflow structure, which is subdivided for

insertions before or after the ceil pointer. Counters are provided in the branches

(linear_head, linear_dist, and overflow) to keep track of the number of

insertions and the number of overly long scans (head_over, bin_over, and

bin_ceil_over). These counters are used in the OptimizeQueue block to provide

the information used by the heuristics to decide which adjustments are indicated. Note

that the OptimizeQueue block is only executed if a dynamic activity threshold is

exceeded. The thresholds are only adjusted by the OptimizeQueue block. Additional

routines not diagrammed that are part of the hold operation, are GetHead and

FindHead. GetHead is called every time the simulation clock advances, the

majority of the time this is simply removal of the first element of the headlist leaving

the next element as the head. The next most frequent operation occurs each time the

headlist is emptied. In this case, the next bin of the overflow structure is transferred

to the headlist. This is accomplished by setting the head pointer equal to the bin

head pointer and the tail pointer equal to the bin ceil pointer. The bin head

116

117

Figure 33. SPQ Insert Operation

Prio = aptr->time

Exit

Yes

No

Prio
 <

binhead

Insert binlist

Yes

No

Prio


binceil

No

Prio < headprio

No

Prio < overthresh

Compute index
Overflow++

Insert
binceil

Insert new
binhead

No

YesPrio
<

nextyear

No
Scan list

Insertceillist

Yes loopctr

3

No
Bin_Ceil_Over++

Prio
<

next

Yes

NoActivity
>

athresh

OptimizeQueue

Yes
prio


tail

No

Yes

Prio
 >

next

Yes
Linear_dist++

Scan List

Yes
Insert Queue Head

Linear_head++

Insert
linearlist

Yes

Prio
<

next

Scan list
No

 loopctr
 >
 5

Head_Over++

Yes

No

loopctr

4

Bin_Over++

pointer is then set equal to the next element of the bin ceil list and bin ceil

pointer is moved to point to the last element in the list of the next year. The element

pointed to by the tail pointer then has its next pointer set to NULL. If the next bin does

not have any current year elements, the FindHead routine is called. This routine

locates the next nearest element in the queue and adjusts all the bin head and ceil

pointers to the new current year. For most queue distributions, FindHead is rarely

called. The New_bin_count counter is provided to keep track of the number of

headlist changes and the get-head counter is provided to track the total

number of deletes from the head of the list. The FindHead routine provides two

additional counters to provide additional feedback on the event distribution in the

overflow structure these are skip bin and search which report the number of bins

skipped to find the next element, and in the case where there are no elements were found

in the current year, that a search for the lowest element of all the bins had to be

conducted.

6.4.1 Activity Feedback Counters

The first three activity counters allow tracking of the individual paths and calculation of

queue size and average insertion cost. New_bin_count allows the calculation of

average number of get-head operations per head_list change. If this number is

too low then it indicates that the bin-width is too narrow. The head_over and

bin_over indicators are counts that give an indication of the bin_width being too

wide and indicates an increase in the average number of compares per insertion.

Bin_tail_over is an indication that the calendar year is too short i.e., not enough

118

bins. This also indicates an increased number of compare operations. Skipped-count

is another indicator of narrow bins as well as an indicator of bursty data. It reflects the

additional hold cost used in calculating optimal queue configuration. Search gives an

indication of large gaps in data and has a cost proportional to the year-size or number of

bins. This indicator triggers the recalculation of the number of bins.

6.4.2 Sensing Cost

The first cost of an adaptive algorithm is sensing. In Brown's case, he chose tracking of

the queue size. For the SPQ case, since we also wanted to check other characteristics as

well, the counts for each path were maintained separately. Different combinations of

these counts could be used to determine queue size, activity, and where excessive

operations occurred. Yet, we sought to keep the complexity of tracking information at the

same level as Brown's. The other costs can be reduced by periodic sampling. The

sampling strategy used is based on the observation that a change in the structure of the

event list is not necessary until the distribution has substantially changed its

characteristics. This is indicated by either excessive compares required for insertion, or

excessive number of bins traversed between successive head lists. Therefore, insertion

compare counts are monitored, and if they exceed a threshold, further tests are invoked.

Likewise the number of bin changes are also monitored.

The SPQ is designed to minimize the total number of queue overhead operations by

reducing the equivalent number of compares in the most frequently executed operations.

The most frequent operation, other than examining the head of the queue, is removal of

119

the head element. The overhead other than the counting operations over a linear list, is

that the next pointer indicates a end of list every time the head list empties. This signals

the SPQ to transfer the following bin from the overflow structure to the head list. To

optimize the queue, it is possible to trade off the frequency of changing the head list to

the number of elements searched in the head list. For this purpose, the head list is

initialized to contain 5 elements as a minimum to invoke this tax at most 20% of the time.

The second factor is to minimize the number of operations required to move the list from

the next bin to the head list. This was improved by having a pointer to the last element in

the current year maintained during insertion. The result is to transfer the bin head and tail

pointers to the head list and then setting the bin pointers to the head and tail of the next

year. On the average the latter step requires one additional compare operation. In the

case study due to the high insertion activity rates close to the head, this adjustment was

found to occur even less than this design goal at only 7% of the HOLD operations.

The next most frequent operation was insertion at the head of the queue. In this case, the

SPQ behaves the same as the linear list with only one compare required. The next choice

is to determine whether the new priority will be inserted in the head list or the overflow.

Once the decision is made to place the event in the overflow structure, the SPQ operates

very similar to the calendar queue. The result of using a separate head list is that for all

elements stored in the calendar structure there are two additional compares, but over 50%

of the insertions have been avoided. Bin hashing calculations and all head deletes are

recouped in the bin indexing operation. Another enhancement over the calendar queue is

that the second pointer into each bin is not strictly a tail pointer, but rather a pointer to the

120

head or the last entry in the current calendar year. This adds one additional compare for

those events inserted over a calendar year away, but minimizes the number of compares

required to transfer bin data to the head list. Insertions over a calendar year away occur

rarely by the resizing design of the calendar queue.

Each list body insertion is monitored for the number of compares required to find the

insertion point. If this exceeds a threshold value then further evaluation is initiated. The

first test performed in the evaluation is to determine whether enough operations have

occurred since the last restructuring of the queue for a new restructuring to provide

potential benefit. This is a simple threshold comparison based on values calculated

during the previous restructuring. This test serves as a damping function to en sure the

SPQ doesn't spend more operations adapting than it can save by restructuring.

6.4.3 Filtering Costs.

The second cost is analysis or filtering. In Brown's case it was a simple threshold test: if

the queue size was greater or less than the thresholds, queue resizing was required. For

SPQ, heuristics are used to first determine whether a change is required and second what

the parameter values should be for the resizing.

Six counters are used to monitor the performance. These are linear_head,

linear_dist, overflow, delete_count, get_count, and

new_bin_count. The first three of these reside in the separate branches taken in the

priority queue for any insertion. The last is incremented every time a bin is moved to the

121

head list to minimize the cost of tracking the queue performance. All other monitoring is

invoked only when an insertion occurs outside of the expected range. These are

considered overflow conditions and are recorded by sensor counters for each of the

following conditions:

• Head_over: an insertion occurs in the head-list that takes over 5 compares.

• Bin_over: an insertion occurs in a bin that takes over 4 compares.

• Bin_ceil_over: an insertion occurs on the end of bin-list that takes over 3

compares.

• Skip_count: the number of empty bins skipped, and

• Search: the number of times a search had to be performed to find a new queue

head.

When any overflow condition occurs, the first level of testing occurs. This first level is

simply to determine if adequate activity has occurred in the queue to justify a change. It

is a threshold that is proportional to the queue size denoted by N. This test is a

comparison of the sum of the activity counters to the threshold. The second test is to

determine if the operational cost to make a change is less than the cost of allowing the

overflows to continue. If the threshold is exceeded then optimizing calculations are made

to determine the predicted queue parameters. These are filtered and compared to the

current parameters and if the changes indicate improved queue performance the queue is

adjusted. In all cases, the expected performance improvement should outweigh the

operational cost of making the change.

122

6.4.4 Correction Costs

The final cost of feedback is correction. This is very expensive since it means

configuring a queue with corrected parameters then moving the contents from the old

queue to the new one or adjusting existing contents accordingly. Another consideration

for feedback is response time, or how soon are adjustments made after the distribution

changes. To make the queue more responsive if a change is required, the activity

threshold is reduced to a factor only several times larger than the current queue size from

previously used nominal value of 100,000 operations. This has an effect of doubling the

threshold until it exceeds 100,000, which is then used as the steady state sampling

threshold. All heuristics have been grouped into one module for easier tailoring. The cost

factors used in the cost minimization heuristics were determined experimentally by

measuring the execution time of the individual operations and them normalizing them to

the equivalent of the time taken to perform one additional compare on a linked list.

These costs are provided in Table 9. Here B is the number of bins and N is the current

queue size.

123

Table 9. Comparison Equivalent for Optimization Calculations

Operation Cost (normalized to compare equivalent)
Head_over 7
Bin_over 9
bin_ceil_over 10
Skip_bin 6
New_bins 4
Search 3 * B
Width 100
Resize 6 * N

6.5 Integration of SPQ in OTBSAF

The general SPQ was implemented in extended precision floating point or the C-

language DOUBLE datatype for the event priority. The OTBSAF clock used a 32-bit

unsigned integer. This required a re-implementation of the SPQ. In addition, the initial

implementation was modeled to some extent on the YACSIM [Jump 1993]

implementation which included the queue entry pointers as part of the activity or entity

record. OTBSAF used a general queue structure based on an array and therefore simply

passed a pointer to the requesting entity and its priority as parameters in the function call.

The receiving function then stored these in the heap, shrinking and expanding as

necessary. Thus, the SPQ was modified to accommodate the OTBSAF calling structure

and the integer priorities. Another implication of the Integer clock/priority is a somewhat

limited range of values. Analysis of OTBSAF's scheduler showed that indeed it would

have multiple entries of the same priority. OTBSAF used a millisecond resolution clock,

and used 67 millisecond update cycle. For any more than 67 entities, this would imply

that more than one entity had to be updated each millisecond, thus multiple entities would

have to be scheduled with the same priority. This was rarely the case in the floating point

implementation. The test cases of the SPQ were prepared for the general case so they

were all based on floating point. One desirable characteristic of floating point numbers is

their range tends to be self-scaling, this is not the case for the integer implementation.

Thus all the comparison test cases for the OTBSAF implementations had to be scaled to

fit that environment.

124

The revised implementation thus incorporated the following changes:

• A revised hashing implementation for integers,

• Creation of queue entry pool for providing storage for queued entities and their

priority,

• Implementation of first in first out pointers for equal priority entries, and

• Addition of a test for equality during queue insertion.

Figure 34 provides a diagram illustrating the changes to the SPQ required for OTBSAF,

including pointers for the equality lists heq and teq, for the head and tail of each equality

list. Initially the first change is both the bin width and priorities are all integers, the bin

width in Figure 34 is set to 10. The other changes are the handling of equal priorities.

Priorities 19, 33, and 101 each illustrate a different case. Priority 33 is in the bin as part

of the current year.

125

Figure 34. Revised SPQ for OTBSAF

data
next

teq
neq
data
next

teq
neq

data
next

teq
neq
data
next

teq
neq
data
next

teq
neq

data
next

teq
heq

data
next

teq
neq
data
next

teq
neq

data
next

teq
neq
data
next

teq
neq
data
next

teq
neq

data
next

teq
heq

data
next

teq
neq
data
next

teq
neq

data
next

teq
neq
data
next

teq
neq
data
next

teq
neq

data
next

teq
heq

data
next

teq
neq
data
next

teq
neq

data
next

teq
heq

data
next

teq
neq
data
next

teq
neq

data
next

teq
heq

data
next

teq
heqdata

next

teq
heq

71
73

75375

202

122
128

33

33

34
38

119

191

20

23

25
101

101

101

13

15

17
19

19

95

head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil head | ceil

0 1 2 3 4 5 6 7

overflow array

84

headlist

tail

data
next

teq
neq
data
next

teq
neq

data
next

teq
neq
data
next

teq
neq
data
next

teq
heq

1

2

3
5

9

head

In this case the next pointer points to the entry with priority 34 with the heq, and the teq

pointers both pointing to the next priority 33 entry. The next pointer of the last priority

33 entry points to NULL or the empty location indicating the end of that equality list.

During the insertion of any other entry into bin 3, it is only compared to the priority 33

entry once and then skips to the priority 34 entry. In the case of priority 19 entry, it is the

last entry of the current year so the ceil pointer points to the first priority 19 entry as the

second entry is part of an equality list and is only referenced when either the first equal

entry is removed or a delete operation of its data is required. Like the priority 33 entry,

both the heq and teq pointers point to second member of the equality list. All entries to

an equality list are made to the teq, and all removals from the heq except the earlier

mentioned deletes. Priority entry 101 illustrates the case when more than one additional

entry is required. In this case, the heq points to the first equality entry, and teq points to

the last equality entry and all intervening are tied to the successive entries by the next

pointers.

During debugging of this implementation with OTBSAF, instances of more than 40

entries for the same priority were observed. Another advantage of this method of

equality storage is that the whole equality list is manipulated as a single entry for queue

resizing, and minimum priority searches etc. The implementation of the equality list as a

FIFO list is important for repeatability purposes as established in theorem 5.1.

126

CHAPTER 7 EXPERIMENTAL COMPARISON OF ALTERNATIVES

7.1 Experimental Configurations

OTBSAF is being used to demonstrate the concurrent model approach. The prototype

developed has many of the characteristics postulated for the Concurrent Model approach.

In addition, it models the elements of the simulation down to the individual entities as

opposed to unit level of most constructive models. It also provides several scheduling,

strategies, and queues that can be used for validating the concepts.

7.1.1 Concurrent SAF

To prepare OTBSAF to demonstrate the concepts, various modifications had to be made.

The initial experiments were aimed at verifying that two separate simulations could be

ran simultaneously in real-time and generate identical data. The first step was to

incorporate the modifications recommended by SAIC for repeatable SAF. The next was

to modify the scheduler to use release time, real-time scheduling, and to synchronize the

simulation clock to the real-time clock. The last modification was made to the random

number generator to provide the same random number to both simulations. This entailed

setting up one simulator as a master and the second as a slave. The master generates the

random numbers used both locally as well as transmitted to the slave to used for the

127

slaves calculations. Another approach on synchronizing the random numbers was just to

use the same seed for both simulations and count on them to remain in sync for the

simulation run. To generate two identical runs, a scenario was prepared and saved. A

simulation run was set up by loading the same scenario in both simulators, initialized

with the same random number seed and then synchronized the start of the simulation.

Results from these initial runs indicated that the information required for setting up and

synchronizing both simulations to generate identical data was much less than the amount

of data generated by the simulations. The quantity of random numbers required was

small in relation to the other data to set up the simulation, but required the master to lead

the slave in execution. Further experiments would concentrate on using the common

seed approach rather than a single random number source. These master slave runs used

OTBSAF as Pocket SAFs for connivence as it took fewer computers and processes.

The first experiments were conducted with two modified Pocket SAFs. Two separate

loggers for the Pocket SAFs were executed as separate processes on computer A with

synchronization traffic transferred via the pipe from the master Pocket SAF which is set

as (Exercise 1, Database 1) which separates the packets from those generated by the slave

pocket SAF which is set as (Exercise 2, Database 2). The loggers reside on computer B

where they monitor the Ethernet traffic generated by the simulations on computer A.

Post simulation runs for the packets collected during each exercise were compared and

they were found to have the same position at the same time for the entire simulation run.

128

7.1.2 Remote SAF Operator

The next step of validating the Concurrent Model approach was to introduce the

Operator-in-the-loop into the experiments. This would provide two additional

advantages. It would demonstrate the benefits and feasibility of using the Concurrent

Model approach for a remote SAF operator application, as well as using a human-being

for the DAE function. Using a human operator for the DAE function could satisfy the

enhanced situational awareness application, as well as provide a basis for a knowledge

base approach for automating the function.

The initial challenge was to determine the minimum data necessary to cause both

simulations to generate the same output. Observing that the only independent source of

129

Figure 35: Concurrent SAF

change to the simulation would be introduced by the Operator-in-the-Loop, the OTBSAF

interface to the operator would be that source. This interface is provided by the

SAFstation or GUI. The Pocket SAF mixes both simulation generated changes as well as

operator initiated changes. This appeared to be a disadvantage as it could require more

hardware platforms, however it was found that both a SAFstation and a SAFsim could be

ran in a multitasking mode on the same hardware, although requiring more memory it

could still serve to isolate the operator generated changes from the simulation generated

changes while using a single hardware platform.

130

Figure 36: Remote SAF Operator

In the second set of experiments, the pocket SAFs were replaced by separate SAFstation

and SAFsim processes. The SAFstations communicated via the DIS protocol across the

Ethernet as a normal OTBSAF exercise. As provided by OTBSAF, separate exercises

and databases allow separation of the simulations. For connivence, the concurrent

SAFstations are executed on the same processor with the inter-process communication

occurring via a pipe. The transactions occurring for each exercise are logged by the

respective loggers. To compare the transactions of the exercises to the transactions

between the concurrent simulations, the packets are converted to the same format.

7.1.3 SPQ used for Case Study

Initial performance comparisons were based on total user time over the execution of the

model for a repeated simulation run. The results demonstrate the improvement gained

from the changes to the queue implementation. Since the data listed indicates the wall

clock execution time of the entire simulation, queuing overhead is just one component.

Thus, a 21.8% reduction in wall clock time for the entire simulation by using SPQ rather

than calendar queue is quite significant. This is due to the event processing time of

simulation events remaining constant while the queuing overhead continues to be

reduced. For this reason, and to further determine whether additional changes may be

beneficial, the queue implementations were further instrumented as described below.

131

7.1.3.1 Queue Instrumentation.

For each path through the queue maintenance routines, overhead statistic counters were

added. When this path included a loop structure, the loop count was included. Counts

for paths with no loops were accumulated and reported for the total simulation. Paths

with loops had their results reported upon exit from the loop. The results will be

presented in Table 13. Figure 18, 19, and 47 provide the distributions in graphical form.

132

Table 10. Statistical Counter definitions

Counter Description
Linear_head The number of insertions at the head of a linear list
Index_head The number of insertions at the head of a bin found after calculating

the index.
New_headbin The number of insertions at the head of the queue for the calendar

queue and also part of the index head count.
Linear_tail The number of insertions at the tail of a linear list.
Index_tail The number of insertions at the tail of a bin found after calculating

the index.
Index_empty The number of insertions into a previously empty bin.
Linear_distrib The number of insertions in the interior of a linear list. The average

number of elements into the list where the insertion took place.
Index_distrib The number of insertions in the interior of a calendar bin. The

average number of elements into the bin where the insertion took
place.

Get_head_linear The number of element removals from the head of the linear queue
as the event is activated.

Get_head_bin The number of element removals from the head of the calendar
queue as the event is activated.

Get_head_empty The number of times the get_head action empties a bin.

7.1.3.2 Statistic Counter Definitions.

To collect statistics counters were used in various paths. These counters are only present

if selected at compile time. Each counter is described in Table 10. There are 6 counters

related to head-of-queue operations, 2 related to tail-of-queue operations, 2 related to the

distribution, and 1 indicating the first addition to a bin.

7.1.4 SPQ Evaluation with Statistical Distributions.

The first question the modeling tool designer or an advanced modeler would ask is how

will the SPQ benefit a discrete event simulation application. In terms of execution

overhead, SPQ can exhibit less overhead and be better behaved than other alternatives.

The case study in Section 2.6.4, the design of the SPQ in Section 6.4, and the

experimental results presented in Section 7.3.3 provided greater insight into the dynamics

of Queue utilization. In this section, we provide the simulation designer with additional

data to make an informed decision on priority queue management policies.

An important issue is understanding why the model exhibited a head-end skewed

distribution. The RDMS model consisted of several sources of messages that were being

transferred though the network to multiple destinations. This drove the nominal queue

size as there was at least one event queued for each source for the life of the simulation.

This basically made the model well-behaved from Calendar Queue length viewpoint,

however, it had the hidden characteristic that short events were not introduced until after

the size of the queue was stabilized. Shorter HOLDs were introduced as each message

transferred through the network, and became more common as they competed for fewer

133

and fewer resources. Initially, they competed for one of 39 communication channels,

which shared 3 I/O processors which communicated over one high speed parallel bus.

Naturally the one bus could only keep up with all the traffic if it was utilized by each

transaction for a short duration. This bus contention was the source for the smallest

queue advance steps and since it only had the 3 I/O processors competing for the bus at

any given time, at most there were only 3 extremely short holds present in the queue at a

given instant. Since the bin width was computed by averaging over 25 samples, these

short holds were swamped out by the longer ones already in the queue. This lead to a

head list that had a lot of activity near the front of the queue. It also explains why the

linear queue improved to an average insertion of 176 compares instead of the expected

N=3000/2 =1500 compares based on the nominal Queue size. These observations are

readily apparent once the modeler is alerted to the performance sensitivities of the event

list structure. The total simulated time period is driven by long holds, for example the

length of the call in a Personal Communications System (PCS). The most frequent steps

are usually the much shorter events such as the signaling, and switching overhead events,

or the intermixing of digital traffic with the standard voice traffic [Larocque 1996].

While Erickson[Erickson 2000] showed that the Calendar Queue could be optimized in

the static case, Ronngren [Ronngren 1997] demonstrated that some distributions could

expose the weaknesses of the Calendar Queue. The SPQ, while optimized for the case

where 50% of the insertions occur near the head of the Queue, it was also developed to

take advantage of the strengths of the Calendar Queue while minimizing the impact of it's

weaknesses. Utilizing the event list insertion distributions described by Ronngren

134

[Ronngren 1997] we have compared the SPQ to the Calendar Queue. We have also

included a distribution that approximates the input distribution of the RDMS model

presented in Section 2.6.4.

7.2 Description of Scenarios

The scenarios used to test these concepts were various platoon movements about 10

minutes in duration. Results appeared equivalent for various locations of the map. The

one used to collect the data for presentation here is indicated in Figure 37.

In this case, it shows the screen shots for two exercises operating with 2 different PO

databases. In the title bar of the upper screen, it is identified as Exercise 1 using PO

Database 1 on the Ft. Knox terrain database. The lower screen is identified as Exercise 2

using PO Database 2 again on the Ft. Knox terrain database. This is a platoon cross

country march along the route indicated as the line route r1 on the map background. In

the upper right hand corner, there is the presentation of the real-time clock in Greenwich

Meridian Time (GMT) to the nearest second. Since each screen is updated independently

they could possibly vary by a second depending on the instant of capture. The symbol

and ID that is partially cut off on the left side of each screen identifies the unit as an

armor platoon 100A with tanks 100A11, 100A12, 100A13, and 100A14. The tanks are

starting in a wedge formation at the left end of r1. This route crosses a natural barrier, a

river, which the platoon will negotiate by using the bridge where the road crosses the

river. In this case although the real-time clock is moving, the units are in position, but

waiting for the order to move as indicated by the highlighted button just to the left of the

135

clock display. This was the technique used to delay the start of the test run until

everything is orientated for data capture. The above screens are actually the setup for the

Remote SAF Operator, but are very similar for to those used for the first experiment the

Concurrent SAF as well.

136

Figure 37. Screen Shot 1

7.3 Presentation of Results

The next four sections presents the experimental results gathered in the evaluation of the

Concurrent Model approach and priority queue data structures. First, we present the

results of the Concurrent SAF experiment. Second, we present the results of the RSAFO

experiments for two different scenarios. Next we present the experimental results for the

generalized SPQ data structure in comparison to the Calendar Queue, and finally, we

present the execution results of an integer adaptation of the SPQ to be used as a priority

queue for OTBSAF.

7.3.1 Concurrent SAF

Two data sets were collected for the Concurrent SAF. They included the logs of each

independent simulation, and a copy of the data transferred over the pipe between

simulations. Since the goal was for both simulations to indicate the same exact behavior,

the comparison of the data points was somewhat uninteresting upon success. With

success, the difference in location for all the points measured was 0, as was the average,

and standard deviation. This was true for all four vehicles for a run of about ten minutes

and about 700 position updates. However, the results on the data transferred between the

two simulations,was rather disappointing. While the total bytes transferred were reduced

by 75%, the number of packets was the same order of magnitude as the number

messages logged. In this case, the ratio was about 2 messages for every random number

that was generated. This totaled about 400 messages. One observation on the data

collected was that in many cases there was more than one message for the same vehicle

137

with the same timestamp and the same location. This number was not the same for both

simulations, even though when the duplicates were eliminated, there were the same

number of reported data points.

7.3.2 Remote SAF Operator

The data collected for the RSAFO, was the data transmission logs of each independent

simulation, a copy of all the data transferred over the pipe between the two simulations

and a sequence of screen shots showing the SAF Operator display for the concurrent

exercises. In this case, the data transferred over the network and through the pipes had

the same format. This allowed a packet-to-packet comparison of each source. Table 11

138

Table 11. Message Counts for Remote Operator

Message Type Local Remote Pipe
acknowledge 24 36
aggregate_state 26 26
entity_state 4,059 3,517
po_delete_objects 1 1 1
po_line 48 52
po_link 26 26 1
po_objects_present 143 143
po_overlay 102 102 6
po_parametric_input 116 116
po_parametric_input_holder 51 52
po_point 78 78 1
po_simulator_present 141 141
po_task 1,150 1,153 15
po_task_authorization 15 15 1
po_task_frame 147 147 15
po_task_state 1,486 1,495 9
po_unit 202 202 6
po_variable 9,028 9,000
start_resume 6 6 1
stop_freeze 12 12 4
transmitter 780 784
TOTAL 17,641 17,104 60

shows the results of this comparison. Message types are the DIS204 message types

[IEEE 1995] as translated from the message headers. The packets transmitted from the

Local source are the same as standard OTBSAF without modification and thus providing

the baseline for comparison. The Local column refers to the messages transferred as

exercise one, and the Remote column refers to the messages transferred in exercise two.

The Pipe column refers to the messages transferred from exercise one to exercise two

over the pipe. The result of interest for dropout immunity in that the last message

transferred through the pipe occurred at relative time=:01:35.683 of the total relative

time=:12:54.806 of the exercise. Thus, for this scenario the pipe between the two

generators only had to be available for the first 96 seconds. One problem we had was as

reported in [Cheung 1994] with the DIS timestamp implementation. They do not seem to

properly implemented for clock synchronization. We were able to identify common

points in each data stream that we used for evaluation synchronization. We were able to

adjust the timestamps for further comparisons. This did rule out latency experimentation

at this time.

The key item of these results is the ratio of the total number of the messages transferred

on the local network which was 17,641 in the first column versus the those transferred

over the pipe which was 60 in the third column. This yields a packet reduction ratio of

294-fold. This is greater than two orders of magnitude improvement and is in the range

envisioned for the Concurrent Model Approach. While there are some variations in the

results that can be explored, in most cases the number of remote messages is very close to

139

the number of local messages, and the results as portrayed on the following series of

screen shots is also indicative of the desired behavior by maintaining congruence.

Table 12 provides another snapshot into the relative performance of Concurrent Model

approach. This was captured during the running of the benchmark for 10 platoons

containing a total of 40 vehicles. The total execution time of this scenario was 4 minutes

and 40 seconds. It was also a situation of intense object creation. In this case, the packet

ratio fell to 74.54-fold although the bytes transmitted ratio was Br =N/I = 7.5 MB/93.8

KB = 190-fold. The remote pipe was not run due to the difficulties in getting the

benchmark to run with independent SAFgui and SAFsim stations. These problems were

140

Table 12. Message counts for Benchmark

Local Pipe
Message Type Packets Bytes/Tot Bytes/Per Packets Bytes/Tot Bytes/Per
aggregate_state 119 19,040 160
detonation 404 41,334 102
entity_state 8,788 1,546,688 176
fire 404 38,784 96
po_delete_objects 106 4,576 43
po_fire_parameters 642 349,248 544 72 2,304 32
po_line 464 62,592 135 12 1,008 84
po_link 132 147,840 1,120 12 1,152 96
po_objects_present 5 5,848 1,170
po_overlay 1,272 91,584 72 60 4,320 72
po_parametric_input 1,614 542,656 336 48 3,072 64
po_parametric_input_holder 1,032 66,048 64 48 2,496 52
po_point 573 57,300 100
po_simulator_present 35 3,500 100
po_task 9,870 1,250,304 127 204 13,872 68
po_task_frame 1,639 400,532 244 180 43,920 244
po_task_state 13,144 5,106,848 389 96 5,376 56
po_unit 2,640 1,710,720 648 120 16,320 136
po_variable 17,007 6,096,276 358
signal 388 27,936 72
transmitter 3,234 336,336 104
TOTALS 63,512 17,905,990 852 93,840
RATIO (Local/Pipe) 75 191

similar to those reported by Roberts [Roberts 1998]. A key difference in this scenario

over the one reported in Table 11 is the unrealistically short move to engagement

scenario employed to quickly stress the system as indicated by the inversely balanced

ratio of task state to entity state messages.

Congruence for this scenario is demonstrated visually by the series of screen shots shown

in Figure 37, Figure 38, and Figures 54 through Figure 61, that are described below and

presented here and in the Appendix. Analysis of the data is presented in Figures 39

through Figure 46. We will continue the discussion of that data after the description of

the screen shots.

The scenario started with the configuration depicted in Figure 37 with time advancing as

shown by the GMT clock and the vehicles moving as indicated by their positions on the

map display. In Figure 54, the vehicles are shown after they have arrived at the starting

point of their route and re-orientate into their wedge formation. In Figure 55. they adjust

their route to head toward the bridge. Figures 56, and Figure 57 show them continuing to

the bridge. Figure 58 through Figure 38 are at a different scale that the earlier figures.

Figure 58 shows them crossing the bridge and Figure 38 shows them reaching their

destination at the far end of route r1.

141

Congruence is evaluated for this scenario from a behavioral viewpoint. We are define a

behavioral congruence function ΨB(EL, ER)= x L−x R
2 yL− yR

2 z L−z R
2 for each

sample, for each vehicle. Since ΨB is a magnitude, the ΓB truth function evaluates to ΓB is

TRUE if and only if Ψ B ≤ δ and FALSE otherwise. For this discussion, δ = 25

142

Figure 38. Screen Shot 10

meters is selected as it represents an acceptable tolerance for the application. Figure 39

through Figure 42 are plots of ΨB versus t for each vehicle displayed in the screen shots.

Note that three of the vehicles had short periods of time where ΨB exceeded δ with a

where n denotes the total number of samples for each vehicle was ΨB
ave of A11 =

3.333, ΨB
ave of A12 = 3.620, ΨB

ave of A13 = 1.090, ΨB
ave of A14 = 3.395 with the average

for all vehicles combined yielding Ψb
ave= 2.859.

143

Figure 39. Behavioral Congruence for Vehicle A11

Figure 40. Behavioral Congruence for Vehicle A12

worst case of about 47 meters. The average behavioral congruence ΨB
ave = ∑i=1

n

Bi

n

testtime

Figure 43 through Figure 46 provide the percentages of ΨB vs δ for each vehicle. Note

that over 90% of the samples exhibit a δ within 5 meters and less than 1% exceed 25

meters. The value of an acceptable δ would be established to meet the needs of the user.

For this demonstration, 25 meters was established as it is close enough to select the

correct vehicle. At d=25 meters there is no loss of generality because deviations below

this are are approaching the limitations of position location systems. Only since the

advent of GPS could we even get within 25 meters except with very precise surveying

techniques. The most probable cause for the observed deviations, is the variation of the

random numbers used by the two generators. Although seeded to start with the same

144

Figure 41. Behavioral Congruence for Vehicle A13

Figure 42. Behavioral Congruence for Vehicle A14

value, the effects of collisions on the network could cause a change in the sequence used

by the individual models.

145

Figure 43. Congruence Histogram for Vehicle A11

146

Figure 44. Congruence Histogram for Vehicle A12

Figure 45. Congruence Histogram for Vehicle A13

7.3.3 SPQ

Since Congruence was shown to be maintained using the Concurrent Model approach,

the research focus now shifts to processing optimization. To establish a basis of

comparison, it is possible to discuss cost of operations in terms of equivalent linear queue

sizes. For most models the developer of the model can roughly estimate the equivalent

linear queue length for the steady state operation. We intend to show that this

implementation has a relatively small penalty for short queue sizes and is of O(1) after

the average length exceeds the cost of the indexing operation.

147

Figure 46. Congruence Histogram for Vehicle A14

As shown in Table 13, the calendar queue outperforms the linear queue for the RDMS

simulation by reducing the the number of comparisons (Figure 18, and 19) required to

insert into the body of the queue. The SPQ further improves performance by taking

advantage of the low overhead of the linear queue for the getheadlinear operation.

It further reduces the number of compares, as shown in Figure 47, to insert events in the

body of the queue. Both the calendar and SPQ queues introduce additional costs for

148

Table 13. Path Counts and Comparison Equivalents

OPERATION LINEAR CALENDAR SPQ
Linear_head 4.52M 4.52M
Index_head 4.64M 726K
newheadbin 4.52M 527K
lineartail 879 303K
indextail 89.6K 495K
indexempty 263K
lineardistrib*average 2.82M*176 655K*2.31
indexdistrib*average 2.62M*10.9 373K*2.76
TOTAL
INSERTIONS 7.35M 7.36M 7.35M
Total Index 7.36M 1.59M
Compare 497.60M 28.69M 2.54M
getheadlinear 7.35M 7.35M
getheadbin 7.35M
TOTAL
DELETIONS 7.35M 7.35M 7.35M
findheaddist
ave

70
1.01

19.8K
2.02

width samples 108
width change 3
resize change 10 4
TOTAL
Compare Equivalent 536M 155M 53.3M

monitoring and adjustment, but this is more than compensated for by the reduction in the

number of compares required to order the queue.

Figure 48 provides the performance of the SPQ for 10 different distributions for queue

sizes varying from 25 events to 500,000 events. Figure 49 provides the results for the

Calendar Queue for the same distributions for the queue sizes of 25 events to 50,000

events. Note the substantial performance advantage for the SPQ with the RDMS

distribution as expected, while it avoids the problems with the Camel distribution.

Figures 50, and 51 show the performance for the Up/Down trials where each distribution

is used to fill the Queue then successive get head operations are performed until the

Queue is emptied. In this case, the SPQ outperforms the Calendar Queue because it

doesn't resize until the queue either has large numbers of compares on insertion or skips

large numbers of bins on the get head operation.

149

Figure 47. Search Length Distribution in a SPQ

Search Length (Number of Comparisons)

N
u

m
b

er
 o

f
Ev

en
ts

0 5 10 15 20 25 30 35 40
0.1

1

10

100

1000

10
4

10
5

10
6

150

Figure 48. SPQ Performance for Classic Hold

10 100 1000 10000 100000 1000000

1

10

100

1000

10000

SPQ Steadystate
Bimodal

Camel(0.001,0.999)

Camel(0.8,0.2)

DDC

Exp(1)

Expmix

Ntriang(0,1000)

Triang(0,1.5)

Uniform(0,2)

Uniform(0.9,1.1)

Queue Size

A
ve

ra
g

e
 N

um
b

e
r

of
 O

p
e

ra
tio

n
s

Figure 49. Calendar Queue for Classic Hold

10 100 1000 10000 100000

10

100

1000

10000

Calendar Steadystate

Bimodal

Camel(0.001,0.999)

Camel(0.8,0.2)

DDC

Exp(1)

Expmix

Ntriang(0,1000)

Triang(0,1.5)

Uniform(0,2)

Uniform(0.9,1.1)

Queue Size

A
ve

ra
ge

 N
um

be
r

of
 O

pe
ra

tio
ns

151

Figure 50. SPQ Performance In Up/Down

10 100 1000 10000 100000 1000000

1

10

100

1000

10000

SPQ Up/Down
Bimodal

Camel(0.001,0.999)

Camel(0.8,0.2)

Exp(1)

Expmix

Ntriang(0,1000)

Triang(0,1.5)

Uniform(0,2)

Uniform(0.9,1.1)

Queue Size

A
ve

ra
g

e
 N

um
b

e
r

o
f

O
p

e
ra

tio
n

s

Figure 51. Calendar Queue Performance for Up/Down

10 100 1000 10000 100000

10

100

1000

10000

Calendar Up/Down

Bimodal

Camel(0.001,0.999)

Camel(0.8,0.2)

Exp(1)

Expmix

Ntriang(0,1000)

Triang(0,1.5)

Uniform(0,2)

Uniform(0.9,1.1)

Queue Size

A
ve

ra
ge

 N
u

m
be

r
of

 O
pe

ra
tio

n
s

7.3.4 SPQ Integrated into OTBSAF

Two situations were evaluated to determine SPQ's benefits to OTBSAF and ultimately to

the concurrent model approach. Initially, the OTBSAF priority queue was replaced with

the SPQ and the resulting version of otherwise standard OTBSAF was benchmarked on

the same computer originally used in Chapter 3 for Table 7. In this case, it was only ran

on the fastest computer Bahr3. The same procedures were used as used previously for

the earlier benchmarks, except in this case they were repeated for each version of

OTBSAF 10 times. Again OTBSAF topped out at 70 platoons or 280 vehicles for all

iterations. The modified OTBSAF topped out at 75 platoons or 300 vehicles for 3 of the

iterations and 74 platoons or 296 vehicles for the other 7 iterations. We can interpret

these results as an improvement in vehicle capacity of 6%.

To directly compare the performance of the two priority queues, a configuration similar

to that used for the general SPQ study was established. Since both of these queues used

integer priorities, the distributions had to be scaled and converted to integers. To verify

the conversion, the revised SPQ results were compared to those presented in Figure 48,

and found to be comparable. In this case, we measured the queue performance by

preloading an array with all the priority increments prior to starting the get minimum

insert the new entity at priority minimum plus the previously stored value. The goal was

to minimize the amount of time to create the values used in the next cycle. The results

are shown in Figures 52 and Figure 53, for the average hold times for nine different

queue sizes from 250 entries to 100,000 entries for 10 different distributions. As shown,

the SPQ was much faster than the conventional Priority Queue which required from 1.9

152

to 10.84 times as long with an average of 4.23 times as long over all the different queue

sizes and distributions.

153

250 500 1000 2500 5000 10000 25000 50000 100000

0.00E+000

1.00E-007

2.00E-007

3.00E-007

4.00E-007

5.00E-007

6.00E-007

7.00E-007

8.00E-007

9.00E-007

1.00E-006

bimodal

camel

camelt

ddc

expoen

expomix

ntriang

triang

uniform

uniforms

Queue Size

A
ve

ra
g

e
 H

ol
d

 T
im

e

250 500 1000 2500 5000 10000 25000 50000 100000

0.00E+000

1.00E-007

2.00E-007

3.00E-007

4.00E-007

5.00E-007

6.00E-007

7.00E-007

8.00E-007

9.00E-007

1.00E-006

bimodal

camel

camelt

ddc

expoen

expomix

ntriang

triang

uniform

uniforms

Queue Size

A
ve

ra
g

e
 H

ol
d

 t
im

e

CHAPTER 8 CONCLUSIONS

8.1 Summary

The Concurrent Model approach addressed in this dissertation is an advanced simulation

technique developed to address the tradeoffs between continuous updated status of all

elements and the limitations on the availability of that information due to the restrictions

of bandwidth, delay, and dropouts. This dissertation has shown through analysis and

experimental results that local models can generate the desired information with a much

lower update rate than DIS-based. Furthermore, techniques for generating the required

number of entities were postulated and explored. This technique made use of the

Discrete Event Simulation approach and the basic data structure used for implementation

of a Discrete Event Simulation, the event list or priority queue, was explored and

significantly refined.

The SPQ was shown to be stable and give improved performance for a large class of

distributions commonly used to compare event list implementations. It was incorporated

into the OTBSAF scheduler where it again showed that it measurably improved the

performance of the application. By using the operation cost minimizing approach to

154

bound the knowledge based heuristics it provides a superior near constant time

performance priority queue algorithm.

The modifications to the initial SPQ algorithm for integration into OTBSAF

demonstrated its effectiveness when applied to an integer restricted resolution clock

environment. The addition of equality FIFO lists as part of the structure maintained the

O(1) performance while providing strong clocking characteristics required for efficient

repeatable simulations used in the Concurrent Model Approach.

8.2 Major Results

The concurrent model approach was developed and applied to the Remote SAF Operator

application. To address scaleability and efficiency of the concurrent model approach, a

superior priority queue, the SPQ, was developed as an event list for discrete event

simulation. The Concurrent SAF experiments demonstrated that repeatability could be

ensured by using a single random number source. However, it did not provide the

performance benefits that were seen in the RSAFO.

8.2.1 Bandwidth Reduction

First, the theorems for Temporal Congruence ΨT(t, ER) and Behavioral Congruence ΨB

(EL, ER) were established and proven as the correctness factors of this approach. It was

proven that the Necessary and Sufficient Conditions for Behavioral Congruency are “

S E L is behaviorally congruent to S E R if the models are repeatable and they are

155

given the same inputs in the same order.” It was also proven that Temporal congruency

is obtained when “ S E L is temporally congruent to S E R if the simulations are soft

real-time synchronized to GPS time, and all changes are received s seconds before

scheduled execution time, and are processed in the same order as transmitted. Where s is

congruence setup time.”

Next using the RSAFO application, it was demonstrated that the Concurrent Model

Approach could provide the ratio BR=190-fold improvement over the dead reckoning

approach. This was demonstrated by modifying OTBSAF to serve as human interface

and local and remote simulations of the concurrent model approach. Experimentally it

was demonstrated that BR exceeded 100 by various factors depending on nature and

length of the scenarios.

For the RSAFO application we chose a magnitude Behavioral Congruence function of

ΨB(EL, ER)= x L−x R
2 yL− yR

2z L−z R
2 for each sample, for each vehicle. Since ΨB

is a magnitude, the ΓB truth function evaluates to ΓB is TRUE if and only if Ψ B ≤ δ

and FALSE otherwise. The chosen deviation allowed was δ = 25 meters. The

computed average deviation was Ψb
ave= 2.859. The individual deviations were within 5

metes over 90% of the samples. And the models maintained congruence over 99% of the

time.

156

Theorems for Bandwidth reduction, latency and dropout immunity were established and

proven as the performance factors for this approach. It was proven that “The concurrent

model approach provides reduced bandwidth demand.” The demonstrated bandwidth

reduction is more than adequate to enable feasible mixed live and virtual training with

Embedded Simulation. It was proven that “The concurrent model approach provides a

latency hiding ratio of t prott wait

T tot

.” Latency hiding provides realism while using globally

distributed participants in the exercise. It was proven that “The concurrent model

approach provides outage immunity ratio of up to BR.” Dropout immunity provides

benefits for both training and enhanced situational awareness. For the RSAFO test

scenario the scenario was totally immune to any outage that occurred after the first 96

seconds as no further data was required to complete the remote generation of the

scenario.

8.2.2 Order(1) Priority Queue

Since since short HOLD time events can occur much more frequently in a simulation

than long HOLD times, adaptive queue management techniques that capitalize on this

characteristic can significantly reduce queue overhead. Adaptive techniques were

successfully applied by developing the SPQ to allow nearly constant time performance

for these distributions. An important characteristic is low-overhead sensing of queue

performance, which in turn triggered the adaptive measures required to bring the queue

back within the optimal range of operation. A key benefit of these results is that they

157

allow the prospective user to have confidence that the event queuing distribution will not

drastically change the execution time of the simulation model.

SPQ performance whether analyzed from an operation count or a timing exercise, can

show a reduction in overhead of greater than 50% in comparison to the calendar queue,

and will perform no worse than the better of the linear queue or the calendar queue

individually. Analysis of the SPQ shows that it will perform comparably to a linear

queue for less than eight events and will exhibit nearly constant time performance for

larger queue sizes. SPQ performance can be shown to be better than that expected for

binary queues with less complexity in the primary paths of execution. The SPQ performs

well not only for the distribution of the case study but also for the distributions

commonly used to compare queue performance for the event list application.

The modified SPQ as applied to OTBSAF again demonstrated a performance

improvement. It provided a 6% percent increase in the number of vehicles that could be

simulated. It did this by improving the efficiency of the primary event list used in

OTBSAF. In queue performance comparisons it provided execution time reductions of

from 47.3% to 90.8% with a mean of 76.4% over the various test distributions. Thus, on

the average the SPQ only took 23.6% of the execution time as compared to the priority

queue supplied with OTBSAF to perform the overhead function of maintaining the

execution order for the simulation.

158

8.3 Future Work

Follow on work would include developing automated techniques to convert an operators

interactions with his equipment to commands and parameter changes to a SAF model that

represents the operators system in the situation database. A suggested approach would be

to adapt model based reasoning as a method of determining the factors for the congruence

stream G0 for individual entities.

Remote SAF uses independent random number generators with a common seed, but

postulates multiple simulators to provide the total view. It also postulates independent

simulation rates at various sites. This would imply different random number sequences

unless a different method of synchronization is employed. Another alternative would be

to only use a random numbers for the SAF source and to use the most likely values for

each of the clones, then issue corrections when the congruence delta exceeded

predetermined thresholds. Development of application resilient techniques to the

implementation of random characteristics in the concurrent model approach while

maintaining congruence is essential for the extension of this approach to extended

training scenarios. For situational awareness applications, random numbers should be

replaced by fixed values. For training purposes a random host simulation with feedback

correction for the clones or highly synchronized pseudo-random generators could be

investigated to provide the desired divergence.

159

Additional work needs to be performed to implement latency compensation. The current

DIS timestamp generation capabilities of OTBSAF are not sufficient for this purpose.

Follow-on work for the SPQ includes tuning the heuristics for special cases where the

dynamics of the distribution raise the average insertion cost appreciably.

160

APPENDIX: EMBEDDED SIMULATION SYSTEMS

161

System Environment

The primary purpose of a combat vehicle is enable the user/operator to perform his

combat mission more effectively. While training certainly contributes to the combat

effectiveness of the equipment crew, it is not the primary purpose of the combat system.

Therefore , any additions, or modifications to the system for training purposes has to

compete for space, power and weight against other possible mission enhancement

modifications. However, if the training technology can be incorporated from a dual use

viewpoint, that is mission enhancement as well as training enhancement, it becomes a

very desirable candidate for system inclusion. For this reason, most of the proposed

technologies are being addressed, not only from training enhancement purposes, but also

from mission enhancement potential. In addition, anytime the training system can take

advantage of existing combat equipment components, or the modifications will not

seriously impact space, power, weight, and reliability the training role in itself provides

increased effectiveness for the equipment. Yet, as a component of the system it must

survive the same environment of the system and if it fails in must not decrease the

reliability of the system for its primary mission.

162

Advanced Technologies for Embedded Simulations

The technologies being developed as part of creating useful and powerful embedded

simulations should address all significant issues integrating simulation technology with

operational systems which include:

1. Sensor fusion – Sensor data, from electronic to human, will have to be fused

together in the simulation environment to provide the warfighter with an intuitive

view of the situation.

2. Visualization – Visualization of the different elements of the situation must be

designed in such a way as to be ergonomically appropriate for the warfighter.

3. Human behavior representation – Much of the modeling and simulation will

involve human behaviors. While Computer Generated Forces (CGF) technology is

becoming mature, techniques to gather and learn the appropriate behaviors are still

quite primitive. This will be necessary to quickly create the forces necessary to

visualize the real world through the virtual world. Furthermore, inclusion of

emotions, degraded states and variability of performance will also need to be

incorporated.

4. Real-time simulation – In an operational context, real-time performance that is,

bounded response time, will most definitely be a requirement.

5. Computer Networking – Much of the data exchanges will be done on an

operational internet where communications between warfighters at all levels and in

all directions will have to be made securely, reliably and fast. Enhancements to

163

current distributed simulation protocols such as HLA will have to be made to make

them operation-ready.

6. Wireless Communications - The inter-unit communication will be performed

within the constraints of wireless protocols.

Advanced Technologies for Embedded Simulations Current Status

Over the period of October of 1996 through September of 2001 Headquarters United

States Army Simulation, Training, and Instrumentation Command (STRICOM)

concluded a research program addressing the technologies for embedded simulation

called the Inter-Vehicle Embedded Simulation Technology Science and Technology

Objective (INVEST-STO) [Bahr 1997A] [Bahr 1997C] [Bahr 1998] [Bahr 2002]. This

Science and Technology Objective investigated the following technologies with the listed

results.

All of the functions of training case 1 have been demonstrated on multiple combat

vehicles that include the Marine LAV [Riley 2000], the Army's Abrams Tank

[Klingensmith 1998] and Bradley Fighting Vehicle. In addition to the standalone

capabilities they have also been networked together with components [Pollock 1999] of

the Close Combat Tactical Training (CCTT) environment and used for collective

training. The technologies required for the merge of live and virtual simulations have

been studied but still need considerable development. In most cases concepts have been

164

demonstrated, but not at a level sufficient for engineering development. Individual areas

are discussed below:

a. Geometric pairing: A training/operational testing instrumentation system based on

GPS Interferometry has been developed and in use by the National Guard. This

geometric paring system was developed by SRI.

b. Aim point determination: As Shiavone reports [Schiavone 2000] [Dolezal 1998] the

concept has been demonstrated but further analysis of the targeting output of sensor

systems is required. This will require collection of targeting information from actual

combat systems.

c. High definition terrain database: The JFTB has demonstrated the collection of 1 meter

resolution databases with processing completed within 24 hours of the flights for data

collection. The integration of this information into Simulation databases still needs to be

investigated. With the inclusion of onboard sensors in modern combat vehicles we need

to develop technologies to integrate in near real-time updated information with the

prepared databases.

d. Live Virtual Terrain Registration: Gelenbe et al [Gelenbe 2000] have demonstrated a

method of registering a virtual scene with a a live view to the level necessary to allow

virtual targets to inserted in the live view with sufficient resolution for training. Better

databases could improve this technique, but this technique does not require the

sophisticated instrumentation of previously demonstrated techniques.

165

e. Communication reduction techniques: Progress has been demonstrated on the

Concurrent Player Model approach [Bahr 1996] as reported by McHale and Braudaway

in [McHale 1998] [Ourston 1998]. Current work has demonstrated two independent

platforms maintaining duplicate scenarios with very low synchronization costs. This is

expected to be demonstrated by providing for remote SAF operation within the next year.

Henninger et al [Henninger 2000] have reported techniques for improving models to be

used for this purpose.

166

167

Figure 54. Screen Shot 2

168

Figure 55. Screen Shot 3

169

Figure 56. Screen Shot 4

170

Figure 57. Screen Shot 5

171

Figure 58. Screen Shot 6

172

Figure 59. Screen Shot 7

173

Figure 60. Screen Shot 8

174

Figure 61. Screen Shot 9

LIST OF REFERENCES

[Abate 1999] C. Abate, H. Bahr, "Embedded Simulation," Armor Magazine, June-July
1999.

[Abbott 1992] R. Abbott, H. Garcia-Molina, "Scheduling Real-time Transactions: A
Performance Evaluation," ACM Transactions on Database Systems, September 1992.

[Ahn 1999] J. Ahn and S. Oh, " Dynamic Calendar Queue," in Thirty-Second Annual
Simulation Symposium, April 1999.

[Bahr 1994A] H. A. Bahr, "Combined Event and Process Simulation Model of a
Distributed Data Collection System," in Conference Record of IEEE Southcon
Conference, 1994.

[Bahr 1994B] H. A. Bahr, Distribution Adaptive Priority Queue Algorithm For Discrete
Event Simulation, Masters Thesis, University of Central Florida, Orlando, FL, 1994.

[Bahr 1996] H. A. Bahr and R. F. DeMara, "A Concurrent Model Approach to Scaleable
Distributed Interactive Simulation," in Proceedings of 15th Workshop on Distributed
Interactive Simulation, Fall 1996.

[Bahr 1997A] H. A. Bahr, "Embedded Simulation for Ground Vehicles," in Proceedings
of Simulation Interoperability Workshop, Spring 1997.

[Bahr 1997C] H. A. Bahr, C. Abate, J. Collins, "Embedded Simulation for Army Ground
Combat Vehicles," in 19th I/ITSEC Conference Proceedings, December 1997.

[Bahr 1998] H. A. Bahr and C. Abate, "Embedded Simulation," in Proceedings of 20th
I/ITSEC Conference, Fall 1998.

[Bahr 2002] H. A. Bahr and G. Holifield, "Embedded Simulation: INVEST-STO and
Beyond," in Proceedings of 1st SAWMAS Workshop, October 2002.

[Bahr 2004] H. A. Bahr and R. F. DeMara, "Smart Priority Queue Algorithms for Self-
Optimizing Event Storage," Simulation Modeling Practice and Theory, March 2004.

[Baker 1999] T. Baker, "Time Management in Distributed Simulation Models," in The
Simulation Technology and Training (SimTecT99) Conference, March 1999.

[Balarin 1997] F. Balarin, A. Sangiovanni-Vincentelli, "Schedule Validation for
Embedded Reactive Real-Time Systems," in Design Automation Conference 97,
1997.

175

[Bassiouni 1997] Bassiouni, M. A., etal, "Performance and reliability analysis of
relevance filtering for scalable DIS," ACM Transactions on Modeling and Computer
Simulation (TOMACS), 1997.

[Brown 1988] R. Brown, "Calendar Queues: A Fast O(1) Priority Queue Implementation
for the Simulation Event Set Problem," Communications of the ACM, October 1988.

[Carothers 1997] C. Carothers, R. Fujimoto, R. Weatherly, A. Wilson, "Design and
Implementation of HLA Time Management in the RTI Version F.0," in Proceedings
of the 1997 Winter Simulation Conference, 1997.

[CBO 2003] Congressional Budget Office, "The Army's Bandwidth Bottleneck,"
Congress of United States, CBO Study, 2003.

[Cheung 1994] Cheung, S., Loper, M., "Synchronizing simulations in distributed
interactive simulation," in Proceedings of the 26th conference on Winter simulation,
1994.

[Chou 1994] P. Chou, G. Borriello, "Software Scheduling in the Co-Synthesis of
Reactive Real-Time Systems," in Design Automation Conference, 1994.

[Collins 2000] R. Collins etal, "System for Video Surveillance and Monitoring,"
Robotics InstituteCarnegie Mellon University, Tech Report, 2000.

[Dahman 1996] J. Dahman and R. Lutz, "HLA Time-Management and Distributed
Interactive Simulation," in Proceedings of 14th Workshop on Distributed Interactive
Simulation, Spring 1996.

[Dolezal 1998] M. Dolezal, "Correlating Live Aimpoints and Virtual Targets," in SISO
Simulation Interoperability Workshop, Spring 1998.

[Emshoff 1970] J. R. Emshoff, Jr., and R. L. Sisson, "Design and Use of Computer
Simulation Models," New York, MacMillan, 1970.

[Erickson 2000] K.E. Erickson, R.E. Lander, and A. LaMarca, "Optimizing Static
Calendar Queues," ACM Transactions on Modeling and Computer Simulation
(TOMACS), July 2000.

[Evans 1967] G. W. Evans, G. F. Wallace, and G. L. Sutherland, "Simulation Using
Digital Computers," Englewood Cliffs, NJ, Prentice-Hall, 1967.

[Fujimota 1996] R. Fujimota and R. Weatherly, "HLA Time Management and DIS," in
Proceedings of 14th Workshop on Distributed Interactive Simulation, Spring 1996.

[Fujimoto 1990] R. M. Fujimoto, "Parallel Discrete Event Simulation," Communications
of the ACM, October 1990.

[Fujimoto 1996] R. Fujimoto and R. Weatherly, "HLA Time Management and DIS," in
Proceedings of 14th Workshop on Distributed Interactive Simulation, Spring 1996.

[Fujimoto 1998] R. Fujimoto, "Time Management in the High Level Architecture,"
Simulation, December 1998.

176

[Fujimoto 1999] R.M.Fujimoto, "Parallel and Distributed Simulation," in 1999 Winter
Simulation Conference, December 1999.

[Fullford 96] Fullford, Deborah A., "Distributed interactive simulation: its past, present,
and future," in Proceedings of the 28th Winter Simulation Conference, December
1996.

[Gelenbe 2000] E. Gelenbe, K. Hussain, B. Foss, N. Lobo, H. A. Bahr, "Simulation
Driven Virtual Objects in Real Scenes," in 22nd I/ITSEC Conference Proceedings,
December 2000.

[George 1997] L. George, P. Minet, "A FIFO worst case analysis for a hard real-time
distributed problem with consistency constraints," in International Conference on
Distributed Computing Systems, May 1997.

[Gerber 2001] W. J. Gerber, "Real-Time Synchronization of Behavioral Models With
Human Performance in a Simulation," Ph.D. Dissertation, University of Cental
Florida, Orlando, Florida, 2001.

[Goblick 1996] T. J. Goblick, et al, "Technical Requirements and Feasibility Analysis of
21st Century Live Play Simulation," Massachusetts Institute of Technology, Lincoln
Laboratory Report ADS-1, 1996.

[Gonnet 1976] G. H. Gonnet, "Heaps Applied to Event Driven Mechanisms,"
Communications of the ACM, July 1976.

[Gonzalez 1998] A. Gonzalez, R. DeMara and M. Georgiopoulous, "Vehicle Model
Generation and Optimization for Embedded Simulation," in Proceedings of
Simulation Interoperability Workshop, Spring 1998.

[Henninger 1998] A. Henninger, W. Gerber, R. DeMara, M. Georgiopoulos & A.
Gonzalez, "Behavior modeling framework for embedded simulation," in 20th I/ITSEC
Conference Proceedings, December 1998.

[Henninger 2000] A. Henninger, A. Gonzalez, W. Gerber, R. Demara, M.
Georgiopoulos, "On the Fidelity of SAF's: Can Performance Data Help?," in 22nd
I/ITSEC Conference Proceedings, December 2000.

[Henninger 2000B] A. Henninger, "Neural Network Based Movement Models to
Improve the Predictive Utility of Entity State," Ph.D. Dissertation, University of
Central Forida, Orlando, Fl, 2000.

[HLA 1996] , "HLA Time Management Design Document Version 1.0", 1996.

[HLA 1998], U. S. Department of Defense, "Time Management," High Level
Architecture Interface Specification Version 1.3, ch. 9, 1998.

[IEEE 1995] Standards Committee on Interactive Simulation, "IEEE Standard for
Distributed Interactive SimulationÑ Application Protocols", 1995.

[Jones 1986] D. W. Jones, "An Empirical Comparison of Priority-queue and Event-set
implementations," Communications of the ACM, April 1986.

177

[Jump 1993] J. R. Jump, "YACSIM Reference Manual, Version 2.1", 1993.

[Klingensmith 1998] M. Klingensmith, C. Hobson, "Incorporation embedded Simulation
and Training into an Existing Vehicle Architecture," in SISO,Simulation
Interoperability Workshop, Fall 1998.

[Lamport 1978] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System," Communications of the ACM, July 1978.

[Laplante 1997] P. A. Laplante, "Real-Time Systems Design and Analysis An Engineer's
Handbook (2e)," Piscataway, NJ, IEEE Press, 1997.

[Larocque 1996] G.R. Larocque, S.J. Lipoff, "Application of discrete event simulation to
network protocol modeling," in 5th IEEE International Conference on Universal
Personal Communications, September 1996.

[Lawlor 2002] Lawler, M, "Tactical Concepts Come to Life," Signal Magazine,
November 2002.

[Lehoczky 1996] J. Lehoczky, "Real-time Queueing Theory," in Proceedings of the
IEEE Real-Time Systems Symposium, December 1996.

[Lin 1991A] Y. Lin, E. Lazowska, "A Study of Time Warp Rollback Mechanisms,"
ACM TransactIons on Modeling and Computer Simulations, January 1991.

[Lin 1991B] Y. Lin, E. Lazowska, "A Time-Division Algorithm Simulation for Parallel
Simulation," ACM Transactons on Modeling and Computer Simulations, January
1991.

[McDonald 1998A] I. B. McDonald, H. A. Bahr, "Research on Cost Effectiveness of
Embedded Simulation and embedded Training," in Proceedings of SISO: Simulation
Interoperability Workshop, Spring 1998.

[McDonald 1998B] I. B. McDonald, H. A. Bahr, "Research on the Cost Effectiveness of
Embedded Simulation and Embedded Training An Update," in Proceedings of SISO:
Simulation Interoperability Workshop, Fall 1998.

[McDonald 2000] I. B. McDonald, H. A. Bahr, C. Abate, "Cost Effectiveness of
Embedded Training On Army Ground Vehicles," in 22nd I/ITSEC Conference
Proceedings, December 2000.

[McHale 1998] V. McHale and W. Braudaway, "Developing Synchronized Player
Models for Embedded Training," in Proceedings of 20th I/ITSEC conference, Fall
1998.

[Mellichamp 1983] D. A. Mellichamp, "Real-Time Computing With Applications to
Data Acquisition and Control," New York, Van Norstrand Reinhold, 1983.

[Ourston 1998] D. Ourston, "Staying With the Live Vehicle: the Sychronized Player
Model," in SISO,Simulation Interoperability Workshop, Fall 1998.

178

[Petrasko 1993] B. E. Petrasko and F. Meraud, "Distributed Event-Oriented Simulation
Using a Hypercube Architecture," in IASTED International Conference on Modeling
and Simulation, March 1993.

[Pollock 1999] E. Pollock, M. Riley, M. Falash, H. A. Bahr, "Use of Legacy Training
Systems in the Development of Embedded Simulation," in Proc of International
Training and Education Conference, April 1999.

[Riley 2000] M. Riley, "An Evolutionary Approach to Embedded Training," in 22nd
I/ITSEC Conference Proceedings, December 2000.

[Roberts 1998] M.D. Roberts, J.McCutcheio, J.W.Willcox, J.G. Steele, "A Comparison
of ModSAF and Enhanced ModSAF Scalability," in DOD HPC Modernization
Program UGC Proceedings, June 1998.

[Ronngren 1993] R. Ronngren, J. Riboe and R. Ayani, "Lazy queue: New approach to
implementing the pending event set," Int. J. Computer Simulation, August 1993.

[Ronngren 1997] R. Ronngren and R. Ayani, "A comparative study of parallel and
sequential priority queue algorithms," Transactions on Modeling and Computer
Simulation (TOMACS), April 1997.

[SAIC 2001A] SAIC, "OTBSaf Ver 1.0 Version Description Document", 2001.

[SAIC 2001B] SAIC, "OTBSaf Ver 1.0 User's Manual", 2001.

[SAIC 2001C] SAIC, "OTBSaf Ver 1.0 Software Architecture Design and Overview
Document", 2001.

[SAIC 2001E] SAIC, "OTBSaf Ver 1.0 Programmer's Reference Manuel", 2001.

[Schiavone 2000] G. Shiavone, "Aim point determination," Institution for Simulation
and Training, University of Central Florida, Final report, 2000.

[Schriber 2001] T. J. Schriber, and D.T. Brunner, "Inside Discrete-Event Simulation
Software: How It Works and Why It Matters," in 2001 Winter Simulation Conference,
December 2001.

[Sun 1996] J. Sun, J. Liu, "Synchronization Protocols in Distributed Real-Time
Systems," in Proceedings of the 16th ICDCS, May 1996.

[Sun 1997] J. Sun, J. Liu, "Bounding Completion Times of Jobs with Arbitrary Release
Times, Variable Execution Times, Resources," IEEE Transactions on Software
Engineering, October 1997.

[Tan 2000] K.L. Tan, and L.J Thng, "SNOOPY Calendar Queue," in 2000 Winter
Simulation Conference, December 2000.

[Tiernan 1995] T.R Tiernan, "Synthetic Theater of War - Europe (STOW-E)," RDT&E
Division, Final Report, 1995.

[Valle 1997] T. Valle, J. Watson, "Communications Techniques for Embedded
Training," in Proceedings of Simulation Interoperability Workshop, Fall 1997.

179

[Vaucher 1975] J. G. Vaucher and P. Duval, "A Comparison of Simulation Event List
Algorithms," Communications of the ACM, April 1975.

[Wieland 1999] F. Wieland, "The Threshold of Event Simultaneity," Transactions of
The Society for Computer Simulation International, March 1999.

[Wise 1971] I. E. Wise, "Encyclopedia of Instrumentation and Control," New York,
McGraw Hill, Inc, 1971.

180

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER 1 INTRODUCTION
	1.1 Embedded Simulation
	1.2 Role of Communications in Embedded Simulation
	1.3 Motivation for Concurrent Models
	1.4 Contribution of Dissertation
	1.5 Overview of Dissertation

	CHAPTER 2 PREVIOUS WORK
	2.1 Overview
	2.2 Communication Reduction Strategies
	2.3 Synchronized Player Models
	2.4 Causality and Time Management
	2.5 Real-time, simulation-time, Scheduling, and Synchronization
	2.6 Queuing Strategies

	CHAPTER 3 TECHNICAL PROBLEM DESCRIPTION
	3.1 Background
	3.2 Operational Constraints
	3.3 Computational and Communication Resource Tradeoffs
	3.4 Situation-related Communication
	3.5 OTBSAF as a Prototyping Testbed
	3.6 OTBSAF Scalability and Priority Queue Performance

	CHAPTER 4 CONCURRENT MODEL APPROACH TO EMBEDED SIMULATION
	4.1 Player Units (PU)
	4.2 Processing of Discrepant Results
	4.3 Concurrent Model Approach Design Criteria

	CHAPTER 5 ANALYTICAL RELATIONSHIPS IN COMMUNICATION MECHANISMS
	5.1 Correctness Characteristics
	5.2 Performance Benefit Characteristics

	CHAPTER 6 CONCURRENT MODEL CONSTRUCTS AND MECHANISMS
	6.1 Background
	6.2 Integrated Model Execution
	6.3 Isolated Model Functions
	6.4 Smart Priority Queue Data Structure
	6.5 Integration of SPQ in OTBSAF

	CHAPTER 7 EXPERIMENTAL COMPARISON OF ALTERNATIVES
	7.1 Experimental Configurations
	7.2 Description of Scenarios
	7.3 Presentation of Results

	CHAPTER 8 CONCLUSIONS
	8.1 Summary
	8.2 Major Results
	8.3 Future Work

	APPENDIX: EMBEDDED SIMULATION SYSTEMS
	LIST OF REFERENCES

