
Page 1 of 2

Energy Consumption Analysis of Different ALU

Look-up Table Based Circuit Designs

Ivan Bernal Garcia

Department of Electrical and Computer Engineering

University of Central Florida

Orlando, FL 32816-2362

Abstract—The purpose of this paper is to evaluate how

different look-up table designs have an effect on energy

consumption. For this paper an assembly langue code was

made that would ask the user for an input word, store it in

the form of a string and use it to find matches on a

hardcoded string. Once the code went through the string the

program returns the input string capitalized with the

number of times that input appeared in the hardcode string.

Once the code was completed the Instruction Statistics tool

was used to measure the types of instructions used and how

many times they were used. These numbers were used to

calculate the energy consumption of each design, and design

[1] had the best energy consumption out of all the other

designs only consuming 267.9 pico-joules.

Keywords— fj (femto joules), LUT (look up table), ALU

(algorithmic logic unit), FPGA (field programmable gate

array), CMOS, energy consumption, NEMS, SRAM

I. PROJECT DESIGN

The assembly code used takes in a word input for the user
and stores it in the form of a string. We store the word in the
label ‘term’ that has 10 bytes reserved for cases of different word
length, including the enter character that has a value of 10. The
term is then printed in all caps by utilizing a loop that turns lower
case characters to upper case by subtracting 32 from the
characters ASCII value. The string we are searching is loaded to
the label ‘string’ and the term is load again so we start off from
the first characters. A label called loadterm is used to reload the
term every time we either miss or get a match. We jump to label
‘loop’ where we do multiple things, load a byte from both
strings, check if term equals 10 (ASCII value for enter) means
there’s a word match we jump to ‘loadtermmacth’ to rest the
term string and add on to the match counter. If ‘string’ equals
zero we have reached the end of the string and proceed to print
the results. Plus to check if we have a perfect match, add 32 to
check if we have a lower case match, subtract 64 in case its an
upper case match, if we get a match from those three options we
jump to ‘match’, add one to both string to move to the next letter,
then jump to ‘loop’ and check the new letters. If there is no
match we add one to the ‘string’ and reload the term and jump
back to loop to check the next character. Once we reach the end
of the string we jump to exit and print the number from the word
match counter. To test the code three different inputs were used,
lower case, lower case and upper case, and a word and a number
separated by a space. This was done to see if the code work for

Fig.1: Flowchart of the assembly program.

Fig.2: Sample outputs of the assembly program.

different character types, which it did providing the right
number of times the input word appeared on the string and
printing the outputs in the desired format correctly.

II. LOOK-UP TABLE CIRCUIT

 Look-up table (LUT) based ALU are interesting pieces of

technology that have a wide range of applications [7]. A look

up table has a pre-defined number of inputs and outputs, all

possible calculation you want can be simulated without the

need for Boolean gates, which require time to perform the

calculations and take up space a lot of space. A LUT is

essentially a large truth table written in memory containing all

possible inputs and their outputs. Basically, a LUT knows that

5x5 is 25 just by looking it up that combination, when using

Boolean gates, they have to work out what 5*5 is first then

return an answer. LUTs are used in FPGAs logic blocks to

perform logic functions, they are stored in multiple logic tiles

and can be wired together to make larger LUTs [1][5].

 Multiple technologies are used to realize LUTs, PT-base

MUXes are used to make LUTs that use low voltage. For faster

LUTs a spin-MTJ based LUT using CMOS and sense amplifier

switches are used however this increases speed, but waste more

energy making it the least efficient design [2]. LUTs that use

SRAM and CMOS circuits tend to be cheaper but have power

leaking due to lots of transistors. Reducing the number of sense

amplifiers and sharing transistors to reduce the size of the

LUTs compensates for the loss [3][6]. Additionality a

combination of CMOS-NEMS switch LUTs have the ability to

have near zero power leakage while still being fast [4].

III. RESULTS AND DISCUSSION

Using the instruction statistics tool in MARS we run the code
that was created to see how much of each instruction type was
used. Here we have the number of each type of instruction used
and the corresponding amount of energy each instruction uses:

1) ALU: 3751 intrutions ALU = Refer to Table I

2) Branch: 3109 intrutions Branch = 3 fJ

3) Jump: 1813 intrutions Jump = 2 fJ

4) Memory: 1279 intrutions Memory = 200 fJ

5) Other: 18 intrutions Other = 5 fJ

Table 1 contains the amount of energy require per

instructions for the different LUT designs design shown in texts

[1-4].

For the total energy calculations, we take the number of

instructions for an instruction type and multiply by the

corresponding energy per instruction and the corresponding

design option.

IV. CONCLUSION

As fast as technology is improving by becoming faster and
cheaper, the area that has remained mostly the same is the power
consumption of these devices. There’s a lot of promising
technology being developed to improve the efficiency of LUT
based ALUs. These improvements made by these different
technologies made a small difference in the total energy
consumption. I learned how to use the UCF online library
resources to find scholar papers on my topic, how spintronic
devices function, the modularity of FPGAs, how LUTs work to
simulate Boolean functions, realizing assembly code to find
words in a giving string. The overall best design was the one
proposed in reference [1] only consuming 267.9 pico-joules.

REFERENCES

[1] A. Alzahrani and R. F. DeMara, "Process variation immunity of alternative
16nm HK/MG-based FPGA logic blocks," 2015 IEEE 58th International
Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO,
2015, pp. 1-4.

[2] W. Zhao, E. Belhaire, C. Chappert, F. Jacquet, P. Mazoyer, “New non-
volatile logic based on spin-MTJ,” physica status solidi (a), vol. 205, no. 6,
pp. 1373-7, 2008.

[3] D. Suzuki, M. Natsui and T. Hanyu, “Area-efficient LUT circuit design
based on asymmetry of MTJ's current switching for a nonvolatile FPGA,”
2012 IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS), Boise, ID, 2012, pp. 334-337.

[4] Y. Zhou, S. Thekkel and S. Bhunia, “Low power FPGA design using
hybrid CMOS-NEMS approach,” Low Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, Portland, OR,
2007, pp. 14-19.

[5] M. A. Bounouar, D. Drouin and F. Calmon, "Towards nano-computing
blocks using room temperature double-gate single electron
transistors," 2014 IEEE 12th International New Circuits and Systems
Conference (NEWCAS), Trois-Rivieres, QC, 2014, pp. 325-328.

[6] P. Mal, J. F. Cantin and F. R. Beyette, "The circuit designs of an SRAM
based look-up table for high performance FPGA architecture," The 2002
45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002.,
2002, pp. III-227-III-230 vol.3.

[7] N. Leder, B. Pichler, G. Magerl and H. Arthaber, "Robust verification of
look-up-table-based models for all-digital RF-transmitters," 2017 12th
European Microwave Integrated Circuits Conference (EuMIC),
Nuremberg, 2017, pp. 81-84.

Table II: Total Energy consumption for the assembly

program using designs provided in [1-4].

Design Total Energy Consumption

[1] 267.9 pj

[2] 272.0 pj

[3] 269.8 pj

[4] 268.5 pj

Table I: Energy consumption for a single ALU Instruction

in the designs provided in [1-4].

Design
Energy Consumption

For Each ALU Instruction

[1] 0.1 fJ

[2] 1.2 fJ

[3] 0.6 fJ

[4] 0.25 fJ

