
Designing digital circuits for FPGAs using parallel genetic algorithms
(WIP)

Rizwan A. Ashraf, Francis Luna, Damian Dechev and Ronald F. DeMara
Department of Electrical Engineering and Computer Science University

of Central Florida
Orlando, FL, USA - 32816 - 2362

rizwan.ashraf@knights.ucf.edu, francis.luna@knights.ucf.edu, dechev@eecs.ucf.edu, demara@ucf.edu

Keywords: FPGA, Circuit Synthesis, Parallel Genetic
Algorithms, Evolvable Hardware, Multicore Computing

Abstract
Multicore processors are becoming common whereas current
genetic algorithm-based implementation techniques for syn-
thesizing Field Programmable Gate Array (FPGA) circuits do
not fully exploit this hardware trend. Genetic Algorithm (GA)
based techniques are known to optimize multiple objectives,
and automate the process of digital circuit design. In this pa-
per, parallel GA algorithms are proposed for the synthesis of
digital circuits for LUT-based FPGA architectures. Parallel
modes of the GA such as Master-Slave and the Island model
are compared to see which scheme results in better speedup
and quicker convergence for effective utilization of current
multicore hardware. Speedup of about five over the sequen-
tial single-threaded implementation is achieved with both the
schemes on a six-core machine. Convergence is also found in
fewer number of generations. The methods described here-in
can be employed in Evolvable Hardware Systems as well as
FPGA CAD tools.

1. INTRODUCTION

The realm of developing electronic circuits via techniques
based on evolutionary principles such as Genetic Algorithms
is referred to as Evolutionary Electronics [22]. Electronic cir-
cuits such as amplifiers, analog and digital filters, digital cir-
cuits (e.g. combinatorial arithmetic circuits, parity circuits,
sequential circuits, etc.) have been synthesized using such al-
gorithms [1],[11],[22]. An evolutionary algorithm based de-
sign approach is an excellent tool for optimizing human-
generated designs or synthesizing designs which meet mul-
tiple objectives of power constraints, size constraints in terms
of number of gates required, and timing constraints in terms
of circuit delay [6],[10]. Essentially it automates the process
of developing electronic circuits and is characterized by its
ability to search complex solution space. This field, charac-
terized by the use of reconfiguration techniques for hardware
based on Genetic Algorithms, is known as Evolvable Hard-
ware [21]. Adaptive systems can be realized using such tech-
niques, which can adjust based on dynamics of the operating
environment e.g. tolerate a failure by self-configuring a fault-
tolerant design.

Reconfigurable hardware such as FPGAs is an excellent
platform for the application of the above mentioned tech-
niques. An FPGA can be used to implement any given dig-
ital circuit and it can be reconfigured in runtime by using its
dynamic reconfiguration feature [20], thus serving as an ideal
platform for Evolvable Hardware systems. Its architecture is
composed of reconfigurable logic and interconnect elements.
The reconfigurable logic elements are based on SRAM-based
Lookup Tables (LUTs). Adaptive systems based on this plat-
form can utilize on-chip PowerPCs or use dedicated imple-
mentation in hardware to efficiently implement the genetic
algorithm [5],[4]. In such systems, the performance of the ge-
netic algorithm matters in terms of the time required to con-
verge to a solution. The current trend in computing is pushing
towards the use of multicore technology, which we intend to
exploit in our implementation. Also with the introduction of
FPGAs which tightly integrate on-chip multicore processor
with the reconfigurable logic [2] - there is a need to effectively
utilize these parallel processing units for the above mentioned
systems. Further, with the introduction of commodity mul-
ticore processors, the proposed technique can be effectively
utilized for implementation in VLSI CAD tools [3].

A Genetic Algorithm (GA) mimics evolutionary principles
by maintaining multiple candidate solutions in the form of a
population. Each candidate solution, referred to as an indi-
vidual, describes a potential FPGA configuration and is ini-
tially generated purely randomly. The representation of an
individual is shown in figure 1 and is adopted from [14]. A
fixed number of LUTs are selected for a design configura-
tion depending on the complexity of the desired digital func-
tion. Each individual is ranked and assigned a fitness value,
which is used to quantify its correctness. It can be calculated
by some aggregate property of output, or by exhaustively ap-
plying all the possible input combinations and comparing the
output of the individual with the desired output as described
via the truth table of the digital function to be implemented
on the FPGA. The genetic algorithm performs the operations
of crossover and mutation on individuals according to user-
specified probabilities, with the intent to increase their fitness
values. After application of these operators, the population
for the next generation (iteration) is selected based on a selec-
tion scheme designed to guarantee the ”survival of the fittest”
i.e. the most fit individuals make it to the next generation.

mailto:rizwan.ashraf@knights.ucf.edu
mailto:rizwan.ashraf@knights.ucf.edu
mailto:dechev@eecs.ucf.edu
mailto:dechev@eecs.ucf.edu

Tournament-based selection is chosen for this implementa-
tion, as described later. A constant-size population is main-
tained in this work (finite-population GA). This process con-
tinues over multiple generations until an individual is found
with the required threshold fitness or maximum number of
generations tmax are achieved according to the described exit
criteria. The sequential genetic algorithm is summarized in
Algorithm 1.

Algorithm 1 Genetic Algorithm
1: t := 0;
2: Initialize Population P(0);
3: repeat
4: Apply GA Operators (Mutation, Crossover) Pt (t);
5: Fitness Evaluation Pt (t);
6: Create new Population via Tournament-based Selection P(t + 1);
7: t := t + 1;
8: until Exit criteria (max Fitness achieved OR max Number of Generations tmax

reached)

Genetic algorithm based applications can be effectively

parallelized to achieve significant speedups and to better uti-
lize parallel processing units. Various attempts have been
made to classify different models of parallel genetic algo-
rithms [15],[4]. According to [15], genetic algorithms can be
parallelized based on how fitness is evaluated, whether sin-
gle or multiple populations are used, and whether GA opera-
tions like crossover and selection are performed locally in a
sub-population or globally in the entire population. The au-
thors also suggest that parallel genetic algorithms may per-
form better in terms of finding the solution as compared to
their sequential counterparts which may get trapped in the
sub-optimal portion of the search space. Thus, they have a
better probability of getting out of this local optima as multi-
ple sub-populations will tend to explore multiple portions of
the search space. In this paper, the synchronous master-slave
and island model of the parallel genetic algorithm as intro-
duced in [15] are compared and contrasted for the proposed
problem. We adopt these two models in our implementation
as they are employed in most related works.

The main contribution of this work is to design digital cir-
cuits for FPGA-based architectures using parallel genetic al-
gorithms (GAs). The GA employed involves the use of a lin-
ear representation which can be readily employed for intrin-
sic evolution systems such as through direct manipulation of
FPGA configuration bitstream as proposed in [16].

The paper is organized as follows. Section 2 presents the
related works. The sequential and parallel implementations
are illustrated and contrasted in section 3. Experimental setup
and the results are presented in section 4. Whereas, the con-
clusions of this work are presented in section 5.

2. RELATED WORK

Parallel Genetic Algorithms have been used for the design
of digital [8] and analog circuits [1],[11]. They can be used to

Figure 1. An individual: The representation of FPGA con-
figuration in GA

automate the process of circuit synthesis which has useful ap-
plications in the field of evolvable hardware, where a design
may need to be adapted at runtime to meet new requirements
[7] or produce diverse designs which can be employed in a
fault-tolerant system as proposed in [19]. In addition, GAs
are also employed in VLSI layout tools for optimal placement
and routing [13].

Design of analog circuits such as amplifiers and filters has
been the focus of most works which employ parallel genetic
algorithm [1],[11], as the fitness evaluation in this case is con-
sidered to be the most computationally expensive part. Syn-
chronous master-slave implementation is employed in [12]
and the workload of fitness evaluation is distributed off to
slave nodes; fine-grain partitioning is done and a small num-
ber of configurations are evaluated by slave nodes at any
given time, which potentially results in increased stall times.
The experimentation for the above mentioned work is per-
formed on a Beowulf cluster. Similarly, GA is parallelized in
[1] to evolve simple VLSI circuits; coarse-grain parallelism
is done using a shared memory programming model. Differ-
ent implementations with a centralized single population and
multiple distributed populations are done for the parallel GA
in this case. The distributed scheme proposed in [1] involves
infrequent communication among populations, whereas the
island model proposed in our work involves communication
at every generation and a possible migration is done if the
sub-population has less fit individuals as compared to other
competing sub-populations. Nearly linear speedups are re-
ported for the different implementations in [1], though the
results are limited and thus it is difficult to establish the gen-
erality of this work, e.g. speedups are only reported with 16
parallel computing units. Whereas, in our work, extensive ex-
perimentation with different number of threads is done, using
both the synchronous master-slave and island model.

In [8], digital circuits are designed using multi-expression
programming. The representation employed in [8] is a vari-
ation of linear genetic programming, whereas our work em-
ploys a representation which is targeted for FPGA-based ar-
chitectures. Asynchronous island model is employed in [8],
where sub-populations are maintained on parallel machines
which exchange individuals after a certain defined period.
The idea is to evolve multiple genetic programs in parallel

on multiple processors. The computing nodes are connected
in a ring topology and the Message Passing (MPI) program-
ming model is employed for communication between differ-
ent nodes. Results show a considerable decrease in compu-
tational effort as compared to the non-parallel GA. In our
work, as mentioned earlier, FPGA-based architectures are tar-
geted, and comprehensive comparison is done between the
synchronous master-slave and the island model. The island
model employed in our work is different as compared to
[8], as the best individual in our work may be communi-
cated to sub-populations on every generation. Further, most
of the implementations have been done on clusters of com-
puters whilst using the MPI programming model [8],[12] and
look to exploit the characteristics of a group of individuals
by creating sub-populations which are evolved independently
for many generations (this number is generally fixed) with
little or no communication. Whereas, we have proposed the
parallel models of the GA on a shared memory machine for
targeting today’s multicore processors.

3. IMPLEMENTATION
3.1. Sequential Implementation

The following sections present a bottom-up overview of
the classes and functions that form the sequential program.
These parts are reviewed in this section so as to see which
portions could be made parallel and to see which parts might
be problematic when they are made to work in parallel. We
start from the smallest unit, the Lookup Table (LUT) class,
and work our way up to the largest, a Generation class. Fi-
nally, we review the main function to see how the algorithm
works in this implementation.

3.1.1. LUT class
Each LUT object contains three vectors and its func-

tion type ∈ {NOT, AND, NAND, OR, NOR, X OR}. The vec-
tors contain information about which LUT outputs are con-
nected to the LUT inputs, the input binary values of these
connections into the LUT, and the output value from the LUT.

3.1.2. Individual class
Each individual which represents a circuit contains four

vectors, a fitness value, and various functions. The first vector
is of LUTs that the circuit uses. The other three are the inputs,
outputs, and connections of the circuit. The main function
from this class is the CalculateFitness function which
goes through each LUT and calculates each output value. It
then compares these outputs with the expected value as de-
fined by the truth table and assigns a fitness value to the indi-
vidual by incrementing it’s fitness, starting at zero, for every
output that is correct. As an example, an individual represent-
ing a circuit with n inputs and m outputs will have a maximum
fitness value of 2n ∗ m which indicates that every output line
of the circuit matches the desired output for every possible
input combination

3.1.3. Generation class
The generation object consists of a vector of Individuals,

and an index of the Individual having the maximum fitness.
It also contains the functions for the GA operations. The
PerformCrossover function, according to the crossover
rate (crossover probability), takes two individuals and ran-
domly picks a crossover point, such that the boundaries of
LUT objects are not violated. The LUT configurations be-
fore this point on Parent A and after this point on Parent B
are copied to the offspring as shown in fig 2. If no crossover
takes place, the individual is copied as is to the offspring.

Figure 2. The application of crossover operator between two
individuals.

The PerformMutation function performs three types
of mutation on one individual. The first type is functionality
mutation where it takes the individual and for each selected
LUT based on a user-defined mutation rate, assigns a ran-
domly chosen function. The second type is interconnection
mutation where it takes each selected LUT of the individual
and randomly changes its input connections. Finally, it per-
forms output line mutation where the selected output line of
the individual is randomly assigned to either any of the inputs
of the circuit or any of the outputs of LUTs in the configura-
tion.

The Selection function randomly selects k (Tourna-
ment Size) individuals from both the parent population (cur-
rent generation) and the offspring population (evolved indi-
viduals). The best fit individual in that pool is picked to move
on to the next generation. This is repeated until a new gener-
ation of the same size is formed.

The PerformElitism function maintains forward
progress by copying the individual with maximum fitness into
the next generation.

3.1.4. Main-The GA loop
The main function performs all the steps necessary for the

implementation of the genetic algorithm. Firstly, individuals
from the current generation are chosen to have the genetic
operators performed on them based on user-defined proba-
bilities. The crossover operation is performed on two ran-
domly chosen individuals from the parent population. After
crossover and mutation take place, the fitness for the new off-
spring is calculated. This is repeated until all the individuals

of the population have been evolved. Then selection is per-
formed where individuals from the parent and offspring pop-
ulations are chosen to form the new population. Next, Elitism
takes place. If there exists an individual with higher fitness
than the elite individual, then that individual becomes the new
elite and it replaces the old elite. If the highest fitness is less
than the fitness of the elite individual, the elite individual is
copied to the population, replacing a randomly chosen indi-
vidual. This procedure is then repeated until the desired fit-
ness level is achieved. The GA flow is outlined in fig 3.

Figure 3. Genetic Algorithm flow.

3.2. Parallel Implementation

Understanding the flow of sequential program allows us to
parallelize the portions of it that would be most beneficial to
the overall execution time. Two different models were used
in the parallel versions of the program. The first, the master-
slave model, has one master thread that calls the parallel func-
tions, and N worker threads that run these functions. These
functions operate on one individual, but can perform genetic
operators with another individual from the entire population.
The second, the island model, partitions the population in
smaller sub-populations at the beginning of the GA loop. The
functions used operate on a smaller portion of the population.
The genetic operators are limited to only use individuals from
that sub-population. Each thread has a sub-population and it-
erates through one instance of the GA loop independently of
one another. These two models were used to determine if one

achieved better speedup and performance than the other.
3.2.1. Master-Slave model
The portions that are made parallel in the master-slave

model are within the GA loop, where the program spends
most of its execution time. More specifically the parts we
parallelize are: the portion where genetic operators are per-
formed, the Selection routine, and the portion that updates the
maximum fitness. Each worker thread works on one individ-
ual before the master sends it the next individual to work on.
The entire population is available to perform GA operators
with.

3.2.2. Island model
The GA loop is partitioned and made to run concurrently

in the island model of the program. Each island thread calls
the GA operators, selection, and determines the maximum fit-
ness on their own sub-population. If any of the islands have
a higher fit individual than the elite, that individual becomes
the new elite and it gets distributed to the other islands at the
end of a generation.

3.2.3. Library
A library that provided the following had to be chosen for

the parallel versions of the program:
• concurrent vectors
• parallel loops
• locks
Since the sequential implementation used vectors through-

out its implementation we needed to find a concurrent vec-
tor implementation that multiple threads can safely access at
one time. We also needed an easy construct to parallelize the
portions highlighted as well as an implementation of a lock
which can be used to find the global maximum fitness. After
some research we settled on Intel Threaded Building Blocks
(TBB) [18] because it contained everything needed in an easy
to use library. We have used constructs of parallel for,
concurrent vector, and spin mutex for our parallel
implementations.

The TBB concurrent vector will replace any STL
vector that will be accessed by more than one thread at a
time. It guarantees that elements in the vector will never move
until it is cleared which is needed in this implementation.
Spin mutex will be used to place a lock on the individual
with maximum fitness. This spin mutex version of a lock
was chosen because the amount of time that the lock will be
held is relatively short. The overhead for other lock imple-
mentations will not be beneficial in our design. The lock is
only acquired when the new fitness of an individual is better
than the current individual with maximum fitness. After the
lock is acquired, it checks this condition again to ensure no
other thread has changed this value since before the lock was
acquired and updates the values accordingly. This method of
checking whether to grab the lock first, and then checking the
condition again, will greatly decrease the contention on that

lock since it will only be acquired when needed as opposed
to always grabbing the lock and then doing the comparison.
This technique is mentioned in [9].

4. EXPERIMENTS AND RESULTS
4.1. Experimental Setup

Experiments are done to evaluate the speedup and perfor-
mance of the parallel implementations as compared to the se-
quential single-thread implementation as used in [17]. The
genetic algorithm is supposed to start-off with completely
random configurations as described earlier. Further, the GA
operators are applied to configurations based on user-defined
values. Similarly, the selection operation is performed on
a pool according to the tournament size. We keep track of
timestamps throughout the program in order to compute the
speedups of the parallelized portions and the entire program.

Experiments were conducted with population sizes of 120,
240, 480, and 960. The effect of population sizes on the
speedups is to be observed. Each test was run 20 times for av-
eraging due to the stochastic behavior of the algorithm. The
objective of the experiments was to realize a 3-to-8 decoder
configuration for a LUT-based FPGA architecture. Mutation
and crossover rates were set to 0.007 and 0.60 for all the ex-
periments. A fixed tournament size of six was used for all
population size experiments. The experiments were run for a
fixed number of generations (1000) to calculate the speedups.
To measure GA performance, each test was run until a maxi-
mum fit individual was found and the number of generations
it took to find this individual was recorded.

All tests were run on an Intel Xeon X5670 (6 cores) with
6GB RAM running Ubuntu 11.04 with Intel TBB version 3
update 5 [18]. The speedup and performance of the imple-
mentations were calculated with programs using 2, 4, 6, 8, 12
and 16 threads.
4.2. Results

4.2.1. Speedup
Speedup over the sequential version of the algorithm was

achieved, however the problem is observed to not be per-
fectly parallelizable. Figure 4 details the speedup achieved
with multiple population sizes for the master-slave model
with respect to varying thread count. The highest speedup
achieved by the master-slave model is 5.01 with a population
size of 960 running on 6 threads. The speedup degrades after
six threads because the scheduler needs to run more threads
than the physical cores available (six). Figure 5 details the
speedup achieved for the island model with respect to vary-
ing thread count. The highest speedup achieved by the island
model is 5.04 with a population size of 960 running on 16
threads. This may be because when one island finishes an it-
eration of the GA loop before other islands, the other islands
can be run on that physical core, resulting in better utiliza-
tion. Also, larger population sizes achieve higher speedups

Figure 4. Speedups achieved with sync Master-slave model

Figure 5. Speedups achieved with Island model

because there is more parallel computation than smaller pop-
ulation sizes, i.e. the parallel loops run for more iterations.

Figure 6. Comparison of Convergence Properties of Master-
Slave and Island Models

4.2.2. GA Performance
Both models converged to find a completely fit individual

in all the runs within the maximum number of generations
set as threshold for the experiments. The mean number of
generations required to find a solution over 20 experiments
for different population sizes and number of threads for both
master-slave and island models are shown in figure 6. For
small population sizes, the island model converged in fewer

generations than the master-slave model. In general, the se-
lection pressure in case of island model is different as com-
pared to the master-slave model. The individuals in master-
slave model have to compete against the entire population
as opposed to the island model where individuals compete
within their own sub-populations.

5. CONCLUSION AND FUTURE WORK

Two models for parallelizing the genetic algorithm used for
realizing configurations for LUT-based FPGA architectures
were successfully realized. Results indicate speedups of ap-
proximately five are achieved for both the parallel modes of
the genetic algorithm on a machine with six physical cores.
In addition to achieving speedup over the sequential imple-
mentation, it was observed that using the island model for
parallelizing this problem actually allowed the genetic algo-
rithm to converge and find a maximum fit individual in fewer
generations than the master-slave model. This results in the
genetic algorithm running for less time.

Other areas of the algorithm could be explored in order
to optimize them and make the parallel performance better.
One such area is the fitness calculation which is inherently
sequential, and could be improved by evaluating independent
test vectors in parallel. Various parameter settings might also
be modified to improve GA convergence properties.

REFERENCES
[1] M. Davis, L. Liu, and J. Elias. VLSI circuit synthesis using

a parallel genetic algorithm. In Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, pages 104–109.
IEEE, 1994.

[2] K. DeHaven. Extensible Processing Platform Ideal Solution
for a Wide Range of Embedded Systems. Technical report,
Xilinx, apr. 2010.

[3] R. Drechsler. Evolutionary algorithms for VLSI CAD. Kluwer
Academic Publishers, 1998.

[4] S. E. Eklund. A massively parallel architecture for distributed
genetic algorithms. Parallel Comput., 30:647–676, May 2004.

[5] P. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, and
A. Stoica. Customizable FPGA ip core implementation of a
general-purpose genetic algorithm engine. Evolutionary Com-
putation, IEEE Transactions on, 14(1):133 –149, feb. 2010.

[6] F. Ferrandi, P. Lanzi, G. Palermo, C. Pilato, D. Sciuto, and
A. Tumeo. An evolutionary approach to area-time optimiza-
tion of FPGA designs. In Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation, 2007. IC-SAMOS 2007.
International Conference on, pages 145 –152, july 2007.

[7] P. Haddow and G. Tufte. An evolvable hardware FPGA for
adaptive hardware. In Evolutionary Computation, 2000. Pro-
ceedings of the 2000 Congress on, volume 1, pages 553–560,
2000.

[8] F. Hadjam, C. Moraga, and M. Benmohamed. Cluster-based
evolutionary design of digital circuits using all improved
multi-expression programming. In Proceedings of the 2007
GECCO conference companion on Genetic and evolutionary
computation, pages 2475–2482. ACM, 2007.

[9] M. Heinrich and M. Chaudhuri. Ocean warning: avoid drown-
ing. SIGARCH Comput. Archit. News, 31:30–32, June 2003.

[10] T. Kalganova and J. Miller. Evolving more efficient digital cir-
cuits by allowing circuit layout evolution and multi-objective
fitness. In Evolvable Hardware, 1999. Proceedings of the First
NASA/DoD Workshop on, pages 54 –63, 1999.

[11] J. Lohn, G. Haith, S. Colombano, and D. Stassinopoulos. To-
wards evolving electronic circuits for autonomous space appli-
cations. In Aerospace Conference Proceedings, 2000 IEEE,
volume 5, pages 473–486. IEEE, 2000.

[12] J. D. Lohn, S. P. Colombano, G. L. Haith, and D. Stassinopou-
los. A Parallel Genetic Algorithm for Automated Electronic
Circuit Design. Technical report, NASA, 2000.

[13] P. Mazumder and E. M. Rudnick. Genetic algorithms for VLSI
design, layout & test automation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1999.

[14] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evo-
lutionary design of digital circuits. Genetic Programming and
Evolvable Machines, 1:7–35.

[15] M. Nowostawski and R. Poli. Parallel genetic algorithm tax-
onomy. In L. C. Jain, editor, KES, pages 88–92. IEEE, 1999.

[16] R. Oreifej, R. Al-Haddad, H. Tan, and R. DeMara. Layered
approach to intrinsic evolvable hardware using direct bitstream
manipulation of Virtex II Pro devices. In Field Programmable
Logic and Applications, 2007. FPL 2007. International Con-
ference on, pages 299 –304, aug. 2007.

[17] R. S. Oreifej, C. A. Sharma, and R. F. DeMara. Expedit-
ing ga-based evolution using group testing techniques for re-
configurable hardware. In Reconfigurable Computing and
FPGA’s, 2006. ReConFig 2006. IEEE International Confer-
ence on, pages 1 –8, sept. 2006.

[18] J. Reinders. Intel threading building blocks, 2007.
[19] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, and

A. Thakoor. Reconfigurable VLSI architectures for evolvable
hardware: from experimental field programmable transistor ar-
rays to evolution-oriented chips. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 9(1):227–232, 2001.

[20] A. Upegui and E. Sanchez. Evolving hardware by dynamically
reconfiguring xilinx FPGAs. In ICES’05, pages 56–65, 2005.

[21] X. Yao and T. Higuchi. Promises and challenges of evolvable
hardware. Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, IEEE Transactions on, 29(1):87 –97, feb
1999.

[22] R. S. Zebulum, M. A. C. Pacheco, and M. M. B. R. Vellasco.
Evolutionary Electronics: Automatic Design of Electronic Cir-
cuits and Systems by Genetic Algorithms, volume 1. CRC
Press, 2002.

