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Abstract 
Multicore processors are becoming common whereas current 
genetic algorithm-based implementation  techniques for syn- 
thesizing Field Programmable Gate Array (FPGA) circuits do 
not fully exploit this hardware trend. Genetic Algorithm (GA) 
based techniques are known  to optimize multiple objectives, 
and automate the process of digital circuit design. In this pa- 
per, parallel GA algorithms  are proposed for the synthesis of 
digital circuits for LUT-based FPGA architectures. Parallel 
modes of the GA such as Master-Slave  and the Island model 
are compared to see which scheme results in better speedup 
and quicker  convergence for effective utilization of current 
multicore  hardware. Speedup of about five over the sequen- 
tial single-threaded implementation is achieved with both the 
schemes on a six-core machine. Convergence is also found in 
fewer number of generations. The methods described here-in 
can be employed  in Evolvable  Hardware Systems as well as 
FPGA CAD tools. 

 
 
1.   INTRODUCTION 

The realm of developing electronic circuits via techniques 
based on evolutionary principles such as Genetic  Algorithms 
is referred  to as Evolutionary Electronics [22]. Electronic cir- 
cuits such as amplifiers,  analog and digital filters, digital cir- 
cuits (e.g. combinatorial  arithmetic circuits, parity circuits, 
sequential circuits, etc.) have been synthesized using such al- 
gorithms [1],[11],[22]. An evolutionary  algorithm  based de- 
sign approach is an excellent tool for optimizing human- 
generated designs or synthesizing designs which meet mul- 
tiple objectives of power constraints, size constraints in terms 
of number of gates required, and timing constraints in terms 
of circuit delay [6],[10]. Essentially it automates the process 
of developing electronic circuits and is characterized by its 
ability to search complex solution  space. This field, charac- 
terized by the use of reconfiguration techniques for hardware 
based on Genetic Algorithms, is known  as Evolvable  Hard- 
ware [21]. Adaptive  systems can be realized using such tech- 
niques, which  can adjust based on dynamics of the operating 
environment  e.g. tolerate a failure by self-configuring  a fault- 
tolerant design. 

Reconfigurable  hardware  such as FPGAs  is an excellent 
platform for the application of the above mentioned  tech- 
niques. An FPGA  can be used to implement any given dig- 
ital circuit and it can be reconfigured  in runtime by using its 
dynamic reconfiguration feature [20], thus serving  as an ideal 
platform for Evolvable Hardware systems. Its architecture is 
composed of reconfigurable logic and interconnect elements. 
The reconfigurable  logic elements are based on SRAM-based 
Lookup Tables (LUTs). Adaptive systems based on this plat- 
form can utilize on-chip PowerPCs or use dedicated  imple- 
mentation in hardware to efficiently implement the genetic 
algorithm [5],[4]. In such systems, the performance of the ge- 
netic algorithm matters in terms of the time required to con- 
verge to a solution. The current trend in computing is pushing 
towards the use of multicore technology, which we intend to 
exploit in our implementation. Also with the introduction  of 
FPGAs which tightly integrate on-chip multicore  processor 
with the reconfigurable logic [2] - there is a need to effectively 
utilize  these parallel processing units for the above mentioned 
systems. Further, with the introduction of commodity mul- 
ticore processors, the proposed technique can be effectively 
utilized for implementation in VLSI CAD tools [3]. 
 

A Genetic Algorithm  (GA) mimics evolutionary principles 
by maintaining multiple candidate solutions in the form of a 
population.  Each candidate solution, referred to as an indi- 
vidual,  describes a potential FPGA configuration  and is ini- 
tially generated purely randomly. The representation of an 
individual is shown in figure 1 and is adopted from [14]. A 
fixed number of LUTs are selected for a design configura- 
tion depending on the complexity  of the desired digital func- 
tion. Each individual is ranked and assigned a fitness value, 
which is used to quantify its correctness. It can be calculated 
by some aggregate property of output, or by exhaustively ap- 
plying all the possible input combinations and comparing the 
output of the individual  with the desired output as described 
via the truth table of the digital function to be implemented 
on the FPGA. The genetic algorithm performs the operations 
of crossover and mutation on individuals according to user- 
specified probabilities, with the intent to increase their fitness 
values. After application of these operators,  the population 
for the next generation (iteration) is selected based on a selec- 
tion scheme designed to guarantee the ”survival of the fittest” 
i.e. the most fit individuals  make it to the next generation. 
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Tournament-based selection is chosen for this implementa- 
tion, as described later. A constant-size population is main- 
tained in this work (finite-population GA). This process con- 
tinues over multiple generations until an individual is found 
with the required threshold fitness or maximum number of 
generations tmax are achieved according to the described exit 
criteria. The sequential genetic algorithm  is summarized in 
Algorithm 1. 

 
Algorithm 1 Genetic Algorithm 
1: t := 0; 
2: Initialize Population P(0); 
3: repeat 
4:     Apply GA Operators (Mutation,  Crossover) Pt (t); 
5:     Fitness Evaluation Pt (t); 
6:     Create new Population via Tournament-based Selection P(t + 1); 
7:     t := t + 1; 
8: until Exit criteria (max Fitness achieved OR max Number of Generations tmax 

reached) 
 

 
Genetic algorithm based applications  can be effectively 

parallelized to achieve significant  speedups and to better uti- 
lize parallel processing units.  Various attempts  have  been 
made to classify different models of parallel genetic algo- 
rithms [15],[4]. According to [15], genetic algorithms can be 
parallelized  based on how fitness is evaluated, whether sin- 
gle or multiple  populations are used, and whether GA opera- 
tions like crossover and selection are performed  locally in a 
sub-population or globally in the entire population. The au- 
thors also suggest that parallel genetic algorithms may per- 
form better in terms of finding the solution  as compared to 
their sequential counterparts which may get trapped in the 
sub-optimal portion of the search space. Thus,  they have  a 
better probability of getting out of this local optima as multi- 
ple sub-populations will tend to explore multiple portions of 
the search space. In this paper, the synchronous master-slave 
and island model of the parallel genetic algorithm  as intro- 
duced in [15] are compared and contrasted for the proposed 
problem. We adopt these two models in our implementation 
as they are employed  in most related works. 

The main contribution of this work is to design digital cir- 
cuits for FPGA-based architectures using parallel genetic al- 
gorithms (GAs). The GA employed involves the use of a lin- 
ear representation which can be readily employed for intrin- 
sic evolution systems such as through direct manipulation  of 
FPGA configuration bitstream as proposed  in [16]. 

The paper is organized  as follows. Section 2 presents the 
related works. The sequential and parallel implementations 
are illustrated and contrasted in section 3. Experimental setup 
and the results are presented in section 4. Whereas, the con- 
clusions of this work are presented in section 5. 

 
2.   RELATED WORK 

Parallel Genetic Algorithms have been used for the design 
of digital [8] and analog circuits [1],[11]. They can be used to 

 
Figure 1.  An individual:  The representation of FPGA con- 
figuration in GA 
 

 
 
automate the process of circuit synthesis which has useful ap- 
plications in the field of evolvable hardware, where a design 
may need to be adapted at runtime to meet new requirements 
[7] or produce diverse designs which can be employed  in a 
fault-tolerant system  as proposed  in [19]. In addition, GAs 
are also employed in VLSI layout tools for optimal placement 
and routing [13]. 

Design of analog circuits such as amplifiers  and filters has 
been the focus of most works which employ parallel genetic 
algorithm [1],[11], as the fitness evaluation in this case is con- 
sidered to be the most computationally  expensive part. Syn- 
chronous master-slave implementation  is employed in [12] 
and the workload of fitness evaluation is distributed off to 
slave nodes; fine-grain partitioning  is done and a small num- 
ber of configurations are evaluated by slave  nodes at any 
given time, which potentially results in increased stall times. 
The experimentation for the above mentioned work is per- 
formed on a Beowulf cluster. Similarly,  GA is parallelized in 
[1] to evolve simple VLSI circuits; coarse-grain parallelism 
is done using a shared memory programming  model. Differ- 
ent implementations with a centralized single population and 
multiple  distributed populations are done for the parallel GA 
in this case. The distributed  scheme proposed in [1] involves 
infrequent  communication  among populations, whereas the 
island model proposed in our work involves communication 
at every generation and a possible migration  is done if the 
sub-population  has less fit individuals  as compared to other 
competing sub-populations. Nearly linear speedups are re- 
ported for the different implementations in [1], though the 
results are limited and thus it is difficult to establish the gen- 
erality of this work, e.g. speedups are only reported with 16 
parallel computing units. Whereas, in our work, extensive ex- 
perimentation with different number of threads is done, using 
both the synchronous master-slave and island model. 

In [8], digital circuits are designed using multi-expression 
programming. The representation employed in [8] is a vari- 
ation of linear genetic programming, whereas our work em- 
ploys a representation which is targeted for FPGA-based ar- 
chitectures. Asynchronous island model is employed in [8], 
where sub-populations  are maintained on parallel machines 
which exchange individuals after a certain defined period. 
The idea is to evolve multiple genetic programs in parallel 



on multiple processors. The computing  nodes are connected 
in a ring topology  and the Message Passing (MPI) program- 
ming model is employed for communication between differ- 
ent nodes. Results show a considerable  decrease in compu- 
tational effort as compared  to the non-parallel GA. In our 
work, as mentioned earlier, FPGA-based architectures are tar- 
geted, and comprehensive comparison  is done between the 
synchronous master-slave and the island model. The island 
model employed in our work is different as compared  to 
[8], as the best individual in our work may be communi- 
cated to sub-populations on every generation. Further, most 
of the implementations  have been done on clusters of com- 
puters whilst using the MPI programming model [8],[12] and 
look to exploit the characteristics of a group  of individuals 
by creating sub-populations which are evolved independently 
for many generations (this number is generally fixed) with 
little or no communication.  Whereas, we have proposed the 
parallel models of the GA on a shared memory  machine for 
targeting today’s multicore processors. 

 
 
3.   IMPLEMENTATION 
3.1.  Sequential Implementation 

The following sections present a bottom-up  overview  of 
the classes and functions  that form the sequential program. 
These parts are reviewed  in this section  so as to see which 
portions could be made parallel and to see which  parts might 
be problematic  when they are made to work in parallel. We 
start from the smallest unit, the Lookup Table (LUT) class, 
and work our way up to the largest, a Generation  class. Fi- 
nally, we review the main function to see how the algorithm 
works in this implementation. 

3.1.1.  LUT class 
Each LUT  object contains  three vectors and its func- 

tion type ∈ {NOT, AND, NAND, OR, NOR, X OR}. The vec- 
tors contain information  about which LUT outputs are con- 
nected to the LUT inputs, the input binary values of these 
connections into the LUT, and the output value from the LUT. 

3.1.2.  Individual  class 
Each individual which represents  a circuit contains four 

vectors, a fitness value, and various functions. The first vector 
is of LUTs that the circuit uses. The other three are the inputs, 
outputs, and connections of the circuit. The main function 
from this class is the CalculateFitness function which 
goes through  each LUT and calculates each output value. It 
then compares these outputs with the expected value as de- 
fined by the truth table and assigns a fitness value to the indi- 
vidual by incrementing it’s fitness, starting at zero, for every 
output that is correct. As an example, an individual represent- 
ing a circuit with n inputs and m outputs will have a maximum 
fitness value of 2n ∗ m which indicates that every output line 
of the circuit matches the desired output for every possible 
input combination 

3.1.3.  Generation  class 
The generation object consists of a vector  of Individuals, 

and an index of the Individual having the maximum fitness. 
It also contains the functions for the GA operations. The 
PerformCrossover function, according to the crossover 
rate (crossover probability),  takes two individuals  and ran- 
domly picks a crossover  point, such that the boundaries of 
LUT objects  are not violated. The LUT configurations be- 
fore this point on Parent A and after this point on Parent B 
are copied to the offspring  as shown in fig 2. If no crossover 
takes place, the individual is copied as is to the offspring. 
 

 
Figure 2.  The application of crossover operator between two 
individuals. 
 

The PerformMutation function  performs three types 
of mutation on one individual.  The first type is functionality 
mutation where it takes the individual and for each selected 
LUT based on a user-defined  mutation  rate, assigns a ran- 
domly chosen function.  The second type is interconnection 
mutation where it takes each selected LUT of the individual 
and randomly  changes its input connections. Finally, it per- 
forms output line mutation where the selected output line of 
the individual is randomly assigned to either any of the inputs 
of the circuit or any of the outputs of LUTs in the configura- 
tion. 

The Selection function randomly  selects k (Tourna- 
ment Size) individuals from both the parent population (cur- 
rent generation) and the offspring  population (evolved indi- 
viduals). The best fit individual in that pool is picked to move 
on to the next generation. This is repeated until a new gener- 
ation of the same size is formed. 

The  PerformElitism  function maintains forward 
progress by copying the individual with maximum fitness into 
the next generation. 
 

3.1.4.  Main-The GA loop 
The main function performs all the steps necessary for the 

implementation of the genetic algorithm.  Firstly, individuals 
from the current  generation are chosen to have the genetic 
operators performed on them based on user-defined proba- 
bilities. The crossover operation  is performed on two ran- 
domly chosen individuals  from the parent population.  After 
crossover and mutation take place, the fitness for the new off- 
spring is calculated. This is repeated until all the individuals 



of the population  have been evolved. Then selection is per- 
formed where individuals from the parent and offspring  pop- 
ulations are chosen to form the new population.  Next, Elitism 
takes place. If there exists an individual with higher fitness 
than the elite individual,  then that individual  becomes the new 
elite and it replaces the old elite. If the highest fitness is less 
than the fitness of the elite individual,  the elite individual is 
copied to the population,  replacing a randomly  chosen indi- 
vidual. This procedure is then repeated until the desired fit- 
ness level is achieved. The GA flow is outlined in fig 3. 

 
Figure 3.  Genetic Algorithm  flow. 

 
 
 
3.2.  Parallel Implementation 

Understanding the flow of sequential program allows us to 
parallelize the portions of it that would be most beneficial to 
the overall execution time. Two different  models were used 
in the parallel versions of the program. The first, the master- 
slave model, has one master thread that calls the parallel func- 
tions, and N worker threads that run these functions.  These 
functions operate on one individual,  but can perform genetic 
operators with another individual  from the entire population. 
The second, the island model, partitions the population in 
smaller sub-populations at the beginning of the GA loop. The 
functions used operate on a smaller portion of the population. 
The genetic operators are limited  to only use individuals from 
that sub-population.  Each thread has a sub-population  and it- 
erates through one instance of the GA loop independently of 
one another. These two models were used to determine if one 

achieved better speedup and performance than the other. 
3.2.1.  Master-Slave model 
The portions that are made parallel in the master-slave 

model are within the GA loop, where the program  spends 
most of its execution time. More specifically the parts we 
parallelize  are: the portion  where genetic operators are per- 
formed, the Selection routine, and the portion that updates the 
maximum fitness. Each worker thread works on one individ- 
ual before the master sends it the next individual to work on. 
The entire population is available to perform GA operators 
with. 

3.2.2.  Island model 
The GA loop is partitioned  and made to run concurrently 

in the island model of the program. Each island thread calls 
the GA operators, selection, and determines the maximum fit- 
ness on their own sub-population. If any of the islands have 
a higher fit individual  than the elite, that individual  becomes 
the new elite and it gets distributed to the other islands at the 
end of a generation. 

3.2.3.  Library 
A library that provided the following had to be chosen for 

the parallel versions of the program: 
• concurrent  vectors 
• parallel  loops 
•  locks 
Since the sequential implementation  used vectors through- 

out its implementation we needed to find a concurrent  vec- 
tor implementation that multiple  threads can safely access at 
one time. We also needed an easy construct to parallelize the 
portions highlighted  as well as an implementation  of a lock 
which can be used to find the global maximum fitness. After 
some research we settled on Intel Threaded Building Blocks 
(TBB) [18] because it contained everything  needed in an easy 
to use library. We have used constructs of parallel for, 
concurrent vector, and spin mutex for our parallel 
implementations. 

The TBB concurrent vector will replace any STL 
vector that will  be accessed by more than one thread at a 
time. It guarantees that elements in the vector will never move 
until it is cleared which is needed in this implementation. 
Spin mutex will be used to place a lock on the individual 
with maximum fitness. This spin mutex version of a lock 
was chosen because the amount of time that the lock will be 
held is relatively  short. The overhead for other lock imple- 
mentations will not be beneficial  in our design. The lock is 
only acquired when the new fitness of an individual  is better 
than the current individual with maximum fitness. After the 
lock is acquired, it checks this condition again to ensure no 
other thread has changed this value since before the lock was 
acquired and updates the values accordingly.  This method of 
checking whether to grab the lock first, and then checking the 
condition again, will greatly  decrease the contention  on that 



 

lock since it will only be acquired when needed as opposed 
to always grabbing the lock and then doing the comparison. 
This technique is mentioned in [9]. 

 
4.   EXPERIMENTS AND RESULTS 
4.1.  Experimental Setup 

Experiments are done to evaluate the speedup and perfor- 
mance of the parallel implementations as compared to the se- 
quential  single-thread implementation  as used in [17]. The 
genetic algorithm is supposed to start-off with completely 
random configurations  as described earlier. Further, the GA 
operators are applied to configurations  based on user-defined 
values.  Similarly, the selection operation  is performed  on 
a pool according to the tournament size. We keep track of 
timestamps throughout the program in order to compute the 
speedups of the parallelized portions and the entire program. 

Experiments were conducted with population sizes of 120, 
240, 480, and 960. The effect of population  sizes on the 
speedups is to be observed. Each test was run 20 times for av- 
eraging due to the stochastic behavior of the algorithm. The 
objective of the experiments was to realize a 3-to-8 decoder 
configuration for a LUT-based FPGA architecture. Mutation 
and crossover rates were set to 0.007 and 0.60 for all the ex- 
periments. A fixed tournament size of six was used for all 
population size experiments. The experiments were run for a 
fixed number of generations (1000) to calculate the speedups. 
To measure GA performance, each test was run until a maxi- 
mum fit individual  was found and the number of generations 
it took to find this individual was recorded. 

All tests were run on an Intel Xeon X5670 (6 cores) with 
6GB RAM running Ubuntu 11.04 with Intel TBB version 3 
update 5 [18]. The speedup and performance  of the imple- 
mentations were calculated with programs using 2, 4, 6, 8, 12 
and 16 threads. 
4.2.  Results 

4.2.1.  Speedup 
Speedup over the sequential version of the algorithm was 

achieved, however  the problem is observed to not be per- 
fectly parallelizable. Figure 4 details the speedup achieved 
with multiple population  sizes for the master-slave model 
with respect to varying thread count. The highest speedup 
achieved by the master-slave model is 5.01 with a population 
size of 960 running on 6 threads. The speedup degrades after 
six threads because the scheduler needs to run more threads 
than the physical cores available (six). Figure 5 details the 
speedup achieved for the island model with respect to vary- 
ing thread count. The highest speedup achieved by the island 
model is 5.04 with a population  size of 960 running on 16 
threads. This may be because when one island finishes an it- 
eration of the GA loop before other islands, the other islands 
can be run on that physical core, resulting in better utiliza- 
tion. Also, larger population  sizes achieve higher speedups 

 
Figure 4.  Speedups achieved with sync Master-slave model 

 
Figure 5.  Speedups achieved with Island model 
 
 
because there is more parallel computation than smaller pop- 
ulation sizes, i.e. the parallel loops run for more iterations. 
 

 
Figure 6.  Comparison of Convergence Properties of Master- 
Slave and Island Models 
 
 

4.2.2.  GA Performance 
Both models converged to find a completely  fit individual 

in all the runs within the maximum number of generations 
set as threshold  for the experiments. The mean number of 
generations required to find a solution  over 20 experiments 
for different population sizes and number of threads for both 
master-slave and island models are shown in figure 6. For 
small population sizes, the island model converged in fewer 



generations than the master-slave model. In general, the se- 
lection pressure in case of island model is different  as com- 
pared to the master-slave model. The individuals  in master- 
slave model  have to compete against the entire population 
as opposed  to the island model where individuals  compete 
within their own sub-populations. 

 
5.   CONCLUSION AND FUTURE WORK 

Two models for parallelizing the genetic algorithm used for 
realizing configurations for LUT-based FPGA architectures 
were successfully  realized. Results indicate speedups of ap- 
proximately five are achieved for both the parallel modes of 
the genetic algorithm on a machine  with six physical cores. 
In addition to achieving speedup over the sequential imple- 
mentation, it was observed that using the island model for 
parallelizing this problem actually allowed the genetic algo- 
rithm to converge and find a maximum  fit individual in fewer 
generations than the master-slave model. This results in the 
genetic algorithm running for less time. 

Other  areas of the algorithm could be explored in order 
to optimize them and make the parallel performance better. 
One such area is the fitness calculation  which is inherently 
sequential, and could be improved by evaluating independent 
test vectors in parallel. Various parameter settings might also 
be modified to improve GA convergence properties. 
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