
Pipelining of Fuzzy–ARTMAP (FAM)
without Matchtracking (MT)

José Castro∗, Jimmy Secretan∗∗, Michael Georgiopoulos∗∗,
Ronald F. DeMara∗∗, Georgios Anagnostopoulos∗∗∗, Avelino Gonzalez∗∗

* – Comp Eng, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
** – Dept of ECE, University of Central Florida, Orlando, FL 32816

*** – Dept of ECE, Florida Institute of Technology, Melbourne, FL, 32901

May 10, 2004

Abstract

Fuzzy ARTMAP (FAM) is a neural network architecture that can establish the correct mapping between
real valued input patterns and their correct labels in a variety of classification problems. FAM has many
desirable traits. Nevertheless, as the size of the data set grows to thousands, and hundreds of thousands data-
points, FAM’s convergence time slows down considerably. In this paper, we focus on a FAM variant called
no-match tracking FAM (NMT-FAM). We propose a coarse grain parallelization technique for the NMT-
FAM, based on a pipeline, and show that a) the parallelized algorithm is equivalent to the sequential NMT-
FAM, and b) the parallelization strategy achieves linear speedup in the order of p (number of processors).
Experiments on the CoverType database support our results. Our work in this paper is an effort in the
direction of demonstrating that FAM can, through appropriate parallelization strategies, be used to mine
data from large databases.

1 Introduction

Neural network algorithms, have prohibitively slow training times, especially when they learn from large
databases. Even one of the fastest (in terms of training time) neural network algorithms, the Fuzzy–ARTMAP
algorithm, tends to exhibit slow convergence time as the size of the network increases.

One way to address this problem is by the use of parallelization. Extensive research has been done
on the properties of parallelization of feed–forward multi–layer perceptrons [11]. This is probably due to
the popularity of this neural network architecture, and also because the backpropagation algorithm used
to train these type of networks can be characterized mathematically by matrix and vector multiplications,
mathematical structures that have been parallelized with extensive success.

For ART type neural networks we can find the work of Manolakos in [9] where he implemented the non-
supervised learning ART1 architecture on a ring of processors. Another parallelization approach that has been
used with ART and other types of neural networks is the systems integration approach where the neural net-
work is not implemented on a network of computers but on parallel hardware. Zhang [13] shows how a fuzzy
competitive neural network similar to ARTMAP can be implemented using a systolic array, and Asanović [3]
et al., use a special purpose parallel vector processor SPERT-II to implement back-propagation and Kohonen
neural networks. Nevertheless, no distributed implementation of ARTMAP or Fuzzy–ARTMAP was found
in the literature.

Furthermore, none of the previous implementations address the issue of learning with very large data sets.
Obviously, data mining algorithms have been introduced into the literature that address the large datasets issue
with success. When the size of the databases used by these algorithms are in the millions of records it is of
primary concern to bring down the complexity of the algorithm to polynomial, or logarithmic time. One case
in point is the rule extraction RIPPER algorithm by Cohen [6] that scales in the order of O(P (log P)2) ([7]),
where P is the size of the training set.

1

Returning back to our algorithm of interest in this paper, it is also worth mentioning that Fuzzy ARTMAP
is an online algorithm, capable of absorbing new information without disrupting previously learned knowl-
edge and it also capable of learning from an infinite stream of immediately available data. Fuzzy–ARTMAP
has many desirable characteristics, but would require modifications for the handling of large data sets. Fuzzy–
ARTMAP has already demonstrated it’s potential for moderately sized databases [2], but Fuzzy–ARTMAP s
performance deteriorates when the training set grows. Furthermore, knowing that Fuzzy–ARTMAP is already
an online algorithm (a very desirable characteristic), it is of interest to pursue the study of Fuzzy–ARTMAP
’s characteristics and its parallel variants in large data sets, while preserving its online properties.

This paper is organized as follows: Section 2 presents briefly the Fuzzy–ARTMAP architecture and
Fuzzy–ARTMAP algorithm. In this section, we simplify the Fuzzy–ARTMAP algorithm and provide a pseu-
docode that will be the starting point of the parallelization. Section 3 presents the Anagnostopoulos’ no–
matchtracking Fuzzy–ARTMAP variant algorithm ([1]), which is used as the basis of our parallel pipelined
algorithm. Section 4 discusses briefly the parallel platform on which the no-matchtracking Fuzzy–ARTMAP
is implemented (Beowulf cluster of computers). Section 5 outlines the code of the parallel no–matchtracking
Fuzzy–ARTMAP algorithm. Section 6 discusses some important properties of the parallel no-match tracking
FAM implementation. Section 7 proceeds with experiments and results comparing performance and speedup
of the parallel no–matchtracking Fuzzy–ARTMAP variant on the CoverType database. We finalize the article
with a conclusions section (see section 8), where we summarize our results.

2 The Fuzzy–ARTMAP Architecture and Algorithm

The Fuzzy–ARTMAP neural network ([5]) belongs to a family of ART neural network architectures and
has been proven to be one of the premier neural network architectures for classification problems. Some of
the advantages that Fuzzy–ARTMAP has, compared to other neural network classifiers, are that it learns the
required task fast, it has the capability to do on-line learning, and its learning structure allows the explanation
of the answers that the neural network produces.

There have been many contributions to the ART literature over the last decade. We only refer to a limited
number of them: ARTEMAP, Gaussian ARTMAP, dART, dARTMAP, ARTMAP-IC, Boosted ARTMAP,
Micro-ARTMAP, Ellipsoid-ART/ARTMAP, and semi-supervised ART architectures. The above contribu-
tions revolve around modifications and enhancements of the original Fuzzy–ARTMAP architectures. How-
ever there are other, independent developments of similar ART-like structures, like Fuzzy Min-Max, LA-
PART2, and σ-FLNMAP. In this paper, our focus is to improve the speed of convergence of ART-like struc-
tures through a training network partitioning approach. We chose to demonstrate the effectiveness of our
proposed in the Fuzzy–ARTMAP architecture, since all of the aforementioned variants have enough in com-
mon with Fuzzy–ARTMAP as to make the parallelization schemes we present in this paper applicable to
them, as well.

A block diagram of the Fuzzy–ARTMAP algorithm can be seen in figure 1. The Fuzzy–ARTMAP al-
gorithm presented here is concordant with the Simplified Fuzzy–ARTMAP (SFAM) found in [8], this is a
simplified version of the Fuzzy–ARTMAP algorithm that retains all the Fuzzy–ARTMAP functionality for
classification tasks.

Most of the work in SFAM is done by the templates layer. In this architecture, input patterns are presented
in complement coded format (I = (a, ac); ac

i = 1− ac
i) to the input layer (layer F a

1 of the Fuzzy–ARTMAP
block diagram). Once an input pattern is presented the nodes in the template layer (layer F a

2 in the Fuzzy–
ARTMAP block diagram), compete for the representation of this input pattern in a winner–take–all compe-
tition. Note that every node in layer F a

2 of Fuzzy–ARTMAP is represented by a vector of weights (wa
j),

referred to as templates. Every template in layer F a
2 is associated with a unique category or label, except

one; this one template is the template associated with what is called ”an uncommitted node”, because it has
not coded any input patterns yet. This association of templates to labels happens through the interconnection
weights of layer F a

2 (template layer) and layer F b
2 (referred to as output layer). It is worth pointing out that

learning in the Fuzzy–ARTMAP architecture is coded into the weight vectors w
a
j ; these vectors represent, in

a compressed way, the information pertaining to all the input patterns that chose and were coded by template
w

a
j in the training phase of Fuzzy–ARTMAP .

The Fuzzy–ARTMAP network can operate in two distinct modes: learning mode and performance mode.

2

a

6

Field F a
0

-

6

�
��
ρa

6I = (a,ac)

Field F a
1

- ~reset
node

@
@

@
@@I

W
a
ju

w
a
j

u
Field F a

2

W
ab
j

u
Field F b

2

Attentional Subsystem Orienting
Subsystem

Figure 1: Block Diagram of the Fuzzy ARTMAP Architecture.

When it is operating in the learning mode the network is presented with an input/output pair (I,O) where I

is a vector in [0, 1]2Ma . The purpose of the network is then to learn the correct association of I to O. When
the network operates in the performance mode it is presented with an input I (not presented to it before) and
it is required to predict the output O. Usually, a training set is presented to the network (during its learning
mode phase), and after the network is trained, its performance is evaluated on a different set, called test set
(performance node phase). One of the advantages of Fuzzy–ARTMAP is that separating the learning and
performance phases is not a requirement, and these phases can be mixed together, where the network either
learns or performs, as needed.

In the Fuzzy–ARTMAP performance phase, the label (category) associated with the template that wins
competition will be the one reported by the network as the associated category. If the uncommitted node is
the winner then the network reports no-classification. In the learning phase, this process is not as
simple, and three scenarios are possible:

1. the winning template is a committed template and of the same category as the input pattern.

2. the winning template is the uncommitted node.

3. the winning template is a committed node of the wrong category.

In the first case, the winning template learns the information that the new input pattern conveys. In the
second case, the template of the uncommitted node learns the information that the new input pattern conveys;
also this template is associated with the same label as the label of the new input pattern. Furthermore, a
new uncommitted node is added to the Fuzzy–ARTMAP network to take care of similar type of situations
in future input pattern presentations. In the third case we enter a process called matchtracking which resets
the activation of the winning node and searches for another node to represent the input pattern; this search
process continues until either a node of the correct label is found or the winning node is the uncommitted
node.

There are three major operations that take place during the presentation of a training input/output pair
(e.g., (I,O)) to Fuzzy–ARTMAP . These are: (a) Calculation of the activation values of the nodes in the
template layer of Fuzzy–ARTMAP . These values are denoted by T (I,wa

j , βa), and they are fully defined
in the next subsection (Fuzzy–ARTMAP pseudo-code). The template layer nodes are activated in Fuzzy–
ARTMAP in the order of ascending activation values. (b) Calculation of the vigilance ratio values of the
nodes in the template layer of Fuzzy–ARTMAP . These values are denoted by ρ(I,wa

j), and they are com-
pletely defined in the next subsection (Fuzzy–ARTMAP pseudo-code). Every activated, through operation

3

(a), node in Fuzzy–ARTMAP needs to satisfy the vigilance criterion (i.e., its vigilance ratio needs to exceed a
certain threshold value). (c) The match-tracking mechanism, and change of the weights in Fuzzy–ARTMAP .
This match-tracking operation deactivates nodes in the template layer,initially chosen through operations (a)
and (b), whose label is different than the label of the input pattern presented. The weights corresponding to an
F a

2 node in Fuzzy–ARTMAP will change if the node has the maximum activation value, passes the vigilance
test, and is of the correct label.

In all of the aforementioned Fuzzy–ARTMAP operations there is a specific operand involved, the fuzzy
min operand, designated by the symbol ∧. Actually, the fuzzy min operation of two vectors x, and y, desig-
nated as x ∧ y, is a vector whose components are equal to the minimum of components of x and y. Another
specific operand involved in these equations is designated by the symbol | · |. In particular, |x| is the size of a
vector x and is defined to be the sum of its components.

FAM-ON-LINE-LEARNING(
{
I
1, I2, . . . , IP

}
, ρ̄a, βa, εa)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each I

r in
{
I
1, I2, . . . , IP

}

4 do ρ← ρ̄a

5 repeat
6 Tmax ← 0
7 status← NoneFound

8 for each w
a
j in templates

9 do if
[
ρ(Ir,wa

j) ≥ ρ
]

and
[
T (Ir,wa

j , βa) > Tmax

]

10 then
11 Tmax ← T (Ir,wa

j , βa)
12 jmax ← j

13 if w
a
jmax

6= uncommitted
14 then if class(Ir) = class(wa

jmax

)
15 then status← Alloc

16 else status← Matchtracking

17 ρ← ρ(Ir,wa
jmax

) + ε

18 until status 6= Matchtracking

19 if status = Alloc

20 then
21 w

a
jmax

← w
a
jmax

∧ I

22 else
23 templates← templates ∪ {Ir}
24 return templates

Figure 2: Fuzzy–ARTMAP online algorithm

2.1 The Fuzzy–ARTMAP Algorithm

This section contains an algorithmic description of Fuzzy–ARTMAP (see Figure 2 for the complete pseudo-
code). We only present the online version of the FAM algorithm. The pipeline approach that we propose is
valid both for online and offline processing. The Fuzzy–ARTMAP algorithm needs the following parameters:

• Patterns: This is the set of learning patterns used to train the algorithm, each I
r ∈ Patterns is of the

form I
r = (a,ac) where a ∈ [0, 1]Ma and Ma represents the dimensionality of a.

• ρ̄a: The baseline vigilance, a learning parameter that controls the size of the category templates, ρ̄a ∈
[0, 1].

• βa: Also a learning parameter. The only restriction is that βa > 0, but it is common to set it to a small
value close to 0.

4

• ε: As it’s notation reveals this is a very small number ε > 0. It is used to guarantee that ineligible
templates are excluded from competition during the matchtracking process.

The Fuzzy–ARTMAP algorithm (learning phase) is shown in figure 2. The process we call matchtracking
is being performed in the loop of lines 8 through 22. Once a template has won competition, we check if it
is of the correct category (line 18) and if not, we increase the vigilance parameter ρ (line 21) so that the
winning node is no longer eligible. Also notice that we repeat the learning process (lines 4 to 30) until we
reach a maximum number of iterations or we perform a complete presentation of all the input patterns and no
modifications are made to the network.

There a number of quantities that appear in the learning phase of Fuzzy–ARTMAP , as depicted in Figure
2. These quantities are defined below.

• w
a
j : Weight vector in the Fuzzy–ARTMAP neural network that emanates from the template layer and

converges to the input layer.
• T (Ir,wa

j , βa): Activation of node with template w
a
j due to the presentation of input pattern I

r.

T (Ir,wa
j , βa) =

|Ir ∧w
a
j |

|wa
j |+ βa

(1)

• ρ(Ir,wa
j): Vigilance ratio, represents the level of match between an input patter I

r and the template
w

a
j

ρ(Ir,wa
j) =

|Ir ∧w
a
j |

|Ir| (2)

3 “No Matchtracking” Fuzzy–ARTMAP

Another modification that can be applied to the Fuzzy–ARTMAP algorithm is the elimination of the match-
tracking process. This modification was originally proposed by Anagnostopoulos [1] and it was shown there
that it can actually improve the classification performance of Fuzzy–ARTMAP on some databases, at the ex-
pense of creating more templates in F a

2 than the original Fuzzy–ARTMAP . Our interest in using this Fuzzy–
ARTMAP variant lies in that it simplifies the Fuzzy–ARTMAP algorithm and allows us to concentrate on
the parallelization of the competition loop of Fuzzy–ARTMAP . This no-match tracking Fuzzy–ARTMAP
algorithm is depicted in figure 3.

FAM-NO-MATCHTRACKING-LEARNING(
{
I
1, . . . , IP

}
, ρ̄a, βa)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each I

r in
{
I
1, I2, . . . , IP

}

4 do Tmax ← 0
5 wmax ← none

6 for each w
a
j in templates

7 do if
[
ρ(Ir,wa

j) ≥ ρ̄a

]
and

[
T (Ir,wa

j , βa) > Tmax

]

8 then
9 Tmax ← T (Ir,wa

j , βa)
10 w

a
max ← w

a
j

11 if w
a
max 6= w0 and class(Ir) = class(wa

max)
12 then wmax ← wmax ∧ I

r

13 else templates← templates ∪ {Ir}
14 return templates

Figure 3: Anagnostopoulos No–matchtracking Fuzzy–ARTMAP

5

0 1 n-1
First Last

.....

Figure 4: Pipeline Structure.

4 The Beowulf parallel platform

The Beowulf cluster of workstations is a network of computers where processes exchange information
through the network’s communications hardware. In general, the Beowulf cluster configuration is a par-
allel platform that has a high latency. Parallelization techniques in this platform are radically different from
shared memory or vector machines. Our design is based on fixed packet size communication through the
network. No network bandwidth would be gained by using variable sized packets since packets are more
efficient when they are large and to find out the size of a packet a receiving process would have to incur an
extra (and expensive) communication.

To find the optimum packet size for our experiments, we used a large database of patterns, of dimension-
ality 55. We transmitted information in the pipeline using different packet sizes. The lowest transmission
time, regardless of the number of processors in the pipeline, occurred when the packet size was in between
64 to 128 patterns. Equating this number to memory size we get an optimum packet size for the cluster in the
vicinity of:

(64 . . . 128)× 55× 4 = (14080 . . . 28160)Bytes (3)

5 Parallel, no matchtracking, Fuzzy–ARTMAP implementation

Anagnostopoulos’ Fuzzy–ARTMAP variant is particularly amenable to a production–line style pipeline par-
allel implementation since patterns can be evenly distributed among the nodes in the pipeline. A depiction of
the pipeline is shown in figure 4. The elimination of matchtracking makes the learning of a pattern a one–pass
over the pipeline procedure, and different patterns can be processed on the different pipeline steps to achieve
optimum parallelization. For the implementation we will introduce the following definitions:

• n: number of processors in the pipeline.
• k: index of current process, k ∈ {0, 1, . . . , n− 1}.
• p: packet size, number of patterns sent downstream, 2p = number of templates sent upstream.
• I

i: input pattern i of current packet in the pipeline. i ∈ {1, 2, . . . , p}.
• w

i: current best candidate template for input pattern I
i.

• T i: current maximum activation for input pattern I
i.

• myTemplates: set of templates that belong to the current processor.
• nodes: variable local to the current processor that holds the total number of templates the process is

aware of (it’s own plus the other processors).
• myShare: amount of templates that the current process should have.
• w

i
k−1: template i coming from previous process in the pipeline.

• w
i
k+1: template i coming from next process in the ring.

• w
i: template i going to next process in the ring.

6

• w
i
to(k−1): template i going to previous process in the pipeline.

• I.class: class label associated with a given input pattern.
• w.class: class label associated with a given template.
• index(w): sequential index assigned to a template.
• newNodes: number of created nodes on a given iteration to communicate upstream in the pipeline.
• newNodesk+1: number of created nodes on a given iteration communicated from processor k + 1 in

the pipeline.

The algorithm itself is shown in figure 5. The initialization procedure which initializes the templates to nulls
is not shown.

6 Properties of Parallel, no matchtracking, Fuzzy–ARTMAP

To guarantee the correctness of the Parallel, no matchtracking Fuzzy–ARTMAP algorithm we developed a
series of fourteen properties distinguished in performance and correctness properties. We only discuss two
of these important properties, and we are presenting them in the form of theorems. For instance, Theorem
6.1 states that only one copy of the template will exist in the distributed system guaranteeing that no update
conflicts or stale templates exist in the system. Furthermore, Theorem 6.2 defines a useful upper bound on the
variance in the number of templates that each process possesses. Notice that this bound is independent of the
pipeline depth, guaranteeing that if we add more processes to the pipeline we will get a better performance.

Theorem 6.1 Template uniqueness guarantee
A template in the neural network will reside in one processor and one processor only.

Theorem 6.2 Workload balance variance bound
In a pipeline with an arbitrary number of processors and a downstream packet size p, the standard deviation
of the number of templates that each processor owns cannot exceed

p

2
√

3
(4)

If, for example, we use a packet size of 64 patterns, then the worst possible standard deviation in the value of
myShare would not exceed

64

2
√

3
=

32√
3

= 18.4752

regardless of the pipeline size n.

7 Experiments

The database used for testing was the Forest CoverType database provided by Blackard [4], and donated
to the UCI Machine Learning Repository [12]. The database consists of a total of 581,012 patterns each
one associated with 1 of 7 different forest tree cover types. The number of attributes of each pattern
is 54, but this number is misleading since attributes 11 to 14 are actually a binary tabulation of the at-
tribute Wilderness-Area, and attributes 15 to 54 (40 of them) are a binary tabulation of the attribute
Soil-Type. The original database values are not normalized to fit in the unit hypercube. Thus, we trans-
formed the data to achieve this. There are no omitted values in the data.

Patterns 1 through 512,000 were used for training. The test set consisted of patterns 561,001 to 581,000.
Classification performance of different machine learning algorithms for this database have been reported in
the range of 75%.

Training set sizes of 1000 × 2i, i ∈ {5, 6, . . . , 9}, that is 32,000 to 512,000 patterns were used for the
training of Fuzzy–ARTMAP and pipelined no matchtracking FAM. The test set size, as mentioned above,
was fixed at 20,000 patterns. The number of processors in the pipeline varied from p = 1 to p = 32, in
powers of 2.

7

Table 1: Classification performance of no–matchtracking Fuzzy–ARTMAP

Number of Patterns Classification %
32,000 70.29
64,000 74.62

128,000 75.06
256,000 77.29
512,000 79.28

To avoid additional computational complexities in the the experiments (beyond the one that the size of
the training set brings along) the values of the ART network parameters ρ̄a, and βa were fixed (i.e., the values
chosen were ones that gave reasonable results). For every combination of (p, P) = (pipeline size, training
set size) values we conducted 12 independent experiments (training and performance phases), corresponding
to different orders of pattern presentations within the training set. All results reported are averages over the
12 runs.

All the tests where conducted on the OPCODE Beowulf cluster of workstations [10] of the Institute for
Simulation and Training. This cluster consists of 96 9Athlon MP 1500+ nodes, each with 512MB of RAM
each. This configuration guaranteed identical conditions on all runs, parallel and sequential. Optimal in-
terprocess transmission packet size used as calculated by the experiment in section 4 was 64 (template,
input–pattern) pairs per transmission.

The metrics used to measure the performance of the pipelined approach were:

1. Classification performance of pipelined no matchtracking FAM.

2. Speedup of pipelined no matchtracking FAM versus sequential no match-tracking FAM.

Results for the speedup for this database can be seen in figure 7. We can see that the speedup is close to
linear. For large training set sizes the speedup is slightly above linear (i.e. 512,000 patterns) which suggests
that memory issues are a concern when few processes are in the pipeline.

Classification performance is shown on table 1. It is worth noting that the classification of the no–
matchtracking FAM variant (shown in Table 1) is comparable to the performance of the original FAM algo-
rithm (these results are not shown on the table), and better than the performance of other algorithms reported
for this database.

8 Conclusions

We implemented a pipelined Fuzzy–ARTMAP variant, referred to as no-match tracking FAM. The no-match
tracking FAM is one of the match-tracking FAM variants introduced by Anagnostopoulos ([1]). This ver-
sion of Fuzzy–ARTMAP allowed us to concentrate on the parallelization of the competition loop in Fuzzy–
ARTMAP . We demonstrated experimentally that this variants classification performance is comparable with
the performance of Fuzzy–ARTMAP. We have also formally showed that the algorithm is well behaved and
has good workload balancing properties. The algorithm exhibited linear speedup when the number of pro-
cessors is increased. This makes our Fuzzy–ARTMAP pipelined implementation suitable for data-mining
applications, where the size of the database is large. To the best of our knowledge, this is the first implemen-
tation of a Fuzzy–ARTMAP like classification algorithm on a BEOWULF cluster.

Acknowledgment

The authors would like to thank the Institute of Simulation and Training and the Link Foundation Fellowship
program for partially funding this project. This work was also supported in part by the National Science
Foundation under a CRCD grant (no. 0203446).Michael Georgiopoulos also acknowledges the support of
the NSF CCLI grant 0341601).

8

References

[1] G. C. Anagnostopoulos, “Putting the utility of match tracking in fuzzy ARTMAP to the test,” in Pro-
ceedings of the Seventh International Conference on Knowledge–Based Intelligent Information Engi-
neering, vol. 2, University of Oxford, UK. KES’03, 2003, pp. 1–6.

[2] G. Anagnostopoulos, “Novel approaches in adaptive resonance theory for machine learning,” Ph.D.
dissertation, Computer Engineering, UCF, 2000.

[3] K. Asanović, J. Beck, B. Kingsbury, N. Morgan, D. Johnson, and J. Wawrzynek, Parallel Architectures
for Artificial Neural Networks: Paradigms and Implementations. IEEE Computer Society Press and
John Wiley & Sons, 1998, ch. Training Neural Networks with SPERT-II.

[4] J. A. Blackard, “Comparison of neural networks and discriminant analysis in predicting forest cover
types,” Ph.D. dissertation, Department of Forest Sciences, Colorado State University, 1999.

[5] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “Fuzzy ART: An adaptive resonance algorithm for
rapid, stable classification of analog patterns,” in International Joint Conference on Neural Networks,
IJCNN’91, vol. II, IEEE/INNS Inc. Seattle, Washington: IEEE–INNS–ENNS, 1991, pp. 411–416.

[6] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the Twelfth International Conference
on Machine Learning, M. Kaufmann, Ed., San Francisco, California, 1995.

[7] T. G. Dietterich, “Machine-learning research, four current directions,” AI Magazine, Winter 1997.

[8] T. Kasuba, “Simplified Fuzzy ARTMAP,” AI Expert, pp. 18–25, November 1993.

[9] E. S. Manolakos, Parallel Architectures for Neural Networks: Paradigms and Implementations. IEEE
Computer Society Press and John Wiley & Sons, 1998, ch. Parallel Implementation of ART1 Neural
Networks on Processor Ring Architectures.

[10] P. Micikevicius, “Scerola parallel cluster,” http://www.cs.ucf.edu/courses/cda5110/scerola/guide-
scerola.html, 2003.

[11] J. Torresen and S. Tomita, Parallel Architectures for Artificial Neural Networks: Paradigms and Imple-
mentations. IEEE Computer Society Press and John Wiley & Sons, November 1998, ch. A Review of
Parallel Implementations of Backpropagation Neural Networks, pp. 41–118.

[12] University of California, Irvine, “Uci machine learning repository,”
http://www.icf.uci.edu/mlearn/MLRepository.html, 2003.

[13] D. Zhang, Parallel VLSI Neural Systems Design. Springer, 1998.

9

PROCESS(k, n, ρ̄a, βa, p)
1 INIT(p)
2 while continue
3 do
4 while |myTemplates| > myShare
5 do
6 EXTRACT-TEMPLATE

(

myTemplates,
{

w
i
to(k−1)

})

7 SEND-NEXT
(
k, n,

{(
w

i, Ii, T i
)

: i = 1, . . . , p
})

8 RECV-NEXT
(
k, n,

{
w

i
k+1 : i = 1, . . . , 2p

}
, newNodesk+1

)

9 SEND-PREV
(

k,
{

w
i
to(k−1) : i = 1, . . . , 2p

}

, newNodes
)

10 RECV-PREV
(
k,

{(
w

i
k−1, I

i
k−1, T

i
k−1

)
: i = 1, . . . , p

})

11 newNodes← newNodesk+1

12 S ←
{
w

i
k+1

}

13 for each i in {1, 2, . . . , p}
14 do WINNER(Ii,wi, T i, ρ̄a, βa,S)
15 myTemplates← myTemplates ∪ S
16 if I

i
k−1 = EOF

17 then continue← FALSE

18 else S ←
{

w
i
to(k−1)

}

19 for each i in {1, 2, . . . , p}
20 do WINNER(Ii

k−1,w
i
k−1, T

i
k−1, ρa, βa,S)

21
(
I
i,wi, T i

)
←

(
I
i
k−1,w

i
k−1, T

i
k−1

)

22 for each i in {1, 2, . . . , p}
23 do WINNER(Ii,wi, T i, ρ̄a, βa, myTemplates)
24 if k = n− 1
25 then if class(Ii) = class(wi)
26 then
27 myTemplates← myTemplates ∪ {Ii ∧w

i}
28 else newTemplate← I

i

29 index(newTemplate)← newNodes + nodes
30 myTemplates← myTemplates ∪ {Ii,wi}
31 newNodes← newNodes + 1
32 if newNodes > 0
33 then
34 nodes← nodes + newNodes
35 myShare←

⌈
nodes

n

⌉

36 SEND-NEXT (k, n, {(none, none, 0)})
37 RECV-NEXT

(
k, n,

{
w

i
k+1 : i = 1, . . . , 2p

}
, newNodek+1

)

38 myTemplates← myTemplates ∪
{
w

i
k+1 : i = 1, . . . , 2p

}

Figure 5: Pipelined no-match tracking Fuzzy–ARTMAP implementation for parallel processing

10

WINNER(I,w, T, ρa, βa,S =
{
w

i
}
)

1 idx← −1
2 for each w

i in S
3 do if

[
ρ(I,wi) ≥ ρa

]

4 then
5 if

[
T (I,wi, βa) > T

]

6 then
7 T ← T (I,wi, βa)
8 idx← i

9 else if
[
T (I,wi, βa) = T

]
and index(wi) < index(w)

10 then T ← T (I,wi, βa)
11 idx← i

12 if idx 6= −1
13 then
14 EXTRACT(widx,S)
15 ADD(w,S)
16 w← w

idx

17 return TRUE

18 else
19 return FALSE

Figure 6: Utility function to find best candidate template in a template list. Needed by parallel no-match
tracking Fuzzy–ARTMAP pipelined implementation

Speedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Number of Processors

Figure 7: Speedup of Forest CoverType database for different training set and pipeline sizes

11

This document is an author-formatted work. The definitive version for citation appears as:

J. Castro, J. Secretan, M. Georgiopoulos, R. F. DeMara, G. Anagnostopoulos, and A. Gonzalez, “Pipelining
Fuzzy ARTMAP without Match-Tracking,” in Proceedings of the 2004 Artificial Neural Networks in
Engineering (ANNIE’04) Conference, St. Louis, Missouri, U.S.A., November 7 – 10, 2004.

