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Ahbstract

Marker-propagation is on intringically perallsl ressoning
Fechmigque which bay been wsed mony AJ applicationy,
Recent sesearch hos comcentrated on how to implement
farker.prapagalion eficienily sy eresting and specinl
purpose parollel computer anchiteetures (1] 20 21 Hou-
ever, few measures currenily ernl o quantify the compu-
tahvenal mort performed in these sysfems, Erinteng raeis
rics such o Logical Inferences per Second [LIPS] ode
acurg the computational fealures of thia mazeieely porals
el approach. We propose o sef of mdices for ETSMFEY
procesgmyg throughput and choroclerizing the ossociated
knmicledge bases,

Propagation Mechanisms

Crur phjsciive was 1o develop representative processing
indicer which could be related 10 features of the applica-
tion program. Thes: metrics shoald be similar in concepe
vo those which alreadr exist for numeric-processing ap-
plications. such as the number of 32-bit Beatingpaint
operations |FLOPs] performed. In numeric processing
the basic floating point operation is a representative met-
tic because it forms a common basis between the algo-
rithm and machine. However, no squivalent messures
have been available for marker-propagation.

We have approached this problem by defining met-
rics capable of quantifvieg the fundamental operations of
“uselul work™ wnder the macker-propagation paradigm.
We contend that sach marker propagation has twa pri-
mary efecis;

1. Condifioning: activation or desctivation of tlie sia-
Tus bit in @ node or 1he execution of an arlthmetic
operation wpon node or link registers,

2. Spreadmg: propagatios of the matker 10 oiler s=
bected podes specifed by some propagation rele,

During propagation. spreadiag can be considered tran.
sien1 work while pode conditioning produces stead v-state
eflects. This is because spreading consists of search-and-
dispersicn operations which conswme computationsl re-
saurces. butl bave no lasting impact om the knowledge
base. On the other hand. conditioning operations mad-
iy the state of the knowledge base during execution. Our
se1 of indices for marker-propagation are listed in Tahle 1.
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Tahle 1: Indices for Marker-Propagation.

Maevker Acthvation

The activefion. A, of an injected marker is & mea-
gare of the effect it has on the knowledge base. It is a
computatiop-grisnted metrie. This quantity is the sum
of the activation status bits flipped at a pode (these bits
that indicate membership in & hypothesis, i.e. the nodes
become marked by them) and ihe number of FLOPs
induced (arithmetic computations to compate market
value]. Thus gives a marker propagation m, we mea-
ECTS

"1"""i = E [bat inversions) + z (ﬂﬁ;d)
Hlli}l_ﬁl-rh rnwl'l
(1
Thus the number of activations per second is a mi-
croscopie indicator of the amount of computatiossl work
performed, in il alsence of communication expentses.

Marker Seattering Function

The marker scattesing function, 8%, . denotes the time
behavior of two figares-of-merit for work done by spread-
ing. It reflects the communication work performed. The
first component, called the inspection, is defined a5
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It is the amount of work performed by searching the
relations in accordance with ihe propagation rile- T:!1!
second component of the scattering function is the di5
persion. The dispersion measures the amount of pew
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propagations that are recursively created:

neu
D, = Z (activations)

praop cycle
m,

(3)

This is precisely the amount of successful inspections:

=2 X

prop cycle niodes
m, encountered

(Irelatnon = Ipro]’) rule) (4)

Thus the scattering function for the j** propagation is:

S, =T, + Do, (5)

The motivation for separating the components of the
spreading tasks is to isolate the effects of particular algo-
rithm features. The distinction may be significant in the
context of the architecture used. For example, suppose
we wanted to assess the suitability of Content Address-
able Memory (CAM) in a marker-propagation machine.
These metrics could be tabulated for two application al-
gorithms ¢; and ¢, as part of the design study. The
algorithm ¢; = ( large Tm, , small Dy, } would benefit
from a CAM for fast searching during the inspection pro-
cess. On the other hand, @2 = { small I, , large D, )
would benefit from tighter coupling between nodes, but
derive little benefit from a CAM.

Lazy Markers

Under the marker-passing model, it is not possible to
know a-priori how long a marker-propagation instruction
will take. A major problem this can cause is low resource
utilization while waiting for the final markers to complete
propagation. We have called this the lazy marker effect.
We refer to the responsible marker as a lazy marker. To
quantify this effect, it is necessary to specify precisely
what it means to wait a “long” time. This may be readily
defined in terms of the scattering function S(t). Here

(6)

indicates the markers propagating through the net-
work during the propagation period. Lazy effects oc-
cur at the tail-end of this distribution. We know that
S(t = tm]ec!ion) =1 and S(f = tend) = 0. HOWCVCI, S({)
is not a strictly bitonic function. Thus we define lazy
markers in terms of the length of the propagation cycle
spent waiting for the last 1% of the markers to finish.

(7)

'S(t) Vtm]ecn'on St S tend propagation

19o—100 such that S(t) < 1% of Smax

tlazy

The tia;y parameter must be considered relative to the
overall propagation period Tprop- Consider the bursty
Rature of reasoning algorithms which generate ratios of
(Tprop ~ tiazy)/Tprop = 0.75. This indicates for at least
25% of the time, the machine is operating at less than 1%
of capacity. In this case, the price one has to pay to pro-
vide massively parallel support for marker-propagation
1s low processor utilization on average.
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[ Network Indices | Significance

Il

Fout fan-out outgoing relations per node
Fin fan-in Incoming relations per node
Lrettype path length relations in a chain
of links of type reltype
M network size | concepts in hierarchy
Neettype | composition | (number of reltype
links) — M
T topology Te{tree. mesh random
replicated subyraph}

Table 2: Networked Representation Indices.

Networked Knowledge Bases

Marker-propagation algorithms typically represent
knowledge using semantic networks. Semantic networks
are directed graphs of concepts (graph nodes), their prop-
erties (graph links), and the hierarchical relationship
(partial ordering) between them. Semantic networks are
dificult to characterize because their interconnections
are essentially random. To characterize them. we use
the average and maximum values of the parameters in
Table 2.

We have observed a common feature that we call the
replicated subgraph. This refers to the existence of large
forests of similar trees, with each tree representing an
specific event sequence. This regularity of structure pro-
vides insight into likely hot spots during computation.

We feel three cases are especially representative for
benchmarking marker-propagation performance:

1. vary M (e.g. 256, 1K, 4K, 16K nodes) with T fixed
(tests the scale-up of a similar but larger knowledge
base),
vary lpeteype With Fin, Four fixed {examines effect of
changing the critical path), and

3. vary M and Four with lreteype fixed {(examines im-
pact of network bushyness).

o

We are currently analyzing knowledge bases in terms
of these parameters. First, we would like to obtain some
idea of what typical ranges are for these indices. Second.
this will allow construction of a small set of standardized.
synthetic knowledge bases for benchmarking purposes.
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