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Abstract 
 

The goal of military training simulators is to portray the realities of combat situations as closely as possible. 
During combat situations, the performance of military vehicles can sustain progressive degradation induced by a 
variety of factors that range from enemy fire to crew fatigue. Training simulators should model these degraded states 
in order to provide military personnel with realistic training environments. Unfortunately, current simulators use less 
than optimal techniques to model platform degradation. The current techniques are mostly based on a probability of 
kill (PK). As an example, the performance degradation of a tank is modeled by three states: mobility kill, firepower 
kill, and catastrophic kill. This model does not leave room for the myriad of degradation conditions that lie 
somewhere in between these three states, as well as not taking into account other system components, such as 
communication equipment, nor the degraded performance that can result from human factors unrelated to the state 
of the equipment such as crew stress and fatigue. Researchers at the Army Materiel Systems Analysis Activity 
(AMSAA) have developed a new model that proposes a vulnerability and lethality taxonomy (V/LT). This 
taxonomy serves as a much more realistically metric to describe platform degradation and its resulting 
consequences. Other researchers, principally Industrial/Organizational (I/O) psychologists, have been employed by 
the military to determine the influence of human factors in degraded platform behavior. 

The purpose of this paper is to examine how to modify the behavior of autonomous intelligent agents 
(AIPs) given their current degraded state. The proposed method uses the Context-Based Reasoning (CxBR) 
paradigm to model AIP behavior. The AMSAA V/L taxonomy is incorporated into the model, and performance- 
degrading human factors are taken into account. To incorporate degraded state behavior into the CxBR paradigm, 
the current CxBR implementation was modified to incorporate the AIP’s degraded state into its reasoning. The 
modifications changed the CxBR structure by including degraded state knowledge in the AIP fact database, and by 
altering the reasoning that CxBR uses to choose the appropriate next context. This reasoning is modified by adding 
weights to each context and functions that calculate these weights. The current context in the proposed 
implementation is chosen as the context that has received the highest weight. The proposed approach was tested 
using a small-scale tank warfare scenario with satisfactory results. Future work should implement the concepts 
presented in this thesis on a larger-scale scenario, and refine implementation details, such as finding optimal 
functions to calculate the context weights. 
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INTRODUCTION 

Current simulators model platform 
degradation with very simplistic models that do not 
do justice to the vast variation of degradation 
conditions that can occur during combat. For 
instance, the mobility of a tank can be affected by 
several factors that can undergo degradation, such as 
the state of the track, the state of the engine, etc. 
Most of these factors, in turn, can undergo 
continuous levels of degradation.  Both the state of 
the track and the state of the engine could be 
described by quantities that range from the minimum 
state (catastrophic loss) to the maximum state (fully 
functional.) Modeling the mobility of a platform as 
either mobile or not, as many simulators do, is a huge 
oversimplification of reality that can no longer be 
justified, given the increasing demands for realism 
placed on training simulators. 

Recent efforts conducted by researchers 
from several fields have tackled several aspects of 
modeling platform degradation.  These researchers 
attempt to produce more realistic models through 
which to categorize the damage sustained by a 
military platform.  These new degradation models 
can then be used to give computer-generated forces 
(CGFs) more realistic behaviors given their degraded 
state. Two major communities that have addressed 
two large parts of the degradation-modeling problem 
are the Vulnerability/Lethality (V/L) community, and 
Industrial/Organizational (I/O) psychologists. V/L 
community researchers have created several V/L 
models throughout the years. These models are 
specific for every platform, and attempt to model the 
degradation on a military platform caused by enemy 
fire. Industrial/Organizational (I/O) psychologists, on 
the other hand, have developed models to 
approximate the influence of human factors in 
platform behavior.  A third area that has not been 
thoroughly addressed is the degradation induced by 
normal platform use.  It is evident, however that such 
factors (e.g. state of fuel or ammunition), influence 
crew decision-making. In this context, these factors 
can also be viewed as creating a degraded state that 
can influence the behavior. 

Most current simulators use Probability of 
Kill (PKs) to model degradation.  These metrics were 
produced by the Vulnerability/Lethality (V/L) 
community, beginning with World War II.  Although 
they are the best-known metrics, many bear no direct 
relationship to observable field occurrences, and they 
don’t address other factors not related to combat 
damage.  Recent efforts by the V/L community have 
developed more realistic metrics to assess platform 
damage.  AMSAA researchers, in particular, have led 
the field by developing a V/L Taxonomy that 
attempts to bring greater rigor and clarity to the 
discipline (Deitz et al., 1997). Other researchers, 
principally Industrial/Organizational (I/O) 
psychologists, have made progress in incorporating 
stress and fatigue as factors that produce degraded 
platform performance. 

 

THE CONTEXT-BASED REASONING 
PARADIGM 

Context-Based Reasoning (CxBR) is a 
knowledge representation paradigm developed to 
efficiently model the behavior of humans in tactical 
situations. It is especially suited for modeling of 
tactical behavior in military conflict [Gonzalez and 
Ahlers, 1998]. 

CxBR is based on the concept that humans 
think in terms of the context in which they find 
themselves. Furthermore, CxBR is also based on the 
concept of contexts controlling an intelligent agent’s 
actions. A context does two things: 1) It defines the 
actions that the agent takes under the context; and 2) 
it defines to what other context can the control of the 
entity be passed when the situations changes such as 
to make the currently-active context no longer 
relevant.  By doing these two things, contexts limit 
the things that can happen, thus obviating the need 
for an exhaustive search of all the possible actions, 
which is a drawback of rule-based systems.  In short, 
contexts define the actions and events applicable in a 
given situation, thus limiting the scope of knowledge 
required [Gonzalez and Ahlers, 1998].  



As an example, during tank warfare, the 
crew can expect certain things to happen while they 
are in a given situation, while not others.  For 
instance, let’s define a context called Attack-enemy. 
During this context, it is expected that the tank will 
be undergoing aggressive maneuvering, while firing 
its guns, and advancing towards the enemy.  Certain 
events are expected, such as the enemy firing back at 
the tank.  Other events would be unexpected, such as 
enemy soldiers appearing on the tank, and engaging 
in hand-to-hand combat with the crew.   Therefore, 
the Attack-enemy context would incorporate the 
functionality necessary to carry out aggressive 
maneuvering and firing at the enemy.  But it would 
not contain any capability for the crew to to do hand-
to-hand combat.  As such, the amount of knowledge 
contained in the context definition can be limited to 
what would be expected under the circumstances that 
define the context in question. 

Contexts are divided in three main levels. 
On the top of the hierarchy is the Mission Context. 
The Mission Context contains the goal or orders 
given to the intelligent entity (or as we call it here, an 
Autonomous Intelligent Platform, or AIP).  In the 
case of the tank example, a mission called 
Movement-to-contact could be given to the tank, 
thus providing it with an overall purpose.  The 
mission defines the entity’s objective, providing it 
knowledge of what its goal is, and when this goal has 

been reached.  Mission Contexts are not control 
elements, but rather, only serve to define the 
parameters of the overall mission. 

Below the Mission Context are the Main 
Contexts.  Main contexts are the main control 
element for the AIP, and thus form the backbone of 
CxBR.  They encapsulate the knowledge needed for 
the different situations that the AIP may encounter 
while striving to complete the mission. As an 
example, a tank with a Movement-to-contact 
mission could have as main contexts Attack-enemy, 
Search-for-enemy, Tactical-Retreat, and 
Surrender. Main contexts are mutually exclusive in 
the sense that one and only one can be in control of 
the AIP’s behavior.  This is called the currently 
active context, or simply the active context.   

Below the main contexts are the Sub-
contexts.  Sub-contexts encompass lower level 
actions that are repeatable, reusable, and can be 
easily abstracted. For example, the Attack-enemy 
main context could have as its sub-contexts Fire-
main-gun, Advance-to-enemy, Pop-smoke.  There 
is no limit to the number of levels of sub-contexts 
that could be used. For instance, the sub-context 
Fire-main-gun could be further subdivided into the 
sub-contexts Load-main-gun, Aim-main-gun,  and 
Shoot-main-gun. The context hierarchy is shown in 
Figure 1. 
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FIGURE 1- GRAPHICAL DEPICTION OF THE CXBR HIERARCHY 
 

By dividing the knowledge base in a 
hierarchical fashion, CxBR facilitates development 
and enhances execution speed.  Unlike rule-based 
systems where the knowledge base can become 
unmanageably large, contexts encapsulate the 
knowledge required, thus reducing the size of the rule 

base. A context is aware of the situation in which it is 
applicable, and other situations that might arise from 
that context, which gives the agent situational 
awareness [Norlander 1999]. 



Knowledge in CxBR is stored using 
modularity. Each entity has a local fact base 
containing the facts pertinent only to itself.  All 
entities also have access to a global fact base, where 
facts that pertain to all entities and the simulation as a 
whole are stored. Each entity is equipped with an 
inference engine that makes use of these facts.  The 
inference engine also checks the contexts in order to 
transition to one that is applicable to the current 
situation faced by the entity. 

 

AMSAA’s V/L Taxonomy 

A new effort by AMSAA researchers led by 
Deitz is creating a V/L Taxonomy that aims to 
replace PKs and bring greater rigor and clarity to the 
V/L discipline.  The V/L Taxonomy is composed of 
six levels of temporally ordered states known as 
mathematical spaces.  Each mathematical space 
represents observable or derivable conditions of the 
threat and target platforms.  The first few of the states 
represent conditions prior to weapon firing, while the 
latter few represent the condition of the target after 
the firing.  The observable or derivable features of 
each space are represented in a vector, which can be 

characterized as the physical parameters of the 
platform and the environment (Gonzalez et al., 2000). 

Two sequential spaces are joined together by 
a mapping function called an operator, which maps 
the vectors in the upstream space to one in the 
downstream space.  These mappings can be done via 
physical equations, engineering design of the 
platform, or through operations research, depending 
on the two spaces being mapped.  These mappings 
can be linear or non-linear in nature, and may be 
expansive (one to many), or contractive (many to 
one.)  Figure 2 depicts the mathematical spaces and 
the operators; the six levels are the following (Deitz 
et al, 1997). 

1. Weapon detection – identification conditions. 

2. Threat-launch initial conditions. 

3. Threat target initial conditions. 

4. Damaged components in target. 

5. Measures of target capabilities after taking the 
hit. 

6. Measures of target utility after taking the hit. 
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FIGURE 2 – GRAPHICAL DESCRIPTION OF THE MATHEMATICAL SPACES AND OPERATORS [GONZALEZ ET AL., 
2000] 

 

O-1,0 

Mapping via physics 
Level 0 – Launch Init. Cond.

O0,1 
Mapping via physics 

Level 1 – Target Init. Cond. 

O1,2 

Mapping via physics 
Level 2 – Damaged comp. 

O2,3 
Mapping via Eng 

Level 3 – Target capability 

O3,4 
Mapping via OR 

Level 4 – Target utility 



The V/L Taxonomy then separates the V/L 
metrics for aggregate damage, reduced platform 
capability, and reduced platform utility that had until 
then been incorporated into a single metric. It is 
shown that these three distinct and separable classes 
of metrics are linked by operators that are 
multivariate, stochastic, and nonlinear (Deitz et al., 
1997).  The current work will mainly utilize the last 
two levels, namely levels 3 and 4 that measure the 
target capability and the target utility and the 
mapping between these two levels. 

See Deitz [1997] for further details on the 
V/L Taxonomy. 

Further work has refined the V/L Taxonomy 
to include a Military Operations Context (MOC) 
block.  This construct has been added in recognition 
that each of the operators takes input from the 
operations context in which a platform is performing.  
The MOC defines doctrine, tactics, leadership, 
materiel, scenario, terrain, weather, and all the factors 
external to the platform itself.  As an example, during 
a live-fire test, the volatility of the ammunition is 
dependent on the ambient temperature (Deitz, 1999). 

The V/L Taxonomy defines a rigorous 
method for implementing degraded state modeling, as 
opposed to DSWARS and CASTFOREM, both of 
which implement specific degraded state models.  As 
such, the V/L Taxonomy is not incompatible with 
these two previous efforts, but rather can make use of 
the degraded states defined in these efforts.  For 
example, the CASTFOREM degraded state tables can 
be viewed as implementing the V/L Taxonomy’s 
Levels 1 through 3 and their respective mappings. 
These tables map the location of a hit on a target 
(Level 1) to a list of damaged components (Level 2), 
and give a degraded state for the platform capability 
(Level 3). 

 

MODELING DEGRADED PLATFORM 
BEHAVIORS CONCEPTS 

While the V/L Taxonomy addresses the 
effect of a weapon firing on the state of the target, it 
does not address the decision making process 
followed by commander of a platform that has 
suffered degradation as a result of enemy fire.  
Furthermore, enemy fire is not the only cause of 
degradation.  The entity may find itself in a degraded 
state because of the psychological and physical state 
of the crew as well as that of normal wear and tear on 
the platform.  In the work described here, the concept 
of degraded state behavior has been incorporated into 
the CxBR behavior paradigm in order to model this 
decision making process.  Prior to this effort, the 

AIPs developed by researchers conducted themselves 
in an ideal fashion.  They never made mistakes, were 
never damaged, and the crew never became fatigued. 
This lack of ability to represent degradation did not 
permit CxBR (or any other modeling paradigm, for 
that matter) to accurately depict the real world.  In 
this real world platforms degrade, and for different 
reasons, the best decision is not always taken.  This 
issue becomes especially important in military 
simulation applications.  Military simulations need to 
represent the realities of combat, where platforms 
degrade due to factors such as enemy fire, crew 
fatigue, and others.  Lacking the capability to infuse a 
platform with degraded state behavior invalidates any 
representation of human tactical behavior.  This 
work, therefore, seeks to adapt CxBR to incorporate 
decision-making under degraded states. 

CxBR applications are developed using the 
CxBR Framework, a custom-made application for 
CxBR. The previous CxBR Framework 
implementation lacked the following capabilities 
necessary for implementing degraded state behavior: 

1. AIPs lacked knowledge of their degraded state. 

2. It included no provision for dynamic degradation 
of the AIPs throughout the simulation. 

To solve the first problem, an efficient and 
reusable manner of incorporating degraded state 
knowledge was needed. The chosen approach had to 
satisfy the following requirements: 

• Degraded state knowledge should be accessible 
only to the degraded AIP. 

• Procedures for creating, adding and modifying 
degraded state information had to be 
incorporated in the CxBR Framework to make 
them available for future researchers. 

The second problem is more complex.  As 
described above, the reasoning process in CxBR is 
done through context transitions.  An AIP has a set of 
behavior that is specified by the context under which 
it is working (the current context).  The major 
behaviors of the AIPs are specified by the Main 
Contexts.  The Main Contexts in all previous CxBR 
applications were designed to be mutually exclusive.  
Transitioning among main Contexts was done 
through single-event conditions.  For example, the 
detection of an enemy platform would be sufficient to 
transition from one Main Context to another, 
regardless of any other factor.  But this is not 
realistic, as often, a decision between two or more 
plausible next Main Contexts may depend on several 
factors.  One of these factors is indeed the platform’s 
own degraded state.  A way to choose the best 



context possible had to be devised while meeting the 
following constraints: 

• It should be easy to use and clearly demonstrate 
the effect of the AIP degraded state in selecting 
the most appropriate main context. 

• The chosen method had to be flexible enough to 
allow for future researchers to implement 
methods for choosing the optimal context to 
control the AIP. 

To demonstrate the added functionality of 
the CxBR Framework for degraded state behavior, 
the concepts had to be tested in a relevant application 
where the effects of degradation can greatly modify 
an AIP’s behavior.  The University of Central Florida 
(UCF) is part of a project to develop a military 
simulation environment where the vehicles involved 
display appropriate behaviors corresponding to their 
degraded state.  The final prototype has to display the 
AIPs in a graphical environment, as well as display 
the interaction between the AIPs’ degraded state and 
their behavior. 

 

Project Hypothesis 

The hypothesis of this project is that CxBR 
is a viable vehicle for representing degraded state 
behavior.  To demonstrate this, the CxBR 
implementation was enhanced to address its lack of 
degraded state representation capability as described 
before.  

The current project has made the following 
contributions to the development of the CxBR 
paradigm. 

1. The CxBR Framework has been enhanced by 
incorporating degraded state knowledge into the 
AIPs’ local factbase.  This was done through a 
well-defined interface that allows the developer 
to easily create degradable qualities of the AIP, 
and give them a range of values.  It also provides 
a preset value under which the AIP can no longer 
perform its function.  

2. The CxBR Framework has been enhanced by a 
new context switching mechanisms that allows 
the creation of Main Contexts that are mutually 
compatible.  The contexts themselves have been 
modified by the addition of new methods that 
allow the CxBR developer to give each context a 
weight that can be used to select the context that 
controls the AIP.  These weight mechanism has 
been designed to allow for further research into 
optimal context selection. 

3. A method for selecting context weights has been 
developed that emphasizes the effects of a 
platform’s degraded state in context selection.  
Such a mechanism meets the project requirement 
of showing a correlation between the AIP’s 
degraded state and its behavior. 

4. A graphical simulation interface has been 
developed where the AIPs and their current 
degraded state are shown graphically.  The 
simulation has been designed in VBA for easy 
reuse by future researchers with the appropriate 
technical knowledge. 

 

CxBR Structure 

During the development of the project, 
further enhancements were made to the CxBR 
Framework’s capabilities and to its structure.  

The CxBR structure has been restructured to 
provide for more modularity that will allow future 
developers to separate their CxBR application into 
separate pieces that contain related functionality. 
Depending on the application developed, it can be 
divided into two or three separate pieces.  The first 
two are required and the third is optional if graphical 
display of the simulation is desired through the 
simulation tool developed in this project.  The two 
required parts of the new CxBR application structure 
are the following: 

• The CxBR Framework – The CxBR 
Framework has been developed into a stand-
alone static library that can be use from any 
C++ CxBR application by adding the 
appropriate header files and including the 
library in the settings.  This Framework has 
been revised to eliminate all of the 
functionality that required the use of a 
Windows compiler.  The redesigned 
Framework is now written in standard C++ 
and can be compiled under any operating 
system with a C++ compiler that support the 
Standard Template Library (STL). 

• The CxBR Simulation – The CxBR 
simulation links statically to the CxBR 
Framework and can be designed as a stand-
alone application, or a Windows DLL that 
can be used from the simulation 
environment developed in this project.  This 
simulation should contain the CxBR 
simulation itself, and if desired, the standard 
DLL calls for use by the simulation 
environment. 



If a graphical simulation environment is 
desired, and the developer wishes to use the 
simulation environment developed in the current 
effort, the simulation will contain a third element: 

• The simulation environment – The simulation 
environment was developed in VBA under 
PowerPoint 97.  To use this environment, it is 
understood that the CxBR simulation was 
developed as a DLL using standard calling 

conventions.  The simulation environment has 
been designed in a modular fashion with a set of 
core modules that interface with a Windows 
DLL, and a second set of modules that deals with 
the current application. Future researchers can 
make use of this environment by simply 
importing the core files into their VBA 
PowerPoint applications, and making sure that 
the correct set of interface methods are 
implemented in their DLL. 
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Figure 3 – Block Diagram of the CxBR Application Structure. 
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FIGURE 3 – THE CXBR APPLICATION STRUCTURE 

 



A figure showing the new structure given to 
CxBR applications is shown below in Figure 3.  As 
shown, the CxBR Framework is the core of the 
application; the CxBR C++ simulation should contain 
the CxBR Framework by statically linking it in 
compile time.  The simulation environment shows the 
current state of the simulation by linking dynamically 
with the C++ simulation. 

 

IMPLEMENTING DEGRADED STATE 
BEHAVIOR IN CxBR 

In this section, we explain in detail the 
concepts used to implement degraded state behavior.  
The section is divided into three sub-sections.  The 
first one explains how degraded state knowledge can 
be incorporated in the AIP class.  The second 
discusses how the contexts can be modified to give 
them a weight according to their appropriateness 
given a situation. 

 

Incorporating Degraded State Knowledge in the 
AIP’s Knowledge Base 

The first step to incorporate degraded state 
behavior to the CxBR Framework is to give the AIPs 
knowledge of their degraded state.  The degraded 
state representation should be a general-purpose 
approach that could model different kinds of 
degradation types.  A single method was desired that 
could model such diverse degradation factors as 
battle damage-induced degradation, psychological 
degradation, and normal wear-and-tear degradation. 
Since the method devised had to be reusable by 
future researchers, the functionality had to be 
included in the Framework itself.  The AIP class was 
enhanced with the addition of degradable attributes. 
These degradable attributes are initialized at the 
instantiation of the object, and consist of three 
required quantities, and an optional number of 
additional quantities. The required quantities are: 

1. Current Value – This value provides the AIP 
with knowledge of what is the current value of 
the degradable attribute.  This value should not 
be confused with the actual current value of the 
associated attribute.  For example, the current 
value of the degradable attribute “maximum 
speed” can be 75 mph.  But the current value of 
the speed however can be anything up to 75 
mph. 

2. Maximum Value – This value provides the AIP 
with the maximum range of the degradable 
attribute. 

3. Minimum Default Value – This value indicates 
what is the minimum value that the degradable 
attribute can assume before the AIP loses the 
functionality associated with the quantity.  This 
quantity is the default value, and it is applicable 
for all the main contexts of the AIP unless 
otherwise specified, as described below. 

A further capability was included to give 
each of the AIPs Main Contexts different minimum 
values for the degradable attributes (than the default).  
As an example, you would expect the minimum value 
for the maximum speed of a tank could be different 
for the Attack-Enemy context and the Tactical-
Retreat context.  In the former, the AIP would need 
speed to carry out the attack successfully.  In the 
latter, it just needs to get away.  The developer can 
then specify quantities specific for each Main 
Context instead of using the default.  In another 
scenario, one Main Contexts may have different 
requirements for one of the attributes than do the rest 
of the contexts.  In such cases, the developer can 
assign a default value that is used for all contexts, and 
give the one context with different requirements its 
own value.  This value then overrides the default, 
while the rest use the default. 

To make this mechanism available to future 
CxBR applications, the functionality was included in 
the AIP class. The methods store the values for the 
degradable qualities as facts in the local factbase of 
the AIP.  The local factbase of the AIP is accessible 
only to the AIP.  It consists of a set of facts that 
pertain only to the AIP, and together with the global 
factbase, it encompasses the state-of-the-world 
knowledge of the AIP.  

Although the format of the facts are hidden from the 
developer by the methods, the degradable qualities 
can be created before the application starts by 
creating factbase files that the application reads in, 
and initializing the local and global factbases.  This is 
the preferred method for creating the degradable 
qualities, since it allows the modification of the initial 
quantities without requiring program recompilation 

 

Adding Weights to the Main Contexts 

The CxBR Framework was modified by 
adding weights to the Context class.  These weights 
are changed throughout the simulation duration 
according to the situation.  The mechanism for 
changing the weights however was not implemented 
directly into the Context class, however, as each 
simulation will produce different situations that 
require the weights to be adjusted in different ways.  
Furthermore, a new method for choosing the optimal 



context to control the AIP is currently being 
developed in a parallel project, and it is expected that 
the functionality developed there will be used to 
assign the weights to the contexts.  

The context class was modified by adding a 
method for retrieving the current weight and another 
method for updating the weight that the CxBR 
developer must implement in a simulation.  Further, a 
transition weight was created that can be used by 
developers as part of the weight calculation 
mechanism.  This transition weight is set to one if the 
context is a transition of the current context, and to 
zero if it isn’t.  The context is a transition to another 
if it is a possible next context.  This possibility is 
defined as membership in a list of contexts in the 
active context that identifies the contexts that can 
follow the active context.  For example, a tank in the 
Tactical-Retreat context can transition to the 
Surrender context, but not to the Attack-Enemy 
context.  The Surrender context then has a transition 
weight of one, while the Attack-Enemy context has 
a weight of zero. The methods for changing the 
weights in the current context are found in the Main 
Context classes.  They will be explained here as an 
example of how a weight changing mechanism can 
be designed.  

The current project involved the 
development of a tank warfare simulation.  As such, 
it was decided that the weights of the contexts should 
depend on three variables: 

1. The Transition Weight – This weight determines 
whether the context is a plausible transition ton 
the current context. 

2. The Threat Weight – This weight varies 
depending on the level of threat in which the AIP 
is.  Each context will have a different weight 
conditioned on certain variables on which they 
depend.  For example, the Surrender context 
only has a positive threat weight when the AIP is 
under attack.  The Attack-Enemy context, on 
the other hand, has a positive threat weight when 
there is an enemy in sight. 

3. The Degradation Weight – This weight varies in 
accordance to the degraded state of the platform.  
In the tank warfare simulation developed, the 
tanks contain a degradation model that 
incorporates degradation factors such as battle 
damage, psychological state, and wear-and-tear 
of the platform.  An appropriate weight for each 
context is set depending on the state of the entity. 

These three weights are combined by taking 
their minimum as the current weight of the context. 
This weight is stored to allow for later accessing by 

the context switching mechanism.  All the weights 
used in this simulation were normalized to fall in the 
range of zero to one.  This, however, does not need to 
be the case, and the developer is free to choose 
ranges appropriate to the simulation at hand. 

 

The Degradation Weight 

Out of the three weights used to calculate 
the context weight, the degradation weight 
calculation, is the most complex and important. 
Further, this weight is directly correlated with the 
AIP’s degraded state, and it is use to give a 
quantitative measure of the utility of the platform to 
complete its different tasks.  Therefore, the 
calculation of the degradation weight is one of the 
main thrusts of this project, and thus warrants further 
explanation. 

 The degradation weight depends on three 
factors:  

1. Damage induced by enemy fire. 

2. Sub-optimal performance caused by crew 
psychological factors. 

3. Wear-and-tear degradation factors. 

Other factors, such as leadership and level of 
training, although potentially significant, will not be 
modeled here.  They will be left for future research. 

We will refer to the example used in the 
prototype in order to explain this concept.  Two types 
of AIPs were designed for this prototype example: a 
Tank AIP and a Cannon AIP.  Since the project was 
geared towards tank performance degradation, a 
degradation model was implemented only for the 
Tank.  The degradation model took into account four 
major system components, and considered two 
degradable attributes for each of these systems.  
Table 1 shows the four system components under 
consideration with their associated degradable 
attributes, and an indication of under what type of 
degradation factor the degradable attributes fall. 

The different types of degradation types are 
obtained in different manners. The enemy fire related 
degradable attributes are obtained by following the 
process designated by AMSAA’s V/L Taxonomy 
Levels 2 through 4.  The degradable attributes are the 
platform’s subsystems affected by a hit, and they 
directly correlate to Level 2 of the taxonomy.  These 
systems are affected in different levels of severity 
depending on where the hit took place.  After the 
subsystem damage is calculated, the Level 2 to 3 
mapping can be performed.  This mapping consists of 
determining how the system components (mobility, 



firepower, etc.) are affected by the damage to the 
subsystems. It is noteworthy to point out here that 
these mapping from degradable qualities damage to 
system component damage includes the non-enemy 
fire related degradable qualities, in this case, fuel, and 
crew energy.  Having the system component’s 
capability (Level 3 of the Taxonomy), the utility of 
the platform to perform different tasks is calculated.  
This corresponds directly to the Taxonomy Level 3 to 
4 mapping. The tasks that the platform can perform 

correspond to the behaviors that the tank can 
implement (its Main Contexts).  Then the mapping 
involves calculating the utility of the tank for Attack-
Enemy, Tactical-Retreat, Search-For-Enemy, and 
Surrender.  The utility assigned to the Main 
Contexts is then taken to be the degradation weight of 
the context. 

 

 
 

Table 1 – List of System Components Considered Along with their Associated Degradable Qualities 

System Component Associated Degradable Qualities 

Mobility Max Speed (Enemy Fire) 

  Fuel (Wear-and-Tear) 

Firepower Gun Range (Enemy Fire) 

  Ammunition (Wear-and-Tear) 

Crew Number (Enemy Fire) 

  Energy (Psychological) 

Communications Radio State (Enemy Fire) 

  InterComm State (Enemy Fire) 

 

The various degradation types are obtained 
in different manners.   The degradable attributes 
related to enemy fire are obtained by following the 
process designated by AMSAA’s V/L Taxonomy 
Levels 2 through 4.  The degradable attributes are the 
platform’s subsystems affected by a hit, and they 
directly correlate to Level 2 of the taxonomy.  These 
systems are affected in different levels depending on 
where the hit took place.  After the subsystem 
damage is calculated, the Level 2 to 3 mapping can 
be performed.   This mapping consists of determining 
how the system components (mobility, firepower, 
etc.) are affected by the damage to the subsystems.  It 
is noteworthy to point out here that these mapping 
from degradable attributes damage to system 
component damage includes the non-enemy fire 
related degradable qualities (fuel, and crew energy).  
Having the system components capability (Level 3 of 
the Taxonomy), the utility of the platform to perform 
different tasks is calculated.  This corresponds 
directly to the Taxonomy Level 3 to 4 mapping.  The 
tasks that the platform can perform correspond to the 
behaviors that the tank can implement or its main 
contexts.  Then the mapping involves calculating the 
utility of the tank for Attack-Enemy, Tactical-
Retreat, Search-For-Enemy, and Surrender.  The 

utility assigned to these Main Contexts is then taken 
to be the degradation weight of the context. 

Note that non-enemy fire related 
degradation was included to show that they can be 
easily incorporated into the decision-making process.  
No attempt was made to ensure the realism of the 
models representing these factors.  For example, fuel 
was included in the calculation as a wear-and tear 
factor.  It is obvious that there are some degradation 
factors that are associated with the normal use of the 
platform, and fuel was included as a representative 
degradable quality, since it is mainly a function of the 
distance traveled.  The crew energy was included as a 
psychological factor that affects behavior.  In this 
application, the crew energy was merely set as a 
decreasing function of time.  No claim as to the 
realism of this approach is made.  I/O psychologists 
have developed already sophisticated methods to 
model crew degradation, and these models should be 
included in a more advanced application than the one 
developed in this project. 

For more details on the process of selecting 
the next current Main Context, please refer to 
Gallagher [2000]. 

 



RESULTS 
A prototype was developed which set up the 

following scenario: A Bluefor tank section, with a 
mission of Movement-to-Contact is moving through 
the battlefield.  It suddenly detects the presence of a 
fixed artillery piece (called the Cannon AIP), that has 
a longer range than the tanks, but is immobile.  They 
maneuver to destroy the cannon by moving towards it 
as fast as possible in a zig-zag pattern until they are 
within range.  Upon reaching their range, they begin 
firing at the cannon.  The cannon, having a longer 
range, is firing at them upon detection.  It only 
operates in the Fire-at-enemy main Context, which 
simply includes firing at the attacking tanks.   

The strike point of each round, from the 
Bluefor tanks as well as from the Oppfor cannon is 
based on a random process.  When struck, the 
Bluefor tanks will use a simplified V/L taxonomy to 
determine the effect of the hit, and the utility of their 
vital attributes.  The commander then must decide 
whether to continue with the attack, or to shift 
contexts and perform alternate actions, such as 
surrender, or retreat.  As the point of round impact is 
random, the results of the various simulations may 
vary depending on the seed used. 

A second scenario was added that includes 2 
Oppfor tanks appearing in the distance.  Now the 
Bluefor tanks must decide on whom to fire first.  The 
Bluefor tank’s range is longer than that of the Oppfor 
tanks. 

The results indicated that the Bluefor tanks 
correctly performed the decision-making based on 
their degraded states.  In some of the runs, one of the 
Bluefor tanks was killed and required surrender of 
the crew.  In most cases, they succeeded in 
destroying the two opposing force tanks as well as 
the cannon.  In some cases, both tanks were damaged 
and had to implement a retreat, popping smoke and 
firing as they retreated.  The detailed results can be 
found in Gallagher [2000]. 

 

CONCLUSION 

The current project has shown the utility of 
CxBR in representing degraded state reasoning.  The 
CxBR paradigm has been accordingly extended, and 
the new capabilities have been demonstrated by the 
development of a tank simulation under a VBA 
environment with a PowerPoint engine.  The 
degraded state behavior has been incorporated into 
CxBR by following two steps: First, degraded state 
knowledge was incorporated into the autonomous 
entities. Second, this knowledge was used to change 

the weights of the transition contexts, which will 
affect the decision of which context to choose.  The 
battle related degradation factors were determined by 
using an approximation of the approach proposed by 
AMSAA’s new vulnerability/lethality taxonomy.  

By incorporating degraded state knowledge 
into the CxBR paradigm, it now has the required 
capabilities to develop realistic intelligent agents that 
act differently according not only to the situation they 
are in, but also according to their current degraded 
state. 

Future research includes integrating better 
models for the degradation of the factors related to 
enemy fire (the actual V/L Taxonomy).  Additionally, 
better models of the factors that affect the crew, such 
as fatigue, morale, crew health, availability of 
leadership, training, and other such physical and 
psychological factors need to be integrated.  Lastly, 
models dealing with wear-and-tear degradation need 
to be developed.  These should be significantly 
simpler than the previous two models, however. 
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