
This document is an author-formatted work. The definitive version for citation appears as:

A. Gallagher, A. J. Gonzalez, and R. F. DeMara, “Modeling Platform Behaviors Under Degraded States Using
Context-Based Reasoning,” in Proceedings of the 2000 Interservice/Industry Training, Simulation and Education
Conference (I/ITSEC-2000), Orlando, Florida, U.S.A., November 27 – 30, 2000.

Link: http://www.simsysinc.com/i_itsec00.htm

MODELING PLATFORM BEHAVIORS UNDER DEGRADED STATES USING CONTEXT-BASED

REASONING

Anthony Gallagher, Avelino Gonzalez, and Ronald DeMara
University of Central Florida

Orlando, Florida

Abstract

The goal of military training simulators is to portray the realities of combat situations as closely as possible.
During combat situations, the performance of military vehicles can sustain progressive degradation induced by a
variety of factors that range from enemy fire to crew fatigue. Training simulators should model these degraded states
in order to provide military personnel with realistic training environments. Unfortunately, current simulators use less
than optimal techniques to model platform degradation. The current techniques are mostly based on a probability of
kill (PK). As an example, the performance degradation of a tank is modeled by three states: mobility kill, firepower
kill, and catastrophic kill. This model does not leave room for the myriad of degradation conditions that lie
somewhere in between these three states, as well as not taking into account other system components, such as
communication equipment, nor the degraded performance that can result from human factors unrelated to the state
of the equipment such as crew stress and fatigue. Researchers at the Army Materiel Systems Analysis Activity
(AMSAA) have developed a new model that proposes a vulnerability and lethality taxonomy (V/LT). This
taxonomy serves as a much more realistically metric to describe platform degradation and its resulting
consequences. Other researchers, principally Industrial/Organizational (I/O) psychologists, have been employed by
the military to determine the influence of human factors in degraded platform behavior.

The purpose of this paper is to examine how to modify the behavior of autonomous intelligent agents
(AIPs) given their current degraded state. The proposed method uses the Context-Based Reasoning (CxBR)
paradigm to model AIP behavior. The AMSAA V/L taxonomy is incorporated into the model, and performance-
degrading human factors are taken into account. To incorporate degraded state behavior into the CxBR paradigm,
the current CxBR implementation was modified to incorporate the AIP’s degraded state into its reasoning. The
modifications changed the CxBR structure by including degraded state knowledge in the AIP fact database, and by
altering the reasoning that CxBR uses to choose the appropriate next context. This reasoning is modified by adding
weights to each context and functions that calculate these weights. The current context in the proposed
implementation is chosen as the context that has received the highest weight. The proposed approach was tested
using a small-scale tank warfare scenario with satisfactory results. Future work should implement the concepts
presented in this thesis on a larger-scale scenario, and refine implementation details, such as finding optimal
functions to calculate the context weights.

Biographical Sketch:

Anthony Gallagher is a Research Assistant at the Robotics Institute at Carnegie Mellon University in Pittsburgh, PA,
where he is pursuing a PhD. His areas of interest include computer vision, image processing and artificial
intelligence and their application to engineering problems. Anthony holds a Bachelor of Science in Computer
Engineering and will graduate with a Masters of Science degree in Electrical Engineering from the University of
Central Florida in December 2000. He served as a Research Assistant at the School of Electrical Engineering and
Computer Science at UCF while performing the research described here.

Avelino Gonzalez is a Professor at the School of Electrical Engineering and Computer Science of the University of
Central Florida. His main area of interest is artificial intelligence, specially as to how it applies to modeling human
tactical behaviors. He has been the principal investigator in several DoD projects. He holds a Ph.D. degree in
Electrical Engineering from the University of Pittsburgh.

Ronald DeMara is an Associate Professor at the School of Electrical Engineering and Computer Science of the
University of Central Florida. Dr. DeMara specializes in distributed processing, artificial Intelligence, and
simulation. He holds a Ph.D degree in Computer Engineering from the University of Southern California.

MODELING PLATFORM BEHAVIORS UNDER DEGRADED STATES USING CONTEXT-BASED
REASONING

Anthony Gallagher, Avelino Gonzalez, and Ronald DeMara

University of Central Florida
Orlando, Florida

INTRODUCTION

Current simulators model platform
degradation with very simplistic models that do not
do justice to the vast variation of degradation
conditions that can occur during combat. For
instance, the mobility of a tank can be affected by
several factors that can undergo degradation, such as
the state of the track, the state of the engine, etc.
Most of these factors, in turn, can undergo
continuous levels of degradation. Both the state of
the track and the state of the engine could be
described by quantities that range from the minimum
state (catastrophic loss) to the maximum state (fully
functional.) Modeling the mobility of a platform as
either mobile or not, as many simulators do, is a huge
oversimplification of reality that can no longer be
justified, given the increasing demands for realism
placed on training simulators.

Recent efforts conducted by researchers
from several fields have tackled several aspects of
modeling platform degradation. These researchers
attempt to produce more realistic models through
which to categorize the damage sustained by a
military platform. These new degradation models
can then be used to give computer-generated forces
(CGFs) more realistic behaviors given their degraded
state. Two major communities that have addressed
two large parts of the degradation-modeling problem
are the Vulnerability/Lethality (V/L) community, and
Industrial/Organizational (I/O) psychologists. V/L
community researchers have created several V/L
models throughout the years. These models are
specific for every platform, and attempt to model the
degradation on a military platform caused by enemy
fire. Industrial/Organizational (I/O) psychologists, on
the other hand, have developed models to
approximate the influence of human factors in
platform behavior. A third area that has not been
thoroughly addressed is the degradation induced by
normal platform use. It is evident, however that such
factors (e.g. state of fuel or ammunition), influence
crew decision-making. In this context, these factors
can also be viewed as creating a degraded state that
can influence the behavior.

Most current simulators use Probability of
Kill (PKs) to model degradation. These metrics were
produced by the Vulnerability/Lethality (V/L)
community, beginning with World War II. Although
they are the best-known metrics, many bear no direct
relationship to observable field occurrences, and they
don’t address other factors not related to combat
damage. Recent efforts by the V/L community have
developed more realistic metrics to assess platform
damage. AMSAA researchers, in particular, have led
the field by developing a V/L Taxonomy that
attempts to bring greater rigor and clarity to the
discipline (Deitz et al., 1997). Other researchers,
principally Industrial/Organizational (I/O)
psychologists, have made progress in incorporating
stress and fatigue as factors that produce degraded
platform performance.

THE CONTEXT-BASED REASONING
PARADIGM

Context-Based Reasoning (CxBR) is a
knowledge representation paradigm developed to
efficiently model the behavior of humans in tactical
situations. It is especially suited for modeling of
tactical behavior in military conflict [Gonzalez and
Ahlers, 1998].

CxBR is based on the concept that humans
think in terms of the context in which they find
themselves. Furthermore, CxBR is also based on the
concept of contexts controlling an intelligent agent’s
actions. A context does two things: 1) It defines the
actions that the agent takes under the context; and 2)
it defines to what other context can the control of the
entity be passed when the situations changes such as
to make the currently-active context no longer
relevant. By doing these two things, contexts limit
the things that can happen, thus obviating the need
for an exhaustive search of all the possible actions,
which is a drawback of rule-based systems. In short,
contexts define the actions and events applicable in a
given situation, thus limiting the scope of knowledge
required [Gonzalez and Ahlers, 1998].

As an example, during tank warfare, the
crew can expect certain things to happen while they
are in a given situation, while not others. For
instance, let’s define a context called Attack-enemy.
During this context, it is expected that the tank will
be undergoing aggressive maneuvering, while firing
its guns, and advancing towards the enemy. Certain
events are expected, such as the enemy firing back at
the tank. Other events would be unexpected, such as
enemy soldiers appearing on the tank, and engaging
in hand-to-hand combat with the crew. Therefore,
the Attack-enemy context would incorporate the
functionality necessary to carry out aggressive
maneuvering and firing at the enemy. But it would
not contain any capability for the crew to to do hand-
to-hand combat. As such, the amount of knowledge
contained in the context definition can be limited to
what would be expected under the circumstances that
define the context in question.

Contexts are divided in three main levels.
On the top of the hierarchy is the Mission Context.
The Mission Context contains the goal or orders
given to the intelligent entity (or as we call it here, an
Autonomous Intelligent Platform, or AIP). In the
case of the tank example, a mission called
Movement-to-contact could be given to the tank,
thus providing it with an overall purpose. The
mission defines the entity’s objective, providing it
knowledge of what its goal is, and when this goal has

been reached. Mission Contexts are not control
elements, but rather, only serve to define the
parameters of the overall mission.

Below the Mission Context are the Main
Contexts. Main contexts are the main control
element for the AIP, and thus form the backbone of
CxBR. They encapsulate the knowledge needed for
the different situations that the AIP may encounter
while striving to complete the mission. As an
example, a tank with a Movement-to-contact
mission could have as main contexts Attack-enemy,
Search-for-enemy, Tactical-Retreat, and
Surrender. Main contexts are mutually exclusive in
the sense that one and only one can be in control of
the AIP’s behavior. This is called the currently
active context, or simply the active context.

Below the main contexts are the Sub-
contexts. Sub-contexts encompass lower level
actions that are repeatable, reusable, and can be
easily abstracted. For example, the Attack-enemy
main context could have as its sub-contexts Fire-
main-gun, Advance-to-enemy, Pop-smoke. There
is no limit to the number of levels of sub-contexts
that could be used. For instance, the sub-context
Fire-main-gun could be further subdivided into the
sub-contexts Load-main-gun, Aim-main-gun, and
Shoot-main-gun. The context hierarchy is shown in
Figure 1.

Mission

Main Context Main Context Main Context

Sub-Context Sub-Context Sub-Context

FIGURE 1- GRAPHICAL DEPICTION OF THE CXBR HIERARCHY

By dividing the knowledge base in a
hierarchical fashion, CxBR facilitates development
and enhances execution speed. Unlike rule-based
systems where the knowledge base can become
unmanageably large, contexts encapsulate the
knowledge required, thus reducing the size of the rule

base. A context is aware of the situation in which it is
applicable, and other situations that might arise from
that context, which gives the agent situational
awareness [Norlander 1999].

Knowledge in CxBR is stored using
modularity. Each entity has a local fact base
containing the facts pertinent only to itself. All
entities also have access to a global fact base, where
facts that pertain to all entities and the simulation as a
whole are stored. Each entity is equipped with an
inference engine that makes use of these facts. The
inference engine also checks the contexts in order to
transition to one that is applicable to the current
situation faced by the entity.

AMSAA’s V/L Taxonomy

A new effort by AMSAA researchers led by
Deitz is creating a V/L Taxonomy that aims to
replace PKs and bring greater rigor and clarity to the
V/L discipline. The V/L Taxonomy is composed of
six levels of temporally ordered states known as
mathematical spaces. Each mathematical space
represents observable or derivable conditions of the
threat and target platforms. The first few of the states
represent conditions prior to weapon firing, while the
latter few represent the condition of the target after
the firing. The observable or derivable features of
each space are represented in a vector, which can be

characterized as the physical parameters of the
platform and the environment (Gonzalez et al., 2000).

Two sequential spaces are joined together by
a mapping function called an operator, which maps
the vectors in the upstream space to one in the
downstream space. These mappings can be done via
physical equations, engineering design of the
platform, or through operations research, depending
on the two spaces being mapped. These mappings
can be linear or non-linear in nature, and may be
expansive (one to many), or contractive (many to
one.) Figure 2 depicts the mathematical spaces and
the operators; the six levels are the following (Deitz
et al, 1997).

1. Weapon detection – identification conditions.

2. Threat-launch initial conditions.

3. Threat target initial conditions.

4. Damaged components in target.

5. Measures of target capabilities after taking the
hit.

6. Measures of target utility after taking the hit.

 Level -1 – Weapon Detection

FIGURE 2 – GRAPHICAL DESCRIPTION OF THE MATHEMATICAL SPACES AND OPERATORS [GONZALEZ ET AL.,
2000]

O-1,0

Mapping via physics
Level 0 – Launch Init. Cond.

O0,1
Mapping via physics

Level 1 – Target Init. Cond.

O1,2

Mapping via physics
Level 2 – Damaged comp.

O2,3
Mapping via Eng

Level 3 – Target capability

O3,4
Mapping via OR

Level 4 – Target utility

The V/L Taxonomy then separates the V/L
metrics for aggregate damage, reduced platform
capability, and reduced platform utility that had until
then been incorporated into a single metric. It is
shown that these three distinct and separable classes
of metrics are linked by operators that are
multivariate, stochastic, and nonlinear (Deitz et al.,
1997). The current work will mainly utilize the last
two levels, namely levels 3 and 4 that measure the
target capability and the target utility and the
mapping between these two levels.

See Deitz [1997] for further details on the
V/L Taxonomy.

Further work has refined the V/L Taxonomy
to include a Military Operations Context (MOC)
block. This construct has been added in recognition
that each of the operators takes input from the
operations context in which a platform is performing.
The MOC defines doctrine, tactics, leadership,
materiel, scenario, terrain, weather, and all the factors
external to the platform itself. As an example, during
a live-fire test, the volatility of the ammunition is
dependent on the ambient temperature (Deitz, 1999).

The V/L Taxonomy defines a rigorous
method for implementing degraded state modeling, as
opposed to DSWARS and CASTFOREM, both of
which implement specific degraded state models. As
such, the V/L Taxonomy is not incompatible with
these two previous efforts, but rather can make use of
the degraded states defined in these efforts. For
example, the CASTFOREM degraded state tables can
be viewed as implementing the V/L Taxonomy’s
Levels 1 through 3 and their respective mappings.
These tables map the location of a hit on a target
(Level 1) to a list of damaged components (Level 2),
and give a degraded state for the platform capability
(Level 3).

MODELING DEGRADED PLATFORM
BEHAVIORS CONCEPTS

While the V/L Taxonomy addresses the
effect of a weapon firing on the state of the target, it
does not address the decision making process
followed by commander of a platform that has
suffered degradation as a result of enemy fire.
Furthermore, enemy fire is not the only cause of
degradation. The entity may find itself in a degraded
state because of the psychological and physical state
of the crew as well as that of normal wear and tear on
the platform. In the work described here, the concept
of degraded state behavior has been incorporated into
the CxBR behavior paradigm in order to model this
decision making process. Prior to this effort, the

AIPs developed by researchers conducted themselves
in an ideal fashion. They never made mistakes, were
never damaged, and the crew never became fatigued.
This lack of ability to represent degradation did not
permit CxBR (or any other modeling paradigm, for
that matter) to accurately depict the real world. In
this real world platforms degrade, and for different
reasons, the best decision is not always taken. This
issue becomes especially important in military
simulation applications. Military simulations need to
represent the realities of combat, where platforms
degrade due to factors such as enemy fire, crew
fatigue, and others. Lacking the capability to infuse a
platform with degraded state behavior invalidates any
representation of human tactical behavior. This
work, therefore, seeks to adapt CxBR to incorporate
decision-making under degraded states.

CxBR applications are developed using the
CxBR Framework, a custom-made application for
CxBR. The previous CxBR Framework
implementation lacked the following capabilities
necessary for implementing degraded state behavior:

1. AIPs lacked knowledge of their degraded state.

2. It included no provision for dynamic degradation
of the AIPs throughout the simulation.

To solve the first problem, an efficient and
reusable manner of incorporating degraded state
knowledge was needed. The chosen approach had to
satisfy the following requirements:

• Degraded state knowledge should be accessible
only to the degraded AIP.

• Procedures for creating, adding and modifying
degraded state information had to be
incorporated in the CxBR Framework to make
them available for future researchers.

The second problem is more complex. As
described above, the reasoning process in CxBR is
done through context transitions. An AIP has a set of
behavior that is specified by the context under which
it is working (the current context). The major
behaviors of the AIPs are specified by the Main
Contexts. The Main Contexts in all previous CxBR
applications were designed to be mutually exclusive.
Transitioning among main Contexts was done
through single-event conditions. For example, the
detection of an enemy platform would be sufficient to
transition from one Main Context to another,
regardless of any other factor. But this is not
realistic, as often, a decision between two or more
plausible next Main Contexts may depend on several
factors. One of these factors is indeed the platform’s
own degraded state. A way to choose the best

context possible had to be devised while meeting the
following constraints:

• It should be easy to use and clearly demonstrate
the effect of the AIP degraded state in selecting
the most appropriate main context.

• The chosen method had to be flexible enough to
allow for future researchers to implement
methods for choosing the optimal context to
control the AIP.

To demonstrate the added functionality of
the CxBR Framework for degraded state behavior,
the concepts had to be tested in a relevant application
where the effects of degradation can greatly modify
an AIP’s behavior. The University of Central Florida
(UCF) is part of a project to develop a military
simulation environment where the vehicles involved
display appropriate behaviors corresponding to their
degraded state. The final prototype has to display the
AIPs in a graphical environment, as well as display
the interaction between the AIPs’ degraded state and
their behavior.

Project Hypothesis

The hypothesis of this project is that CxBR
is a viable vehicle for representing degraded state
behavior. To demonstrate this, the CxBR
implementation was enhanced to address its lack of
degraded state representation capability as described
before.

The current project has made the following
contributions to the development of the CxBR
paradigm.

1. The CxBR Framework has been enhanced by
incorporating degraded state knowledge into the
AIPs’ local factbase. This was done through a
well-defined interface that allows the developer
to easily create degradable qualities of the AIP,
and give them a range of values. It also provides
a preset value under which the AIP can no longer
perform its function.

2. The CxBR Framework has been enhanced by a
new context switching mechanisms that allows
the creation of Main Contexts that are mutually
compatible. The contexts themselves have been
modified by the addition of new methods that
allow the CxBR developer to give each context a
weight that can be used to select the context that
controls the AIP. These weight mechanism has
been designed to allow for further research into
optimal context selection.

3. A method for selecting context weights has been
developed that emphasizes the effects of a
platform’s degraded state in context selection.
Such a mechanism meets the project requirement
of showing a correlation between the AIP’s
degraded state and its behavior.

4. A graphical simulation interface has been
developed where the AIPs and their current
degraded state are shown graphically. The
simulation has been designed in VBA for easy
reuse by future researchers with the appropriate
technical knowledge.

CxBR Structure

During the development of the project,
further enhancements were made to the CxBR
Framework’s capabilities and to its structure.

The CxBR structure has been restructured to
provide for more modularity that will allow future
developers to separate their CxBR application into
separate pieces that contain related functionality.
Depending on the application developed, it can be
divided into two or three separate pieces. The first
two are required and the third is optional if graphical
display of the simulation is desired through the
simulation tool developed in this project. The two
required parts of the new CxBR application structure
are the following:

• The CxBR Framework – The CxBR
Framework has been developed into a stand-
alone static library that can be use from any
C++ CxBR application by adding the
appropriate header files and including the
library in the settings. This Framework has
been revised to eliminate all of the
functionality that required the use of a
Windows compiler. The redesigned
Framework is now written in standard C++
and can be compiled under any operating
system with a C++ compiler that support the
Standard Template Library (STL).

• The CxBR Simulation – The CxBR
simulation links statically to the CxBR
Framework and can be designed as a stand-
alone application, or a Windows DLL that
can be used from the simulation
environment developed in this project. This
simulation should contain the CxBR
simulation itself, and if desired, the standard
DLL calls for use by the simulation
environment.

If a graphical simulation environment is
desired, and the developer wishes to use the
simulation environment developed in the current
effort, the simulation will contain a third element:

• The simulation environment – The simulation
environment was developed in VBA under
PowerPoint 97. To use this environment, it is
understood that the CxBR simulation was
developed as a DLL using standard calling

conventions. The simulation environment has
been designed in a modular fashion with a set of
core modules that interface with a Windows
DLL, and a second set of modules that deals with
the current application. Future researchers can
make use of this environment by simply
importing the core files into their VBA
PowerPoint applications, and making sure that
the correct set of interface methods are
implemented in their DLL.

CxBR

C++ Simulation
CxBR

Framework

THE CxBR APPLICATION

Standard DLL Calls

Figure 3 – Block Diagram of the CxBR Application Structure.

VBA Simulation Environment
(MS PowerPoint)

FIGURE 3 – THE CXBR APPLICATION STRUCTURE

A figure showing the new structure given to
CxBR applications is shown below in Figure 3. As
shown, the CxBR Framework is the core of the
application; the CxBR C++ simulation should contain
the CxBR Framework by statically linking it in
compile time. The simulation environment shows the
current state of the simulation by linking dynamically
with the C++ simulation.

IMPLEMENTING DEGRADED STATE
BEHAVIOR IN CxBR

In this section, we explain in detail the
concepts used to implement degraded state behavior.
The section is divided into three sub-sections. The
first one explains how degraded state knowledge can
be incorporated in the AIP class. The second
discusses how the contexts can be modified to give
them a weight according to their appropriateness
given a situation.

Incorporating Degraded State Knowledge in the
AIP’s Knowledge Base

The first step to incorporate degraded state
behavior to the CxBR Framework is to give the AIPs
knowledge of their degraded state. The degraded
state representation should be a general-purpose
approach that could model different kinds of
degradation types. A single method was desired that
could model such diverse degradation factors as
battle damage-induced degradation, psychological
degradation, and normal wear-and-tear degradation.
Since the method devised had to be reusable by
future researchers, the functionality had to be
included in the Framework itself. The AIP class was
enhanced with the addition of degradable attributes.
These degradable attributes are initialized at the
instantiation of the object, and consist of three
required quantities, and an optional number of
additional quantities. The required quantities are:

1. Current Value – This value provides the AIP
with knowledge of what is the current value of
the degradable attribute. This value should not
be confused with the actual current value of the
associated attribute. For example, the current
value of the degradable attribute “maximum
speed” can be 75 mph. But the current value of
the speed however can be anything up to 75
mph.

2. Maximum Value – This value provides the AIP
with the maximum range of the degradable
attribute.

3. Minimum Default Value – This value indicates
what is the minimum value that the degradable
attribute can assume before the AIP loses the
functionality associated with the quantity. This
quantity is the default value, and it is applicable
for all the main contexts of the AIP unless
otherwise specified, as described below.

A further capability was included to give
each of the AIPs Main Contexts different minimum
values for the degradable attributes (than the default).
As an example, you would expect the minimum value
for the maximum speed of a tank could be different
for the Attack-Enemy context and the Tactical-
Retreat context. In the former, the AIP would need
speed to carry out the attack successfully. In the
latter, it just needs to get away. The developer can
then specify quantities specific for each Main
Context instead of using the default. In another
scenario, one Main Contexts may have different
requirements for one of the attributes than do the rest
of the contexts. In such cases, the developer can
assign a default value that is used for all contexts, and
give the one context with different requirements its
own value. This value then overrides the default,
while the rest use the default.

To make this mechanism available to future
CxBR applications, the functionality was included in
the AIP class. The methods store the values for the
degradable qualities as facts in the local factbase of
the AIP. The local factbase of the AIP is accessible
only to the AIP. It consists of a set of facts that
pertain only to the AIP, and together with the global
factbase, it encompasses the state-of-the-world
knowledge of the AIP.

Although the format of the facts are hidden from the
developer by the methods, the degradable qualities
can be created before the application starts by
creating factbase files that the application reads in,
and initializing the local and global factbases. This is
the preferred method for creating the degradable
qualities, since it allows the modification of the initial
quantities without requiring program recompilation

Adding Weights to the Main Contexts

The CxBR Framework was modified by
adding weights to the Context class. These weights
are changed throughout the simulation duration
according to the situation. The mechanism for
changing the weights however was not implemented
directly into the Context class, however, as each
simulation will produce different situations that
require the weights to be adjusted in different ways.
Furthermore, a new method for choosing the optimal

context to control the AIP is currently being
developed in a parallel project, and it is expected that
the functionality developed there will be used to
assign the weights to the contexts.

The context class was modified by adding a
method for retrieving the current weight and another
method for updating the weight that the CxBR
developer must implement in a simulation. Further, a
transition weight was created that can be used by
developers as part of the weight calculation
mechanism. This transition weight is set to one if the
context is a transition of the current context, and to
zero if it isn’t. The context is a transition to another
if it is a possible next context. This possibility is
defined as membership in a list of contexts in the
active context that identifies the contexts that can
follow the active context. For example, a tank in the
Tactical-Retreat context can transition to the
Surrender context, but not to the Attack-Enemy
context. The Surrender context then has a transition
weight of one, while the Attack-Enemy context has
a weight of zero. The methods for changing the
weights in the current context are found in the Main
Context classes. They will be explained here as an
example of how a weight changing mechanism can
be designed.

The current project involved the
development of a tank warfare simulation. As such,
it was decided that the weights of the contexts should
depend on three variables:

1. The Transition Weight – This weight determines
whether the context is a plausible transition ton
the current context.

2. The Threat Weight – This weight varies
depending on the level of threat in which the AIP
is. Each context will have a different weight
conditioned on certain variables on which they
depend. For example, the Surrender context
only has a positive threat weight when the AIP is
under attack. The Attack-Enemy context, on
the other hand, has a positive threat weight when
there is an enemy in sight.

3. The Degradation Weight – This weight varies in
accordance to the degraded state of the platform.
In the tank warfare simulation developed, the
tanks contain a degradation model that
incorporates degradation factors such as battle
damage, psychological state, and wear-and-tear
of the platform. An appropriate weight for each
context is set depending on the state of the entity.

These three weights are combined by taking
their minimum as the current weight of the context.
This weight is stored to allow for later accessing by

the context switching mechanism. All the weights
used in this simulation were normalized to fall in the
range of zero to one. This, however, does not need to
be the case, and the developer is free to choose
ranges appropriate to the simulation at hand.

The Degradation Weight

Out of the three weights used to calculate
the context weight, the degradation weight
calculation, is the most complex and important.
Further, this weight is directly correlated with the
AIP’s degraded state, and it is use to give a
quantitative measure of the utility of the platform to
complete its different tasks. Therefore, the
calculation of the degradation weight is one of the
main thrusts of this project, and thus warrants further
explanation.

 The degradation weight depends on three
factors:

1. Damage induced by enemy fire.

2. Sub-optimal performance caused by crew
psychological factors.

3. Wear-and-tear degradation factors.

Other factors, such as leadership and level of
training, although potentially significant, will not be
modeled here. They will be left for future research.

We will refer to the example used in the
prototype in order to explain this concept. Two types
of AIPs were designed for this prototype example: a
Tank AIP and a Cannon AIP. Since the project was
geared towards tank performance degradation, a
degradation model was implemented only for the
Tank. The degradation model took into account four
major system components, and considered two
degradable attributes for each of these systems.
Table 1 shows the four system components under
consideration with their associated degradable
attributes, and an indication of under what type of
degradation factor the degradable attributes fall.

The different types of degradation types are
obtained in different manners. The enemy fire related
degradable attributes are obtained by following the
process designated by AMSAA’s V/L Taxonomy
Levels 2 through 4. The degradable attributes are the
platform’s subsystems affected by a hit, and they
directly correlate to Level 2 of the taxonomy. These
systems are affected in different levels of severity
depending on where the hit took place. After the
subsystem damage is calculated, the Level 2 to 3
mapping can be performed. This mapping consists of
determining how the system components (mobility,

firepower, etc.) are affected by the damage to the
subsystems. It is noteworthy to point out here that
these mapping from degradable qualities damage to
system component damage includes the non-enemy
fire related degradable qualities, in this case, fuel, and
crew energy. Having the system component’s
capability (Level 3 of the Taxonomy), the utility of
the platform to perform different tasks is calculated.
This corresponds directly to the Taxonomy Level 3 to
4 mapping. The tasks that the platform can perform

correspond to the behaviors that the tank can
implement (its Main Contexts). Then the mapping
involves calculating the utility of the tank for Attack-
Enemy, Tactical-Retreat, Search-For-Enemy, and
Surrender. The utility assigned to the Main
Contexts is then taken to be the degradation weight of
the context.

Table 1 – List of System Components Considered Along with their Associated Degradable Qualities

System Component Associated Degradable Qualities

Mobility Max Speed (Enemy Fire)

 Fuel (Wear-and-Tear)

Firepower Gun Range (Enemy Fire)

 Ammunition (Wear-and-Tear)

Crew Number (Enemy Fire)

 Energy (Psychological)

Communications Radio State (Enemy Fire)

 InterComm State (Enemy Fire)

The various degradation types are obtained
in different manners. The degradable attributes
related to enemy fire are obtained by following the
process designated by AMSAA’s V/L Taxonomy
Levels 2 through 4. The degradable attributes are the
platform’s subsystems affected by a hit, and they
directly correlate to Level 2 of the taxonomy. These
systems are affected in different levels depending on
where the hit took place. After the subsystem
damage is calculated, the Level 2 to 3 mapping can
be performed. This mapping consists of determining
how the system components (mobility, firepower,
etc.) are affected by the damage to the subsystems. It
is noteworthy to point out here that these mapping
from degradable attributes damage to system
component damage includes the non-enemy fire
related degradable qualities (fuel, and crew energy).
Having the system components capability (Level 3 of
the Taxonomy), the utility of the platform to perform
different tasks is calculated. This corresponds
directly to the Taxonomy Level 3 to 4 mapping. The
tasks that the platform can perform correspond to the
behaviors that the tank can implement or its main
contexts. Then the mapping involves calculating the
utility of the tank for Attack-Enemy, Tactical-
Retreat, Search-For-Enemy, and Surrender. The

utility assigned to these Main Contexts is then taken
to be the degradation weight of the context.

Note that non-enemy fire related
degradation was included to show that they can be
easily incorporated into the decision-making process.
No attempt was made to ensure the realism of the
models representing these factors. For example, fuel
was included in the calculation as a wear-and tear
factor. It is obvious that there are some degradation
factors that are associated with the normal use of the
platform, and fuel was included as a representative
degradable quality, since it is mainly a function of the
distance traveled. The crew energy was included as a
psychological factor that affects behavior. In this
application, the crew energy was merely set as a
decreasing function of time. No claim as to the
realism of this approach is made. I/O psychologists
have developed already sophisticated methods to
model crew degradation, and these models should be
included in a more advanced application than the one
developed in this project.

For more details on the process of selecting
the next current Main Context, please refer to
Gallagher [2000].

RESULTS
A prototype was developed which set up the

following scenario: A Bluefor tank section, with a
mission of Movement-to-Contact is moving through
the battlefield. It suddenly detects the presence of a
fixed artillery piece (called the Cannon AIP), that has
a longer range than the tanks, but is immobile. They
maneuver to destroy the cannon by moving towards it
as fast as possible in a zig-zag pattern until they are
within range. Upon reaching their range, they begin
firing at the cannon. The cannon, having a longer
range, is firing at them upon detection. It only
operates in the Fire-at-enemy main Context, which
simply includes firing at the attacking tanks.

The strike point of each round, from the
Bluefor tanks as well as from the Oppfor cannon is
based on a random process. When struck, the
Bluefor tanks will use a simplified V/L taxonomy to
determine the effect of the hit, and the utility of their
vital attributes. The commander then must decide
whether to continue with the attack, or to shift
contexts and perform alternate actions, such as
surrender, or retreat. As the point of round impact is
random, the results of the various simulations may
vary depending on the seed used.

A second scenario was added that includes 2
Oppfor tanks appearing in the distance. Now the
Bluefor tanks must decide on whom to fire first. The
Bluefor tank’s range is longer than that of the Oppfor
tanks.

The results indicated that the Bluefor tanks
correctly performed the decision-making based on
their degraded states. In some of the runs, one of the
Bluefor tanks was killed and required surrender of
the crew. In most cases, they succeeded in
destroying the two opposing force tanks as well as
the cannon. In some cases, both tanks were damaged
and had to implement a retreat, popping smoke and
firing as they retreated. The detailed results can be
found in Gallagher [2000].

CONCLUSION

The current project has shown the utility of
CxBR in representing degraded state reasoning. The
CxBR paradigm has been accordingly extended, and
the new capabilities have been demonstrated by the
development of a tank simulation under a VBA
environment with a PowerPoint engine. The
degraded state behavior has been incorporated into
CxBR by following two steps: First, degraded state
knowledge was incorporated into the autonomous
entities. Second, this knowledge was used to change

the weights of the transition contexts, which will
affect the decision of which context to choose. The
battle related degradation factors were determined by
using an approximation of the approach proposed by
AMSAA’s new vulnerability/lethality taxonomy.

By incorporating degraded state knowledge
into the CxBR paradigm, it now has the required
capabilities to develop realistic intelligent agents that
act differently according not only to the situation they
are in, but also according to their current degraded
state.

Future research includes integrating better
models for the degradation of the factors related to
enemy fire (the actual V/L Taxonomy). Additionally,
better models of the factors that affect the crew, such
as fatigue, morale, crew health, availability of
leadership, training, and other such physical and
psychological factors need to be integrated. Lastly,
models dealing with wear-and-tear degradation need
to be developed. These should be significantly
simpler than the previous two models, however.

REFERENCES

[Dietz and Starks, 1997] Dietz, P. H. and Starks, M.
W., “The Generation, Use and Misuse of “PK’s” in
Vulnerability/Lethality Analyses”, Proceedings of the
8th Annual TARDEC Symposium, Naval
Postgraduate School, Monterey, CA, March 1997.

[Gallagher, 2000] Gallagher, A., “Modeling
Platform Behaviors under Degraded States Using
Context-Based Reasoning”, Master’s Thesis,
Electrical Engineering Program, School of Electrical
Engineering and Computer Science, University of
Central Florida, Orlando, FL December, 2000.

[Gonzalez and Ahlers, 1998] Gonzalez, A. J. and
Ahlers, R. H., “Context-based Representation of
Intelligent Behavior in Training Simulations”,
Transactions of the Society for Computer Simulation,
Vol. 15, No. 4, December, 1998.

[Gonzalez et al., 2000] Gonzalez A., Georgiopoulos
M., DeMara R. “Context-Based Representation of
Intelligent Behavior in Degraded States Simulation. ”
Naval Air Warfare Center Proposal (Unpublished).
University of Central Florida, Orlando, FL, 2000.

[Norlander, 1999] Norlander, L., “A Framework for
Efficient Implementation of Context-based
Reasoning in Intelligent Simulations”, Master’s
Thesis, Department of Electrical and Computer
Engineering, University of Central Florida, Orlando,
FL, January 1999.

	Anthony Gallagher, Avelino Gonzalez, and Ronald DeMara
	University of Central Florida
	Abstract

	Anthony Gallagher, Avelino Gonzalez, and Ronald DeMara
	University of Central Florida
	Orlando, Florida
	INTRODUCTION
	AMSAA¡¯s V/L Taxonomy

	Project Hypothesis
	CxBR Structure

	A figure showing the new structure given to CxBR applications is shown below in Figure 3. As shown, the CxBR Framework is the core of the application; the CxBR C++ simulation should contain the CxBR Framework by statically linking it in compile time. T
	IMPLEMENTING DEGRADED STATE BEHAVIOR IN CxBR
	Incorporating Degraded State Knowledge in the AIP
	Adding Weights to the Main Contexts
	The Degradation Weight
	
	Table 1 ¨C List of System Components Considered �

	RESULTS
	REFERENCES

