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Abstract - In this paper, we propose FPGA-based scalable 
architecture for DCT computation using dynamic partial 
reconfiguration. Our architecture can achieve quality 
scalability using dynamic partial reconfiguration. This is 
important for some critical applications that need continuous 
hardware servicing. Our scalable architecture has two features. 
First, the architecture can perform DCT computations for 
eight different zones, i.e., from 1×1 DCT to 8×8 DCT. Second, 
the architecture can change the configuration of processing 
elements to trade off the precisions of DCT coefficients with 
computational complexity. Using dynamic partial 
reconfiguration with 2.1 MB bitstreams, 16 distinct hardware 
architectures can be implemented. We show the experimental 
results and comparisons between different configurations using 
both partial reconfiguration and non-partial reconfiguration 
process. 
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1. Introduction 
Scalable architecture for video coding is particularly suitable 

for applications that deliver the contents to a wide range of 
terminals and use a complex and heterogeneous delivery 
network, such as broadband video distribution and mobile 
communications. Discrete cosine transform (DCT) is widely 
used in image/video coding standards, such as JPEG, MPEG-
1/2/4, H.261/3/4 [1]. Due to the high computational complexity 
of DCT [2], hardware implementation has been preferred. 

Compared to Application Specific Integrated Circuits (ASIC) 
design, Field Programmable Gate Array (FPGA) design is 
more flexible, and has fast development time and low Non-
Recurring Engineering (NRE) cost. Dynamic partial 
reconfiguration is to reconfigure a part of the FPGA while the 
other parts of the FPGA are still operational and the chip is 
active [3]. So, the functions that the FPGA is performing will 
not be interrupted during the reconfiguration. This is very 
important for some applications such as medical image 
diagnosis and military related video processing. It also has 
many advantages, such as increased resource sharing and 
utilization. 

In this paper, we present FPGA-based scalable architecture 
for 2D-DCT computation using dynamic partial 
reconfiguration. Our scalable 2D-DCT architecture is based on 
distributed arithmetic (DA) [4]. DA architecture is suitable for 
FPGA implementation due to its ROM-based computations of 
inner products. Our scalable architecture is working in two 

different modes to reduce the computational complexity and 
the power consumption. First, it can achieve quality scalability 
by performing 2D-DCT operations for different zones, i.e., 
from 1×1 to 8×8, as shown in Fig. 1. Only the DCT 
coefficients in the shaded area are computed. Our scalable 
architecture can be adjusted through dynamic partial 
reconfiguration to perform different types of DCT zonal coding. 
Second, our scalable architecture can be reconfigured to reduce 
the precision of DCT coefficients especially when quantization 
parameter increases to achieve high compression ratio. Third, 
our scalable architecture can reconfigure the unused DCT 
computation module for other functions, such as motion 
estimation computation. 

There are some previous works related to scalable DCT. 
Kim and Yoo used eight masks for DCT to scale the 
complexity [5]. Xanthopoulos and Chandraka used MSB 
rejection and row-column classification to reduce the power 
consumption [6]. Kinane et al. used clock gating to implement 
a variable length 1D-DCT for shape adaptive coding [7]. 

The rest of the paper is organized as follows. In Section 2, 
we present our proposed scalable architecture using dynamic 
partial reconfiguration. In Section 3, we show the experimental 
results and comparisons. In Section 4, we briefly conclude our 
work. 

 
Fig. 1. Different Zones for DCT Computation 

2. Architecture 
The computational complexity can be reduced by 

decomposing the 2-D DCT into two 1-D DCT computations 
together with a transpose memory. We use Chen’s algorithm 
for the 1-D DCT implementation [8], as shown in (1).  
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Distributed arithmetic (DA) is a bit-serial operation that 
performs inner-product computations. We implement the DA 
architecture in a parallel fashion to improve the performance 
[4]. 



 
2.1  Top Level Architecture 

The top level architecture for scalable DCT is shown in Fig. 
2. There are eight reconfigurable areas in the design, i.e. PE0, 
PE1, PE2, PE3, PE4, PE5, PE6, PE7. These eight 
reconfigurable areas can be dynamically reconfigured using 
partial reconfiguration. There are two ways of reconfiguration 
of the PEs to achieve quality scalability of DCT computations. 
First, the PEs can be removed or added using dynamic partial 
reconfiguration to achieve zonal coding for the DCT 
coefficients, as illustrated in Fig. 1. The zones for the DCT 
coefficients vary from  to . For example, if only 4×4 
DCT coefficients are needed, PE0, PE1, PE4, and PE5 are 
configured for the computations. Later, if 8×8 DCT 
coefficients are needed, PE2, PE3, PE6, and PE7 can be added 
using dynamic partial reconfiguration. Second, the internal 
logic of PEs can also be changed through dynamic partial 
reconfiguration to reduce the precision of resultant DCT 
coefficients. This is reasonable because quantization truncates 
some of the LSB bits of DCT coefficients. There are two main 
advantages of our scalable architecture using dynamic partial 
reconfiguration. First, the DCT computations are not 
interrupted when switching from different zones or different 
precisions. Second, the unused PEs can be utilized by 
reconfiguration for other functions, such as motion estimation 
computation. 

88× 11×

 
 Fig. 2. Top level architecture of scalable DCT 

The controller is used to generate the address and control 
signals for data fetching and data assigning. The shared 
memory, data mapping, and butterfly addition/subtraction are 
combined together. Mapping block is to read the data from the 
memory or write the data  to the memory according to the 
address and control signals generated by the controller module. 
Addition/subtraction performs butterfly addition or subtraction 
to generate the input data for the PEs. 

 
2.2  Reconfigurable PE 

The schematic diagram of the reconfigurable PE is shown in 
Fig. 3. The DCT coefficients here are 12-bit width. The inputs 

of the PE have 13-bit width due to the butterfly additions and 
subtractions. We use 13 ROM Shifters (RS) in each PE to 
parallelize the inner product computations. Each RS has 4-bit 
width input, i.e., one bit plane of x1_in, x2_in, x3_in, and 
x4_in. For example, RS0 accepts the MSB bit plane, and RS12 
accepts LSB bit plane. Therefore, 1-D DCT can be performed 
in one clock cycle. The result from each PE is 12-bit width 
DCT coefficient. The RS consists of 4 Exclusive-ORs, one 8-
word ROM, one adder, one shifter, and one initial condition 
register. The ROM contents and initial register value are shown 
in Fig. 3. A1, A2, A3, and A4 are four values which can be 
obtained from each row of the coefficient matrix in Equation 
(1). We also truncate the ROMs to explore the trade-off 
between the power consumption and the precision. 

Fig. 3. Schematic diagram of PE 
3. Experimental results 
Using the Xilinx Early Access Partial Reconfiguration (EAPR) 
design flow [9], the scalable architecture is implemented on the 
Xilinx Virtex-4 SX35 Video Starter Kit. The scalable 
architecture previously described naturally allows each PE to 
reside within a separate reconfiguration area for modification 
of its configuration without disturbing the remaining portion of 
the FPGA. Fig. 4 shows the implementation of the scalable 
architecture with the locations of the eight reconfiguration 
areas.

Partial reconfiguration allows flexibility in selecting the 
quality of precision of a specific PE along with the total 
number of PEs allocated to the DCT application. Each 
reconfigurable region is able to implement one PE.  In 8x8 2D-
DCT computations, for example, each reconfigurable area is 
configured to contain one PE each, totaling 8 PEs.  In 1x1 
computations, one reconfigurable area contains one PE while 
the other 7 reconfigurable areas are made available to other 
video functions such as motion estimation. In our experiment, 
three types of PEs are designed: a full precision DCT PE, a 
partial precision DCT PE, and an Empty PE. The Empty PE 
allows those reconfiguration areas not being used by the 2D-
DCT computations to contain no switching logic to reduce 
dynamic power consumption. 



 
Fig. 4.  Location of 8 PEs on V4SX3 

Since the Full Precision PE is the largest of the three 
configurations, its resource requirements determine the size of 
the reconfiguration areas. The Virtex-4 architecture has a 
configuration frame resolution of 16 CLBs in height— reduced 
from the Virtex-2 architecture whose configuration frame 
resolution includes the entire height of the device [10]. 
Therefore, the reconfiguration areas span the minimum of 32 
slices in height, whereas the width of each reconfiguration area 
is minimized to encompass its specific PE design. 

A partial bitstream is generated for each reconfiguration area 
and for each type of PE.  For example, 24 partial bitstreams are 
generated in our implementation of 8 reconfiguration areas and 
3 types of PEs. The partial bitstreams generated for each of the 
Full Precision PEs range from 22,306 bytes to 28,306 bytes. 
Because the Full Precision PE represents the largest slice 
utilization, its bitstream sizes are the upper bounds for all types 
of PEs. For comparison, a bitstream file size of an Empty PE  
is 10,586 bytes. Before partial bitstreams are used, the FPGA is 
initialized first with a full bitstream. In designing the initial full 
bitstream, the user determines the most useful combination of  
type and number of PEs as the initial configuration of the 
FPGA— full or partial precision, and 1x1, 2x2, etc. The size of 
the intial bitstream is always 1,712,614 bytes, regardless of 
whether all 8 Full Precision PEs are implemented or only 1 
Full Precision PE with 7 Empty PEs are implemented. In 
comparison to a full bitstream, partial bitstreams are 
significantly smaller, reducing the storage space required to 
store the various bitstreams. The results show that the file size 
of a Full Precision PE bitstream is about 1.6% of a full 
bitstream. 
    Table I lists a comparison between one non-partial 
reconfiguration scenario and two partial reconfiguration 
scenarios.  In the case of non-partial reconfiguration, a full 
bitstream needs to be generated and stored for each 2D-DCT 
configuration.  For example, a full bitstream of 1,712,614 bytes 
is required for a 1x1 Full Precision DCT configuration. To 
implement an 8x8 Full Precision DCT function, another full 
bitstream is required. To implement a 4x4 Full Precision DCT 
function with 4 Motion Estimation PEs, a third full bitstream is 
required. For three distinct hardware arrangements, 4.9 MB of 
storage space is required. To switch between each of these 
hardware arrangements, the entire FPGA is reconfigured, 

stopping all video processing elements. The shortest 
configuration time needed to switch between hardware 
arrangements is also the worst at 17 ms. The configuration 
time is estimated based on the timing of SelectMAP using 
continuous data loading [11], as shown in (2). 

cclk
config f

bytesT 1)3( ⋅+=                    (2) 

Here, bytes is the number of bytes of the bitstream stored in the 
external PROM and  is the clock frequency of the 
SelectMap configuration clock set to 100 MHz in our 
estimations. 

cclkf

TABLE I 
SIZES AND CONFIGURATION TIMES OF BITSTREAMS 

  Bitstream 
(bytes) 

Configuration 
Time (ms) 

1x1 Full 2D-DCT 1,712,614 17 ms 
4x4 DCT & 4 ME PEs 1,712,614 17 ms 
8x8 Full 2D-DCT 1,712,614 17 ms 

N
on

-P
R

 

3 H/W Arrangements 
(Best/Worst Config. Time) 4.9 MB 17ms/17ms 

Initial (8x8 ) 1,712,614 17 ms 
8 Full Precision PEs 226,448 0.28 ms each 
8 Partial Precision PEs 226,448 0.28 ms each 
8 Empty PEs 84,688 0.11 ms each PR

 

16 H/W Arrangements 
(Best/Worst Config. Time) 2.1 MB 0.11/2.24 ms 

Initial (8x8 ) 1,712,614 17 ms 
8 Full Precision PEs 226,448 0.28 ms each 
8 Partial Precision PEs 226,448 0.28 ms each 
8 Empty PEs 84,688 0.11 ms each 
8 Motion Estimation PEs 226,448 0.28 ms each 

PR
 

80 H/W Arrangements 
(Best/Worst Config. Time) 2.3 MB 0.11/2.24 ms 

 
In an implementation of the scalable architecture using 

partial reconfiguration, a user stores at least one initial 
configuration bitstream and all partial bitstreams on an external 
ROM. In calculating the storage requirements, the worst-case 
Full Precision PE partial bitstream filesize— 28,306 bytes— is 
used for partial bitstream totals. The total space required for 
implementing the initial bitstream and all three types of 2D-
DCT PEs—Full, Partial, and Empty— is approximately 2.1 
MB. For this small amount of required storage, 16 distinct 
hardware arrangements are possible. Switching between these 
hardware arrangements does not disturb logic residing outside 
of the reconfiguration areas. The shortest configuration time to 
switch between arrangements is 0.11 ms by implementing one 
Empty PE, for example, to switch from 8x8 DCT to 7x7 DCT.  
The longest configuration time is estimated to be 2.24 ms to 
switch, for example, from 8x8 Partial Precision to 8x8 Full 
Precision.  

In our future work, we plan to further expand the scalable 
architecture by adding motion estimation configuration to our 



current architecture. The addition of eight motion estimation 
PE bitstreams would only increase the storage requirement by 
0.2MB while increasing the number of possible hardware 
arrangements from 16 to 80.  

We simulate full precision and partial precision PE designs 
using QCIF frame format (176×144). We compare the 
precisions between double precision floating point calculations 
and hardware calculations using mean square error (MSE). The 
precision comparisons are shown in Fig. 5. QP is the 
quantization parameter used in MPEG-2 system [12]. While 
the QP increases, the MSE decreases. 

The power estimation comparisons and the throughput 
comparisons are shown in Fig. 6. Based on our experiments, it 
takes 2N+23 clock cycles to perform the DCT computations 
for an N×N zone, and N×N cycles to output the DCT 
coefficients. We can see from Fig. 5 and Fig. 6 that our 
architecture provides the scalability among precision, power, 
and throughput. 

 
MSE vs QP

-40
-35
-30
-25
-20
-15
-10
-5
0
5
10

1 4 7 10 13 16 19 22 25 28 31

QP

M
SE

 
(d

B
) Full ROM Inter

Tuncated ROM Inter

Full ROM Intra

Truncated ROM Intra

 
Fig. 5. Precision comparisons 
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Fig. 6. Power and throughput comparisons 

 
4. Conclusion 
In this paper, we have presented our exploration of scalable 
architecture of DCT computations using FPGA dynamic partial 
reconfiguration. We used distributed arithmetic based 
architecture for DCT computations. Using dynamic partial 
reconfiguration, the processing elements of the DCT 
architecture can be changed on the fly including the number of 
the PEs and the internal logic of the PEs. The FPGA does not 
need to be stopped while changing the configuration, which is 
important for many image/video applications. We provided 
detailed implementation results and comparisons for different 
configurations of PEs using both partial reconfiguration 
process and non-partial reconfiguration process.  
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