
Scalable FPGA Architecture for DCT Computation Using
Dynamic Partial Reconfiguration

Jian Huang, Matthew Parris, Jooheung Lee, and Ronald F. DeMara

School of Electrical Engineering and Computer Science, University of Central Florida
Orlando, FL 32816 USA

Abstract - In this paper, we propose FPGA-based scalable
architecture for DCT computation using dynamic partial
reconfiguration. Our architecture can achieve quality
scalability using dynamic partial reconfiguration. This is
important for some critical applications that need continuous
hardware servicing. Our scalable architecture has two features.
First, the architecture can perform DCT computations for
eight different zones, i.e., from 1×1 DCT to 8×8 DCT. Second,
the architecture can change the configuration of processing
elements to trade off the precisions of DCT coefficients with
computational complexity. Using dynamic partial
reconfiguration with 2.1 MB bitstreams, 16 distinct hardware
architectures can be implemented. We show the experimental
results and comparisons between different configurations using
both partial reconfiguration and non-partial reconfiguration
process.

Keywords: DCT, dynamic partial reconfiguration, FPGA

1. Introduction
Scalable architecture for video coding is particularly suitable

for applications that deliver the contents to a wide range of
terminals and use a complex and heterogeneous delivery
network, such as broadband video distribution and mobile
communications. Discrete cosine transform (DCT) is widely
used in image/video coding standards, such as JPEG, MPEG-
1/2/4, H.261/3/4 [1]. Due to the high computational complexity
of DCT [2], hardware implementation has been preferred.

Compared to Application Specific Integrated Circuits (ASIC)
design, Field Programmable Gate Array (FPGA) design is
more flexible, and has fast development time and low Non-
Recurring Engineering (NRE) cost. Dynamic partial
reconfiguration is to reconfigure a part of the FPGA while the
other parts of the FPGA are still operational and the chip is
active [3]. So, the functions that the FPGA is performing will
not be interrupted during the reconfiguration. This is very
important for some applications such as medical image
diagnosis and military related video processing. It also has
many advantages, such as increased resource sharing and
utilization.

In this paper, we present FPGA-based scalable architecture
for 2D-DCT computation using dynamic partial
reconfiguration. Our scalable 2D-DCT architecture is based on
distributed arithmetic (DA) [4]. DA architecture is suitable for
FPGA implementation due to its ROM-based computations of
inner products. Our scalable architecture is working in two

different modes to reduce the computational complexity and
the power consumption. First, it can achieve quality scalability
by performing 2D-DCT operations for different zones, i.e.,
from 1×1 to 8×8, as shown in Fig. 1. Only the DCT
coefficients in the shaded area are computed. Our scalable
architecture can be adjusted through dynamic partial
reconfiguration to perform different types of DCT zonal coding.
Second, our scalable architecture can be reconfigured to reduce
the precision of DCT coefficients especially when quantization
parameter increases to achieve high compression ratio. Third,
our scalable architecture can reconfigure the unused DCT
computation module for other functions, such as motion
estimation computation.

There are some previous works related to scalable DCT.
Kim and Yoo used eight masks for DCT to scale the
complexity [5]. Xanthopoulos and Chandraka used MSB
rejection and row-column classification to reduce the power
consumption [6]. Kinane et al. used clock gating to implement
a variable length 1D-DCT for shape adaptive coding [7].

The rest of the paper is organized as follows. In Section 2,
we present our proposed scalable architecture using dynamic
partial reconfiguration. In Section 3, we show the experimental
results and comparisons. In Section 4, we briefly conclude our
work.

Fig. 1. Different Zones for DCT Computation

2. Architecture
The computational complexity can be reduced by

decomposing the 2-D DCT into two 1-D DCT computations
together with a transpose memory. We use Chen’s algorithm
for the 1-D DCT implementation [8], as shown in (1).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)4()3(
)5()2(
)6()1(
)7()0(

2
1

)6(
)4(
)2(
)0(

ff
ff
ff
ff

CBBC
AAAA
BCCB
AAAA

F
F
F
F

,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)4()3(
)5()2(
)6()1(
)7()0(

2
1

)7(
)5(
)3(
)1(

ff
ff
ff
ff

DEFG
EGDF
FDGE

GFED

F
F
F
F

(1)

.
16

sin,
16
3sin,

16
3cos,

16
cos,

8
sin,

8
cos,

4
cos πππππππ

======= GFEDCBA

Distributed arithmetic (DA) is a bit-serial operation that
performs inner-product computations. We implement the DA
architecture in a parallel fashion to improve the performance
[4].

2.1 Top Level Architecture

The top level architecture for scalable DCT is shown in Fig.
2. There are eight reconfigurable areas in the design, i.e. PE0,
PE1, PE2, PE3, PE4, PE5, PE6, PE7. These eight
reconfigurable areas can be dynamically reconfigured using
partial reconfiguration. There are two ways of reconfiguration
of the PEs to achieve quality scalability of DCT computations.
First, the PEs can be removed or added using dynamic partial
reconfiguration to achieve zonal coding for the DCT
coefficients, as illustrated in Fig. 1. The zones for the DCT
coefficients vary from to . For example, if only 4×4
DCT coefficients are needed, PE0, PE1, PE4, and PE5 are
configured for the computations. Later, if 8×8 DCT
coefficients are needed, PE2, PE3, PE6, and PE7 can be added
using dynamic partial reconfiguration. Second, the internal
logic of PEs can also be changed through dynamic partial
reconfiguration to reduce the precision of resultant DCT
coefficients. This is reasonable because quantization truncates
some of the LSB bits of DCT coefficients. There are two main
advantages of our scalable architecture using dynamic partial
reconfiguration. First, the DCT computations are not
interrupted when switching from different zones or different
precisions. Second, the unused PEs can be utilized by
reconfiguration for other functions, such as motion estimation
computation.

88× 11×

 Fig. 2. Top level architecture of scalable DCT

The controller is used to generate the address and control
signals for data fetching and data assigning. The shared
memory, data mapping, and butterfly addition/subtraction are
combined together. Mapping block is to read the data from the
memory or write the data to the memory according to the
address and control signals generated by the controller module.
Addition/subtraction performs butterfly addition or subtraction
to generate the input data for the PEs.

2.2 Reconfigurable PE

The schematic diagram of the reconfigurable PE is shown in
Fig. 3. The DCT coefficients here are 12-bit width. The inputs

of the PE have 13-bit width due to the butterfly additions and
subtractions. We use 13 ROM Shifters (RS) in each PE to
parallelize the inner product computations. Each RS has 4-bit
width input, i.e., one bit plane of x1_in, x2_in, x3_in, and
x4_in. For example, RS0 accepts the MSB bit plane, and RS12
accepts LSB bit plane. Therefore, 1-D DCT can be performed
in one clock cycle. The result from each PE is 12-bit width
DCT coefficient. The RS consists of 4 Exclusive-ORs, one 8-
word ROM, one adder, one shifter, and one initial condition
register. The ROM contents and initial register value are shown
in Fig. 3. A1, A2, A3, and A4 are four values which can be
obtained from each row of the coefficient matrix in Equation
(1). We also truncate the ROMs to explore the trade-off
between the power consumption and the precision.

Fig. 3. Schematic diagram of PE
3. Experimental results
Using the Xilinx Early Access Partial Reconfiguration (EAPR)
design flow [9], the scalable architecture is implemented on the
Xilinx Virtex-4 SX35 Video Starter Kit. The scalable
architecture previously described naturally allows each PE to
reside within a separate reconfiguration area for modification
of its configuration without disturbing the remaining portion of
the FPGA. Fig. 4 shows the implementation of the scalable
architecture with the locations of the eight reconfiguration
areas.

Partial reconfiguration allows flexibility in selecting the
quality of precision of a specific PE along with the total
number of PEs allocated to the DCT application. Each
reconfigurable region is able to implement one PE. In 8x8 2D-
DCT computations, for example, each reconfigurable area is
configured to contain one PE each, totaling 8 PEs. In 1x1
computations, one reconfigurable area contains one PE while
the other 7 reconfigurable areas are made available to other
video functions such as motion estimation. In our experiment,
three types of PEs are designed: a full precision DCT PE, a
partial precision DCT PE, and an Empty PE. The Empty PE
allows those reconfiguration areas not being used by the 2D-
DCT computations to contain no switching logic to reduce
dynamic power consumption.

Fig. 4. Location of 8 PEs on V4SX3

Since the Full Precision PE is the largest of the three
configurations, its resource requirements determine the size of
the reconfiguration areas. The Virtex-4 architecture has a
configuration frame resolution of 16 CLBs in height— reduced
from the Virtex-2 architecture whose configuration frame
resolution includes the entire height of the device [10].
Therefore, the reconfiguration areas span the minimum of 32
slices in height, whereas the width of each reconfiguration area
is minimized to encompass its specific PE design.

A partial bitstream is generated for each reconfiguration area
and for each type of PE. For example, 24 partial bitstreams are
generated in our implementation of 8 reconfiguration areas and
3 types of PEs. The partial bitstreams generated for each of the
Full Precision PEs range from 22,306 bytes to 28,306 bytes.
Because the Full Precision PE represents the largest slice
utilization, its bitstream sizes are the upper bounds for all types
of PEs. For comparison, a bitstream file size of an Empty PE
is 10,586 bytes. Before partial bitstreams are used, the FPGA is
initialized first with a full bitstream. In designing the initial full
bitstream, the user determines the most useful combination of
type and number of PEs as the initial configuration of the
FPGA— full or partial precision, and 1x1, 2x2, etc. The size of
the intial bitstream is always 1,712,614 bytes, regardless of
whether all 8 Full Precision PEs are implemented or only 1
Full Precision PE with 7 Empty PEs are implemented. In
comparison to a full bitstream, partial bitstreams are
significantly smaller, reducing the storage space required to
store the various bitstreams. The results show that the file size
of a Full Precision PE bitstream is about 1.6% of a full
bitstream.
 Table I lists a comparison between one non-partial
reconfiguration scenario and two partial reconfiguration
scenarios. In the case of non-partial reconfiguration, a full
bitstream needs to be generated and stored for each 2D-DCT
configuration. For example, a full bitstream of 1,712,614 bytes
is required for a 1x1 Full Precision DCT configuration. To
implement an 8x8 Full Precision DCT function, another full
bitstream is required. To implement a 4x4 Full Precision DCT
function with 4 Motion Estimation PEs, a third full bitstream is
required. For three distinct hardware arrangements, 4.9 MB of
storage space is required. To switch between each of these
hardware arrangements, the entire FPGA is reconfigured,

stopping all video processing elements. The shortest
configuration time needed to switch between hardware
arrangements is also the worst at 17 ms. The configuration
time is estimated based on the timing of SelectMAP using
continuous data loading [11], as shown in (2).

cclk
config f

bytesT 1)3(⋅+= (2)

Here, bytes is the number of bytes of the bitstream stored in the
external PROM and is the clock frequency of the
SelectMap configuration clock set to 100 MHz in our
estimations.

cclkf

TABLE I
SIZES AND CONFIGURATION TIMES OF BITSTREAMS

 Bitstream
(bytes)

Configuration
Time (ms)

1x1 Full 2D-DCT 1,712,614 17 ms
4x4 DCT & 4 ME PEs 1,712,614 17 ms
8x8 Full 2D-DCT 1,712,614 17 ms

N
on

-P
R

3 H/W Arrangements
(Best/Worst Config. Time) 4.9 MB 17ms/17ms

Initial (8x8) 1,712,614 17 ms
8 Full Precision PEs 226,448 0.28 ms each
8 Partial Precision PEs 226,448 0.28 ms each
8 Empty PEs 84,688 0.11 ms each PR

16 H/W Arrangements
(Best/Worst Config. Time) 2.1 MB 0.11/2.24 ms

Initial (8x8) 1,712,614 17 ms
8 Full Precision PEs 226,448 0.28 ms each
8 Partial Precision PEs 226,448 0.28 ms each
8 Empty PEs 84,688 0.11 ms each
8 Motion Estimation PEs 226,448 0.28 ms each

PR

80 H/W Arrangements
(Best/Worst Config. Time) 2.3 MB 0.11/2.24 ms

In an implementation of the scalable architecture using

partial reconfiguration, a user stores at least one initial
configuration bitstream and all partial bitstreams on an external
ROM. In calculating the storage requirements, the worst-case
Full Precision PE partial bitstream filesize— 28,306 bytes— is
used for partial bitstream totals. The total space required for
implementing the initial bitstream and all three types of 2D-
DCT PEs—Full, Partial, and Empty— is approximately 2.1
MB. For this small amount of required storage, 16 distinct
hardware arrangements are possible. Switching between these
hardware arrangements does not disturb logic residing outside
of the reconfiguration areas. The shortest configuration time to
switch between arrangements is 0.11 ms by implementing one
Empty PE, for example, to switch from 8x8 DCT to 7x7 DCT.
The longest configuration time is estimated to be 2.24 ms to
switch, for example, from 8x8 Partial Precision to 8x8 Full
Precision.

In our future work, we plan to further expand the scalable
architecture by adding motion estimation configuration to our

current architecture. The addition of eight motion estimation
PE bitstreams would only increase the storage requirement by
0.2MB while increasing the number of possible hardware
arrangements from 16 to 80.

We simulate full precision and partial precision PE designs
using QCIF frame format (176×144). We compare the
precisions between double precision floating point calculations
and hardware calculations using mean square error (MSE). The
precision comparisons are shown in Fig. 5. QP is the
quantization parameter used in MPEG-2 system [12]. While
the QP increases, the MSE decreases.

The power estimation comparisons and the throughput
comparisons are shown in Fig. 6. Based on our experiments, it
takes 2N+23 clock cycles to perform the DCT computations
for an N×N zone, and N×N cycles to output the DCT
coefficients. We can see from Fig. 5 and Fig. 6 that our
architecture provides the scalability among precision, power,
and throughput.

MSE vs QP

-40
-35
-30
-25
-20
-15
-10
-5
0
5
10

1 4 7 10 13 16 19 22 25 28 31

QP

M
SE

(d

B
) Full ROM Inter

Tuncated ROM Inter

Full ROM Intra

Truncated ROM Intra

Fig. 5. Precision comparisons

22.5

23
23.5

24

24.5

25
25.5

26

26.5

1×1 2×2 3×3 4×4 5×5 6×6 7×7 8×8

N*N DCT

Po
w

er
 E

st
im

at
io

n
(m

W
)

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (c

yc
le

s)

Full Precision Power Partial Precision Power Throughput

Fig. 6. Power and throughput comparisons

4. Conclusion
In this paper, we have presented our exploration of scalable
architecture of DCT computations using FPGA dynamic partial
reconfiguration. We used distributed arithmetic based
architecture for DCT computations. Using dynamic partial
reconfiguration, the processing elements of the DCT
architecture can be changed on the fly including the number of
the PEs and the internal logic of the PEs. The FPGA does not
need to be stopped while changing the configuration, which is
important for many image/video applications. We provided
detailed implementation results and comparisons for different
configurations of PEs using both partial reconfiguration
process and non-partial reconfiguration process.

5. References
[1] K. R. Rao and J. J. Hwang, Techniques and Standards for
Image, Video and Audio Coding, Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[2] I.E.G. Richardson and Y. Zhao, “Adaptive algorithms
for variable complexity video coding,” Proc. IEEE ICIP, vol.
1, pp. 457-460, Oct., 2001.

[3] Cindy Kao, “Benefits of Partial Reconfiguration,” Xcell
Journal, fourth quarter 2005.

[4] Stanley A. White, “Applications of Distributed
Arithmetic to Digital Signal Processing: A Tutorial Review,”
IEEE ASSP Magazine, July 1989.

[5] H.C. Kim and K.Y. Yoo, “Complexity-scalable DCT-
based video coding algorithm for computation-limited
terminals,” IEICE Trans. Commun., vol. E88-B, No. 7, July
2005.

[6] T. Xanthopoulos and A. P. Chandrakasan, “A Low-
power DCT core using adaptive bitwidth and arithmetic
activity exploiting signal correlations and quantization,” IEEE
Journal of Solid-state Circuits, vol. 35, no. 5, May 2000.

[7] A. Kinane, V. Muresan, N. O’Connor, N. Murphy, and S.
Marlow, “Energy-efficient hardware architecture for variable
N-point 1D DCT,” in proc. PATMOS 2004 - IEEE
International Workshop on Power And Timing Modeling,
Optimization and Simulation, pp. 780-788, 2004.

[8] W. H. Chen, C. Smith, and S. Fralick, “A fast
computation algorithm for the discrete cosine transform,”
IEEE Transactions on Communications, vol. 25, pp. 1004-
1009, 1977.

[9] Early Access Partial Reconfiguration User Guide, Xilinx
Inc., San Jose, CA, 2006.

[10] P. Lysaght, B. Blodget, J. Mason, J. Young, and B.
Bridgford, “Invited Paper: Enhanced Architectures, Design
Methodologies and CAD Tools for Dynamic Reconfiguration
of Xilinx FPGAs,” in Proc. Field Programmable Logic and
Applications, 2006.

[11] XAPP138 - Virtex FPGA series configuration and
readback, Xilinx Inc., San Jose, CA, 2005. [online]. Available:
http://www.xilinx.com/support/documentations/aplication_not
es/xapp138.pdf

[12] Haskell Barry, An Introduction to MPEG-2, Chapman &
Hall, 115 Fifth Avenue, New York, NY, 1996.

	1. Introduction
	2. Architecture
	2.1 Top Level Architecture
	2.2 Reconfigurable PE
	3. Experimental results
	4. Conclusion
	5. References

