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Abstract

Hybrid-Symbolic processing has been gaining in-
terest over the past decade. This is due to the prob-
lems of symbolic representations which are ambigu-
ous, brittle, lack of learning capabilities, and have low
availability of parallelism. Sub-symbolic representa-
tions have problems of lacking variable binding, sym-
bolic composition and decomposition, and structured
representations. Integration of these two representa-
tions can mitigate each other’s shortcomings. The
proposed paradigm: Localized Self-Contained Adap-
tive Networks (LSCAN) is a localist network using
AND and OR evaluators to represent relations be-
tween knowledge entities. For optimization of each
sub-network, the LSCAN provides learning capabili-
ties for both of feed-forward and lateral relations be-
tween network nodes.

1 Introduction

Symbolic processing directly emulates high-level
human cognitive processes. Inputs to symbolic pro-
cessing systems are typically representations in the
form of character strings. Hence, real world infor-
mation at high cognitive levels is readily represented
and stored. On the other hand, connectionist, or sub-

symbolic processing, replaces fixed symbols with dy-

namic numerical values, and process those numerical
patterns among connected simple processing nodes.
Each node constructs an output based on some con-
tribution of its total input strengths. Connections
between nodes are associated with numerical weights
which can be adjusted through a systematic learning
algorithm. Connectionist models provide advantages
of learning, handling incomplete information, and
parallel processing. However, inputs to sub-symbolic
processing systems consist of numerical data which
are low-level representations not directly discernible
by human reasoning processes.

The combinations of symbolic and sub-symbolic
paradigms gain advantages which can not be ob-
tained by each paradigm alone. Since a decade
ago, researchers have been exploring hybrid-symbolic
systems and obtaining some fruitful results such as
CONSYDERR[10] and SHRUTI[9]. The CONSY-
DERR was designed using two-leveled networks. The
upper level is a localist network, each network node
represents a concept. This level is called as a con-
ceptual level. The lower level contains nodes which
are the features of the nodes in the conceptual level.
This lower level is called as a subconceptual level.
The CONSYDERR paradigm provided some good
features which are vital in artificial intelligence pro-
cessing. The most promising features are similarity
reasoning, top-down and bottom-up inheritance. The
SHRUTI is a network to process predicate logic based
systems. Each network node represents one predi-
cate clause. The facts are connected to the related
network nodes to initiate node firing. The SHRUTI
resolves the decision-brittleness and sequential pro-
cessing of predicate logic. However, more research
remains to integrate various learning schemes.

The proposed paradigm:  Localized Self-
Contained Adaptive Networks (LSCAN) provides a
more generic view of knowledge representation and
reasoning. The LSCAN addresses the problems of
ambiguity, brittleness, lack of learning capabilities,
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and low availability of parallelism. It also provides
feed-forward and lateral learning schemes to optimize
the relations between network nodes.

2 LSCAN Configuration

Knowledge entities are represented by intercon-
nected network nodes, one node for each knowledge
entity or concept. The LSCAN system propagates
numerical values among the network nodes while
maintaining high-level symbolic structures. FEach
node in the LSCAN network is sufficient to make its
own decision from its own local information without
global information. In addition to flexibilities of de-
cision making possessed by localist connectionist net-
works, LSCAN systems provide learning capabilities.
At the node level, each node associates a function to
derive the outputs from the input data.

2.1 Knowledge Representation

In LSCAN, knowledge is represented as groups of
knowledge entities and entity relations. Each entity
is either a conjunction of other knowledge elements,
which represents the AND relation, or each entity is
a disjunction of an alternative of several knowledge
elements, which represents the OR relation. In this
definition, a knowledge entity can be decomposed into
fine elements; or many fine elements together can be
abstracted into a higher level knowledge entity. Let
nrepresent the number of entities in a specific knowl-
;en)
includes all required entities in a knowledge domain

edge domain. If an entity vector E(ey,es,e3,...

then the knowledge in a specific knowledge domain
can be represented in the following forms:

L e; =>e;.
2. ey AND e5 AND ez AND ... = ¢;
3. e 0Res OR e5 OR ... — €

4. (e; AND e5 AND ...) DR (es AND eg AND } OR
e = €5

5. (1 OR es OR ...) AND (e; OR e;5 OR ...) AND
= €4

6. €i = €, €k, €L, ...
7. e; AND e, AND e3 AND ... — 2y Ry ey i
8. e, 0Res ORe3 OR ... = €5, CE p,y vu.

where 1 < 4,j < n, and => means implication. Each
of the above forms is called an implication rule, The
word implication is used to indicate that the asser-
tion of an entity is depending on the strengths of
the input entities. However, to simplify the discus-
sion, the word, rule, is used to represent a LSCAN
knowledge representation form. The rule #1 uses a
single entity. The rule #2 uses more than two enti-
ties combined by the operator AND. The rule #3 uses
more than two entities combined by the operator OR.
The rules #4 and #5 use mixed combinations of the
rules #3 and #4. Thus, representations of the rules
#4 and #5 can be resolved by the representations
of the rules #2 and #3. The rule #6 represents the
one-to-many mapping. The rule #7 represents the
many-to-many mapping using AND operator. The
rule #8 represents the many-to-many mapping using
OR operator. Therefore, the LSCAN knowledge rep-
resentations can be represented in the forms of the

rules #1, #2 #3. #6, #7, and #8.

Each entity carries two kinds of information.
One is the physical values of an entity. The other in-
formation is the belief factor about an entity. There
are three types of physical values: a binary number, a
real number, and a character string. The belief factor
is a real number between 0 and 1.

2.2 Reasoning Mechanisms

The LSCAN reasoning mechanism manipulates
belief factors explicitly between knowledge entities.
The assertion of the LSCAN reasoning mechanism is
based on the values of belief factors among a set of
entities. The largest belief factor wins the assertion

of an information query.
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Figure 1: A Complete AND E-node Structure

2.3 Structures of Evaluator Nodes

The AND operator obtains the summation of the
attribute entity strengths. Let ¢ represent the sum-
mation for the entity node e;. Then, the mathematics
expression for the AND operator is:

&= Y &uwj

i=l.n

(1)

where £;, 7 = 1..n, are n belief factors of the active
entities connected to the entity e; and wj; are the
connection strengths between the entities e; and the
entity ;. A complete ANDed evaluating node is il-
lustrated in Figure 1.

The OR relation indicates sufficient conditions
which are not always necessary. If an entity has OR
relations with sets of ANDed entities then the entity
picks up the strongest set as its belief factor. The
OR operator is analogous to a local winner-get-all
[8] operation. The locality of competition is among
a small set of ORed neural units. As illustrated in
Figure 2, each hidden unit gets the summation of its
input strengths by applying Equation 1. Then, the
output unit picks up the largest strength €;;. from the
hidden unit e;z. The mathematics expression for the

Output node
Synchronization

Excitatory Inhibitory
node node

Input nodes

Figure 2: A Complete OR E-node Structure

OR operator is:

€ = MAXr=1 m (€ik) (2)

The NOT operator inverts the belief factor of
an entity. The mathematics expression for the NOT
operator is:

'53"—_1—'5.1' 3)

where §; is the belief strength of the entity e; and §;
is the inverted belief strength of the entity e;.

Each entity is embeded in an evaluator node (E-
node). Let & be the output strength of the entity e;,
and &; is expressed as:

1 Ei
S = (1 + e—“x-ﬁs“) (3?)

where ¢; is a normalized equation from Equation 1

(4)

based on the ratio of number of input connections di, :
and the constant é,;; in mathematical expression:

e (Ot
£ = € (E;:)

The constant é,; is a pre-selected constant number

(3)

in order to scale the first factor in Equation 4 in the
range of [0, 1]. An appropriate default value is &, =
28.4 which is near saturation of the function:
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Figure 3: Scaled-Shift-Right Sigmoid Function

1

T+e(e=tm) (6)

where &5 is equal to %L Equation 4 is called a
Scaled-Shift-Right Sigmoid function which maps in-
puts to an output value in the range of [0, 1]. The
plot for Equation 4 is illustrated in the Figure 3.
Equation 4 is for an ANDed E-node which is illus-
trated in the Figure 1. For an ORed E-node, the
mapping function or activation function is similar to
Equation 4 and is expressed as:

) (22)
P\ TGt ) \G,

There are also three lateral relations between
the LSCAN E-nodes: excitatory, inhibitory, and syn-
The excitatory interac-

(7)

chronization interactions.
tions permit an E-node to excite other E-nodes. On
the other hand, the inhibitory interactions discour-
age other E-nodes. As illustrated in the Figure 1 and
Figure 2, both of excitatory and inhibitory interac-
tions can coexist resulting in the summation of the
excitatory and inhibitory strengths. If the E-node e;
has p excitatory interactions and ¢ inhibitory inter-
actions, then the total influence of the other E-nodes

on the E-node ¢; is:
pi = E €W — E Ehwki
i=l.p k=1...¢

where wj; and wg; are lateral connection strengths

(8)

between the E-node e; and other E-nodes e; and ej.

If p; is positive then p; is mapped into the range
[1, 2] with the mapping factor 5;. Then, #; is used to
magnify the output strength of the E-node ¢; by mul-
tiplying the mapping factor n;. The mapping factor
n; 1s given as:

—1 Pi :
Lo (1 n e—(éa‘——p‘.)) (1 - @) +2

where &;; is a constant value which makes 7; just

(9)

about saturation. A good practical value for &y is 10

so that & = %—"-

If p; is negative, then p; is mapped into the do-
main [0, 1] which is represented by the mapping factor
ni- The mapping factor #; is multiplied to the output
strength of the E-node e;. Therefore, the E-node e;
is discouraged. In this case, 7; is given as:

= 1 Pi
%= (1 +e—f5m—.€'-l) (1_ E)

Equation 9 and Equation 10 are mirror functions of

(10)

each other. The result of n; is applied to Equation 4
and Equation 7. The output & of an E-node e; be-
comes:

L =&m (11)

The lateral synchronization connection is always
two-valued: a connection is either active or inactive.
If an E-node ¢; is active while a lateral synchroniza-
tion connection is asserted from the other active E-
node e;, then the E-node ¢; is inactivated regardless
the activation strength of the E-node e;. The lateral
synchronization connection is required when an ORed
subnetwork has different depths in its branches.

3 Learning Mechanisms

The LSCAN systems support learning from the
input units of an E-node and lateral connections. The

inputs contribute to learning by allowing partial sets
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2.3 Structures of Evaluator Nodes

The AND operator obtains the summation of the
attribute entity strengths. Let ¢ represent the sum-
mation for the entity node e;. Then, the mathematics
expression for the AND operator is:

Z §iwji

i=1..n

(1)

6=
J

where &;,j = l..n, are n belief factors of the active
entities connected to the entity e; and wj; are the
connection strengths between the entities e; and the
entity e;. A complete ANDed evaluating node is il-
lustrated in Figure 1.

The OR relation indicates sufficient conditions
which are not always necessary. If an entity has OR
relations with sets of ANDed entities then the entity
picks up the strongest set as its belief factor. The
OR operator is analogous to a local winner-get-all
[8] operation. The locality of competition is among
a small set of ORed neural units. As illustrated in
Figure 2, each hidden unit gets the summation of its
input strengths by applying Equation 1. Then, the
output unit picks up the largest strength ¢;; from the

hidden unit e;;. The mathematics expression for the
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OR operator is:

€6 = MAXr=1 m (€ir) (2)

The NOT operator inverts the belief factor of
an entity. The mathematics expression for the NOT
operator is:

§=1-¢ (3)
where &; is the belief strength of the entity e; and Ej

is the inverted belief strength of the entity e;.

Each entity is embeded in an evaluator node (E-
node). Let & be the output strength of the entity e;,

and &; is expressed as:

(

where ¢; 1s a normalized equation from Equation 1

1
1+ e—lgi—ban)

Eq

s 5

& (4)

based on the ratio of number of input connections d;,
and the constant é,;: in mathematical expression:

Be
«(#)

The constant 6, is a pre-selected constant number
in order to scale the first factor in Equation 4 in the

£

(3)

range of [0, 1]. An appropriate default value is §,; =
28.4 which is near saturation of the function:
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14 e=(s=bn) )

where é¢; 1s equal to %"— Equation 4 is called a
Scaled-Shift- Right Sigmoid function which maps in-
puts to an output value in the range of [0, 1]. The
plot for Equation 4 is illustrated in the Figure 3.
Equation 4 is for an ANDed E-node which is illus-
trated in the Figure 1. For an ORed E-node, the
mapping function or activation function is similar to
Equation 4 and is expressed as:

1 Eik
= (He*"“*-é’ﬁ)) (m)

There are also three lateral relations between
the LSCAN E-nodes: excitatory, inhibitory, and syn-
chronization interactions.

(7)

The excitatory interac-
tions permit an E-node to excite other E-nodes. On
the other hand, the inhibitory interactions discour-
age other E-nodes. As illustrated in the Figure 1 and
Figure 2, both of excitatory and inhibitory interac-
tions can coexist resulting in the summation of the
excitatory and inhibitory strengths. If the E-node e;
has p excitatory interactions and ¢ inhibitory inter-
actions, then the total influence of the other E-nodes
on the E-node ¢; is:

pi = Z €jwii — z EkWii
j=l.p

k=1...q

(8)

where w;; and wy; are lateral connection strengths
between the E-node e; and other E-nodes e; and ej.

If p; is positive then p; is mapped into the range
[1, 2] with the mapping factor 7;. Then, 7; is used to
magnify the output strength of the E-node ¢; by mul-
tiplying the mapping factor n;. The mapping factor
7; is given as:

-1

WY, V= B
= (1+3‘(ém—ﬂv}) ( 5;!) +2 (9}

where & is a constant value which makes n; just
about saturation. A good practical value for &5 15 10

so that &, = %L

If p; is negative, then p; is mapped into the do-
main [0, 1] which is represented by the mapping factor
n;. The mapping factor 7; is multiplied to the output
strength of the E-node e;. Therefore, the E-node e;
is discouraged. In this case, 7; is given as:

=1 N &
= 14 e=(fin=p:) 6;!

Equation 9 and Equation 10 are mirror functions of
each other. The result of 7; is applied to Equation 4
and Equation 7. The output & of an E-node ¢; be-
comes:

(10)

& =& (11)

The lateral synchronization connection is always
two-valued: a connection is either active or inactive.
If an E-node ¢; is active while a lateral synchroniza-
tion connection is asserted from the other active E-
node €, then the E-node ¢; is inactivated regardless
the activation strength of the E-node e;. The lateral
synchronization connection is required when an ORed
subnetwork has different depths in its branches.

3 Learning Mechanisms

The LSCAN systems support learning from the
input units of an E-node and lateral connections. The

inputs contribute to learning by allowing partial sets
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of inputs to result in the firing of an E-node, or learn-
ing from incomplete information. Supervised learn-
ing and unsupervised learning schemes are both pro-
vided within the LSCAN paradigm. Lateral learning
oceurs when two or more conflicting E-nodes resolve
the conflict by allowing one or more than one E-node
to fire. Learning schemes adjust the weights of the
links between E-nodes, as discussed below.

3.1 Supervised Learning

Each firing E-node adjusts its own input con-
nection weights based on the difference between the
actual and the expected output strengths and the
number of active inputs. If the inputs of an E-node
are not all active, then this E-node is learning how
to deal with incomplete information. Let an ANDed
E-node, ¢;, have n input units with the input connec-
tion weights, wj;. Also, let p; be the expected output
strength and the actual output strength be &. At
the time of firing the E-node e;, the number of ac-
tive input units is m and m is less than n. In order
to adjust each weight of wj;, v; has to be computed
from p; using Equation 4; & is replaced by p; and
g; is replaced by v;. However, Equation 4 is not re-
versible, so the Newton-Raphson [3] method is used
to find an approximate v; from p;. Let the difference
between v; and £; be Ag; = v; — ;. The adjustment
of weights wji(new—active) IS proportional to the radios
of 52 and E%::ﬂ_f The final weight adjustment for
active input units is:

ny; Ag;A

Wiilnew—active) = Wji(eld—active) (12)
where £,,. is the average input strength and A is a
learning rate which limits the learning step size. The
value of A is less than 1 and greater than 0. In the
case of A = 1 only one learning step is required. A
smaller A creates a longer training period. On the
other hand, weights of inactive input units are ad-
justed based on the total amount weight change for
active input units. Then, for inactive input units,

their weights are adjusted as:

1

n—m

X

Wiilnew—inactive) = Yji(old—inactive) —

Z: (Wj:'(neu-—actiue) = Wji[ofd—act:‘ue]) {mr

j=l.m

In the case when n = m which implies all input ui
of an E-node are active. Equation 13 is not necessay
The weight adjustment, can be based on each in

strength; stronger input units gain more weight;

the other hand, weaker input units lose weighis.lj
£4ve be the average input strength for the E-nodeg
Then, the weight adjustment is given as: i

£
Wii(new) = Wji(ald) + (5 o
ave

The training process proceeds until all supervised :
nodes reach the expected outputs. For an ORed

Vi AgiA

2 tme D

node, learning occurs on the winning hidden unit

3.2 Unsupervised Learning

During unsupervised learning, expected val
are not assigned. However, the systems allow J
nodes to fire in each firing cycle. Let v be the num
of E-nodes fired in one firing cycle. If 7 is grea
than or equal to 3, then no any E-node needs to
trained. Otherwise, (3 —7v) E-nodes with the hi
output strengths are trained under the condition
¢. If ¢ equals 1 then learning is exercised. For
E-node ¢,;, the condition ¢; i1s given as:

e 1 if & > ab;
T 0 otherwise

where &; is the output strength of e; and aisaf

d

to control whether an E-node has to be trained.
value of a is between 0 and 1. Under an unsuperi
learning scherme, an E-node is trained only when
actual output strength &; is greater than a fractio
the threshold 6;; otherwise. an E-node is not tral
13, and

Lquations 12, 14 are used to chang
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input weights of e;. However, the expected output
strength ; is replaced by 6; + A;, where A; is a small
given value for the purpose of the training of ,.

3.3 Competitive Learning

Competitive learning occurs at the lateral level.
Ateach firing stage, multiple E-nodes are fired simul-
taneously. Conflicting E-nodes establish inhibitory
connections from the preferred E-nodes. For the su-
pervised competitive learning, LSCAN selects one or
more preferred E-nodes which can be continued to
trigger other E-nodes while the other firing E-nodes
are inhibited. The inhibited E-nodes are degraded
under their own thresholds in order to not fire. There-
fore, the inhibitory connections have weights regu-
lated according to the total inhibitory strength. Let
wit be the inhibitory connection weights from e, to
tandi=1...p. Then, the weights w;), are adjusted
by:

§i Euk
j=1...p &5 G1r&i(ave)

Yik(new) = Wik(old) + 55 (16)
where &, -i_s- derived from 6/ by the Newton-
Raphson [3] method and §ifave) is the average in-
hibitory strength from all E-nodes €i=1.. p, to ex. Un-
der the supervised competitive learning, at one firing
stage, the LSCAN systems can inhibit some E-nodes
from different non-inhibitory E-nodes.

Under unsupervised competitive learning, the
maximum number of E-nodes that can be fired at
4 firing stage is specified as 8. The first 8 E-nodes
with greater output strengths are used to inhibit the
others. Equation 16 is used to adjust the weights
wik. Under the unsupervised competitive learning,
all E-nodes are inhibited by the same group of the
preferred E-nodes.
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