Abstract: We employ output-discrepancy consensus to mitigate faulty modules of a Triple Modular Redundant (TMR) arrangement using dynamic partial reconfiguration. Traditionally, the fault-handling resilience of a TMR arrangement is limited to fault(s) in a single TMR instance over the entire mission duration. An additional permanent fault in any of two other TMR instances results in mission's failure. However, in this work, a novel Self-Configuring approach for Discrepancy Resolution (SCDR) is developed and assessed. In SCDR, the occurrence of faults in more than one module initiates the repair mechanism, then upon fault recovery, the system is configured into Concurrent Error Detection (CED) mode. The approach is validated by the complete recovery of a TMR realization of 25 stage Finite Impulse Response (FIR) filter implemented on a reconfigurable platform as a case study. The results show that a self-healing circuit can be realized exploiting the dynamic partial reconfiguration capability of FPGAs while requiring a streamlined operational data path compared to TMR.