
Expediting GA-Based Evolution Using Group Testing Techniques for
Reconfigurable Hardware1

 Rashad S. Oreifej, Carthik A. Sharma, and Ronald F. DeMara
College of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816-2450

demara@mail.ucf.edu

1 Research support in-part by NSF grant CRCD: 0203446

Abstract

Autonomous repair and refurbishment of
reprogrammable logic devices using Genetic Algorithms
can improve the fault tolerance of remote mission-critical
systems. The goal of increasing availability by minimizing
the repair time is addressed in this paper using a CGT-
pruned Genetic Algorithm. The proposed method utilizes
resource performance information obtained using
Combinatorial Group Testing (CGT) techniques to evolve
refurbished configurations in fewer generations than
conventional genetic algorithms. A 3-bit x 2-bit Multiplier
circuit was evolved using both conventional and CGT-
pruned genetic algorithms. Results show that the new
approach yields completely refurbished configurations
37.6% faster than conventional genetic algorithms. In
addition it is demonstrated that for the same circuit,
refurbishment of partially-functional configurations is a
more tractable problem than designing the configurations
when using genetic algorithms as results show the former
to take 80% fewer generations.

1. Introduction

 Fault tolerance, high reliability, and availability are
major desired characteristics of a mission critical system.
Harsh operating environments, manufacturing defects, and
component aging are contributing causes of hardware faults
that make realizing these characteristics difficult. Many
hardware reliability approaches have been proposed in the
literature such as fault avoidance, design margin, modular
redundancy, and fault refurbishment [1]. Fault avoidance-
based design approaches aim to avoid possible faults that
could occur at run time. Such approaches impose minimal

size, weight, and power overheads. Meanwhile, design
margin approaches rely on an increased number of
redundant system components and capabilities to enhance
reliability by designing with a margin for fault tolerance.

Despite the advantages of both the above approaches,
anticipating all the possible faults before the system is
operational is difficult. Modular redundancy approaches
utilize multiple identical modules each of which is capable
of delivering the desired functionality. These increase size,
weight, and power consumption. Additionally, the
recovery capacity of these approaches is limited to the
number and granularity of the available redundant modules.
Fault refurbishment approaches, such as the proposed
approach offer a very competitive option because of the
high recovery capacity and adaptability to unforeseen
faults. However, fault refurbishment is challenging due to
the complexity involved in generating configurations for
implementing fault-free digital circuits on reconfigurable
devices.

Genetic Algorithms (GAs) [2] are guided trial-and-error
search techniques that use the principles of Darwinian
evolution which target the survival of the fittest by casting
a net over the entire solution space to find high fitness
regions. The reprogrammability of Field Programmable
Gate Arrays (FPGAs) provides an efficient platform highly
suitable for evolutionary fault refurbishment experiments
[3]. In the event of faults in FPGAs, a GA can be used to
search and implement alternate configurations that
circumvent the faulty resource, thus providing device
refurbishment. This paper introduces the concept of
improving the performance of GAs by generating and
utilizing information regarding the location of faulty
resources on FPGAs.

The main hypotheses presented in this paper are as
follows:

Hypothesis 1: Knowledge regarding the location of
hardware resource faults guides the GA search process to

2

converge to complete repair in fewer generations than when
the knowledge is unavailable.

In particular, information regarding the location of the
fault effectively reduces the search space. The GA can also
avoid creating and analyzing solutions that use the
suspected faulty resource. Information regarding the
location of the fault can be obtained using a Combinatorial
Group Testing (CGT) [4] based fault location algorithm.

Hypothesis 2: Realizing device refurbishment given a
population of operational configurations is more tractable
than designing a specified circuit without a population of
partially or fully fit individuals.

In particular, in the case of repair, given a population of
configurations which were fully operational before the
occurrence of a fault, search beginning from locations in
the fitness-space that are closer to the solution is assisted by
the presence of good alleles in the individuals.

Formally, the Combinatorial Group Testing problem is
defined as that of identifying a subset of d defectives from
a set of n items. Items can be sampled, and subset of items,
known as groups can be tested to identify the presence of
defectives. Group testing techniques have been used in
medical, chemical, and electrical testing, coding, drug
screening, pollution control, multi-access channel
management, and recently in data verification, clone library
screening and blood testing. The fault location problem in
FPGA logic elements closely approximates the generic
group testing problem. A set of functionally-identical but
physically-distinct configurations provide the groups, and
evaluation of the outputs provides the tests for the
identification of defectives in the groups-under-test. The
accumulated correctness behavior of resources can be used
to locate the physical resource fault. Once sufficient
information is obtained regarding the location of the
physical fault, it is passed on to the GA which can use the
information to identify a refurbished solution.

The rest of the paper is organized as follows: Section 2
provides a quick overview of the related fault tolerance
techniques. Section 3 introduces the CGT-pruned genetic
algorithm. Section 4 discusses the experimental setup.
Results and analysis are presented in Section 5 and Section
6 concludes the paper.

2. Related Work

Previous work on fault tolerance in FPGA-based
systems varies from pre-defined design-time approaches, to
completely adaptive GA-based repair approaches. In the
pre-compiled column-based dual FPGA architecture
approach [5] pre-compiled FPGA configurations are
utilized for error detection and fault-circumvention. These
precompiled configurations have the same functional
design but different placement and routing. Loading these
configurations successively emulates shifting

configurations’ columns. The process continues until the
column with the faulty resource is not used by the loaded
configuration anymore. In this approach fault isolation is
achieved by using distributed Concurrent Error Detection
(CED) checkers while performing the blind
reconfiguration. However, the repair process is not
evolutionary and is limited by the number of available
precompiled configurations. Also the solutions obtained
might lead to a high subset of resources being excluded
from the operational resources as the granularity of the
solutions is high.

In [6], fault tolerance is accomplished by utilizing a
voting system that votes among three functionally-identical
modules. Upon fault detection, the faulty module
undergoes offline evolutionary repair without the need to
perform fault isolation. Consequently, the faulty resources
do not get identified and are not excluded from the repair
process. This is in contrast to the proposed approach where
the benefits of utilizing fault location information are
demonstrated.

Other evolutionary approaches to fault tolerance include
[7] and [8], however, it is only in [9] and [10] that resource
performance information is obtained, maintained and then
used as feedback in the repair process. However, in [9] it is
the configuration performance information that is
maintained rather than the performance of the resources
themselves. In [10] performance information at the
resource level is maintained, however, this approach has
issues such as a high fault detection latency, performance
degradation in the absence of fault, and increased
operational complexity.

In [11], the authors present results from the adaptation
of various CGT algorithms for fault isolation in FPGAs.
Runtime fault detection without using special test vectors is
achieved by repeatedly comparing the outputs of
configurations for discrepancies as described in [12]. The
presence of a faulty output ascertained using bit-wise
output comparison with an ideal output provides
information regarding the fitness of individual resources
used by the configuration.

In the proposed CGT-pruned GA approach, resource
performance information is obtained and resources
suspected of being faulty are excluded from the
evolutionary repair process leading to a repair within fewer
generations. The resource performance information is
provided by means of the CGT techniques described in [12]
where fault location is achieved by observing the
discrepancy characteristics of the outputs of competing
configurations using CED methods [5]. The proposed
approach does not require additional test vectors or data
coding schemes. This is achieved by extending CGT
techniques [4].

3

3. Enhancing GA Performance using
Information from CGT-based Testing

3.1. Conventional GAs Applied to FPGAs

Genetic Algorithms perform guided search over the
entire search space based on Darwinian evolution
principles [2]. The search for solutions is conducted by
modifying and evaluating candidate individual solutions
that together comprise a generation of solutions. Genetic
operators such as mutation and crossover are applied to the
bitstrings representing candidate solutions to modify the
individuals. All individuals in a generation are evaluated
using an exhaustive fitness function. This helps to identify
the most competitive individuals, which then serve as the
population from which the next generation of solutions are
evolved. Over a number of generations of solutions,
evolution perfects a fully-fit individual that exhibits the
desired behavior. Genetic Algorithms have been
successfully used as an alternative design methodology to
evolve digital circuits for implementation on FPGAs [13].
More importantly, GAs provide an efficient paradigm to
perform repair [7], [6], [14] when failures occur in logic
and/or interconnection resources without a-priori
knowledge about the possible real-time fault scenarios. For
the purposes of this paper, a conventional GA applied to
these concepts is one which does not utilize information
regarding the location of the faulty resource.

3.2. Group Testing based Fault Location

CGT algorithms are a class of solutions to the problem
of identifying individual defective members from a large
population by conducting a minimal number of tests on
sub-groups or blocks of elements. The fault-location
algorithm used in this paper is obtained from the Dueling
with Modified Halving algorithm described in [12].

In this algorithm individual configurations are evaluated
based on their output to identify discrepancies between the
expected output and the observed output. The presence of
an output discrepancy implies that the resources used by
the configuration are suspect of being fault-affected. The
set of all competing configurations is represented by S.
Each competing configuration k, 1 < k < |S| has a unique
binary Usage Matrix Uk, 1 < k < p, with elements Uk[i,j],
1 < i < m, 1 < j < n, where m and n represent the rows and
columns in the device layout respectively. Elements Uk[i,j]
= 1 denote the usage of resource (i, j) by configuration k.
Discrepant outputs lead to a unit increment in the value of
all H[i,j] where Uk[i,j] = 1. The History Matrix H, with
elements H[i,j] 1 < i < m, 1 < j < n, is an integer matrix
used to represent the relative fitness of individual
resources. In case of a single fault, fault location is

complete when a single element in H has the maximum
value in H. The output of the fault location procedure is
the coordinates of the suspected-faulty resources. The
CGT-pruned GA presented in this paper utilizes the output
from the fault location procedure to avoid the suspected
faulty resource during the process of searching for alternate
solutions.

3.3. CGT-pruned Genetic Algorithm

The CGT-pruned GA presented in this paper utilizes
resource performance information obtained by using
combinatorial group testing techniques. This information is
incorporated within the GA to evolve faster refurbishment
and consequently yield higher availability. In order to
assess the advantages of the CGT-pruned genetic
algorithms over previous methods, a simulator was created.
The architecture of this simulator is shown in Figure 1.

Settings

Truth
Table

Seed
Config.

Fitness
Report

Best
Config.

CGT

GA

CGT-Pruned GA

If Mode == Repair

Resource Info

No. Of CLBs = ...
No. LUTs = ...
Pop. Size = …
 .
 .
 .

I1 I2 ... O1 O2 ...
0 0 ... 0 0 0 ...
0 0 ... 0 1 0 …
 .
 .
 .

CLB #:0
LUT #:0
FunctionType: OR
LUT inputline
InputLine#0:4
InputLine#1:3
 .
 .
 .

Gen. Max Ave
 2 154 142
 3 155 139
 .
 .
 .

CLB #:0
LUT #:0
FunctionType: XOR
LUT inputline
InputLine#0:0
InputLine#1:5
 .
 .
 .

Figure 1. Genetic Algorithm Simulator

The simulator is a C++ based console application that

consists of two main components: the CGT procedure and
the GA. The CGT algorithm uses the Gnu Scientific
Library (GSL) and simulates the fault location method. The
GA is implemented using an object oriented architecture
that contains classes which model the FPGA resources with
flexible geometries such as the Configurable Logic Block
(CLB) and Look-Up Table (LUT) classes, and others that
model the GA such as Individual and Generation classes.
When this simulator is run in the CGT-pruned GA mode,
the CGT component simulates the desired FPGA chip and
obtains resource performance information which is an input
to the GA. The GA then performs evolutionary design or
reads the Seed Configuration file and performs
evolutionary repair according to the active mode of
operation. In the Conventional GA mode, the CGT
component is not invoked and no resource performance
information is available to the GA.

4

The simulator has three input files as follows:

• Settings: This file contains all the parameterized
settings that control the way the simulator works such
as the geometry of the simulated FPGA chip, GA
settings such as the population size and crossover rate,
and the mode of operation.

• Truth Table: This file contains the input/output truth
table for the circuit under evolution. This describes the
desired behavior of a fully-fit configuration and is used
to evaluate the correctness of the simulated circuit’s
outputs.

• Seed Configuration: This file contains the bitstream
representation of the initial configuration that the GA
should start with in case of repair, i.e. the faulty design
that is sought to be repaired. This file is not required
in the design mode of operation.

The following two output files are produced by the

simulator:

• Fitness Report: This file contains the history of each
generation of the GA process, detailing the maximum
fitness of its best individual and its average fitness.

• Best Configuration: This file contains the bitstream
representation of the configuration with the highest
fitness the GA could evolve at the end of the run.

4. Experiments

4.1. Design of Experiments

Three experiments, each targeting a different problem,
were conducted to analyze differences between the CGT-
pruned GA and conventional GAs. The first involved
comparing the performance of the two for repair. In the
second, the CGT-pruned GA was enhanced using the cell-
swapping operator. The third experiment quantifies the
differences in performance of the two for the problem of
designing configurations from scratch. Also, by comparing
results from the refurbishment and the design problem, the
hypothesis that the repair problem is more tractable than the
design problem can be verified.

Figure 2 shows two configurations on an FPGA, where
the darker squares represent resources currently used by the
configuration and the lighter squares represent the unused
resources. The configuration shown on the left utilizes a
resource that has been affected by a fault. This suspected
faulty resource that has been identified using the CGT
algorithm is indicated by a cross. In the CGT-pruned
genetic algorithm, the faulty resource is isolated and is no
longer regarded in the genetic operations that evolve a
repair. Thus, all the faulty configurations which involve

the faulty resource will be avoided. The crossover and
mutation operators are used by the GA to modify the
bitstring representation of the FPGA configurations.
Crossover points can only occur on the CLB boundaries to
prevent destructive intra-CLB crossover. The mutation
operator is defined as probabilistic inversions of bits in the
bitstring. A mutation might change either the functional
logic implemented in the LUT, or the inter-LUT
connections.

Figure 2. CGT-pruned Genetic Algorithm Repair

Figure 3, shows on the left an FPGA configuration that
utilizes a faulty resource. Using CGT, the faulty resource
is identified as being suspect. As shown on the right, after
the logic configuration of this suspected faulty resource is
copied to another unused resource using the Cell Swapping
GA operator. This additional operator replaces one LUT
with another by copying its function, taking into account
the inter-CLB interconnections.

Figure 3. CGT-pruned Genetic Algorithm Repair
with cell-swapping

 Figure 4 depicts FPGA circuit design using the CGT-

pruned GA in the presence of a faulty LUT. The faulty
resource is no longer considered by the GA in creating the
circuit. However, as opposed to using the GA for repair, a
new configuration is evolved from scratch using a fitness
function to direct the search towards a fully-fit realization.
Since information by way of working designs is
unavailable to the GA, this is shown to be a more difficult
problem than the repair problem.

5

Figure 4. CGT-pruned Genetic Algorithm Design

A total of 120 experiments were conducted to explore
the advantage of the CGT-pruned genetic algorithms in
both repair and design problems in the presence of a
randomly inject single stuck at one fault on the input of an
LUT. Results have shown that CGT-pruned GA yields
faster evolved solution for both cases.

4.2. Experimental Setup

In all the experiments, the circuit evolved was a 3-bit x
2-bit multiplier. Several attempts were made to evolve a 3-
bit x 3-bit multiplier and 4-bit x 4-bit multiplier but neither
a fully working design nor a fully working repair could be
attained even after 300,000 generations due to the
intractable problem size. Previously, successful evolution
of a 3-bit x 3-bit Multiplier has been reported in [13].

Table 1. GA Parameters

CLBs 15

LUTs/CLB 4

Population Size 25

Mutation Rate 0.05

Crossover Rate 0.4

Tournament Size 6

Elitism 2

The parameters shown in Table 1 were used in all the

experiments. The GA parameters were obtained by varying
the parameters to optimize performance. Elitism, wherein
two best-fit individuals are carried forward to the next
generation without any genetic modification, is used to
increase continuation of enhancements realized by the GA.
A low crossover rate of 0.4 was chosen since it was
observed that higher values were too disruptive to the
exploration of alternate configurations.

Four types of experiments were conducted, and for each
type, 30 identical experiments were carried out to ensure
statistical significance. In the first experiment, the
multiplier was evolved from scratch in the presence of fault

using conventional GA. The same experiment was then
repeated using the CGT-pruned GA in the place of the
conventional GA. In the repair experiments, the multiplier
was repaired using the conventional GA, and then again
using the CGT-pruned GA.

The simulated FPGA geometry through all the 120
different experiments has 15 Configurable Logic Blocks
(CLBs) with each CLB containing four Look Up Tables
(LUTs). Each LUT has two inputs and one output which in
turn can be configured to realize one of the OR, AND,
NOR, NAND, NOT, and XOR basic logic functions. The
interconnect follows a strict Feed-Forward topology
architecture. The LUTs are numbered sequentially with the
lowest numbers being connected to the inputs. The output
of LUTs with higher index numbers cannot be the inputs of
LUTs with numbers lower than them as described in [13].
The fault simulated in the experiments was a single
functional logic fault in one of the LUTs.

5. Results and Analysis

5.1. Fault Location using the CGT algorithm

In experiments involving the CGT-pruned GAs, fault
location information was gained by using the CGT
algorithm. The CGT algorithm used a simulated array of
15 CLBs, with 4 LUTs in each CLB. Thus each Usage
Matrix, Uk has 60 elements. A single functional fault was
simulated in one of the 60 LUTs on the simulated FPGA.
On average, over a set of 30 fault-isolation simulations, the
procedure required only 12 evaluations to correctly identify
the location of the fault, as denoted by a single element
with the maximum value in the H matrix. The number of
evaluations required by the fault-location algorithm is as
low as 0.02% of the average number of generations
required by the GA to design the circuit, and 0.11% of the
average number of generations CGT-pruned GA takes to
realize a complete refurbishment. Thus, the isolation
procedure imposes a very low temporal overhead in
exchange for the speedup obtained in the refurbishment
process.

In order to evaluate the advantages of the CGT Pruning
GA over the conventional GA, three statistical metrics are
used: Arithmetic Mean, Standard Deviation, and
Confidence Level. The Arithmetic Mean, µx, quantifies the
average for a set of n samples {xk}, and is calculated as:

n

x
n

k
k

x

∑
== 1µ

The Standard Deviation, xσ , provides a measure of
statistical dispersion to analyze the range of variation in the
results. Given a set of samples {xk}, it is calculated using:

6

1

)(
1

2

−

−
=
∑
=

n

x
n

k
xk

x

µ
σ

The Confidence Level, CL , is the probability measure

of the incidence when the actual mean falls within a certain
interval as follows:

%68)(=<− ∞
xxx SEMCL µµ

where xSEM is the Standard Error of the Mean for a

set of samples {xk}, and is calculated as follows:

n
SEM x

x
σ

=

5.2. Design in the presence of fault

A 3-bit x 2-bit multiplier was designed in the presence
of a faulty LUT by a conventional GA and the CGT-pruned
GA. The results are listed in Table 2.

Table 2. Design of a 3-bit x 2-bit Multiplier in the

Presence of a Fault
Experiment Type Conventional

design
CGT-pruned
design

Circuit 3-bit x 2-bit
Multiplier

3-bit x 2-bit
Multiplier

Number of Experiments 30 30

Arithmetic Mean
(Generations) 64500 53900

Standard Deviation 36000 37300

Standard Error of the
Mean 7200 7450

68% Confidence Interval [57300 → 71700] [46450 → 61350]

The experimental results listed in Table 2 show that the

CGT-pruned GA yields a complete design after an average
of 53,900 generations as opposed to the 64,500 generations
required by the conventional GA. However, this
enhancement is not consistently substantial as shown by the
relatively standard deviations.

5.3. Repair

This experiment analyzes the effect of incorporating
resource performance information in the GA for
evolutionary repair. The results are listed in Table 3.

Table 3. Repair of a 3-bit x 2-bit Multiplier

Experiment Type Conventional
Repair

CGT-pruned
Repair

Circuit 3-bit x 2-bit
Multiplier

3-bit x 2-bit
Multiplier

Number of Experiments 30 30

Arithmetic Mean
(Generations) 17150 10700

Standard Deviation 15650 12550

Standard Error of the
Mean 2850 2300

68% Confidence Interval [14300 → 20000] [8400 → 13000]

From Table 3, and as shown in Figure 5, it is seen that

the CGT-pruned GA yields substantially faster repair than
the conventional GA. Again the range of the actual mean
for a high confidence level is still wide, yet not as wide as
in the design case. Since GAs in general have a
probabilistic nature, the standard deviation is large which in
turn widens the range of possible values the actual mean
could fall within. The standard error of the mean can be
reduced by increasing the number of experiments
conducted. The 68% confidence interval ranges for the
conventional and the CGT-pruned GAs do not intersect in
the repair experiment which makes the results more
statistically significant.

152

153

154

155

156

157

158

159

160

161

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
(x1000 Generations)

Fi
tn

es
s

Adaptive Repair Traditional Repair

Figure 5. Repair Progress: CGT-pruned vs.

Conventional GA

Figure 6 compares the performance of the CGT-Pruned
GA with that of a conventional GA for the 3-bit x 2-bit
multiplier repair experiments. In experiment 15, the CGT-
pruned GA requires only 526 generations to realize a
complete refurbishment, as opposed to the 66,735 required
by the conventional GA, which corresponds to a 99.2%
reduction. However, in about one third of the experiments,
the CGT-pruned GA does not always outperform the
conventional GA. For example, in experiment 25, the

7

conventional GA performs the CGT-pruned GA by
refurbishing the faulty configuration in 76.76% fewer
generations. As listed in Table 3, on average, the CGT-
pruned GA requires 10,700 generations as opposed to the
17,150 generations required by the conventional GA to
realize complete configuration refurbishment. This
confirms Hypothesis 1 at a 68% confidence level.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Experiment

G
en

er
at

io
ns

Without CGT Pruning With CGT Pruning

Figure 6. CGT-pruned vs. Conventional GA

Repair

152

153

154

155

156

157

158

159

160

161

1 101 201 301 401 501 601 701 801 901 1,001 1,101 1,201
Number of Generations

Fi
tn

es
s

Figure 7. Three Fast Runs of the CGT-pruned
GA Repair

Figure 7 shows repair progress of three runs which

achieved repair within 1,200 generations, where a
maximum fitness of 160 is attained at the end of 512
generations in the best case. It can be seen in general that
the GA evolves to a relatively very high fitness within the
first few hundreds generations, but it takes it significantly
more generations to reach the maximum fitness.

In addition to the 3-bit x 2-bit multiplier, a 2-to-4
decoder was also designed and repaired using the CGT-
pruned GA. The experimental results show that the CGT-
pruned GA yields a complete design after an average of

152 generations as opposed to the 220 generations required
by the conventional GA. In the refurbishment experiments,
the CGT-pruned GA converges to a complete repair in 70
generations on an average, as compared to the 102
generations required by the conventional GA.

6. Conclusion

A new CGT-pruned genetic algorithm is presented that
utilizes information of the LUT performance on the FPGA
chip generated using combinatorial group testing. With
regards to Hypothesis 1, experiments have quantified the
benefit of the CGT-pruned genetic algorithm which yields a
completely refurbished FPGA configuration in 37.6%
fewer generations on average than a conventional GA. The
CGT-pruned genetic algorithm is approximately 16% faster
in the case of designing in the presence of a fault. Benefits
of the CGT-pruned GA are more pronounced in repair than
in design. This is related to the fact that the search space is
reduced by eliminating faulty FPGA logic resources from
the pool of unused resources in the case of repair.

Finally, with respect to Hypothesis 2, by comparing the
results of the design and repair experiments, it is clear that
refurbishment of reconfigurable devices is a more tractable
problem for GAs than design. The CGT-pruned GA
generates a refurbished FPGA configuration for a 3-bit x 2-
bit multiplier 80% faster than it creates a new design. In
the case of repair, the GA starts with partially-fit
configurations, and thus a more tractable problem as
opposed to design, where the GA has to build the
configurations with no initial information or designs. The
cell swapping operator plays a vital role by providing an
effective way to re-route around the faulty resources.

References

[1] A. Doumar and H. Ito, "Detecting, diagnosing, and

tolerating faults in SRAM-based field programmable
gate arrays: a survey," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 11, issue 3,
pp. 386 - 405, June 2003.

[2] J. H. Holland, Adaptation in Natural and Artificial

Systems: MIT Press, Cambridge, MA, 1992.

[3] A. P. Shanthi and R. Parthasarathi, "Exploring FPGA

structures for evolving fault tolerant hardware," in proc.
2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, Illinois, 9-11 July 2003, pp. 174 - 181.

[4] D. Du and F. K. Hwang, "Combinatorial Group Testing

and its Applications," World Scientific, vol. 12 of Series
on Applied Mathematics, 2000.

[5] W.-J. Huang and E. J. McCluskey, "Column-Based

Precompiled Configuration Techniques for FPGA," in

8

proc. The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines
(FCCM'01), 2001, pp. 137-146.

[6] S. Vigander, "Evolutionary Fault Repair in Space

Applications," in Dep. of Computer & Information
Science, vol. Masters Thesis. Trondheim: Norwegian
University of Science and Technology (NTNU), 2001.

[7] J. Lohn, G. Larchev, and R. F. DeMara, "Evolutionary

fault recovery in a Virtex FPGA using a representation
that incorporates routing," in proc. Parallel and
Distributed Processing Symposium, 22-26 April 2003.

[8] J. Lach, W. H. Mangione-Smith, and M. Potkonjak,

"Low overhead fault-tolerant FPGA systems," Very
Large Scale Integration (VLSI) Systems, IEEE
Transactions, vol. 6, issue 2, June 1998.

[9] R. F. DeMara and K. Zhang, "Autonomous FPGA Fault

Handling through Competitive Runtime
Reconfiguration," in proc. NASA/DoD Conference on
29-01 June, 2005.

[10] M. Abramovici, J. M. Emmert, and C. E. Stroud,

"Roving Stars: An Integrated Approach To On-Line
Testing, Diagnosis, And Fault Tolerance For FPGAs In
Adaptive Computing Systems," in proc. The Third
NASA/DoD Workshop on Evolvable Hardware, Long
Beach, Cailfornia, 2001.

[11] A. B. Kahng and S. Reda, "Combinatorial Group

Testing Methods for the BIST Diagnosis Problem," in
proc. Asia and South Pacific Design Automation
Conference, January 2004.

[12] C. A. Sharma and R. F. DeMara, "A Combinatorial

Group Testing Method for FPGA Fault Location," in
proc. International Conference on Advances in
Computer Science and Technology (ACST 2006), Puerto
Vallarta, Mexico, 23 - 25 January, 2006.

[13] J. F. Miller, P. Thomson, and T. Fogarty., "Designing

Electronic Circuits Using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study," in Algorithms and
Evolution Strategy in Engineering and Computer
Science, D. Quagliarella, J. Periaux, C. Poloni, and G.
Winter, Eds. Chichester, England, 1998, pp. 105-131.

[14] K. Zhang, R. F. DeMara, and C. A. Sharma,

"Consensus-based Evaluation for Fault Isolation and
On-line Evolutionary Regeneration," in proc.
International Conference in Evolvable Systems
(ICES'05), Barcelona, Spain, September 12 - 14, 2005,
pp. 12 - 24.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

