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Abstract 

Autonomous repair and refurbishment of 
reprogrammable logic devices using Genetic Algorithms 
can improve the fault tolerance of remote mission-critical 
systems. The goal of increasing availability by minimizing 
the repair time is addressed in this paper using a CGT-
pruned Genetic Algorithm.  The proposed method utilizes 
resource performance information obtained using 
Combinatorial Group Testing (CGT) techniques to evolve 
refurbished configurations in fewer generations than 
conventional genetic algorithms.  A 3-bit x 2-bit Multiplier 
circuit was evolved using both conventional and CGT-
pruned genetic algorithms. Results show that the new 
approach yields completely refurbished configurations 
37.6% faster than conventional genetic algorithms. In 
addition it is demonstrated that for the same circuit, 
refurbishment of partially-functional configurations is a 
more tractable problem than designing the configurations 
when using genetic algorithms as results show the former 
to take 80% fewer generations. 

 

1. Introduction 

 Fault tolerance, high reliability, and availability are 
major desired characteristics of a mission critical system. 
Harsh operating environments, manufacturing defects, and 
component aging are contributing causes of hardware faults 
that make realizing these characteristics difficult.  Many 
hardware reliability approaches have been proposed in the 
literature such as fault avoidance, design margin, modular 
redundancy, and fault refurbishment [1].  Fault avoidance-
based design approaches aim to avoid possible faults that 
could occur at run time.  Such approaches impose minimal 

size, weight, and power overheads.  Meanwhile, design 
margin approaches rely on an increased number of 
redundant system components and capabilities to enhance 
reliability by designing with a margin for fault tolerance. 

Despite the advantages of both the above approaches, 
anticipating all the possible faults before the system is 
operational is difficult.  Modular redundancy approaches 
utilize multiple identical modules each of which is capable 
of delivering the desired functionality.  These increase size, 
weight, and power consumption.  Additionally, the 
recovery capacity of these approaches is limited to the 
number and granularity of the available redundant modules.  
Fault refurbishment approaches, such as the proposed 
approach offer a very competitive option because of the 
high recovery capacity and adaptability to unforeseen 
faults.  However, fault refurbishment is challenging due to 
the complexity involved in generating configurations for 
implementing fault-free digital circuits on reconfigurable 
devices. 

Genetic Algorithms (GAs) [2] are guided trial-and-error 
search techniques that use the principles of Darwinian 
evolution which target the survival of the fittest by casting 
a net over the entire solution space to find high fitness 
regions.  The reprogrammability of Field Programmable 
Gate Arrays (FPGAs) provides an efficient platform highly 
suitable for evolutionary fault refurbishment experiments 
[3].  In the event of faults in FPGAs, a GA can be used to 
search and implement alternate configurations that 
circumvent the faulty resource, thus providing device 
refurbishment.   This paper introduces the concept of 
improving the performance of GAs by generating and 
utilizing information regarding the location of faulty 
resources on FPGAs.  

The main hypotheses presented in this paper are as 
follows: 

Hypothesis 1: Knowledge regarding the location of 
hardware resource faults guides the GA search process to 
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converge to complete repair in fewer generations than when 
the knowledge is unavailable. 

In particular, information regarding the location of the 
fault effectively reduces the search space.  The GA can also 
avoid creating and analyzing solutions that use the 
suspected faulty resource.  Information regarding the 
location of the fault can be obtained using a Combinatorial 
Group Testing (CGT) [4] based fault location algorithm.   

Hypothesis 2: Realizing device refurbishment given a 
population of operational configurations is more tractable 
than designing a specified circuit without a population of 
partially or fully fit individuals.   

In particular, in the case of repair, given a population of 
configurations which were fully operational before the 
occurrence of a fault, search beginning from locations in 
the fitness-space that are closer to the solution is assisted by 
the presence of good alleles in the individuals.  

Formally, the Combinatorial Group Testing problem is 
defined as that of identifying a subset of d defectives from 
a set of n items.  Items can be sampled, and subset of items, 
known as groups can be tested to identify the presence of 
defectives.  Group testing techniques have been used in 
medical, chemical, and electrical testing, coding, drug 
screening, pollution control, multi-access channel 
management, and recently in data verification, clone library 
screening and blood testing.  The fault location problem in 
FPGA logic elements closely approximates the generic 
group testing problem.  A set of functionally-identical but 
physically-distinct configurations provide the groups, and 
evaluation of the outputs provides the tests for the 
identification of defectives in the groups-under-test.  The 
accumulated correctness behavior of resources can be used 
to locate the physical resource fault.  Once sufficient 
information is obtained regarding the location of the 
physical fault, it is passed on to the GA which can use the 
information to identify a refurbished solution. 

The rest of the paper is organized as follows:  Section 2 
provides a quick overview of the related fault tolerance 
techniques.  Section 3 introduces the CGT-pruned genetic 
algorithm.  Section 4 discusses the experimental setup. 
Results and analysis are presented in Section 5 and Section 
6 concludes the paper. 

2. Related Work 

Previous work on fault tolerance in FPGA-based 
systems varies from pre-defined design-time approaches, to 
completely adaptive GA-based repair approaches.  In the 
pre-compiled column-based dual FPGA architecture 
approach [5] pre-compiled FPGA configurations are 
utilized for error detection and fault-circumvention.  These 
precompiled configurations have the same functional 
design but different placement and routing.  Loading these 
configurations successively emulates shifting 

configurations’ columns.  The process continues until the 
column with the faulty resource is not used by the loaded 
configuration anymore.  In this approach fault isolation is 
achieved by using distributed Concurrent Error Detection 
(CED) checkers while performing the blind 
reconfiguration.  However, the repair process is not 
evolutionary and is limited by the number of available 
precompiled configurations.  Also the solutions obtained 
might lead to a high subset of resources being excluded 
from the operational resources as the granularity of the 
solutions is high. 

In [6], fault tolerance is accomplished by utilizing a 
voting system that votes among three functionally-identical 
modules.  Upon fault detection, the faulty module 
undergoes offline evolutionary repair without the need to 
perform fault isolation.  Consequently, the faulty resources 
do not get identified and are not excluded from the repair 
process.  This is in contrast to the proposed approach where 
the benefits of utilizing fault location information are 
demonstrated. 

Other evolutionary approaches to fault tolerance include 
[7] and [8], however, it is only in [9] and [10] that resource 
performance information is obtained, maintained and then 
used as feedback in the repair process. However, in [9] it is 
the configuration performance information that is 
maintained rather than the performance of the resources 
themselves.  In [10] performance information at the 
resource level is maintained, however, this approach has 
issues such as a high fault detection latency, performance 
degradation in the absence of fault, and increased 
operational complexity. 

In [11], the authors present results from the adaptation 
of various CGT algorithms for fault isolation in FPGAs.  
Runtime fault detection without using special test vectors is 
achieved by repeatedly comparing the outputs of 
configurations for discrepancies as described in [12].  The 
presence of a faulty output ascertained using bit-wise 
output comparison with an ideal output provides 
information regarding the fitness of individual resources 
used by the configuration. 

In the proposed CGT-pruned GA approach, resource 
performance information is obtained and resources 
suspected of being faulty are excluded from the 
evolutionary repair process leading to a repair within fewer 
generations.  The resource performance information is 
provided by means of the CGT techniques described in [12] 
where fault location is achieved by observing the 
discrepancy characteristics of the outputs of competing 
configurations using CED methods [5].  The proposed 
approach does not require additional test vectors or data 
coding schemes.  This is achieved by extending CGT 
techniques [4].   
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3. Enhancing GA Performance using 
Information from CGT-based Testing 

 
3.1. Conventional GAs Applied to FPGAs 
 

Genetic Algorithms perform guided search over the 
entire search space based on Darwinian evolution 
principles [2].  The search for solutions is conducted by 
modifying and evaluating candidate individual solutions 
that together comprise a generation of solutions.  Genetic 
operators such as mutation and crossover are applied to the 
bitstrings representing candidate solutions to modify the 
individuals.  All individuals in a generation are evaluated 
using an exhaustive fitness function.  This helps to identify 
the most competitive individuals, which then serve as the 
population from which the next generation of solutions are 
evolved.  Over a number of generations of solutions, 
evolution perfects a fully-fit individual that exhibits the 
desired behavior.  Genetic Algorithms have been 
successfully used as an alternative design methodology to 
evolve digital circuits for implementation on FPGAs [13].  
More importantly, GAs provide an efficient paradigm to 
perform repair [7], [6], [14] when failures occur in logic 
and/or interconnection resources without a-priori 
knowledge about the possible real-time fault scenarios.  For 
the purposes of this paper, a conventional GA applied to 
these concepts is one which does not utilize information 
regarding the location of the faulty resource. 

 
3.2. Group Testing based Fault Location 
 

CGT algorithms are a class of solutions to the problem 
of identifying individual defective members from a large 
population by conducting a minimal number of tests on 
sub-groups or blocks of elements.  The fault-location 
algorithm used in this paper is obtained from the Dueling 
with Modified Halving algorithm described in [12]. 

In this algorithm individual configurations are evaluated 
based on their output to identify discrepancies between the 
expected output and the observed output.  The presence of 
an output discrepancy implies that the resources used by 
the configuration are suspect of being fault-affected.  The 
set of all competing configurations is represented by S.  
Each competing configuration k, 1 < k <  |S| has a unique 
binary Usage Matrix Uk, 1 < k  < p, with elements Uk[i,j],  
1 < i  < m, 1 < j < n, where m and n represent the rows and 
columns in the device layout respectively.  Elements Uk[i,j] 
= 1 denote the usage of resource (i, j) by configuration k.  
Discrepant outputs lead to a unit increment in the value of 
all H[i,j] where Uk[i,j] = 1.  The History Matrix H, with 
elements H[i,j] 1 < i  < m, 1 < j  < n, is an integer matrix 
used to represent the relative fitness of individual 
resources.  In case of a single fault, fault location is 

complete when a single element in H has the maximum 
value in H.   The output of the fault location procedure is 
the coordinates of the suspected-faulty resources.  The 
CGT-pruned GA presented in this paper utilizes the output 
from the fault location procedure to avoid the suspected 
faulty resource during the process of searching for alternate 
solutions. 
 
3.3. CGT-pruned Genetic Algorithm 
 

The CGT-pruned GA presented in this paper utilizes 
resource performance information obtained by using 
combinatorial group testing techniques.  This information is 
incorporated within the GA to evolve faster refurbishment 
and consequently yield higher availability.  In order to 
assess the advantages of the CGT-pruned genetic 
algorithms over previous methods, a simulator was created.  
The architecture of this simulator is shown in Figure 1. 
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Truth 
Table
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       .
       .
       .
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       .
       .
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       .
       .
       .
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       .
       .
       .
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InputLine#1:5
       .
       .
       .  

Figure 1.  Genetic Algorithm Simulator 

 
The simulator is a C++ based console application that 

consists of two main components: the CGT procedure and 
the GA.  The CGT algorithm uses the Gnu Scientific 
Library (GSL) and simulates the fault location method. The 
GA is implemented using an object oriented architecture 
that contains classes which model the FPGA resources with 
flexible geometries such as the Configurable Logic Block 
(CLB) and Look-Up Table (LUT) classes, and others that 
model the GA such as Individual and Generation classes.  
When this simulator is run in the CGT-pruned GA mode, 
the CGT component simulates the desired FPGA chip and 
obtains resource performance information which is an input 
to the GA.  The GA then performs evolutionary design or 
reads the Seed Configuration file and performs 
evolutionary repair according to the active mode of 
operation.  In the Conventional GA mode, the CGT 
component is not invoked and no resource performance 
information is available to the GA. 
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The simulator has three input files as follows: 
 

• Settings: This file contains all the parameterized 
settings that control the way the simulator works such 
as the geometry of the simulated FPGA chip, GA 
settings such as the population size and crossover rate, 
and the mode of operation. 

• Truth Table: This file contains the input/output truth 
table for the circuit under evolution.  This describes the 
desired behavior of a fully-fit configuration and is used 
to evaluate the correctness of the simulated circuit’s 
outputs.  

• Seed Configuration: This file contains the bitstream 
representation of the initial configuration that the GA 
should start with in case of repair, i.e. the faulty design 
that is sought to be repaired.  This file is not required 
in the design mode of operation. 

 
The following two output files are produced by the 

simulator: 
 

• Fitness Report: This file contains the history of each 
generation of the GA process, detailing the maximum 
fitness of its best individual and its average fitness. 

• Best Configuration: This file contains the bitstream 
representation of the configuration with the highest 
fitness the GA could evolve at the end of the run. 

 
4. Experiments 
 
4.1. Design of Experiments 
 

Three experiments, each targeting a different problem, 
were conducted to analyze differences between the CGT-
pruned GA and conventional GAs. The first involved 
comparing the performance of the two for repair. In the 
second, the CGT-pruned GA was enhanced using the cell-
swapping operator. The third experiment quantifies the 
differences in performance of the two for the problem of 
designing configurations from scratch.  Also, by comparing 
results from the refurbishment and the design problem, the 
hypothesis that the repair problem is more tractable than the 
design problem can be verified. 

Figure 2 shows two configurations on an FPGA, where 
the darker squares represent resources currently used by the 
configuration and the lighter squares represent the unused 
resources.  The configuration shown on the left utilizes a 
resource that has been affected by a fault.  This suspected 
faulty resource that has been identified using the CGT 
algorithm is indicated by a cross.  In the CGT-pruned 
genetic algorithm, the faulty resource is isolated and is no 
longer regarded in the genetic operations that evolve a 
repair.  Thus, all the faulty configurations which involve 

the faulty resource will be avoided.  The crossover and 
mutation operators are used by the GA to modify the 
bitstring representation of the FPGA configurations.  
Crossover points can only occur on the CLB boundaries to 
prevent destructive intra-CLB crossover.  The mutation 
operator is defined as probabilistic inversions of bits in the 
bitstring.  A mutation might change either the functional 
logic implemented in the LUT, or the inter-LUT 
connections. 

 

 
 

Figure 2.  CGT-pruned Genetic Algorithm Repair 
 

Figure 3, shows on the left an FPGA configuration that 
utilizes a faulty resource.  Using CGT, the faulty resource 
is identified as being suspect.  As shown on the right, after 
the logic configuration of this suspected faulty resource is 
copied to another unused resource using the Cell Swapping 
GA operator.  This additional operator replaces one LUT 
with another by copying its function, taking into account 
the inter-CLB interconnections.  

 

 
 

Figure 3.  CGT-pruned Genetic Algorithm Repair 
with cell-swapping 

 
 Figure 4 depicts FPGA circuit design using the CGT-

pruned GA in the presence of a faulty LUT.  The faulty 
resource is no longer considered by the GA in creating the 
circuit.  However, as opposed to using the GA for repair, a 
new configuration is evolved from scratch using a fitness 
function to direct the search towards a fully-fit realization.  
Since information by way of working designs is 
unavailable to the GA, this is shown to be a more difficult 
problem than the repair problem. 
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Figure 4.  CGT-pruned Genetic Algorithm Design 
 

A total of 120 experiments were conducted to explore 
the advantage of the CGT-pruned genetic algorithms in 
both repair and design problems in the presence of a 
randomly inject single stuck at one fault on the input of an 
LUT.  Results have shown that CGT-pruned GA yields 
faster evolved solution for both cases.  

 
4.2. Experimental Setup 
 

In all the experiments, the circuit evolved was a 3-bit x 
2-bit multiplier.  Several attempts were made to evolve a 3-
bit x 3-bit multiplier and 4-bit x 4-bit multiplier but neither 
a fully working design nor a fully working repair could be 
attained even after 300,000 generations due to the 
intractable problem size.  Previously, successful evolution 
of a 3-bit x 3-bit Multiplier has been reported in [13]. 

 
Table 1. GA Parameters 

CLBs 15 

LUTs/CLB 4 

Population Size 25 

Mutation Rate 0.05 

Crossover Rate 0.4 

Tournament Size 6 

Elitism 2 

 
The parameters shown in Table 1 were used in all the 

experiments.  The GA parameters were obtained by varying 
the parameters to optimize performance.  Elitism, wherein 
two best-fit individuals are carried forward to the next 
generation without any genetic modification, is used to 
increase continuation of enhancements realized by the GA.  
A low crossover rate of 0.4 was chosen since it was 
observed that higher values were too disruptive to the 
exploration of alternate configurations. 

Four types of experiments were conducted, and for each 
type, 30 identical experiments were carried out to ensure 
statistical significance.  In the first experiment, the 
multiplier was evolved from scratch in the presence of fault 

using conventional GA. The same experiment was then 
repeated using the CGT-pruned GA in the place of the 
conventional GA. In the repair experiments, the multiplier 
was repaired using the conventional GA, and then again 
using the CGT-pruned GA. 

The simulated FPGA geometry through all the 120 
different experiments has 15 Configurable Logic Blocks 
(CLBs) with each CLB containing four Look Up Tables 
(LUTs).  Each LUT has two inputs and one output which in 
turn can be configured to realize one of the OR, AND, 
NOR, NAND, NOT, and XOR basic logic functions.  The 
interconnect follows a strict Feed-Forward topology 
architecture.  The LUTs are numbered sequentially with the 
lowest numbers being connected to the inputs.  The output 
of LUTs with higher index numbers cannot be the inputs of 
LUTs with numbers lower than them as described in [13].  
The fault simulated in the experiments was a single 
functional logic fault in one of the LUTs. 

5. Results and Analysis 

5.1. Fault Location using the CGT algorithm 
 

In experiments involving the CGT-pruned GAs, fault 
location information was gained by using the CGT 
algorithm.  The CGT algorithm used a simulated array of 
15 CLBs, with 4 LUTs in each CLB.  Thus each Usage 
Matrix, Uk has 60 elements. A single functional fault was 
simulated in one of the 60 LUTs on the simulated FPGA.  
On average, over a set of 30 fault-isolation simulations, the 
procedure required only 12 evaluations to correctly identify 
the location of the fault, as denoted by a single element 
with the maximum value in the H matrix.  The number of 
evaluations required by the fault-location algorithm is as 
low as 0.02% of the average number of generations 
required by the GA to design the circuit, and 0.11% of the 
average number of generations CGT-pruned GA takes to 
realize a complete refurbishment.  Thus, the isolation 
procedure imposes a very low temporal overhead in 
exchange for the speedup obtained in the refurbishment 
process. 

In order to evaluate the advantages of the CGT Pruning 
GA over the conventional GA, three statistical metrics are 
used: Arithmetic Mean, Standard Deviation, and 
Confidence Level.  The Arithmetic Mean, µx, quantifies the 
average for a set of n samples {xk}, and is calculated as:  

n

x
n

k
k

x

∑
== 1µ  

The Standard Deviation, xσ , provides a measure of 
statistical dispersion to analyze the range of variation in the 
results. Given a set of samples {xk}, it is calculated using: 
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The Confidence Level, CL , is the probability measure 

of the incidence when the actual mean falls within a certain 
interval as follows: 

%68)( =<− ∞
xxx SEMCL µµ  

where xSEM is the Standard Error of the Mean for a 

set of samples {xk}, and is calculated as follows: 

n
SEM x

x
σ

=  

 
5.2. Design in the presence of fault 
 

A 3-bit x 2-bit multiplier was designed in the presence 
of a faulty LUT by a conventional GA and the CGT-pruned 
GA.  The results are listed in Table 2. 

 
Table 2. Design of a 3-bit x 2-bit Multiplier in the 

Presence of a Fault 
Experiment Type Conventional 

design 
CGT-pruned 
design 

Circuit 3-bit x 2-bit 
Multiplier 

3-bit x 2-bit 
Multiplier 

Number of Experiments 30 30 

Arithmetic Mean 
(Generations) 64500  53900  

Standard Deviation 36000 37300 

Standard Error of the 
Mean 7200 7450 

68% Confidence Interval [57300 → 71700] [46450 → 61350] 

 
The experimental results listed in Table 2 show that the 

CGT-pruned GA yields a complete design after an average 
of 53,900 generations as opposed to the 64,500 generations 
required by the conventional GA.  However, this 
enhancement is not consistently substantial as shown by the 
relatively standard deviations.  
 
5.3. Repair  
 

This experiment analyzes the effect of incorporating 
resource performance information in the GA for 
evolutionary repair.  The results are listed in Table 3. 

 
Table 3. Repair of a 3-bit x 2-bit Multiplier 

Experiment Type Conventional 
Repair 

CGT-pruned 
Repair 

Circuit 3-bit x 2-bit 
Multiplier 

3-bit x 2-bit 
Multiplier 

Number of Experiments 30 30 

Arithmetic Mean 
(Generations) 17150 10700  

Standard Deviation 15650 12550 

Standard Error of the 
Mean 2850 2300 

68% Confidence Interval [14300 → 20000] [8400 → 13000] 

  
From Table 3, and as shown in Figure 5, it is seen that 

the CGT-pruned GA yields substantially faster repair than 
the conventional GA.  Again the range of the actual mean 
for a high confidence level is still wide, yet not as wide as 
in the design case.  Since GAs in general have a 
probabilistic nature, the standard deviation is large which in 
turn widens the range of possible values the actual mean 
could fall within.  The standard error of the mean can be 
reduced by increasing the number of experiments 
conducted.  The 68% confidence interval ranges for the 
conventional and the CGT-pruned GAs do not intersect in 
the repair experiment which makes the results more 
statistically significant. 
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Figure 5.  Repair Progress: CGT-pruned  vs. 

Conventional GA  
 

Figure 6 compares the performance of the CGT-Pruned 
GA with that of a conventional GA for the 3-bit x 2-bit 
multiplier repair experiments.  In experiment 15, the CGT-
pruned GA requires only 526 generations to realize a 
complete refurbishment, as opposed to the 66,735 required 
by the conventional GA, which corresponds to a 99.2% 
reduction. However, in about one third of the experiments, 
the CGT-pruned GA does not always outperform the 
conventional GA. For example, in experiment 25, the 
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conventional GA performs the CGT-pruned GA by 
refurbishing the faulty configuration in 76.76% fewer 
generations.  As listed in Table 3, on average, the CGT-
pruned GA requires 10,700 generations as opposed to the 
17,150 generations required by the conventional GA to 
realize complete configuration refurbishment.  This 
confirms Hypothesis 1 at a 68% confidence level.  
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Figure 6.  CGT-pruned  vs. Conventional GA 
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Figure 7.  Three Fast Runs of the CGT-pruned 
GA Repair  

 
Figure 7 shows repair progress of three runs which 

achieved repair within 1,200 generations, where a 
maximum fitness of 160 is attained at the end of 512 
generations in the best case.  It can be seen in general that 
the GA evolves to a relatively very high fitness within the 
first few hundreds generations, but it takes it significantly 
more generations to reach the maximum fitness. 

In addition to the 3-bit x 2-bit multiplier, a 2-to-4 
decoder was also designed and repaired using the CGT-
pruned GA.  The experimental results show that the CGT-
pruned GA yields a complete design after an average of 

152 generations as opposed to the 220 generations required 
by the conventional GA.  In the refurbishment experiments, 
the CGT-pruned GA converges to a complete repair in 70 
generations on an average, as compared to the 102 
generations required by the conventional GA. 

 
6. Conclusion 
 

A new CGT-pruned genetic algorithm is presented that 
utilizes information of the LUT performance on the FPGA 
chip generated using combinatorial group testing.  With 
regards to Hypothesis 1, experiments have quantified the 
benefit of the CGT-pruned genetic algorithm which yields a 
completely refurbished FPGA configuration in 37.6% 
fewer generations on average than a conventional GA.  The 
CGT-pruned genetic algorithm is approximately 16% faster 
in the case of designing in the presence of a fault.  Benefits 
of the CGT-pruned GA are more pronounced in repair than 
in design.  This is related to the fact that the search space is 
reduced by eliminating faulty FPGA logic resources from 
the pool of unused resources in the case of repair. 

Finally, with respect to Hypothesis 2, by comparing the 
results of the design and repair experiments, it is clear that 
refurbishment of reconfigurable devices is a more tractable 
problem for GAs than design.  The CGT-pruned GA 
generates a refurbished FPGA configuration for a 3-bit x 2-
bit multiplier 80% faster than it creates a new design.  In 
the case of repair, the GA starts with partially-fit 
configurations, and thus a more tractable problem as 
opposed to design, where the GA has to build the 
configurations with no initial information or designs.  The 
cell swapping operator plays a vital role by providing an 
effective way to re-route around the faulty resources. 
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