
A Combinatorial Group Testing Method for FPGA Fault Location

Carthik A. Sharma and Ronald F. DeMara
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2450

casharma@mail.ucf.edu

Abstract

Adaptive fault isolation methods based on discrepancy-
enabled pairwise comparisons are developed for
reconfigurable logic devices. By observing the discrepancy
characteristics of multiple Concurrent Error Detection
(CED) configurations, fault isolation is realized without
requiring additional test vectors or data coding schemes.
Hence the reprogrammability of Field Programmable Gate
Arrays (FPGAs) is utilized to examine CED alternatives in
succession. Results show that for a reprogrammable device
with one million resources, where 50% of the resources are
used on an average by the target application, fault
isolation can be achieved in as few as 28 iterations. The
effect of resource utilization, the number of competing
candidate solutions, and the number of unit resources are
analyzed and the performance of a halving-based
algorithm for fault isolation are quantified.

1 Introduction

Efficient detection and isolation of faults within logic
devices are fundamental issues in the design of dependable
systems for mission-critical applications. While traditional
approaches to these problems rely on unique instances of
dedicated hardware elements and/or extensive testing
involving exhaustive or pseudo-exhaustive test vectors, this
paper develops a new technique based on runtime
reconfigurability and competitive dueling.

In Field Programmable Gate Array (FPGA) devices, the
available number of unit cells such as Look Up Tables
(LUTs) can comprise many thousands of physical
resources. In this paper, the difficult problem of rapidly
identifying a failure among these resources is addressed by
extending methods from the algorithmic work on
Combinatorial Group Testing (CGT) [1]. These concepts
are used to develop new adaptive methods that utilize only
the FPGA’s usual runtime inputs to identify and isolate
faults. This maximizes the device’s online availability even
while fault isolation is in progress.

The proposed techniques are evaluated using analytical
and experimental methods for target implementation on
SRAM-based FPGAs. With production exceeding 100
million units per year, SRAM-based FPGA devices are
frequently used in a wide range of embedded applications
requiring high levels of reliability and availability.
Reconfigurable devices, such as FPGAs, enable new fault
handling techniques where the repair process can take place
online when the hardware is in active use, or offline when
the refurbishment occurs outside the dataflow of the
normal computational throughput. The emphasis of this
paper is on fast and reliable fast isolation online using an
adaptive algorithm.

Runtime fault detection without using special test vectors
is achieved in a Concurrent Error Detection (CED) [5]
strategy by comparing the outputs of two identical
functional circuits for discrepancies. The discrepancy
detector provides information regarding whether or not the
outputs of two competing configurations resident on the
FPGA produce outputs which are in bitwise agreement with
each other. Using only this information, an adaptive
method for reconfiguring the FPGA's functional logic can
enable fault isolation because alternative CED
configurations use varying subsets of resources. When
these instances of the functional elements are paired over
time, the accumulated correctness behavior along with their
resource utilization characteristics are used to isolate the
physical resource fault.

Fast fault detection and isolation techniques are highly
relevant to many embedded device applications, including
remote sensing, applications in hazardous environments,
and space missions. For instance, deep space satellites such
as Stardust contain over 100 FPGA devices [2] while
aerospace applications routinely employ FPGAs
extensively for tasks ranging from launch control to signal
processing. SRAM-based FPGAs are of significant
importance due to their high density, unlimited
reprogrammability, and growing use in mission-
critical/safety-impacting applications.

Techniques that enable online fault detection, isolation,
and refurbishment by reprogramming FPGAs once a failure
occurs provide an attractive alternative to traditional
redundancy-based techniques. Reconfiguration offers the

potential for resolving permanent degradation due to
radiation-induced stuck-at-faults, thermal fatigue, oxide
breakdown, electromigration, and other failures. Potential
benefits include recovery without the increased weight and
size normally associated with distinct spares that are
configured at design-time before a specific failure occurs.
Also, failures need not be precisely diagnosed due to
automatic evaluation of the FPGA’s residual functionality
while in-circuit. Fault location methods provide inputs to
the repair mechanism which accelerate the repair process,
and reduce the search space that consists of candidate
solutions. The fault isolation technique identified in this
paper is one such method for isolating faults with low
latency.

A common limitation facing many fault detection
schemes is that the failure detector itself may fail. A fault
involving the checker may be undetectable or result in the
corruption of otherwise valid outputs. Traditional
approaches to fault-detection typically rely on coding-based
schemes [3][4] or redundancy using a single voter,
comparator or error detector[5][6]. Triple Modular
Redundancy (TMR)[7][8] approaches rely on three parallel
instances of the functional logic to compute the output in
triplicate and a majority voting element to determine
consensus and hence the asserted output. The proposed
system uses the output of the detector element for fault
isolation, in addition to detection. In a duplex redundant
CED system, the problem of fault detection is simplified as
the outputs of the two elements will be identical in the
absence of at least a single fault..

2 Problem Definition

In order to better understand the problem at hand,
consider an analogy termed the Treasurer's Problem which
is related to the Counterfeit Coin Problem [1]. The
Counterfeit Coin Problem is extended here by analogy to
support arbitrary groupings of logic cells within FPGAs. In
this Treasurer’s Problem, legitimate coins are made of gold,
with the face value of the coins being proportional to their
weight. However, some counterfeit coins have other metals
mixed in with the gold, and these counterfeit coins are to be
identified and removed. The weight of an impure coin is
different from the weight of pure coins of the same
denomination. The treasurer must inspect large quantities
of coins for authenticity. Most significantly, since the
number of counterfeit instances is small relative to the total
number of coins present, the treasurer does not weigh the
coins individually. Instead the coins are in a vat, and the
treasurer retreives coins from the vat to fill bags containing
exactly 100 monetary units worth of coins. The number of
coins in each bag may vary because of their multiple
denominations, yet due to the property that their mass is

proportional to their denomination then only two equally-
valued legitimate bags will display equal weight.

Using a pan balance, the treasurer compares the weight of
two bags at a time to determine whether they are equal
weight or not. The coins from the bags may be returned to
the vat after weighing, so that they can be filled in other
bags later after shuffling. Given these pre-conditions, a
number of questions arise about how the treasurer will
identify any faulty coinage such as: How many weighings
will the treasurer need to identify bags containing the
impure coins? Can the impure coin be identified, if there
was only one?

These questions are analagous to the problems addressed
in this paper for identification of a faulty physical resource
used by a functional arrangement of FPGA configurations.
FPGA devices are composed of an array of logic resources
such as LUTs that are utilized by functional configurations
just as the coins are grouped into a bag for weighing. A
digital design can be mapped onto the resources on an
FPGA in several ways, just like a bag worth 100 monetary
units can be filled with coins of different denominations in
several different ways. When one of the resources used by
a configuration is faulty, the output of the configuration in
response to an input may be faulty. Identifying the faulty
resource from among many fault free resources, without
testing the resources individually is a challenging task.
Exhaustive testing of the individual resources is time
consuming which takes the device offline and reduces its
availability. By analogy, if the coins were weighed and
checked individually, the time required would be
phenomenal to locate a single fault out of thousands of
resources. Instead, we recast the problem of identifying the
faulty resource into one of making choices for group
comparison from among the given FPGA configurations.

A novel fault-handling scheme based on pairwise
comparison of competing configurations that utilize
resources from a common pool is proposed. The fault
isolation scheme should isolate faults with minimal latency
without using a specialized block design, or any special test
inputs. It should also be robust against single-faults that
could affect the resources in the device. The proposed
approach does not require any additional test inputs; only
the normal dataflow inputs that are applied. The
functionally equivalent configurations used for operation
are pre-designed to realize the required logic functions. The
property of reconfigurability inherent in FPGAs is utilized
to accelerate the fault isolation by intelligently shuffling the
resources used by individual configurations.

The arrangement of competing configurations on an
FPGA is as shown in Figure 1. The proposed approach to
hardware regeneration operates by comparing the outputs
of a pair of physically distinct but functionally identical
logic configurations that are loaded onto an FPGA. These
configurations are identified as Functional Logic L (for left

half CED configuration) and Functional Logic R (for right
half CED configuration). These are loaded from the offchip
EEPROM or RAM. The normal data throughput inputs to
the FPGA are applied to both configurations
simultaneously. The outputs of the competing
configurations are compared using a discrepancy detector,
which is mirrored over the two competing halves as shown.
The discrepancy mirror is self-testing as it is instantiated
equally among the competing configurations and thus
accounts for faults in the resources used to realize the
detector itself. The discrepancy detector's output shows
whether or not the outputs of the configurations match. If
the outputs do not match, then one of the two competing
configurations utilizes a faulty hardware resource. The Data
Output is propagated outside the FPGA only when there is
no discrepancy between Functional Logic L’s output and
Functional Logic R’s output. Moreover, the results of the
discrepancy detection serve as inputs to control the fault
isolation algorithm. The detailed design of the self-testing
discrepancy detector and verification of its operation are
presented in [9].

Figure 1: Overview of FPGA Operation for Repetitive

Pairwise Evaluation

A mathematical representation of the proposed isolation

scheme is developed. The underlying principle of operation
is to use repetitive pairing of competing configurations.
The properties of the proposed isolation mechanism are
identified. Conditions that are conducive to expedite the
fault isolation process are explored.

3 Resource Representation

The problem of locating faults using Iterative Pairing can
be represented using the following mathematical model:

The set of all competing configurations is represented by
S. Set Ck represents the resources utilized by configuration
k. Each competing configuration k, 1 < k < |S| has a
unique binary Usage Matrix Uk, 1 < k < p, with elements
Uk[i,j], 1 < i < m, 1 < j n, where m and n represent the
rows and columns in the device layout respectively .
Elements Uk[i,j] = 1 denote the usage of resource (i, j) by
Ck. The History Matrix H, with elements H[i,j] 1 < i < m,
1 < j < n, is an integer matrix used to represent the relative
fitness of individual resources.

A discrepant output from the discrepancy mirror for any
pairwise comparison of two configurations will lead to a
unit increment in the value of all H[i,j] where Uk[i,j] = 1,
for the two configurations. Initially H[i,j] = 0 ∋ i,j. Over a
period of time, the value of H[i,j] will provide temporal
information regarding the number of configurations that
used resource (i,j) that also caused a discrepant output to be
observed. Lower values of H[i,j] denote higher fitness for
resource (i,j). Thus, at any point of time, H[i,j] indicates
the cumulative history of discrepancies articulated by group
tests that utilized resource with coordinates (i,j).

4 Fault Isolation By Discrepancy-Enabled
Dueling

Fault isolation by discrepancy-enabled dueling utilizes
information from the history matrix to accelerate the fault
isolation process. The algorithm proceeds by maintaining a
history of the discrepancies, and the fitness indices of
individuals involved in the competitive dueling instances.
An iteration of the isolation process is complete when the
outputs of the pair of dueling configurations are evaluated
for discrepancies and the history matrix is updated. In order
to facilitate faster isolation, the functional configuration of
the individuals will be updated, by swapping columns of
resources used by the individuals. These can later be used
to select configurations to be loaded onto the FPGA for
carrying out computations. The fitness measure produced
can also be used by the evolutionary repair algorithm at a
later stage. The experiment is seeded with a population of
competing individual configurations. Each individual uses
a particular subset of the available resources. A cell is
represented by two coordinates corresponding to the row
and column that completely specify the location of the cell
on the FPGA.

Assuming a single fault, such as a stuck-at-0 or a stuck-
at-1 fault in the device, a subset of the population of
competitors will be adversely affected. The effect of the
fault will be observed as a discrepancy at the output of the
discrepancy detector when an affected individual is paired
with an unaffected individual. When a discrepancy is
observed, the subset of resources used by the individual are
assumed to be suspect with regard to faults. The elements

Reconfiguration Algorithm

`

 SRAM-based FPGA

L
Half-Configuration

Discrepancy Check L Discrepancy Check R

Function Logic L

 CONFIGURATION BIT STREAM

 INPUT DATA

Function Logic R

 DATA OUTPUT

FE
E

D
B

A
C

K

R
Half-Configuration

CONTROL

O
FF

-C
H

IP
 E

EP
R

O
M

(N
O

TE
: a

 n
on

-v
ol

at
ile

 m
em

or
y

is
 a

lre
ad

y
re

qu
ire

d
to

 b
oo

t a
ny

 S
R

AM
FP

G
A

fro
m

 c
ol

d
st

ar
t .

..
th

is
 is

 n
ot

 a
n

ad
di

tio
na

l c
hi

p
)

in the history matrix corresponding to the coordinates of
the resources used by the individual are incremented to
note the occurence of the discrepancy. Likewise, when an
individual does not exhibit a discrepancy upon evaluation,
the elements in the history matrix corresponding to the
resources used by the individual are decremented, thereby
making these resources less suspect of being faulty. Over a
period of time, through a repeated process of successive
intersection being subsets of known faulty and fault-free
resources, a consensus will emerge regarding the location
of the single fault. The fault is isolated when there is a
unique element in H with the maximum value among all
elements. Finding this unique element is the terminating
condition for one iteration of the isolation process. If the
algorithm fails to converge upon a single element of H after
a pre-defined number of iterations, then the existence or
more than one fault is established, nullifying the single-
fault assumption. As a corollary, if the system converges to
a state where there are d elements with the maximum value
in all H[i,j], then d faults are said to have been identified.
The coordinates of the element with the maximum value in
the history matrix provides information regarding the
location of the fault.

Figure 2: Successive Isolation as Input Iterations Increase

There are certain cases where the simple fault isolation
scheme described above may fail to converge on a single
faulty resource. A trivial case is when all the resources
available on the FPGA are used by each configuration. If
the application demands that all the resources be used, then
isolation cannot occur through the process of successive
intersection. Also, in cases where a very low number of
resources are used by individual configurations, it is
possible that none of the individuals utilize the faulty
resource, leading to the state where no discrepancies will be
observed. The most challenging case is when multiple
individuals utilize the faulty resource. In this situation, the
history matrix elements corresponding to the interection of

the subset of resources used by these individuals will have
no relative differences, and will all have the highest value.
Successive intersections between the resource subsets will
not lead to any further fault isolation. For example, with a
resource utilization of 40% in a device with 40,000 unit
resources, isolation proceeds as shown in Figure 2. The
isolation cannot be completed, and after about 23 iterations,
the number of suspected faulty elements stays a constant at
36. Any further isolation cannot occur since there is none
of the intersections that may follow provide any additional
isolation information. This neccessitates an algorithm based
on group testing.

5 Dueling with Modified Halving

Combinatorial group testing algorithms relate to the
problem of identifying individual defective members from
a large population by conducting tests on sub-groups or
blocks of elements. Group testing has been used in medical,
chemical and electrical testing, coding, drug screening,
pollution control, multiaccess channel management, and
recently in data verification, clone library screening and
blood testing. Though group testing algorithms are not
directly applicable to the problem at hand, some of the
principles can be used to facilitate fault isolation. CGT
algorithms have also been applied to the problem Built-In
Self Test (BIST) diagnosis [11], whereby methods such as
digging, multi-stage batching, doubling and jumping are
developed to reduce the number of test within BIST
schemes. BIST however is a diagnosis method that relies
upon exhaustive and comprehensive testing, often carried
out offline.

To avoid the problem of not being able to proceed with
isolation in certain cases where successive iterations do not
provide isolation information, a dueling algorithm is
proposed which tries to emulate halving. Halving is the
process of successively reducing the size of the subgroup
under test by half until, finally a test of a single element is
required to identify the faulty element. This method cannot
be directly applied to the problem since it is only possible
to test groups of resources, and also, the groups of
resources have to be of the same size – as specified by the
target application’s computational needs on the FPGA.

The proposed dueling algorithm works by swapping
columns in the configurations of individual elements. When
the fault isolation process approaches a state of stasis, some
of the columns in the individuals are swapped. The number
of columns to be swapped is determined by considering the
number of resources currently suspected of being faulty. A
number of columns equal to half of the remaining number
of suspect elements are swapped with other columns in the
same individual. This will introduce new information, as
some of the suspected faulty elements used by the
individual earlier will no longer be used, for example.

0 5 10 15 20 25 30

100

1000

10000

100

1000

10000

N
um

be
r o

f S
us

pe
ct

ed
 F

au
lty

 E
le

m
en

ts
 (l

og
)

Number of Iterations

Swapping is restricted only to the columns to facilitate
future implementation in FPGA hardware.

Dueling with column swapping always leads to an
isolation of the fault, even in the difficult cases where the
resource utilization is too high, or too low. As shown in
Figure 3, isolation proceeds till a single faulty element is
isolated under the same conditions under which the results
shown in Figure 2, for dueling without swapping were
obtained.

0 5 10 15 20 25

100

1000

10000

N
um

be
r o

f S
us

pe
ct

ed
 F

au
lty

 E
le

m
en

ts
 (l

og
)

Number of Iterations
Figure 3: Isolation Progress when Halving is used

6 Fault Isolation using Halving-enabled
Dueling

In order to analyze the behavior of the dueling algorithm
with modified halving, further experiments were conducted
to see the implications of various factors on the isolation
process. In each of the following experiments, the
population size specifies the number of competing
individual configurations in the population. Resource
utilization, expressed as a percentage signifies the amount
of available resources used by an application implemented
on the FPGA. The FPGA device is simulated by using a
square matrix of order n where n denotes the number of
rows and columns in the device

6.1 Effect of Number of Elements in S
The effect of the size of the isolation problem was

evaluated by applying the proposed technique to simulated
FPGAs of various array sizes. As shown in Figure 4, for an
isolation problem where there are 100 rows and columns,
or 10000 elements, only an average of 14.3 iterations are
required to isolate a single fault. As the size of the array
containing the fault increases, the increase in the required
number of iterations is minimal. For example, for the
difficult case where there is a single fault in 1 million
resources, the algorithm requires only an average of 27.4

iterations to isolate the fault, showing that the algorithm
scales well with the size of problem.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

 A
ve

ra
ge

 N
um

be
r o

f I
te

ra
tio

ns
 F

or
 F

au
lt

Is
ol

at
io

n

Number of Rows and Columns in Device

Population Size = 40
Resource Utilization = 50%

Figure 4: Isolation Performance as a Function of the Total

Number of Elements

0 20 40 60 80 100
10

12

14

16

18

20

22

24

26

28

A
ve

ra
ge

 N
um

be
r o

f I
te

ra
tio

ns
 fo

r F
au

lt
Is

ol
at

io
n

Population Size

Resource Utilization (%) = 50
Number of Resources = 40000

Figure 5: Isolation Performance as a Function of the

Population Size

6.2 Effect of Population Size

As the population size increases, fault isolation is
expected to become faster, since more information will be
available to the algorithm from the increased population
size. However, a very high population size may lead to
more individuals being affected by the same fault. As
shown in Figure 5, the number of iterations required for
isolation, with 40000 elements, and 50% resource
utilization shows a tendency to decrease with an increase in
the population size. For a population of size 60, only an
average of 17.2 iterations are required for isolation.
Practically, however, a very high population size will imply
the need for a higher number of alternative individual
configurations. A population size of 30 seems to be an ideal

tradeoff between ease of isolation, and the difficulty of
generating increased number of individuals.

6.3 Effect of Resource Utilization
The ease with which faults can be isolated also depends

on the percentage of available resources utilized by the
individuals. If all the available resources are utilized by the
individuals, the fault cannot be isolated through the
proposed process of repetitive pairing, since all the
individuals are equally likely to be affected by the fault.
Also, if the utilization is very low, then none of the
individuals might be affected by the fault. Except for these
extremes, the algorithm always succeeds in isolating the
fault. As shown in Figure 6, isolation takes longer when
less than 20% or greater than 80% of the available
resources are utilized.

10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

Av
er

ag
e

N
um

be
r o

f I
te

ra
tio

ns
 fo

r F
au

lt
Is

ol
at

io
n

Resource Utilization (%)

 Population Size=40
 Population Size=20

Number of Resources = 40000

Figure 6: Isolation Performance as a Function of the

Resource Utilization

7 Conclusions

A novel intelligent fault isolation method for
reconfigurable devices based on combinatorial group
testing methods is presented. The dueling algorithm with
modified halving consistently isolates the faulty resource
requiring as few as 18 iterations on an average to isolate a
fault element from among 40000 elements. The use of the
algorithm obviates the need for special test inputs, and
enables online testing of the device. In conjunction with a
discrepancy detector, normal data throughput inputs can be
used to isolate faults with a minimal number of iterations.
Future work on this topic includes the development of an
architecture to enable partial reconfiguration of FPGAs to
enable column swapping, and evolutionary algorithms for
runtime fault tolerance.

Acknowledgments

This research was supported in part by NASA Intelligent
Systems NRA Contract NNA04CL07A.

References

[1] D. Du and F. K. Hwang. Combinatorial Group Testing and
its Applications, volume 12 of Series on Applied Mathematics.
World Scientific, 2000.

[2] J. D. Lohn, G. Larchev and R. F. DeMara. “A Genetic
Representation for Evolutionary Fault Recovery in Virtex
FPGAs,” Proceedings of the Fifth International Conference on
Evolvable Systems (ICES ’03), March 2003.

[3] N.A.Touba and E. J. McCluskey. “Logic Synthesis of
Multilevel Circuits with Concurrent Error Detection,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16(7), pp. 783-789, July 1997.

[4] K. Mohanram, E.S. Sogomonyan, M. Gossel and N.A.
Touba. “Synthesis of low-cost parity-based partially self-checking
circuits,” in Proceedings of On-Line Testing Symposium (IOLTS
’03), pp. 35-40, July 2003.

[5] S. Mitra and E. J. McCluskey, “Which Concurrent Error
Detection Scheme to Choose?,” in Proceedings of the
International Test Conference 2000, p. 985, October 2000

[6] M. Garvie and A. Thompson. “Scrubbing away transients
and Jiggling around the permanent: Long survival of FPGA
systems through evolutionary self-repair,” Proceedings of 10th
IEEE International On-Line Testing Symposium, pp. 155-160.
IEEE Computer Society, 2004.

[7] D. P. Siewiorek and R. S. Swarz. Reliable Computer
Systems: Design and Evaluation. Digital Press, 1992.

[8] S. Vigander. “Evolutionary fault repair of electronics in
space applications.” Masters thesis, Norwegian University of
Science and Technology, Trondheim, 2001.

[9] R. F. DeMara and C. A. Sharma. “Self-Checking Fault
Detection using Discrepancy Mirrors,” in Proceedings of 2005
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ’05), June 2005.

[10] R. F. DeMara and K. Zhang, “Autonomous FPGA Fault
Handling through Competitive Runtime Reconfiguration,”
Proceedings of NASA/DoD Conference on Evolvable
Hardware(EH’05), Washington D.C., U.S.A., June 29 – July 1,
2005.

[11] A. B. Kahng and S. Reda. “Combinatorial Group Testing
Methods for the BIST Diagnosis Problem,” in Proceedings of the
Asia and South Pacific Design Automation Conference, January
2004.

This document is an author-formatted work that has been submitted for revision. The definitive version for citation

appears as:

C. A. Sharma, R.F. DeMara, “A Combinatorial Group Testing Algorithm for FPGA Fault Location,” in Proceedings of the
International Conference on Advances in Computer Science and Technology, Puerto Vallarta, Mexico, January 23 - 35,
2006.

