
A Physical Resource Management Approach to
Minimizing FPGA Partial Reconfiguration Overhead

Heng Tan and Ronald F. DeMara
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL USA 32816-2450
{theng, demara}@mail.ucf.edu

Abstract— An important aspect of partial reconfiguration is
reconfiguration overhead, which normally includes the run-
time reconfiguration time and the static reconfiguration data
storage space. Both of these costs are directly related to the
size of the physical partial reconfiguration file. In this paper,
the structure of partial reconfiguration bitstream file is
exploited at the frame granularity level to develop a novel
approach to minimize this problem. The structural features of
the bitstream file are used to manage physical area resources
to reduce the partial reconfiguration bitstream size. In this
approach, instead of relying on the design tools’ random
placement, most of the logic resources are predetermined at
specific physical positions based on several principles. The
proposed methodology is evaluated on the Virtex II Pro
platform. The result shows file sizes can be reduced up to
30% on a variety of designs compared to non-area managed
configurations. The experiments also imply that even higher
rates of reduction can be achieved on larger designs.

I. INTRODUCTION
FPGAs have evolved from simple Programmable Logic

Devices (PLD) to fully integrated System On Chips (SOCs)
containing microprocessors, embedded memory, and
optimized datapaths connected to a high capacity
reconfigurable fabric. As a case in point, the high-end
Virtex FPGAs offered by Xilinx contains more than multi-
million gate equivalent reconfigurable fabric in which
several PowerPC processors, a number of RAM blocks, and
dedicated multipliers are embedded.

In particular, one of the major benefits provided by
FPGAs is dynamic reconfiguration ability, which involves
altering the programmed design within an SRAM-based
Field Programmable Gate Array (FPGA) at run-time.
Currently, the two most widely used reconfiguration
interfaces for run-time partial reconfigurations are Joint Test
Action Group (JTAG) and Internal Configuration Access
Port (ICAP). Similar to basic serial port, JTAG interface use
only one pin for input and one for output, which provides a
maximum 700KB/S data throughput, not considering other
non-trivial logic control delay when doing partial
reconfiguration. This is a much more limited data

transferring speed compared to other parallel interfaces, such
as ICAP. On the other hand, ICAP interface is normally
used in a System-on-Chip architecture, which provides only
limited storage space for partial reconfiguration files.
Therefore, reducing the reconfiguration overhead, including
both the reconfiguration time and the reconfiguration data
storage space, are important concerns in this research area.
Foremost, these two reconfiguration cost are directly related
to the size of the reconfiguration bitstream file. In this paper,
instead using a high-level logic design approach as most of
other recent works, a physical resource management strategy
is developed to minimize the reconfiguration data size. The
reduction obtained by using this technique is then
quantitatively evaluated on four different representative
circuits with distinct features. The strategy proposed in this
paper can be easily integrated with other previous high-level
approaches to further reduce the reconfiguration file size.

This paper is organized as follows. In Section 2, the
previous related research work is overviewed. In Section 3,
the partial reconfiguration flow is covered and the features of
partial reconfiguration file are studied at frame level. Based
on the preliminary knowledge presented in the previous
section, a strategy for the area management at design time is
formed in Section 4. Section 5 describes the obtained results
and their evaluation while Section 6 concludes the paper.

II. RELATED WORK
 Previously, considerable amount of research has been

carried out to reduce the reconfiguration overhead.
Compton, Li, Knol and Hauck [1] developed an algorithm
for configuration relocation and defragmentation. With an
extra hardware area specially designed for controlling the
relocation and defragmentation processes, it is reported that
as much as 35% improvement in reconfiguration time. In
Shirazi, Luk and Cheung’s approach, two successive circuit
configurations are matched to locate the components
common to them, so that reconfiguration time can be
minimized [6]. Another approach suggested by Ganesan and
Vemuri is Pipelining [2]. By using the processors partial
reconfiguration capability and overlapping execution of one

temporal partition with the reconfiguration of another,
reconfiguration overhead can be reduced. Other similar
works also include [3,7, 8] etc. Most of these approaches are
trying to address reconfiguration overhead at a high level of
abstraction with theoretical algorithms, which are still too
demanding to be realized using partial reconfiguration
capabilities available from current hardware platforms and
software tools.

For more practical solutions, Hauck, Li and Schwabe
targeted to the decompression hardware directly, which is
embedded in Xilinx XC6200 FPGAs to compress the
configuration bitstream [4]. Raghuraman, Wang, Tragoudas
[5] on the other hand studied the configuration data size at
the logic level. By relating the number of frames that need
to be downloaded into FPGAs to the number of minterms of
a specially constructed logic function, the required number
of configuration frames can be reduced.

We are unaware of any works previously done at
physical resource management level, which can determine
the size of configuration bitstream directly, yet provide the
possible full automation flexibility by using FPGA design
software and avoid the specific hardware platform
requirements.

III. PRELIMINARIES
Currently, the most widely used Xilinx FPGA chips with

partial reconfiguration capability are Virtex II and Virtex II
Pro family. For these FPGA architectures, Xilinx has
proposed two standard flows for partial reconfiguration
process: Difference-based flow and Module-based flow [10].

With a Difference-based flow, the designer must
manually edit a design with low-level changes. After the
changes are completed, the partial bitstream, which contains
information only regarding modifications, is generated and
stored in a file.

For the Module-based flow, the full design is partitioned
into modules, some of which can be fixed while others can
be reconfigurable. The reconfigurable fabric of the FPGA is
partitioned into column-based rectangular regions in which
the fixed and reconfigurable modules will be arranged based
on specified area constrains. A bus macro can be used to
maintain correct connections between the modules by
spanning the boundaries of these rectangular regions. Fig. 1
shows the basic concept of this reconfiguration flow
methodology. This makes the Module-based flow suitable
for full automation, making it much more flexible than the
Difference-based flow, particularly when it is considered for
integration with high-level user applications. Therefore, this
paper chooses the Module-based flow as the primary partial
reconfiguration technique for the design and analyzes the
partial reconfiguration bitstream generated by this flow.

Consider the contents inside a partial reconfiguration bit
file generated by the Module-based flow. It starts with a
various length overhead, which can be automatically
detected by searching the synchronous word “AA995566”.

External Data

Intermodule
Signals

PR
Module

Fixed
Module

Fixed
Module

B
u
s

M
a
c
r
o

B
u
s

M
a
c
r
o

PR
Module

Figure 1. . Design Layout with Two Reconfigurable Modules

For the following actual contents of the reconfiguration
bitstream, it is described in terms of frames. In most Look
Up Table (LUT) based FPGAs, configuration memory is
arranged in column based vertical frames, i.e., one bit wide
extending from the top edge of the device to the bottom.
These frames are the smallest addressable segments of the
FPGA configuration memory space; therefore, all operations
must act on whole configuration frames. Even if only one
byte inside one frame is changed, the full frame needs to be
rewritten. Configuration memory frames do not directly map
to any single piece of hardware; rather, they configure a
narrow vertical slice of many physical resources.

The platform used to develop the concepts in this paper is
the Xilinx Virtex II Pro, which contains several
configuration column types, including IOB, IOI, CLB,
GCLK, BlockRAM, and BlockRAM Interconnect. Each
type with a given number of frames, as described in Fig. 2
[9]. Each configuration frame has a unique 32-bit address
that is composed of a Block Address (BA), a Major Address
(MJA), a Minor Address (MNA), and a byte number [9]. The
major address identifies a specific column within a block,
and the minor address identifies a specific frame within a
column.

Among all these type of columns, the CLB columns
program the configurable logic blocks, routing, and most
interconnect resources. IOBs on the top and bottom edges of
the device are also programmed by CLB configuration
columns. The number of CLB configuration columns
matches the number of physical CLB columns in the device.

The first step in our research was to analyze the partial
bitstream content. This analysis shows the size of the partial
reconfiguration bit file under a suitable compression
technique. Using the technique described below, the partial
reconfiguration bitstream can be compressed to a size that is
nearly linear in the number of resources in actual use,
especially routing resources. The process is illustrated for
the Xilinx Virtex II Pro series, which comprise the primary

device platform currently in use for many SoC applications
involving partial reconfiguration.

For each CLB column in a Virtex II Pro VP7 device,
there are two columns of slices. To denote the configuration
of these slices, 22 frames are utilized within the bitstream for
a complete reconfiguration file. Each frame has a fixed size
of 424 bytes. We first compared the bit files for a series of
test circuits and determined that the logic for each CLB
column, which is stored in the two LUTs of each slice,
actually only occupies two of the 22 frames. In particular,
the contents for the first slice column LUTs – i.e. with an
even slice column number starting from ‘0’– can be found in
the second frame, while those for the second slice column –
i.e. with an odd slice column number starting from ‘1’– are
in the third frame. IOB usage at the top and bottom edges of
this CLB column are located in the first frame. The
remainders of the frames are all used to describe the routing
resources usage of the CLB column.

Now consider the case of a partial reconfiguration
bitstream file. During partial reconfiguration, consecutive
frames can be written to the Frame Data Input Register
(FDRI) in a single packet, since the Frame Address Register
(FAR) is automatically incremented when each frame is
written to configuration memory. In some cases, it is
necessary to write to non-consecutive frames. In such
instances, the new frame address must be explicitly written
to the FAR. As always, one frame of padding data must be
included at the end of every FDRI packet, and the word
following each FDRI packet is interpreted as an AutoCRC
value.

However at the same time, for unused CLB frames, a
compression technique is used in the partial reconfiguration
bitstream file. Instead of writing 106 instances of the word
value of ‘0’, which is a full frame length for Virtex II Pro
VP7, the Multiple Frame Write Register (MFWR) is used as
follows. Simply set the corresponding frame address to the
FAR first, and then write two padding words to the MFWR
(normally 0). Using this padding technique, the full-unused
frame can be set with a total cost of just ten bytes in the bit
file. Therefore, for each unused frame, the number of saved
bytes is 414, for a 97.64% area savings per frame.

 Since configuration frames are arranged vertically,
designs that span the fewest possible configuration frames
achieve greater compression. To estimate the amount of
compression achieved, let the number of unused frames be
denoted by U on a system that uses B bits per frameAn
estimate of the number of saved configuration bits, S, when a
fixed region F per frame is given by:

 S = U × (B - F).

Since B >> F, we find S to be nearly linear in terms of the
product of U and B.

IV. PROPOSED RESOURCE MANAGEMENT STRATEGY
Based on the structure features of partial reconfiguration

bitstream file, a strategy is developed to achieve the highest
compression rate to support the limited storage capacity and
real-time transfer performance prevalent in SoC applications.
This area management strategy needs to be carried out after
the synthesis process of the design and before the translation,
mapping, placing and routing steps. Since this strategy is
dealing with the real physical resource arrangement, the
logic elements are identified at very fine granularity, such as
external pins, LUTs and D-flip flops etc., which the software
tools can then directly translate and map with.

1. Region Allocation: assign an area for the partial
reconfiguration module, which is large enough to
accommodate all the external input output signals at
either top or the bottom edge of the designated area.
With an FPGA model as Virtex II Pro VP7 or higher,
an area with 40 pins or higher along the edge can be
easily partitioned, which normally will be able to
satisfy an 8-bit or even 16-bit module design.

2. Pin Assignment: pick either top or the bottom edge
and place all the external signals along the side
adjacent to each other, if possible. When the
assigned area contains the left or the right edge of
the device, these edges may be picked as well.
Placed the remainder of the pins on the other side of
the edge if there is still any remaining. This step is
trying to eliminate or at least minimize any
unnecessary signals that will span the full height of
the device, which clearly will occupy more routing
resources from different frames.

3. Column Alignment: attempt to place the entire
logic element into single slice column consecutively
or with only a short slice row gap, near the edge of
external pins placement first. One and only one
frame will be used to describe all the LUT logic
contents of a full column of slices, no matter how
many LUTs of the slice column are actually used as
long as it is not zero. Therefore this step will
minimize the number of frames used to describe the
design logic as well as most of the interconnection
resources.

4. Choke-Point Elimination: if there are any logic
elements with a fan out larger than 4, place the

Figure 2. Column Level Configuration Memory Map [9]

destination elements around its side, including top
and bottom of the same slice column as well as the
adjacent slice column side-by-side. This normally
will reduce the routing resources usage even more
than simply by a mandatory placing of everything
inside just one slice column.

5. Repeat: if there are still any elements left, after
finishing one column, Repeat the previous two steps.
Place the rest of the logic elements into the adjacent
slice column with the same principles until all or at
least elements along major logic paths are finished.
With an FPGA model as Virtex II Pro VP7 or higher,
each slice column contains 160 or more 16-bit LUTs
and the same amount of D flip-flops, which normally
will be able to contain a small to middle size module
design in simply one or two columns.

To summarize, the approach places the logic elements
into the least slice columns as possible. The logic
sequence of the elements may also need to be considered
when placing along the path to achieve the highest
possible optimization.

V. EXPERIMENTAL RESULTS
The hardware platform used in the experiments is Xilinx

Virtex II Pro VP7 device. Module-based partial
reconfiguration flow is adopted to generate the partial
reconfiguration bitstream. The Xilinx ISE 6.3 is used to
support the module based flow. The physical resource area
management constraints are entered directly into User
Constrain File (.ucf) as a text input before map and routing
by the Xilinx toolsets.

Four representative small case and one middle size case
studies are presented which illustrated the steps and cases
mentioned in the previous section. Each design was
implemented as partial reconfiguration modules. Each of the
four small cases has its own distinct features including
parallel and cascaded LUT arrangements, dedicated physical
resource usage and large fan out elements. The first design
is a simple quad 4-input 16-bit LUTs design with a random
combinational logic functions written in the truth table. The
second design is a 9-bit shifter with cascaded logic. The
third design is a 4-bit×4-bit multiplier with a block multiplier
used during synthesis. And the last is again a 4-bit × 4-bit
multiplier but with LUT logic only. To increase the
accuracy of the comparison, all 4 modules have been defined

using the same amount of external signals. All these signals
have been managed to place at the top edge of the partial
reconfiguration region.

Fig. 3 shows the optimized logic elements arrangement
of all 4 designs. For the simple 4 LUT element design in
Case 1, since all LUTs are in the parallel logic path with
direct input from external signals and straightly feed to the
output though flip flops, putting them in a single column
close to the external pins is a straightforward solution. The
resource arrangement is shown is Fig. 3(a). Case 2 for the
shifter is shown in Fig. 3(b), since all logic elements are
logically serially cascaded, from input to output, the simple
single column solution is again the best choice.

However, for the 4-bit×4-bit multiplier using the
dedicated hardware block multiplier resource, which is
circled in red in Fig. 3(c), position of the slice column needs
to be balanced to minimize the routing between the path of

(a)

(b)

(c)

(d)

Figure 3. Design Layout

TABLE I. OPTIMIZATION RESULTS

Module name # of
LUT.

of
FF

of block
Multiplier

of
Slices

Original File
Size (Byte)

Original MAX
Delay (ns)

Optimized File
Size (byte)

Optimized
MAX Delay

(ns)

Area
Saving

4 LUTs 4 16 0 12 64K 1.371 55K 1.347 14%
Shifter 1 24 0 13 87K 1.377 63K 1.367 28%

Block Multiplier 8 25 1 17 88K 1.346 66K 1.346 25%
LUT Multiplier 22 22 0 22 96K 1.367 68K 1.346 29%

SECDED 93 41 0 74 89K 1.355 60K 1.355 33%

the block multiplier and the LUTs and the path of the LUTs
and the external pins. This extra cost of routing also explains
the decreased savings in bitstream length compared to the
shifter or the LUT-based multiplier design, as listed in Table
1.

For the 4-bit×4-bit LUT-based multiplier, the high fan-
out situation mentioned in the previous section needs to be
dealt with. The carry chains, marked in brown, red, and blue
in Fig. 3(d), have multiple connections to the LUT logic
elements in the deep green blocks. Therefore, these carry
chains are arranged around the LUT logic blocks instead of
in the simple one column style to achieve the best resource
area optimization.

The comparative optimization results of these four case
studies are listed in Table 1. The logic resource usage of
each of design is also summarized in the table. Even partial
reconfiguration as small as four LUT designs achieve 14%
reduction saving. The most complicated design, 4-bit×4-bit
LUT-based multiplier, reached almost 30% reduction rate.
While the four small case studies illustrate the concept,
larger and more involved designs using partial
reconfiguration design should be capable of achieving higher
degrees of bitstream savings using this physical resource
management strategy. Results also show that the maximum
delay of most of module has also been improved.

To further verify our strategy, one middle-sized module,
Single Error Correction Double Error Detection (SECDED)
algorithm, is also implemented with the same area
management as the small cases and similar pins arrangement.
74 slices have been used to implement the algorithm, which
actually occupies 2 columns of slices when doing the
optimization. During the optimization process, not every
slice has been specifically placed because of the large
number. Only the slices on the major path are constrained
instead. The final result is also listed in Table 1. As
suggested before, because this is a comparatively bigger
module, larger bitstream savings, as of 33% is indeed
achieved.

Compared to the work presented in [5], which studied a
similar issue at a low level with logic level optimizations,
our approach achieved a higher bit reduction rate even on
simpler designs. At the same time, our approach at the
physical resource level can be integrated with their technique
at the logic level to cascade the compression obtained
achieving a multiplicative saving.

VI. CONCLUSION
In this paper, the structure of the partial reconfiguration

bitstream file is carefully studied at frame level for the Xilinx

platform. Based on the thorough understanding of the bit file
organization, a physical resource area management strategy
is proposed to minimize the reconfiguration overhead at
physical resource level at a fine granularity, which ensures
such methodology being capable to be implemented into real
toolsets easily and safely. The experiments show that
reduction rate can be up to 30% on four representative
different cases, compared to the Xilinx toolset. A higher
saving rate of 33% is even achieved for the middle size
module optimization.

In the future works, more experiments will be conducted
on more complicated test designs to optimize the approach.
A genetic algorithm wrapper is also in development to make
the low-level physical area management process for partial
reconfiguration fully automatic.

REFERENCES
[1] Compton K., Li Zhiyuan, Cooley J., Knol S., Hauck S.,

“Configuration relocation and defragmentation for run-time
reconfigurable computing”, Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, Volume: 10, Issue: 3, pp. 209 – 220,
June 2002

[2] Ganesan, S.; Vemuri, R, “An integrated temporal partitioning and
partial reconfiguration technique for design latency improvement”,
Design, Automation and Test in Europe Conference and Exhibition
2000. Proceedings, Paris, France, 27-30 March 2000, pp 320 – 325.

[3] Gericota, M.G.; Alves, G.R.; Silva, M.L.; Ferreira, J.M., “Run-time
management of logic resources on reconfigurable systems”, Design,
Automation and Test in Europe Conference and Exhibition, Messe
Munich, Germany, 3-7 March 2003, pp. 974 – 979.

[4] Hauck, S.; Zhiyuan Li; Schwabe, E., “Configuration compression for
the Xilinx XC6200 FPGA”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, Volume: 18, Issue: 8, pp.
1107 – 1113, Aug. 1999.

[5] Raghuraman K.P., Wang Haibo, Tragoudas S., “A novel Approach to
minimize reconfiguration cost for LUT-based FPGAs”, Prodeedings
of the 18th International Conference on VLSI Design (VLSID’05),
Kolkata, India, January 3-7, 2005.

[6] Shirazi, N.; Luk, W.; Cheung, P.Y.K , “Automating production of
run-time reconfigurable designs”,. FPGAs for Custom Computing
Machines, 1998. Proceedings. IEEE Symposium on, Napa Valley,
CA, 15-17April 1998, pp. 147 – 156.

[7] Wai-Kei Mak, Young, E.F.Y., “Temporal logic replication for
dynamically reconfigurable FPGA partitioning”, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on, Volume: 22, Issue: 7, pp. 952 – 959, July 2003.

[8] Walder, H.; Steiger, C.; Platzner, M., “Fast online task placement on
FPGAs: free space partitioning and 2D-hashing” Parallel and
Distributed Processing Symposium, 2003. Proceedings.
International, Nice, France, 22-26 April 2003.

[9] Xilinx, Inc. “Virtex-II Pro Platform FPGA User Guide”, v2.4, Aug.
2004.

[10] Xilinx, Inc. “Two Flows for Partial Reconfiguration: Module Based
or Difference Based”, v1.1, Nov 2003.

