
A Physical Resource Management Approach to 
Minimizing FPGA Partial Reconfiguration Overhead 

Heng Tan and Ronald F.  DeMara 
School of Electrical Engineering and Computer Science 

University of Central Florida 
Orlando, FL USA 32816-2450 
{theng, demara}@mail.ucf.edu 

 
Abstract— An important aspect of partial reconfiguration is 
reconfiguration overhead, which normally includes the run-
time reconfiguration time and the static reconfiguration data 
storage space.   Both of these costs are directly related to the 
size of the physical partial reconfiguration file.   In this paper, 
the structure of partial reconfiguration bitstream file is 
exploited at the frame granularity level to develop a novel 
approach to minimize this problem.   The structural features of 
the bitstream file are used to manage physical area resources 
to reduce the partial reconfiguration bitstream size.   In this 
approach, instead of relying on the design tools’ random 
placement, most of the logic resources are predetermined at 
specific physical positions based on several principles.   The 
proposed methodology is evaluated on the Virtex II Pro 
platform.   The result shows file sizes can be reduced up to 
30% on a variety of designs compared to non-area managed 
configurations.   The experiments also imply that even higher 
rates of reduction can be achieved on larger designs.    

I. INTRODUCTION  
FPGAs have evolved from simple Programmable Logic 

Devices (PLD) to fully integrated System On Chips (SOCs) 
containing microprocessors, embedded memory, and 
optimized datapaths connected to a high capacity 
reconfigurable fabric.   As a case in point, the high-end 
Virtex FPGAs offered by Xilinx contains more than multi-
million gate equivalent reconfigurable fabric in which 
several PowerPC processors, a number of RAM blocks, and 
dedicated multipliers are embedded.    

In particular, one of the major benefits provided by 
FPGAs is dynamic reconfiguration ability, which involves 
altering the programmed design within an SRAM-based 
Field Programmable Gate Array (FPGA) at run-time.  
Currently, the two most widely used reconfiguration 
interfaces for run-time partial reconfigurations are Joint Test 
Action Group (JTAG) and Internal Configuration Access 
Port (ICAP).  Similar to basic serial port, JTAG interface use 
only one pin for input and one for output, which provides a 
maximum 700KB/S data throughput, not considering other 
non-trivial logic control delay when doing partial 
reconfiguration. This is a much more limited data 

transferring speed compared to other parallel interfaces, such 
as ICAP.  On the other hand, ICAP interface is normally 
used in a System-on-Chip architecture, which provides only 
limited storage space for partial reconfiguration files.  
Therefore, reducing the reconfiguration overhead, including 
both the reconfiguration time and the reconfiguration data 
storage space, are important concerns in this research area.  
Foremost, these two reconfiguration cost are directly related 
to the size of the reconfiguration bitstream file.  In this paper, 
instead using a high-level logic design approach as most of 
other recent works, a physical resource management strategy 
is developed to minimize the reconfiguration data size.  The 
reduction obtained by using this technique is then 
quantitatively evaluated on four different representative 
circuits with distinct features.  The strategy proposed in this 
paper can be easily integrated with other previous high-level 
approaches to further reduce the reconfiguration file size. 

This paper is organized as follows.  In Section 2, the 
previous related research work is overviewed.  In Section 3, 
the partial reconfiguration flow is covered and the features of 
partial reconfiguration file are studied at frame level.  Based 
on the preliminary knowledge presented in the previous 
section, a strategy for the area management at design time is 
formed in Section 4.  Section 5 describes the obtained results 
and their evaluation while Section 6 concludes the paper. 

II. RELATED WORK 
 Previously, considerable amount of research has been 

carried out to reduce the reconfiguration overhead.  
Compton, Li, Knol and Hauck [1] developed an algorithm 
for configuration relocation and defragmentation.  With an 
extra hardware area specially designed for controlling the 
relocation and defragmentation processes, it is reported that 
as much as 35% improvement in reconfiguration time.  In 
Shirazi, Luk and Cheung’s approach, two successive circuit 
configurations are matched to locate the components 
common to them, so that reconfiguration time can be 
minimized [6].  Another approach suggested by Ganesan and 
Vemuri is Pipelining [2].  By using the processors partial 
reconfiguration capability and overlapping execution of one 



temporal partition with the reconfiguration of another, 
reconfiguration overhead can be reduced.  Other similar 
works also include [3,7, 8] etc.  Most of these approaches are 
trying to address reconfiguration overhead at a high level of 
abstraction with theoretical algorithms, which are still too 
demanding to be realized using partial reconfiguration 
capabilities available from current hardware platforms and 
software tools. 

For more practical solutions, Hauck, Li and Schwabe 
targeted to the decompression hardware directly, which is 
embedded in Xilinx XC6200 FPGAs to compress the 
configuration bitstream [4].  Raghuraman, Wang, Tragoudas 
[5] on the other hand studied the configuration data size at 
the logic level.  By relating the number of frames that need 
to be downloaded into FPGAs to the number of minterms of 
a specially constructed logic function, the required number 
of configuration frames can be reduced. 

We are unaware of any works previously done at 
physical resource management level, which can determine 
the size of configuration bitstream directly, yet provide the 
possible full automation flexibility by using FPGA design 
software and avoid the specific hardware platform 
requirements. 

III. PRELIMINARIES 
Currently, the most widely used Xilinx FPGA chips with 

partial reconfiguration capability are Virtex II and Virtex II 
Pro family.  For these FPGA architectures, Xilinx has 
proposed two standard flows for partial reconfiguration 
process: Difference-based flow and Module-based flow [10].   

With a Difference-based flow, the designer must 
manually edit a design with low-level changes.  After the 
changes are completed, the partial bitstream, which contains 
information only regarding modifications, is generated and 
stored in a file.   

For the Module-based flow, the full design is partitioned 
into modules, some of which can be fixed while others can 
be reconfigurable.  The reconfigurable fabric of the FPGA is 
partitioned into column-based rectangular regions in which 
the fixed and reconfigurable modules will be arranged based 
on specified area constrains.  A bus macro can be used to 
maintain correct connections between the modules by 
spanning the boundaries of these rectangular regions.  Fig.  1 
shows the basic concept of this reconfiguration flow 
methodology.  This makes the Module-based flow suitable 
for full automation, making it much more flexible than the 
Difference-based flow, particularly when it is considered for 
integration with high-level user applications.  Therefore, this 
paper chooses the Module-based flow as the primary partial 
reconfiguration technique for the design and analyzes the 
partial reconfiguration bitstream generated by this flow. 

Consider the contents inside a partial reconfiguration bit 
file generated by the Module-based flow.  It starts with a 
various length overhead, which can be automatically 
detected by searching the synchronous word “AA995566”.   
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Figure 1.  .  Design Layout with Two Reconfigurable Modules 

For the following actual contents of the reconfiguration 
bitstream, it is described in terms of frames.  In most Look 
Up Table (LUT) based FPGAs, configuration memory is 
arranged in column based vertical frames, i.e., one bit wide 
extending from the top edge of the device to the bottom.  
These frames are the smallest addressable segments of the 
FPGA configuration memory space; therefore, all operations 
must act on whole configuration frames.  Even if only one 
byte inside one frame is changed, the full frame needs to be 
rewritten.  Configuration memory frames do not directly map 
to any single piece of hardware; rather, they configure a 
narrow vertical slice of many physical resources. 

The platform used to develop the concepts in this paper is 
the Xilinx Virtex II Pro, which contains several 
configuration column types, including IOB, IOI, CLB, 
GCLK, BlockRAM, and BlockRAM Interconnect.  Each 
type with a given number of frames, as described in Fig.  2 
[9].  Each configuration frame has a unique 32-bit address 
that is composed of a Block Address (BA), a Major Address 
(MJA), a Minor Address (MNA), and a byte number [9].  The 
major address identifies a specific column within a block, 
and the minor address identifies a specific frame within a 
column.   

Among all these type of columns, the CLB columns 
program the configurable logic blocks, routing, and most 
interconnect resources.  IOBs on the top and bottom edges of 
the device are also programmed by CLB configuration 
columns.  The number of CLB configuration columns 
matches the number of physical CLB columns in the device.   

The first step in our research was to analyze the partial 
bitstream content.  This analysis shows the size of the partial 
reconfiguration bit file under a suitable compression 
technique.  Using the technique described below, the partial 
reconfiguration bitstream can be compressed to a size that is 
nearly linear in the number of resources in actual use, 
especially routing resources.  The process is illustrated for 
the Xilinx Virtex II Pro series, which comprise the primary 



device platform currently in use for many SoC applications 
involving partial reconfiguration. 

For each CLB column in a Virtex II Pro VP7 device, 
there are two columns of slices.  To denote the configuration 
of these slices, 22 frames are utilized within the bitstream for 
a complete reconfiguration file.  Each frame has a fixed size 
of 424 bytes.  We first compared the bit files for a series of 
test circuits and determined that the logic for each CLB 
column, which is stored in the two LUTs of each slice, 
actually only occupies two of the 22 frames.  In particular, 
the contents for the first slice column LUTs – i.e. with an 
even slice column number starting from ‘0’– can be found in 
the second frame, while those for the second slice column – 
i.e. with an odd slice column number starting from ‘1’– are 
in the third frame.  IOB usage at the top and bottom edges of 
this CLB column are located in the first frame.  The 
remainders of the frames are all used to describe the routing 
resources usage of the CLB column. 

Now consider the case of a partial reconfiguration 
bitstream file.  During partial reconfiguration, consecutive 
frames can be written to the Frame Data Input Register 
(FDRI) in a single packet, since the Frame Address Register 
(FAR) is automatically incremented when each frame is 
written to configuration memory.  In some cases, it is 
necessary to write to non-consecutive frames.  In such 
instances, the new frame address must be explicitly written 
to the FAR.  As always, one frame of padding data must be 
included at the end of every FDRI packet, and the word 
following each FDRI packet is interpreted as an AutoCRC 
value. 

However at the same time, for unused CLB frames, a 
compression technique is used in the partial reconfiguration 
bitstream file.  Instead of writing 106 instances of the word 
value of ‘0’, which is a full frame length for Virtex II Pro 
VP7, the Multiple Frame Write Register (MFWR) is used as 
follows.  Simply set the corresponding frame address to the 
FAR first, and then write two padding words to the MFWR 
(normally 0).  Using this padding technique, the full-unused 
frame can be set with a total cost of just ten bytes in the bit 
file.  Therefore, for each unused frame, the number of saved 
bytes is 414, for a 97.64% area savings per frame.   

 Since configuration frames are arranged vertically, 
designs that span the fewest possible configuration frames 
achieve greater compression.  To estimate the amount of 
compression achieved, let the number of unused frames be 
denoted by U on a system that uses B bits per frameAn 
estimate of the number of saved configuration bits, S, when a 
fixed region F per frame is given by: 

                              S = U × (B - F). 

Since B >> F, we find S to be nearly linear in terms of the 
product of U and B. 

IV. PROPOSED RESOURCE MANAGEMENT STRATEGY 
Based on the structure features of partial reconfiguration 

bitstream file, a strategy is developed to achieve the highest 
compression rate to support the limited storage capacity and 
real-time transfer performance prevalent in SoC applications.  
This area management strategy needs to be carried out after 
the synthesis process of the design and before the translation, 
mapping, placing and routing steps.  Since this strategy is 
dealing with the real physical resource arrangement, the 
logic elements are identified at very fine granularity, such as 
external pins, LUTs and D-flip flops etc., which the software 
tools can then directly translate and map with. 

1. Region Allocation: assign an area for the partial 
reconfiguration module, which is large enough to 
accommodate all the external input output signals at 
either top or the bottom edge of the designated area.  
With an FPGA model as Virtex II Pro VP7 or higher, 
an area with 40 pins or higher along the edge can be 
easily partitioned, which normally will be able to 
satisfy an 8-bit or even 16-bit module design. 

2. Pin Assignment: pick either top or the bottom edge 
and place all the external signals along the side 
adjacent to each other, if possible.  When the 
assigned area contains the left or the right edge of 
the device, these edges may be picked as well.  
Placed the remainder of the pins on the other side of 
the edge if there is still any remaining.  This step is 
trying to eliminate or at least minimize any 
unnecessary signals that will span the full height of 
the device, which clearly will occupy more routing 
resources from different frames. 

3. Column Alignment: attempt to place the entire 
logic element into single slice column consecutively 
or with only a short slice row gap, near the edge of 
external pins placement first.  One and only one 
frame will be used to describe all the LUT logic 
contents of a full column of slices, no matter how 
many LUTs of the slice column are actually used as 
long as it is not zero.  Therefore this step will 
minimize the number of frames used to describe the 
design logic as well as most of the interconnection 
resources.   

4. Choke-Point Elimination: if there are any logic 
elements with a fan out larger than 4, place the 

 
Figure 2.   Column Level Configuration Memory Map [9] 



destination elements around its side, including top 
and bottom of the same slice column as well as the 
adjacent slice column side-by-side.  This normally 
will reduce the routing resources usage even more 
than simply by a mandatory placing of everything 
inside just one slice column. 

5. Repeat: if there are still any elements left, after 
finishing one column, Repeat the previous two steps.  
Place the rest of the logic elements into the adjacent 
slice column with the same principles until all or at 
least elements along major logic paths are finished.  
With an FPGA model as Virtex II Pro VP7 or higher, 
each slice column contains 160 or more 16-bit LUTs 
and the same amount of D flip-flops, which normally 
will be able to contain a small to middle size module 
design in simply one or two columns. 

To summarize, the approach places the logic elements 
into the least slice columns as possible.  The logic 
sequence of the elements may also need to be considered 
when placing along the path to achieve the highest 
possible optimization. 

V. EXPERIMENTAL RESULTS 
The hardware platform used in the experiments is Xilinx 

Virtex II Pro VP7 device.  Module-based partial 
reconfiguration flow is adopted to generate the partial 
reconfiguration bitstream.  The Xilinx ISE 6.3 is used to 
support the module based flow.  The physical resource area 
management constraints are entered directly into User 
Constrain File (.ucf) as a text input before map and routing 
by the Xilinx toolsets. 

Four representative small case and one middle size case 
studies are presented which illustrated the steps and cases 
mentioned in the previous section.  Each design was 
implemented as partial reconfiguration modules.  Each of the 
four small cases has its own distinct features including 
parallel and cascaded LUT arrangements, dedicated physical 
resource usage and large fan out elements.  The first design 
is a simple quad 4-input 16-bit LUTs design with a random 
combinational logic functions written in the truth table.  The 
second design is a 9-bit shifter with cascaded logic.  The 
third design is a 4-bit×4-bit multiplier with a block multiplier 
used during synthesis.  And the last is again a 4-bit × 4-bit 
multiplier but with LUT logic only.  To increase the 
accuracy of the comparison, all 4 modules have been defined 

using the same amount of external signals.  All these signals 
have been managed to place at the top edge of the partial 
reconfiguration region. 

Fig. 3 shows the optimized logic elements arrangement 
of all 4 designs.  For the simple 4 LUT element design in 
Case 1, since all LUTs are in the parallel logic path with 
direct input from external signals and straightly feed to the 
output though flip flops, putting them in a single column 
close to the external pins is a straightforward solution.  The 
resource arrangement is shown is Fig. 3(a).  Case 2 for the 
shifter is shown in Fig. 3(b), since all logic elements are 
logically serially cascaded, from input to output, the simple 
single column solution is again the best choice.   

However, for the 4-bit×4-bit multiplier using the 
dedicated hardware block multiplier resource, which is 
circled in red in Fig. 3(c), position of the slice column needs 
to be balanced to minimize the routing between the path of 
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Figure 3.  Design Layout 

TABLE I.  OPTIMIZATION RESULTS 

Module name # of 
LUT. 

# of 
FF 

# of block 
Multiplier 

# of 
Slices 

Original File 
Size (Byte)  

Original MAX 
Delay (ns) 

Optimized File 
Size (byte) 

Optimized 
MAX Delay 

(ns) 

Area 
Saving 

4 LUTs 4 16 0 12 64K 1.371 55K 1.347 14% 
Shifter 1 24 0 13 87K 1.377 63K 1.367 28% 

Block Multiplier 8 25 1 17 88K 1.346 66K 1.346 25% 
LUT Multiplier 22 22 0 22 96K 1.367 68K 1.346 29% 

SECDED 93 41 0 74 89K 1.355 60K 1.355 33% 



the block multiplier and the LUTs and the path of the LUTs 
and the external pins.  This extra cost of routing also explains 
the decreased savings in bitstream length compared to the 
shifter or the LUT-based multiplier design, as listed in Table 
1. 

For the 4-bit×4-bit LUT-based multiplier, the high fan-
out situation mentioned in the previous section needs to be 
dealt with.  The carry chains, marked in brown, red, and blue 
in Fig. 3(d), have multiple connections to the LUT logic 
elements in the deep green blocks.  Therefore, these carry 
chains are arranged around the LUT logic blocks instead of 
in the simple one column style to achieve the best resource 
area optimization. 

The comparative optimization results of these four case 
studies are listed in Table 1.  The logic resource usage of 
each of design is also summarized in the table.  Even partial 
reconfiguration as small as four LUT designs achieve 14% 
reduction saving.  The most complicated design, 4-bit×4-bit 
LUT-based multiplier, reached almost 30% reduction rate.  
While the four small case studies illustrate the concept, 
larger and more involved designs using partial 
reconfiguration design should be capable of achieving higher 
degrees of bitstream savings using this physical resource 
management strategy. Results also show that the maximum 
delay of most of module has also been improved.  

To further verify our strategy, one middle-sized module, 
Single Error Correction Double Error Detection (SECDED) 
algorithm, is also implemented with the same area 
management as the small cases and similar pins arrangement. 
74 slices have been used to implement the algorithm, which 
actually occupies 2 columns of slices when doing the 
optimization. During the optimization process, not every 
slice has been specifically placed because of the large 
number. Only the slices on the major path are constrained 
instead. The final result is also listed in Table 1. As 
suggested before, because this is a comparatively bigger 
module, larger bitstream savings, as of 33% is indeed 
achieved. 

Compared to the work presented in [5], which studied a 
similar issue at a low level with logic level optimizations, 
our approach achieved a higher bit reduction rate even on 
simpler designs.  At the same time, our approach at the 
physical resource level can be integrated with their technique 
at the logic level to cascade the compression obtained 
achieving a multiplicative saving. 

VI. CONCLUSION 
In this paper, the structure of the partial reconfiguration 

bitstream file is carefully studied at frame level for the Xilinx 

platform.  Based on the thorough understanding of the bit file 
organization, a physical resource area management strategy 
is proposed to minimize the reconfiguration overhead at 
physical resource level at a fine granularity, which ensures 
such methodology being capable to be implemented into real 
toolsets easily and safely.  The experiments show that 
reduction rate can be up to 30% on four representative 
different cases, compared to the Xilinx toolset. A higher 
saving rate of 33% is even achieved for the middle size 
module optimization. 

In the future works, more experiments will be conducted 
on more complicated test designs to optimize the approach.  
A genetic algorithm wrapper is also in development to make 
the low-level physical area management process for partial 
reconfiguration fully automatic.   
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