Fortifying asynchronous online learning with digitally delivered in-person assessments to leverage the testing effect

"Students know far less upon completing a course than faculty think they do."

 NSF project assessing student achievement in undergraduate STEM courses

Why? What to do about it?

- What faculty think students get ≠ what students actually get
- Good exam scores *≠* conceptual understanding
- Effective assessment \rightarrow student achievement \hat{T}
- Formative assessment monitors learning to give ongoing feedback
 - used by instructors to tune teaching
 - used by students to hone their learning
- "Testing effect" of quizzes vs. low compliance/efficacy of homework
- (Summative + Formative) assessments > Summative only
- Formative assessment + Peer Teaching \rightarrow Student learning 企

What is the *testing effect*?

- Students learn more when open-book study is augmented by frequent closed-book tests.
- At the Evaluation and Proficiency Center, timely, detailed feedback with opportunities for Socratic dialog locks in learning gains.

Digitizing STEM Content: Four Foci

- 1) Core Concepts and Experiences Foundation of knowledge, examples, and varied experiences organized around big ideas
- 2) Task Analysis Develop understanding sufficient for learners to prioritize key issues and sequence their solutions
- 3) Metacognition Help learners gain awareness of their thinking processes, enabling adaptation to changing problems
- 4) Engagement and Integrity of Learning Facilitated by *course design* and *assessment* delivery. UCF's Evaluation and Proficiency *Center* (EPC) approach emphasizes these from the ground up by combining digitally-delivered proctored testing with digital and F2F remediation

Richard Thripp, Ronald F. DeMara, Baiyun Chen, and Richard Hartshorne University of Central Florida, Orlando, FL, United States

¹ Dept. of Educational and Human Sciences, ² Dept. of Electrical and Computer Engineering, ³ Center for Distributed Learning

Scan to visit website of UCF's **Evaluation and Proficiency Center.**

Table 1. STEM instructional methods strengths and weaknesses.

Stro	th	
DUG	LII	

nal	Status quo bias; some advantages for large class sizes	Lack of content engagement, potential for cheating, may not teach soft skills, lectures may inhibit learning
	High instructor productivity—can reach thousands of students; peer-assessment is feasible	No authentication, low retention, requires good Internet access, manual grading is difficult
r 1S	Videos improve comprehension and student enjoyment; in-class time is reallocated to active learning and productive activities	Students may be unprepared or resistant, homework must be tailored to be effective, may lack instant feedback
	Reduces cheating and allows scheduling flexibility; improves instructor and GSA productivity	Upfront equipment, software, and staffing costs; requires physical space and training
n ;y	Testing center, smart question design, score clarification, remediation, and open tutoring frees instructors' time and enables student success via integrity, engagement, and the testing effect	Challenging to implement— requires university- or department-level funding, changing existing instructor pedagogies, and cooperation from many stakeholders

Digitizing	and Remediating
STEM	Assessments

-	The Ale		
	Modality	Торіс	Date
	Online Only	Course Preparation (read syllabus; intro discussion post)	_
	F2F Class	BLUESHIFT & Course Walkthrough	Friday 5/26 at 1:00pm
	F2F Class	Modularization & Immersive EPC Experience	Friday 6/02 at 1:00pm
	Online Only	Exemplar Vignettes, Tutoring, and Score Clarification	_
	F2F Class	Structuring Creativity/Design/Soft (CDS) questions	Friday 6/16 at 1:00pm
	Online Only	UCF Support Resources	—
	F2F Class	Showcase & Future Online Content	Friday 6/30 at 1:00pm

Table 2. Course schedule for Digitizing and Remediating STEM Assessments faculty workshop, Summer 2017. At UCF, we educate faculty from diverse STEM fields on how to digitize their assessments and integrate the EPC into their courses. As an incentive, we offer a course release.

Imagine not having to create new questions every semester, not having to administer exams, and having a support staff to explain grades to students. The EPC approach frees your time for teaching, research, and other high-impact work.