
Mobility-Enhanced File Integrity Analyzer For Networked Environments

Guantong Wang, Ronald F. DeMara, Adam J. Rocke
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2450
demara@mail.ucf.edu

ABSTRACT

The ability to monitor computer file systems for
unauthorized changes is a powerful administrative tool. Ideally
this task could be performed remotely under the direction of the
administrator to allow on-demand checking, and use of
tailorable reporting and exception policies targeted to adjustable
groups of network elements. This paper introduces M-FICA, a
Mobile File Integrity and Consistency Analyzer as a prototype
to achieve this capability using mobile agents. The M-FICA
file tampering detection approach uses MD5 message digests to
identify file changes. Two agent types, Initiator and Examiner,
are used to perform file integrity tasks. An Initiator travels to
client systems, computes a file digest, then stores those digests
in a database file located on write-once media. An Examiner
agent computes a new digest to compare with the original
digests in the database file. Changes in digest values indicate
that the file contents have been modified. The design and
evaluation results for a prototype developed in the Concordia
agent framework are described.

Keywords:Mobile Agents, File Integrity, Message Digest, and
Computer Security

1. INTRODUCTION

On-demand deployment of mobile agents for file
integrity checking can address several challenges present
in client/server environments. The mobile agents travel
between network hosts to inspect changes to the local file
system using local system recourses. Upon successful
inspection, they return to report the results.

Agents can use a cryptographic hash function
applied to a message to generate a digest representing the
message. Message digests are similar to checksums or
cyclic redundancy checks in that they represent the
contents of a message in a relatively short number of
characters. There are two important properties of message
digest algorithms. The first is that the algorithm cannot be
easily reversed. That is, with at least 128 bits of output, a
brute force attack has 1.7 x 10E38 possible input values
of the same length to evaluate before finding one that
generates the correct output. Consequently, it is unlikely
that any two different documents produced at random
during the course of human history would have the same
128-bit message. The second useful property of message
digest algorithms is that a small change in the input
results in a significant change in the output.

There are many message-digest functions
available today. All of them work in roughly the same
way, but they differ in speed and specific features [1].
One of the most widely used message digest functions is

the MD5 [2] function, which was developed by Ronald
Rivest. The MD2, MD4, and MD5 message digest
functions all produce a 128-bit number from a block of
text of any length. Each of them pads the text to fixed-
block size, and then performs a series of mathematical
operations on successive blocks of the input. The MD2
algorithm has relatively few weaknesses, but it is
computationally demanding. MD4 was designed to
overcome the speed limitation. MD5 was introduced
based on potential attacks against MD4 to include one
more round of internal operations and several significant
algorithmic changes.

2. COMMERCIALLY-AVAILABLE FILE
ANALYZERS

The advantages and disadvantages of three
popular file integrity checkers, Tripwire, Veracity and
Tiger, are presented. The ability of mobile agents to
address these disadvantages is described. Finally, the
design, implementation and testing of M-FICA is
presented.

Tripwire

Tripwire [3] is an integrity-checking program
that gives system administrators the ability to monitor file
systems for added, deleted, and modified files. A high
level model of Tripwire operation [4] is shown in Figure
1. This shows how the Tripwire program uses two inputs:
a configuration file describing the file system objects to
monitor, and a database of previously generated
signatures.

The Tripwire policy file lists the system and data
files to monitor as specified by the administrator. When
running Tripwire software for the first time, a baseline
database of the file system is created from the policy file.
Subsequent operation compares the current files against
this baseline database to identifies any changes, additions,
or deletions. If a policy violation is detected, it will be
identified and described in a violation report.

Tripwire software works at the most fundamental
layer protecting the servers and workstations that make up
the corporate network. Tripwire contains two major
packages: Manager and Connector. The Manager is
installed on a host machine and acts as the console and
reporter. The Connector is installed on each protected
client and contains configuration, database, policy, and
report files. Features and Benefits of Tripwire are listed
in Table 1.

Figure 1: Tripwire Design

Table 1: Features and Benefits of Tripwire

FEATURE BENEFIT

HQ Manager Compatible-- interface with the enterprise-wide
management console

Allows user to have an upgrade path that gives them enterprise-wide
control when used with the Tripwire HQ Manager product.

Cryptographic Signing-- database, policy and report files can
be cryptographically signed

Reduces the need for removable media for the database, policy, report,
or Tripwire data file.

Reporting-- report violations at configurable levels of detail. Different levels of reports allow users to select a response to Tripwire
violations.

Email Reporting-- violation reports can be emailed to a
recipient.

Send reports via email to the appropriate systems administrator(s)
based upon individual rule violations.

Enhanced Policy Language-- a series of rules that specify
Tripwire software checks the integrity of the system.

The policy language has been expanded to include flexibility in
defining rules, as well as the ability to prioritize violations based upon
severity.

Severity Rating-- files can be given separate severity levels. Prioritize critical system files with a higher severity level. Reports that
have a "high" severity rating can be selected for immediate viewing.

While Tripwire is a popular file integrity
checker, there are some disadvantages as described
below. These disadvantages of Tripwire are addressed by
deploying mobile agent technology:

• Lack of Interoperability. Tripwire has limited
flexibility in updating the system for new attacks.

• Extensive network usage. Tripwire processes most of
this data locally. Data is sent to remote network
locations where the data is further abstracted, and
then eventually sent to a central processing site that
evaluates results from all location in the network.

• Expensive to install. Tripwire scheme assumes that a
host-based checker is installed on every host.

• Single point of Failure. Because of Tripwire's central
processing system, a failure may disable the entire
security system.

Veracity

Veracity [5] is a computer program that detects
changes in file systems by creating and manipulating
snapshots of directory trees. A snapshot consists of an
ordinary text file that records the structure of the directory

tree, the names of the files in the tree, and the
cryptographic digests of the files in the tree. This
snapshot can later be used to generate a list of changes in
the tree since the snapshot was made. Client/server
networking allows an administrator to monitor the
integrity of hundreds of computers from a single point.
Table 2 shows the comparison of Tripwire and Veracity.
Other Veracity characteristics are listed below:

• Taking A Snapshot. The snapshot appears as a file in
the directory at the root of the tree.

• Checking Trees. A snapshot file can be used to detect
changes that have been made in the directory tree
since the snapshot was taken. This process, repeated
regularly, enables the snapshot to track the changing
file system while providing an unbroken chain of
integrity checking.

• Snapshots. Snapshot files are ordinary text files that
store the structure of the directory tree they represent,
along with the names and cryptographic hashes of the
files in the tree.

• Snapshot files are at most 70 characters wide and
contain only printable ASCII characters.

Table 2: Comparison of Tripwire and Veracity

Tripwire Veracity

Architecture Client / Server Client / Server
Language Standard C with micro header file Funnelweb: a literate-programming macro

preprocessor
Available for many platforms Yes Yes

Able to check both files and
directories

Yes - The configuration file contains a list of
entries enumerating the set of directories or files
to be monitored

Yes - It takes a snapshot of an entire directory
tree recording the tree structure, file names, and
cryptographic digests of each file.

Solve the false-positive
problem: able to ignore files
that frequently change

Yes - Use selected mask that describes which file
attributes can be changed without being reported
as an exception

Yes - Use a flexible means for specifying which
subtrees or files are to be checked and to what
extent.

Full strength cryptographic
hashes

Yes Yes

Able to monitor entire network
from a single point

Yes - Tripwire HQ Manager. This is a software
"console" that enables control of HQ Connectors
across an network from a central location.

Yes - Veracity's snaplets system simplifies this
automated checking allowing monitoring of an
entire network.

Officially allocated port Unknown

The Internet Assigned Numbers Authority has
assigned TCP port 1062 for use by
Veracity/FreeVeracity.

Resource limits Unknown

The server configuration file allows limits to be
placed on the server's use of processes, memory
and (using access delays) CPU time.

Cryptographic Signing Yes - The Tripwire database, policy, and optional
report file can be cryptographically signed

Yes

Violation reports can be
emailed to specified recipients.

Yes Yes

Multiple Levels of Reports Users can choose from five levels of reports. Unknown

Tiger

Tiger [6] is a set of scripts that search a system
for weakness which could allow an unauthorized user to
change system configurations, gain root access, or change
important system files. Included in the package are a
static audit tool, a signature database to check system
binaries against known signatures of patch files, and a
network traffic analyzer that aids system administrators in
assessing outside threats. Tiger scans the cron, inetd, and
passwd files for vulnerabilities. It also inspects file
permissions, aliases, and PATH variables to see if they
can be used to gain root access [7]. Scans for system
vulnerabilities in inetd, host equivalents, and PATH
variables are performed to determine if a user can gain
remote access to the system. MD5 signatures are used to
determine if key system binaries have been altered. Tiger
scripts may be run together or individually to allow
system administrators to determine the best strategy for
checking their system

Most available security tools fails into two
categories: static audit tools and integrity checkers. The
foundations of integrity checking programs, such as
Tripwire or Veracity, are that a database is created with
some unique identifier for each file to be monitored. By
recreating that identifier, which could be a copy of the
entire file contents, and comparing it against the saved

version, it is possible to determine if a file has been
altered. Furthermore, by comparing entries in the
database, it is possible to determine if files have been
added or deleted from the system.

Tiger serves as a static audit tool. It is a checklist
program, similar to the shell scripts. A checklist is one
form of this database for a UNIX system. The file
contents themselves are not usually saved, as this would
require too much disk space. Instead, a checklist would
contain a set of values generated from the original file -
usually including the length, time of last modification,
and owner. The checklist is periodically regenerated and
compared against the saved copies to identify
discrepancies from the stored values. A particular
weakness of Tiger is that a user gaining access to the root
account may modify the raw disk to alter the saved data
without it showing in the checklist.

3. ROLE OF MOBILE AGENTS IN FILE
INTEGRITY

Mobile agents are program instances that are
able to move within a network under their own control.
Mobile agents consist of code, a data state, and an
execution state. Mobile agents are able to autonomously
migrate, communicate to each other, and offer services or
interfaces to applications.

Characteristics of Mobile Agents

Mobile agents serve as a framework on top of
which decentralized infrastructure services can be built.
By embedding functionality in mobile software agents
distributed across the network, intelligence traditionally
centralized in a few controlling nodes is pushed out into
the system at large. The following are important
characteristics for mobile agents:

• encapsulate a thread of execution and preserve data
when it moves from one network node to another,

• move easily across the network,
• must be small in size due to the cost associated with

hosting and transporting an agent,
• are able to cooperate with other agents in order to

perform complex or dynamic tasks, and
• are able to identify and use resources specific to any

node.

Mobile Agents for File Integrity

There are several motivations for consideration
of mobile agents: [8] [9] [10]

• Mitigate network latency. For critical real-time
systems, latencies are not acceptable. Multiple agents
offer a solution as they can be dispatched from a
central controller to act locally and directly execute
the controller's directions.

• Reduce network load. Mobile agents reduce the flow
of raw data in the network as they move the
computations to the data rather than the data of the
computations.

• Execute asynchronously and autonomously. Tasks
embedded in mobile agents become independent of
the creating process and can operate asynchronously
and autonomously.

• Adapt more dynamically. Mobile agents also have
the ability to sense their execution environment and
autonomously react to changes.

• They are naturally heterogeneous. Because mobile
agents are generally computer- and transport-layer-
independent and are dependent only on their
execution environment, they provide optimal
conditions for seamless system integration.

• Provide robust and fault-tolerant behavior. The
ability of mobile agents to react dynamically to
unfavorable situations enables building of robust and
fault-tolerant distributed systems.

4. MOBILITY-ENHANCED NETWORK FILE
INTEGRITY (M-FICA) PROTOTYPE

The Mobile File Integrity and Consistency
Analyzer, M-FICA, is a file integrity checker using
mobile agent techniques. M-FICA agents are sent from a
host to a client machine, reside there to check file changes
of the local system using local system recourses, then
return to report the results.

Functional Requirements

There are two basic routines to complete file
integrity tasks. The baseline database is created by
computing a digest for each file designated in the policy
file. Subsequent scans compute a new digest for each
monitored file and compare the new result with the
baseline.

Environmental Requirements

In a distributed computing environment, it is
common for several platforms to exist. Therefore, Java
was selected as programming language because of its
platform independence. M-FICA agents are programmed
using the Concordia mobile agent API. It is necessary
that the system can be run on any hardware platform.
Therefore, any machine that can offer a Java 1.1 run-time
environment can meet the basic needs of the system.

Design Issues and Features

Issue 1. Because of the heterogeneous nature of
computer equipment at most sites, the code is written in
Java language.

Issue 2. Detecting file tampering by comparing
each file against a duplicate copy requires considerable
storage and time. Generating and comparing file
signatures may require more computation, but it requires
much less storage so the signature approach is selected.

Issue 3. Message digests represent the contents
of a message in a relatively short number of characters.
MD5 is selected as the encoding algorithm to digest the
file contents.

Issue 4. Agents shall be small, specialized pieces
of code. For maximum efficiency, two agents are
designed to complete the task: Initiator and Examiner.
The size of all six associated classes is less than 5K bytes.

Issue 5. Policy file and baseline database file
integrity is critical. To avoid being corrupted, those files
are stored on removable media.

High-level Design

The Mobile Agent File Integrity Analyzer
project uses two agents: Initiator and Examiner to
complete the functional requirements. Initiator, illustrated
in Figure 2, reads the configuration, or policy, file and
then reads each designated file from the local system. It
then computes a digest for each file and reports to the
host. All the digests are collected in a baseline file stored
on read-only media.

Examiner, illustrated in Figure 3, reads the
policy and system files, then generates new message
digests using the MD5 algorithm. It then reads original
message digests from baseline and compares each new
message digest with baseline. Finally it produces a list of
changed files to report to the host.

5. EXPERIMENTAL RESULTS

A test file is created to evaluate agent operation.
Initiator is launched to compute a baseline digest.

Examiner then computes another digest for comparison.
The results shall be the same when file contents are
unmodified. For subsequent tests, the test file is modified.
When Examiner checks the file again, the results shall be
changed. The result is illustrated in Figure 4.

Result shows that the Initiator/Examiner agent
protocol is able to identify changes in file contents
resulting in an incorrect message digest. This can provide

an effective means to manage file integrity checking in
dynamic environments where numerous instances of
policy files dictating which files should be scanned are
needed to be maintained on the remote hosts. Instead this
information is dispatched with the Examiner agent when
needed from the administrator's site. While current
capabilities of M-FICA include reliable detection of file
modifications, the policy administrator console remains as
future work.

Figure 2: Mobile agent Initiator architecture

Figure 3: Mobile agent Examiner architecture

6. CONCLUSION AND FUTURE WORK

The Mobile File Integrity and Consistency
Analyzer (M-FICA) prototype has been designed and
assessed. Results show that deploying two agent types
can form a sufficient protocol for file integrity checking.
Initiator and Examiner agents perform the file integrity
tasks while maintaining space-efficient operation
requiring as little as 5 KB/agent of Java code. Even when
under conditions of network load, results show agents of
that size to keep detection delay well below 5 seconds.

Furthermore, deploying Java agents overcomes
the heterogeneous environment barrier. The test
indicated that the same software could also be used in
Windows 98 and Windows NT environments in multiple
network labs without modification. Thus, agent-based
integrity checkers can be cost effective when compared
with client/server-based architectures. Agent-based
integrity checkers can provide more readily-maintainable
security tools that can be more directly customized on a
dynamic basis upon deployment.

Figure 4: Change detected for file containing the text 'Security Agent'.

Future research tasks include developing a
centralized control console and semi-automatic
adjustments to the policy file by prompting the
administrator for updates to address the false positive
problem inherent in all integrity analyzers. Also, use of
different levels of security measurement by the agents is
to be explored, along with experiments to determine
Examiner agent size and complexity limits based on
network loading and latency trade-offs.

LIST OF REFRENCES

[1] Bruce Schneier, Applied Cryptography, 2nd Edition,
John Wiley & Sons, Inc., 1996.

[2] R. L. Rivest. RFC 1321: The MD5 Message Digest
Algorithm. Technical Report, Internet Activities Board,
April 1992.

[3] Gene H. Kim, Eugene H. Spafford, The Design and
Implementation of Tripwire: A File System Integrity
Checker, COAST Laboratory, Department of Computer
Sciences, Purdue University, 1995. <URL:
ftp://coast.cs.purdue.edu/pub/papers/gene>

[4] Gene H. Kim, Eugene H. Spafford, Experiences with
tripwire: Using integrity checks for intrusion detection.

In System Administration, Networking and Security
Conference III, Usenix, 1994.

[5] Rocksoft Limited, 1999, Veracity Network Integrity, <
URL: http://www.veracity.com/index.shtml>

[6] Daniel Framer, Eugene H. Spafford, The Cops
Security Check System TAMU Security Tools - Tiger,
1993, <URL:
http://www.net.tamu.edu/network/tools/tiger.html >

[7] Bobby S. Wen. Open-Source Intrusion-Detection
Tools for Linux, Linux Journal, October 2000.

[8] Simon Y. Foo and Michael Arradondo, Mobile Agents
for Computer Intrusion Detection, Proceedings of the 36th

Southeastern Symposium on System Theory, March 2004.

[9] Wayne Jansen, Peter Mell, Tom Karygiannis, Don
Marks, Applying Mobile Agents to Intrusion Detection
and Response, National Institute of Standards and
Technology, Computer Security Division, 1999.

[10] Oleg Kachirski and Ratan Guha, Effective Intrusion
Detection Using Multiple Sensors in Wireless Ad Hoc
Networks, Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, January
2003.

