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ABSTRACT 

This thesis describes an approach to automated regression testing for speech recognition 

grammars. A prototype Audio Regression Tester called ART has been developed using 

Microsoft’s Speech API and C#. ART allows a user to perform any of three tasks: 

automatically generate a new XML-based grammar file from standardized SQL database 

entries, record and cross-reference audio files for use by an underlying speech 

recognition engine, and perform regression tests with the aid of an oracle grammar. ART 

takes as input a wave sound file containing speech and a newly created XML grammar 

file. It then simultaneously executes two tests: one with the wave file and the new 

grammar file and the other with the wave file and the oracle grammar. The comparison 

result of the tests is used to determine whether the test was successful or not. This allows 

rapid exhaustive evaluations of additions to grammar files to guarantee forward process 

as the complexity of the voice domain grows. 

 

The data used in this research to derive results were taken from the LifeLike project. 

However, the capabilities of ART extend beyond LifeLike. The results gathered have 

shown that using a person’s recorded voice to do regression testing is as effective as 

having the person do live testing. A cost-benefit analysis, using two published equations, 

one for Cost and the other for Benefit, was also performed to determine if automated 

regression testing is really more effective than manual testing. Cost captures the salaries 
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of the engineers who perform regression testing tasks and Benefit captures revenue gains 

or losses related to changes in product release time. ART had a higher benefit of 

$21461.08 when compared to manual regression testing which had a benefit of 

$21393.99. Coupled with its excellent error detection rates, ART has proven to be very 

efficient and cost-effective in speech grammar creation and refinement. 

  



v 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my Mom and Dad for their unlimited love and support 



vi 

 

ACKNOWLEDGMENTS 

I would like to acknowledge and extend my sincere gratitude to Dr. Ronald DeMara, my 

advisor, for his constant guidance, support and encouragement. Appreciation is also 

extended to my committee members, Dr. Avelino Gonzalez and Dr. Damla Turgut for 

their comments and suggestions. A show of thanks goes out to the National Science 

Foundation for their continued support of the research conducted at the UCF Intelligent 

Systems Laboratory. I would also like to thank my colleagues for their words of wisdom 

and encouragement throughout the entire writing process. Above all, I would like to 

thank my family for their never-ending support of all of my endeavors.  



vii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES .............................................................................................................. x 

LIST OF ACRONYMS/ABBREVIATIONS .................................................................... xi 

CHAPTER 1 : INTRODUCTION ...................................................................................... 1 

1.1 Research Objective .................................................................................................... 1 

1.2 Background ............................................................................................................... 4 

1.2.1 Speech Recognition Grammar ............................................................................ 6 

1.2.2 Motivating Example ........................................................................................... 8 

1.3 LifeLike System Overview ....................................................................................... 9 

1.3.1 LifeLike Dialog Manager ................................................................................... 9 

1.3.2 LifeLike Responsive Avatar Framework (RAF) .............................................. 10 

1.3.3 LifeLike Speech Recognizer ............................................................................ 10 

1.4 Regression Testing Process ..................................................................................... 11 

1.5 Challenges in Regression Testing with respect to Speech Recognition Grammars 13 

1.6 Contribution of Thesis ............................................................................................. 16 

CHAPTER 2 : PREVIOUS WORK ................................................................................. 18 

2.1 Speech Recognition ................................................................................................. 18 

2.1.1 Hidden Markov Models in Speech Recognition............................................... 19 

2.1.2 Augmenting Hidden Markov Models ............................................................... 22 

2.1.3 Commercial-Off-The-Shelf (COTS) Tools for Speech Recognition ............... 24 

2.2 Regression Testing .................................................................................................. 26 

2.2.1 Regression Testing Strategies ........................................................................... 27 

2.2.2 Regression Testing in the Object-Oriented Domain ......................................... 33 

2.2.3 Regression Testing of Graphical User Interfaces ............................................. 35 

CHAPTER 3 : LIFELIKE ................................................................................................. 37 



viii 

 

3.1 Speech Recognizer Module ..................................................................................... 37 

3.2 Dialog Manager Module ......................................................................................... 41 

3.2.1 Natural Language Processing (NLP) ................................................................ 41 

3.2.2 Dialog Manager Architecture ........................................................................... 44 

3.3 Responsive Avatar Framework ............................................................................... 48 

3.4 LifeLike Database ................................................................................................... 52 

CHAPTER 4 : AUDIO REGRESSION TESTER ............................................................ 57 

4.1 ART System Components ....................................................................................... 57 

4.2 ART Operation ........................................................................................................ 63 

CHAPTER 5 : TESTING AND EVALUATION ............................................................. 68 

5.1 Overview ................................................................................................................. 68 

5.2 ART Test Results .................................................................................................... 69 

5.3 User Test Cases ....................................................................................................... 72 

5.4 Product-Moment Correlation Coefficient ............................................................... 76 

5.5 Error Detection Rate................................................................................................ 78 

5.6 Cost-Benefit Analysis ............................................................................................. 81 

CHAPTER 6 : CONCLUSION ........................................................................................ 88 

6.1 Summary ................................................................................................................. 88 

6.2 Future Work ............................................................................................................ 89 

LIST OF REFERENCES .................................................................................................. 91 



ix 

 

LIST OF FIGURES 

Figure 1: Speech Development Grammar Development and Testing Process   ................... 2

Figure 2: Condensed XML Grammar File (DeMara, et al., 2008)   ..................................... 7

Figure 3: Audio Regression Tester (ART) System Diagram   ............................................ 12

Figure 4: Layered Speech Recognition Architecture (DeMara, et al., 2008)   ................... 26

Figure 5: LifeLike Dialog Manager Architecture (DeMara, et al., 2008)   ........................ 45

Figure 6: LifeLike Procotol Frame sent from DM to SR  .................................................. 48

Figure 7: LifeLike Responsive Avatar Framework (DeMara, et al., 2008)   ...................... 51

Figure 8: Screenshot showing LifeLike’s Context table  ................................................... 53

Figure 9: Screenshot showing a portion of LifeLike's Center Contact table   .................... 55

Figure 10: Screenshot of ART showing a newly created grammar XML file   .................. 58

Figure 11: Screenshot of ART showing the Audio Capture Window   .............................. 61

Figure 12: Screenshot of ART showing the Regression Testing pane   ............................. 63

Figure 13: Screenshot of a successfully run test in ART   .................................................. 64

Figure 14: ART's Comparison Window   ........................................................................... 67

Figure 15: Failed regression test in ART   .......................................................................... 70

Figure 16: Comparison Result view of failed regression test in ART   .............................. 71

Figure 17: Results of test with G1 and User 1   ................................................................... 79



x 

 

LIST OF TABLES 

Table 1: Examples of Utterances and their corresponding output   .................................... 40

Table 2: Test Discrepancy   ................................................................................................ 66

Table 3: Recognition data for Directors' Names (G1)   ....................................................... 73

Table 4: Recognition data for University Names (G2)   ...................................................... 74

Table 5: Recognition data for University Name Acronym (G3)   ....................................... 75

Table 6: Recognition rates for three different grammar sets   ............................................ 76

Table 7: Correlation between natural voice and recorded voice   ....................................... 77

Table 8: Error Detection   ................................................................................................... 80

Table 9: Cost-Benefit Analysis for techniques A and B   ................................................... 87



xi 

 

LIST OF ACRONYMS/ABBREVIATIONS 

AI    Artificial Intelligence 

ART    Audio Regression Tester 

CMU    Carnegie Mellon University 

COTS    Commercial-Off-The-Shelf 

DARPA   Defense Advanced Research Projects Agency 

DLL    Dynamic-Link Library 

HMM     Hidden Markov model 

LPC    Linear predictive Coding 

NSF    National Science Foundation 

SAPI    Speech Application Programming Interface 

SDK    Software Development Kit 

SR    Speech Recognizer 

SRC    Speech Recognizer Control 

SRE    Speech Recognition Engine 

SRGS    Speech Recognition Grammar Specification 

TCP/IP   Transmission Control Protocol/Internet Protocol 

XML    Extensible Markup Language 

 



1 

 

CHAPTER 1: INTRODUCTION 

1.1 Research Objective 

The objective of this thesis was to formulate a development and testing approach for 

domain specific speech vocabularies and grammar rules. The benefits of this approach 

are realized in knowledge creation and entry phases of the lifecycle, as well as during 

maintenance. The result is a novel development environment that allows speech 

grammars to be refined with reduced labor cost and minimal side effects, while 

supporting a rich interaction-information abstraction in the native domain. As changes are 

made to grammars, ideally the interaction and rule-firing complexities are minimized for 

the developer. This yields a new regression testing approach to speech recognition 

grammars described herein. 

 

In speech recognition problems, as the amount of domain knowledge increases then the 

likelihood of recognition errors also increases. This research proposes a method to reduce 

errors in speech recognition system development and aid in context-specific words being 

more accurately recognized. In order to reduce the amount of errors every time the 

knowledge base is expanded, we need to continually test the system to ensure the newly 

entered knowledge does not have a negative net effect on the previously entered 

knowledge.  
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Testing a system continuously becomes a tedious task, if for every iteration; the grammar 

set increases in size. Regression testing ensures a previous problem is not re-introduced 

into a subsequent iteration of the program. Manual regression testing in the speech 

domain is laborious and requires hours of painstaking testing, potentially with multiple 

users who must recite many phrases to assess adequate coverage. However, a practical 

development environment implies limited labor resources and thus we seek to optimize 

the testing process. 

 

 

 

New Speech 
Recognition 

 
Testing 

Use for 
Speech 

Recognition 

pass fail 

 

next program iteration 

Speech 
Grammar 

Development 

Test Plan  

Update Problem  

Figure 1: Speech Development Grammar Development and Testing Process 
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As shown in Figure 1, speech recognition systems require extensive iterative testing 

during development. The process begins with a behavioral description of the Speech 

Recognition Specification. This represents the desired recognition capability for phrases 

in a certain domain. The desired phrases are then realized as grammars which encode the 

time sequence of the constituent words. Grammars correspond to recognition rules. Each 

grammar is a form of template with fixed words which are required for the template to 

fire and also empty slots that can be filled with variable content. These rules are then 

added to the previous grammar list, thus increasing the speech recognition knowledge 

base. However, before deployment in an actual system, the complexity of grammar rules 

and its interaction with the underlying phoneme recognition process requires that testing 

be performed to assess coverage and correctness of the grammar set as a whole. This 

cycle corresponds to an instance of the Test Plan Update Problem (Leung & White, 

1989). 

 

Finding a solution to the Test Plan Update Problem is motivated by the fact that testing 

time and financial resources to do manual testing are limited. Automated regression 

testing on the other hand can assist greatly with testing in the speech domain by reducing 

time and money needed to do functional testing. 

 

As shown in Figure 1 when a set of speech grammars are developed, a series of tests are 

needed to ensure these grammars function according to specification. If they pass the 
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series of tests applied then they become available for use in the speech recognition 

application; if not then modifications need to be made and more testing is required to 

ensure realization of the behavioral specifications. 

 

 With manual regression testing, for the next iteration of the program, the user needs to 

repeat the first series of tests and then do the second series of test. This can lead to low 

levels of output since development is bogged down in the testing phase. Automated 

regression testing allows the user to quickly rerun the initial tests with ease. This thesis 

represents the first known attempt to make the benefits of automated regression testing 

applicable to the domain of speech recognition problems. 

1.2 Background 

Speech recognition is the process of converting an acoustic signal, captured by a 

microphone, into written text. A Speech Recognition Engine (SRE) is a software program 

that converts audio data to recognized speech. Significant strides have been made in the 

field of speech recognition over the past few decades (Chen, Rosebblum, & Vo, 1994) 

(Gupta, Harrold, & Soffa, 1992) (Memon, Banerjee, Hashmi, & Nagarajan, 2003) (Leung 

& White, 1992) (DeMara, et al., 2008). It has been a topic of focus in the medical, 

military, telecommunications and educational fields. For many persons, the ability to 

have a spoken conversation with a computer represents one of the ultimate challenges to 

the understanding of the production and perception processes involved in human 
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communication (Baker, 1975) (Chow, et al., 1987) (Dupont & Luettin, 2000) (Chow, et 

al., 1987) (Lee, Hon, & Reddy, 1990) (DeMara, et al., 2008). 

 

Many speech recognition systems are based on Hidden Markov Models (HMM) which 

were first introduced to speech recognition research in 1975 (Baker, 1975). A HMM is a 

statistical model that outputs a sequence of symbols or quantities. More precisely, the 

HMM is a probabilistic pattern matching technique in which the observations are 

probabilistic functions of the state. The widespread popularity of HMMs can be attributed 

to its simple algorithmic structure which is straight-forward to implement and is better 

suited to phoneme recognition than alternative recognition structures. Over the past 30 

years, although speech recognition has come so far that commercially-available products 

can support isolated word recognition rates for continuous speech, the problem of 

completely fluent speaker-independent speech recognition still requires specification of 

domain knowledge on valid word orderings. 

 

One approach to narrow the scope of the problem is to use speech recognition grammars. 

This is a faster and more accurate approach than an unconstrained search and yields 

better results as grammars provide a coding language to specify phrase contents. Instead 

of having endless possibilities to match within an open domain, the scope has been 

reduced to just a few words corresponding to the slots in each grammar template.  
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1.2.1 Speech Recognition Grammar 

Speech Recognition Grammar Specification (SRGS) is a W3C standard for how speech 

recognition grammars are specified (W3C, 2004). A speech recognition grammar is a set 

of word patterns that are used primarily to indicate to the speech recognizer what to 

expect from the user; specifically, words that may be spoken, patterns in which those 

words occur and the spoken language surrounding each word. The syntax of the grammar 

format can be specified in two forms: 

 

• ABNF or Augmented Backus-Naur Form – this is a non-XML plain text 

representation similar to traditional BNF grammar (W3C, 2004). 

• XML or Extensible Markup Language – this syntax uses XML elements to 

represent the grammar constructs (W3C, 2004). 

 

Both the ABNF and XML forms and have the expressive power of a Context-Free 

Grammar (CGF) and are specified to ensure the two representations are semantically 

mappable. It is be possible to convert from one form to the other and achieve identical 

semantic performance of the grammars. Semantic equivalence implies that both 

grammars accept the same language as input and reject the same language as input and, 

both grammars parse any input string identically. 
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This research focuses primarily on the use of the XML based grammar format which was 

influenced by the use of Microsoft’s Speech API (SAPI) version 5 SRE. Thus, Microsoft 

SAPI 5 specifies a CFG structure and grammar rule format using XML. A grammar 

compiler transforms the XML grammar into a SAPI 5 binary format for the SAPI 5 

compliant SRE. A SAPI 5 grammar text file is comprised of XML grammar elements and 

attributes that express one or more rules i.e. recognizable utterances. An example of a 

SAPI 5 compatible file of rules is show in Figure 2. 

 

 

Figure 2: Condensed XML Grammar File (DeMara, et al., 2008) 
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In Figure 2, the outermost tags, <GRAMMAR>, define the bounds of the grammar. 

Within the grammar, rules are defined using the <RULE> tags. Each rule contains one or 

more phrases, specified by <PHRASE> tags. These phrases are the actual words being 

recognized in a specific rule. Rules can either be active or inactive. When a rule is active, 

it indicates to the Speech Recognizer (SR) that it should listen for those words.Figure 2 

represents the XML grammar file used in LifeLike, the project on which this research is 

based (DeMara, et al., 2008). Each rule name represents a different context in the 

LifeLike domain. An overview of LifeLike will be presented later in this chapter. 

1.2.2 Motivating Example 

The task of manually building and testing grammars is most straightforward when there 

are a limited number of word interactions that need to be recognized. However, the 

grammar specification task rapidly encounters conflicting and cumbersome rule 

interactions as the word count increases.  

 

For example, the rule “UNIVERSITY” in Figure 2 has been contracted in the view-space, 

i.e. the entire rule is not shown in figure, but actually contains over one hundred 

University names that need to be recognized in Project LifeLike. These Universities are 

part of the National Science Foundation (NSF) project lexicon to be recognized. To 

realize the application-level goal that LifeLike supports speech recognition from the 

directors of any of the Centers at the Universities, it is impossible to predict the 
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recognition behavior without testing the utterances of each University name. Thus, the 

goal of this grammar rule is to facilitate better speech recognition performance when the 

director identifies his University to the system. The system then uses “stored knowledge” 

to access this University name to properly identify the user. This creates a large test plan 

update problem as the set of grammars is developed to support recognition of a 

meaningful conversation. 

1.3 LifeLike System Overview 

LifeLike is a NSF-funded project that involves the development of an interactive avatar 

prototype of a NSF program manager (DeMara, et al., 2008). The objective of the 

LifeLike project is to enable domain-specific conversation with a realistic avatar. The 

system architecture of LifeLike composes the LifeLike Speech Recognizer, the LifeLike 

Dialog Manager and the LifeLike Responsive Avatar Framework (RAF) and a SQL 

Database that stores domain-specific information. The LifeLike Speech Recognizer uses 

speech input and translates it to words which are then processed by the Dialog Manager 

where it is refined and finally passed to the Responsive Avatar Framework (DeMara, et 

al., 2008). 

1.3.1 LifeLike Dialog Manager 

The Dialog Manager (DM) is the central module in the LifeLike system. It directs 

conversation flow and maintains the current context of the conversation. This context is 
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relayed to the Recognizer and enables it to focus the recognition task. Processed speech 

input from the recognizer is sent to the DM module which uses it ontology to 

disambiguate the data. The disambiguated data is then channeled to the RAF. 

1.3.2 LifeLike Responsive Avatar Framework (RAF) 

Creating a realistic active digital representation of a particular human being is a 

challenging and multifaceted task. Creating a realistic active digital representation of 

particular human being is a challenging and multifaceted task. Initially, investigations 

were conducted to identify and evaluate the interoperability of COTS packages for facial 

modeling, rendering of real-time graphics, motion-capture, and text-to-speech synthesis.  

The result was a customized Graphical Asset Production Pipeline which encapsulates the 

tasks needed to create a visual representation of a human character (DeMara, et al., 

2008).  

1.3.3 LifeLike Speech Recognizer 

Speaker-independent audio input from a microphone headset is passed to the Speech 

Recognizer (SR) where it is processed by an SRE. There are two forms of recognized 

speech data. The first form utilizes the grammar XML file, where a context-specific rule 

is made active and the speech utterance is matched against the phrases in that rule. This 

narrow scope of words allows for a more precise match and better recognition results. If 

the Recognizer did not find a match of high confidence within the grammars, the second 
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form is used. In this form, the SR uses a generic non-customized grammar-free lexicon 

against which the utterance is matched.  

 

Since the grammar XML file allows better recognition rates, research in this area was 

intensified. Initially, a small prototype grammar file was built and tested with much 

success. However, as the knowledge base grew, building and testing the file manually 

proved futile and lacked ingenuity. The need for an autonomous audio regression testing 

system resulted.  

1.4 Regression Testing Process 

As software is developed, reemergence of faults is quite common. These faults could be a 

result of fixes being lost due to poor revision control or human error in revision control. 

In the case of grammar testing, the cause is due to nuances in the interaction between 

rules. This can be viewed as an instance where changes to impact a specific problem have 

side effects on more general cases which become evident as the knowledge base grows. 

In mainstream software development, it is considered good practice when a bug is located 

and fixed; a test that reveals the bug is recorded and regularly retested after subsequent 

changes to the program.  

 

According to Leung and White (Leung & White, 1989) regression testing is the testing 

process which is applied after a properly working program has been modified. It involves 
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testing the modified program with test cases in order to re-establish confidence that the 

program will perform according to its specification. These test cases form what is known 

as the test bucket.  Regression testing is a major part of software maintenance where the 

software system may be corrected, adapted to its new environment, or enhanced to 

improve its performance. 
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Figure 3: Audio Regression Tester (ART) System Diagram 
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The concept of Audio Regression Tester (ART) originated after elaborate and time-

consuming manual testing and retesting during the early developmental phases of the 

speech recognition grammars in the LifeLike project. ART is proposed as a solution to 

automatically build and test the XML grammar file each time the knowledgebase 

changes. When data is added to the SQL knowledgebase, ART will be invoked to build a 

new XML grammar file and to run tests on it. Currently, the LikeLike system is capable 

of recording users’ voices as wave files. Each response a user speaks is stored in a 

different sound file under a unique filename. This allows greater flexibility when playing 

the sound file against the grammar file. At any time, a user’s recorded voice can be used 

to test the grammar file. The voice file will be played against the oracle grammar file 

with select context-specific rules being active in the grammar file. The LifeLike system 

already knows which context the response is contained in and therefore we can make that 

specific rule in the grammar file active while playing the corresponding sound file. As 

seen in Figure 3, the SRE will output a text string to display the result of the test i.e. 

whether there was a match between the output of the sound file and new grammar file 

and the sound file and the oracle grammar file or whether there was no match i.e. if there 

was proper recognition or not.  

1.5 Challenges in Regression Testing with respect to Speech Recognition Grammars 

The problem of regression testing can be broken down into the test selection problem and 

the test plan update problem. The test selection problem is concerned with the design and 
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selection of test cases to fully test a modified program (Leung & White, 1989). Some test 

cases can be reused from those in the existing test plan while new test cases might need 

to be created based on modifications in the program. This selective strategy can reduce 

the cost of retesting compared to the retest-all policy, which is designed to run all tests in 

the test bucket on the software system. However, a selective regression testing policy 

might not be cost effective if the effort made in test selection exceeds the cost of 

executing the extra test cases used by the re-test all policy. The test plan update problem 

is concerned with the management of a test plan as the software system is undergoing 

modification (Leung & White, 1989). Some tests will become obsolete and new tests 

cases will need to be created to test the modifications and new features of the software. 

This has also been referred to as the coverage identification problem (Rothermel & 

Harrold, 1997).  

 

Since regression testing can account for as much as one-half the cost of software 

maintenance (Bezier, 1990) (Leung & White, 1989), it is essential to choose the correct 

tests for the speech recognition grammars while at the same time maintaining a 

comprehensive test plan. If a modification is made only to part of the XML grammar file 

e.g. a single or multiple phrases being added to a single rule, it is momentous that we 

design a test that will activate only that rule and run the relevant sound file(s) against the 

XML grammar file. If done manually, it would require someone to manually activate a 

specific rule in the grammar file, and then using a range of human speakers to exercise a 
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voice recognition program and microphone headset, to test each word in the rule to 

ascertain whether changes in the file have caused the quality of recognition of other 

phrases in the domain to be degraded. Since we have used only a single rule in this 

example, finding the changes in the file and undoing them might not be as difficult as 

compared to when there are multiple rules being modified in the XML grammar file. 

Perusing the file to find the additions or modifications becomes a tedious and perpetual 

task which ART aims to avoid.  

 

Another challenge in regression testing with speech recognition grammars is the test case 

selection policy. Sound files that contain the recorded voices could be used by ART to 

test the XML grammar file. Yet, it is unclear which to select. The main consideration of 

voice recognition in LifeLike is the fact that the phoneme recognition system is speaker-

independent. This means that SAPI strives to recognize any person who speaks the 

English language. While many persons speak what would qualitatively be referred to as 

proper English in terms of pronunciation, LifeLike operates in the more realistic 

environment which must consider persons with different accents who do not necessarily 

speak fluent English. This is an important consideration in building the test cases for 

ART since we will need to establish benchmarks will allow comparative testing. ART 

utilizes an ideal set is this respect since it has access to any of the pre-recorded sound 

files that contain different users’ voice. This will allow it to readily compare persons with 

different accents against the grammar file to see how well their voice was deciphered by 
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the recognizer. These tests can possibly be used in the future to provide data which will 

allow LifeLike, to be more precise in interpreting non-traditional English speakers. 

1.6 Contribution of Thesis 

This thesis presents the development and analysis of a novel speech regression testing 

system called ART. ART is employed as part of the LifeLike project and the results 

presented confirms the hypothesis that manual testing of grammars costs an enormous 

amount of labor which inadvertently inhibits the amount of grammars that can be 

practically built and tested within a given development period and under practical budget 

constraints. 

 

CHAPTER 2 introduces speech recognition and regression testing fields. This chapter 

gives an overview different speech recognition technology in use. It also shows the use of 

regression testing in software development. 

 

CHAPTER 3 provides an in-depth view of the LifeLike system. It gives a comprehensive 

understanding of the different components that comprise LifeLike and the underlying 

technologies used in each as they relate to ART. 
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CHAPTER 4 describes in detail the software that was developed. This section 

investigates the design goals of ART along with other software that assist in the 

regression testing process.  

 

CHAPTER 5 provides results obtained from ART and also shows the relationship 

between recorded voice and naturally spoken voice. A cost-benefit analysis is also 

presented to show the benefits of ART as compared to manual regression testing. 

 

CHAPTER 6 discusses overall conclusions, and outlines topics for possible future work.  
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CHAPTER 2: PREVIOUS WORK 

2.1 Speech Recognition 

Speech recognition technology has been around for quite some time, but significant 

strides made by Baker in the 1970’s sparked new interest in the field. Graduate students, 

James and Janet Baker became interested in speech technology while observing 

waveforms of speech on an oscilloscope at Rockefeller University in 1970. Technology 

at the time was only able to recognize a few hundred words of discrete speech, provided 

the system was trained on the speaker and the speaker paused between words. James 

Baker saw the waveforms and the problem of natural speech recognition as an interesting 

pattern-recognition problem. The Bakers moved to Carnegie Mellon University (CMU) 

and began working on natural speech recognition capabilities. While most speech 

researchers at that time were using contextual information to recognize spoken language, 

the Bakers took a different approach; their method was based purely on statistical 

relationships, such as the probability any two or three words would appear one after 

another in spoken English. This was where James Baker had introduced the Markov 

process in speech recognition. A Hidden Markov Model can be interpreted as a generator 

of vector sequences. It is a finite-state machine that changes state once every time unit, 

and each time, t, that a state, k, is entered, an acoustic speech vector, yt, is generated with 

probability density bk(yt) (Young, 1996). 
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Not too long after, in 1982, the Bakers formed their own company, Dragon Systems 

which led to today’s popular product Dragon Naturally Speaking (Nuance 

Communications, 2008). Lernout & Hauspie (L&H), a Belgium-based speech recognition 

company formed in 1987, acquired Dragon Systems in 2000. In 2001, L&H went 

bankrupt and ScanSoft purchased the rights to Dragon products. ScanSoft merged with 

Nuance Communications in September, 2005 (Nuance Communications, 2005) with the 

combined entity being called Nuance Communications. Nuance continues to sell Dragon 

Systems under the name Dragon Naturally Speaking. Other companies such as IBM, with 

its ViaVoice (Embedded ViaVoice, 2008) product and Microsoft, with its SAPI 

(Microsoft Corporation, 2008) product, offer similar solutions as consumer products and 

system development kits for Speech Recognition applications.  

2.1.1 Hidden Markov Models in Speech Recognition 

The use of HMMs in speech recognition was initiated by James Baker with research done 

on the Dragon System (Baker, 1975). Since then several systems have employed the use 

of HMMs to aid in speech recognition. One notable system that has been under 

development for quite some time and claims to be able to do continuous speaker-

independent speech recognition, is the SPHINX system developed at CMU (Lee, Hon, & 

Reddy, 1990). SPHINX is a system based on HMM with Linear Predictive Coding 

(LPC)-derived parameters that aims to tackle three major problems in speech recognition: 

speaker dependence, isolated words and small vocabulary. Research has shown that error 
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rates increased by 300-500 percent when a speaker-dependent systems is trained and 

allows to be used in the speaker-independent domain (Levinson, Rosenberg, & Flanagan, 

1977) (Lowerre, 1977). This is the reason most speech recognition systems require a 

speaker to train the system before reasonable performance can be achieved. Based on 

results published from the SPHINX project, it was shown that large-vocabulary speaker-

independent continuous speech recognition is feasible. This implies that there were 

drawbacks to developing such a system. Detailed models allowed the HMMs to perform 

better but needed considerable training to be successful (Lee, Hon, & Reddy, 1990). 

Some of the sophisticated modeling techniques used in this system helped to reduce the 

error rate from the baseline system by as much as 85% (Lee, Hon, & Reddy, 1990). 

SPHINX continues to be developed by the CMU Sphinx Group and is also an open 

source product. 

 

Research done in BBN Laboratories produced a continuous speech recognition system 

called BYBLOS (Chow, et al., 1987). This system makes use of robust context-dependent 

phonetic models using HMMs. BYBLOS is composed of a signal processing frontend, 

dictionary, phonetic model training system, word model generator, grammar and decoder 

(Chow, et al., 1987). The parameters of the HMMs are automatically extracted from 

spoken speech and corresponding text transcription by the Baum-Welch (also known as 

the Forward-Backward) algorithm (Chow, et al., 1987). For the training of an utterance, 

the training system uses speech and text and builds a network of phonemes using the 
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dictionary. According to (Chow, et al., 1987) BYBLOS gives a word accuracy in the 

98.5% range for speaker-dependent mode after 15 minutes of training; and, in speaker-

adaptive mode, recognition rates of 97% is achieved after the HMM parameters are 

adapted to the new speaker. 

 

Chung, DeMara and Moldovan (Chung, DeMara, & Moldovan, 1993) present a parallel 

computational model for the integration of speech and natural language processing. The 

model adopts a hierarchically-structured knowledge base and memory-based parsing 

techniques. Processing is carried out by passing multiple markers in parallel through the 

knowledge base. Speech-specific problems such as insertion, deletion, substitution, and 

word boundaries have been analyzed and their parallel solutions are provided. The 

complete system has been implemented on a parallel machine and is operational. Results 

show an 80% sentence recognition rate for the air traffic control domain. A 10-fold 

speed-up can be obtained over an identical sequential implementation with an increasing 

speed advantage as the size of the knowledge base grows (Chung, DeMara, & Moldovan, 

1993). 

 

Semantic Network Array Processor (SNAP) is a parallel architecture for knowledge 

representation and reasoning that uses the marker-propagation paradigm (DeMara & 

Moldovan, 1993). The primary application areas of SNAP are natural language 

understanding and speech processing. A first-generation SNAP-1 system has been 
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designed and constructed using an array of 144 digital signal processors organized as 32 

multiprocessing clusters with dedicated communication units, a tiered synchronization 

scheme, and multiported memory network (DeMara & Moldovan, 1993) . 

2.1.2 Augmenting Hidden Markov Models 

Speech recognition technology does not understand the meaning of a sentence but merely 

converts utterances and matches them with words that together form a phoneme. 

According to (Lieberman, Faaborg, Daher, & Espinosa, 2005) acoustic analysis alone is 

not enough for accurate speech recognition. For example the two phrases “recognize 

speech using common sense” and “wreck a nice beach you sing calm incense,” sound 

nearly identical but have completely different meanings. This is one of the underlying 

challenges facing any speech recognition technology of needing to distinguish between 

words and sentences that are phonetically the same yet contextually different. Most 

previous approaches used statistical language models based on techniques as Hidden 

Markov Models and n-grams. These models calculate the probability of each word in a 

vocabulary appearing next, based on the previous sequence of words. Research done by 

(Lieberman, Faaborg, Daher, & Espinosa, 2005) suggested the use of Commonsense 

Knowledge to solve the context problem with semantics, in addition to the statistical 

model. Their idea was to build a large semantic network of concepts, similar to WordNet 

(Fellbaum, 1998), that allows the understanding of relationships between concepts in 
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thousands of domains. This domain knowledge can be used by SREs to disambiguate 

phonetically similar phrases (Lieberman, Faaborg, Daher, & Espinosa, 2005).  

 

There has been the use of visual speech cues to help improve speech recognition. Work 

done by (Dupont & Luettin, 2000) uses a visual module to track the lip movement of a 

user and extract relevant speech features. This is done with an appearance-based lip 

model that is learned from example images. Data is extracted from the curves in the lips 

and grey-level information of the mouth area. The visual speech information is 

represented in the form of shape and intensity parameters. It is argued that in noisy 

environments, phonemes that are hard to understand are easier to distinguish visually and 

vice versa (Dupont & Luettin, 2000). In this research, both the visual and acoustic 

modules are modeled using HMMs. This research produced results that attest to the fact 

that adding the visual speech components to acoustic-only systems provides better speech 

recognition and reduces the error rate in the presence of noise. 

 

One of the latest pieces of research in this area is that done on the DARPA Global 

Autonomous Language Exploitation (GALE) program (Qin, et al., 2006). Some of the 

major components of the system are speech recognition, machine translation and question 

answering. The speech system is modeled by a five-state, left-to-right HMM with no skip 

states and is used partially to automatically transcribe Mandarin broadcast conversation 

to text (Qin, et al., 2006). The GALE project builds upon an earlier DARPA Effective 
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Affordable Reusable Speech-to-text (EARS) project which was used primarily to 

transcribe English telephone conversations (Chen, et al., 2006). The techniques used in 

EARS extend the general framework of HMMs and use Gaussian mixture models 

(GMMs) as output distribution (Chen, et al., 2006).  

 

 After years of research in speech recognition, little has changed since the introduction of 

HMMs. Most systems either use these statistical models alone or augment them to attain 

better speech recognition. Since this research isn’t based on solving the problem of 

speech recognition, but augmenting available tools to attain better speech recognition, the 

next section will provide some insight into the commercial tools available, giving more 

emphasis to the ones used in this research. 

2.1.3 Commercial-Off-The-Shelf (COTS) Tools for Speech Recognition 

Some of the more popular COTS speech recognition tools available today include 

Nuance’s Dragon Naturally Speaking (Nuance Communications, 2008), IBM’s ViaVoice 

(Embedded ViaVoice, 2008), Nuance’s VoCon 3200 (Nuance Communications, 2008) 

and Microsoft’s Speech Application Programming Interface (SAPI) (Microsoft 

Corporation, 2008). Dragon Naturally Speaking version 10 boasts recognition rates as 

high as 99% and also claims to never make a spelling mistake. However, the Software 

Development Kit (SDK) for Nuance’s speech products, Dragon Naturally Speaking and 

VoCon 3200, are not free and can be quite costly to acquire. ViaVoice while claiming to 
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provide superior speech recognition in multiple languages, multiple grammar formats, 

and text-to-speech (TTS) capabilities, is also commercially licensed and hence not free. 

Microsoft on the other hand, provides its Speech API free of charge. Based on the cost 

limitations posed by the other products, SAPI version 5.3 (Microsoft Corporation, 2008) 

was chosen as the most suitable SRE for this research. SAPI 5.3 supports the expression 

of SRGS as XML as well as it enables SRGS grammars to be annotated with semantic 

information. SAPI 5.3 is a derivative of the SAPI 5.0 family, in which applications and 

engines do not communicate directly, but rather through a special runtime Dynamic-Link 

Library (DLL). In the design phase of the LifeLike Recognizer, modularity was important 

and this prompted the addition of the Speech Recognizer Control (SRC) layer to the 

architecture. The SRC was implemented using Chant SpeechKit 5 (Chant Inc., 2008) and 

is shown below in Figure 4. 
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Figure 4 gives a high level understanding of the modularity encapsulated in the layered 

architecture model. Using the SRC layer gives flexibility to use any other recognizer 

should it become necessary. 

2.2 Regression Testing 

Regression testing is an important activity in software maintenance. It is the process of 

validating the modified parts of the software and ensuring that no new errors are 

introduced into previously tested code. Reference to software testing dates back to as 

early as 1950. According to (Hartmann & Robson, 1988), Miller’s paper presented a 

citation to Turing indicating that ‘testing is the empirical form of software quality 

LifeLike Speech Recognizer 

ChantSR 

VoCon 

 
Nuance 
VoCon 

3200 

 
Dragon 

Naturally 
Speaking 

Dragon SMAPI 

 
IBM 

ViaVoice 
 

SAPI 5 
Recognizer 

SAPI 5 
 

SAPI 4 

 
SAPI 4 

Recognizer 

SRE 
Layer 

SRC 
Layer 

Smart 
Layer 

Figure 4: Layered Speech Recognition Architecture (DeMara, et al., 2008) 
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assurance, while proving is the theoretical way’ (Miller, 1979). Systems involved in 

complex tasks such as speech recognition are mainly amenable to empirical analysis 

making this form of testing vitally important during product development. 

2.2.1 Regression Testing Strategies 

Leung and White describe two types of regression testing: progressive regression testing 

and corrective regression testing (Leung & White, 1989). Progressive regression testing 

involves a modified specification. When new data requirements are incorporated in a 

system, the specification will be modified to reflect these additions. It is usually 

employed at regular, fixed intervals. On the other hand, in corrective regression testing, 

the specification does not change. Some program instructions and design decisions are 

modified and test cases can be reused. Corrective regression testing is usually undertaken 

after corrective maintenance activities that can occur at any time and may be invoked at 

irregular intervals. 

 

If there is a test bucket or test suite available at the time of regression testing, a decision 

has to be made whether to use all or some of the tests. This dilemma gives rise to two 

different testing strategies. The retest-all strategy reuses all tests in the suite but could 

waste computational resources and time if only minor changes were made to the system. 

The selective strategy uses some of the test cases and avoids wasteful overheads. The 

selective strategy is more economical than the retest-all strategy if the cost of selecting a 
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reduced subset of tests to run is less than the cost of running the tests that the selective 

policy allowed us to omit (Leung & White, A Cost Model to Compare Regression Test 

Strategies, 1991). The selective strategy was implemented in TestTube (Chen, 

Rosebblum, & Vo, 1994). In TestTube, Chen et al. made an analogy between selective 

recompilation, in the make and nmake tools, and selective regression testing. These tools 

employ a strategy whereby recompilation is done only on source files that have been 

modified or files that depend on modified files. In regression testing, a test unit must be 

rerun if and only if any of the program entities it covers has changed. The real challenge 

is to identify the dependency between a test unit and the program entities it covers.  

 

The selective retest technique has been summarized by (Rothermel & Harrold, Analyzing 

Regression Test Selection Techniques, 1996) in the following steps: 

 

• After modification, program P has become P′  

• Select a subset of test cases T′ from an existing test suite T to execute 

on P′ 

• Test P′ with T′ to establish the correctness of P′ with respect to T′ 

• Examine the test results to identify failures 

• Correct the failure by identifying the faults 

• Create a new test suite for P′ from test results 
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The steps mentioned above address four problems in regression testing: regression test 

selection, coverage identification problem, test suite execution problem, and test suite 

maintenance problem (Rothermel & Harrold, Analyzing Regression Test Selection 

Techniques, 1996). 

 

According to (Leung & White, 1992) it is important to identify different levels of 

abstraction that regression testing should be applied. These include unit testing, 

integration testing and system testing. 

2.2.1.1 Unit-Level Regression Testing 

The selective regression testing strategy has also been used in unit testing. In particular, 

unit testing involves verifying that each individual module of a program is working 

properly. Automated unit regression testing using make was explained by (McCarthy, 

1997). The method he proposed involves creating a test case for each module and writing 

targets in the makefile, indicating the test case’s dependency on the module it tests. If the 

unit tests have passed the first time, make is run with the accepted target. This run 

produces reference copies or canon files of the test results (McCarthy, 1997). If changes 

are made in the future, a different target called the regress target is run to compare the 

new test outputs with the canon files and list the differences in what (McCarthy, 1997) 

refers to as a regression report. The report immediately shows what has changed. If the 
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changes are correct, they are accepted and new reference copies are made; otherwise, the 

problem is corrected and the regression tests are rerun.  

 

Korel and Al-Yami (Korel & Al-Yami, 1998) proposed a method to do corrective 

regression testing at the unit level. In corrective regression testing, the specification is 

unchanged for a module; their idea is to find input data that generate different results 

when tested on the original and modified modules. If such data is found, it indicates an 

error because the input data is supposed to produce the same results for both modules. 

According to (Korel & Al-Yami, 1998) the likelihood of the error being in the changed 

module is very high since the original module was tested and previously used without 

problems.  

 

One approach to data flow regression testing using slicing type algorithms was explained 

in (Gupta, Harrold, & Soffa, 1992). This approach explicitly detects definition-use pairs 

that are affected by a program change without the use of data flow history or the need to 

recompute the data flow for the entire program. Two slicing algorithms were used in this 

approach to directly ascertain the affected definition-use pairs; BackwardWalk and 

ForwardWalk (Gupta, Harrold, & Soffa, 1992). The BackwardWalk algorithm identifies 

the definitions of a set of variables V that reach a program point P. It then starts from that 

program point and does a backward traversal through the program for definitions of all 

variables in U (Gupta, Harrold, & Soffa, 1992). It ends when all definitions have been 
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countered along each path in the program. The FowardWalk algorithm starts from the 

same point P and works forward to find the uses and subsequent definition-uses which 

are affected by the change (Gupta, Harrold, & Soffa, 1992).  

2.2.1.2 Integration-Level Regression Testing 

Integration testing is the phase of software testing in which individual modules are 

combined and tested as a group. Integration testing follows unit testing and helps to 

detect failures that weren’t discovered during unit testing. 

 

The firewall concept developed by (Leung & White, 1992) (Leung & White, 1990) 

attempts to separate the modules that were affected by program changes from the rest of 

the code. The unchanged modules that interact with the modified ones are their direct 

ancestors and descendents and could also be part of the firewall. According to (Leung & 

White, 1990) all modules in four basis boundary cases they have defined must be 

included as modules within the firewall. The basis boundary cases for the firewall need to 

encompass program specification changes and code changes. Two of the boundary cases 

correspond to an unchanged module calling a modified module and the other two 

correspond to a modified module calling an unchanged module (Leung & White, 1992). 

Leung and White showed that the firewall concept reduced the amount of integration 

testing needed. 
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Regression test selection by the use of control flow graphs was introduced by (Rothermel 

& Harrold, A Safe, Efficient Regression Test Selection Technique, 1997). Control flow 

graphs (CFGs) are used to select tests from the test bucket. The algorithms handle either 

single modules or groups of modules and do not require prior knowledge of where code 

changes have been made. SelectInterTests is the algorithm used to create CFGs for both 

the original program P and its modified version P′. A test history table is created to keep 

track of which test cases were related to each traversed edge in the original program. 

SelectTests2 is invoked on the entry procedures, PE and P′E of the two programs and if 

there are differences between the two CFGs, the corresponding test cases in the history 

table are selected (Li & Wahl, 1999).  

2.2.1.3 System-level Regression Testing 

System testing is testing applied to complete, integrated systems to evaluate the system’s 

compliance to specification. System testing does not require knowledge of the inner 

design of the software components. 

 

TestTube is a system that performs selective retesting of software written in the C 

language (Chen, Rosebblum, & Vo, 1994). It is used in system testing and identifies 

which subset of a test suite need to be used for retesting a new version of a system. 

TestTube works by splitting a software system into basic code entities, then monitoring 

the execution of each test unit and analyze its relationship with the system under test. 
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This allows TestTube to determine which subset of code entities the test unit covers. If 

there is a change in the system, the test unit that covers the entity that contains the change 

needs to be rerun. The system source code is instrumented by the Annotation 

Preprocessor (app) for C (Chen, Rosebblum, & Vo, 1994). A C program database is then 

built for each version of the system under test using the C information abstractor (CIA) 

(Chen, Rosebblum, & Vo, 1994). This database contains information about the system 

entities and entity dependency. If there are two versions of the program, TestTube 

analyzes the two corresponding databases and produces an entity difference list (Chen, 

Rosebblum, & Vo, 1994). 

2.2.2 Regression Testing in the Object-Oriented Domain 

The object-oriented (OO) paradigm for software development introduces new concepts 

such as encapsulation, inheritance and polymorphism all of which present unique 

problems in regression testing.  

 

One approach to regression testing of object-oriented programs was presented by (Kung, 

Gao, Hsia, Toyoshima, & Chen, 1996). The regression test model used in this approach 

was developed to capture and represent complex relationships and interdependence 

between various parts of a C++ program at the class level. Three types of diagrams were 

used in this approach: object relation diagrams (ORD), block branch diagrams (BBD) and 

object state diagrams (OSD) (Kung, Gao, Hsia, Toyoshima, & Chen, 1996). The ORD 
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shows the inheritance, aggregation and association relationships between classes; the 

BBD allows understanding of member functions in a class and their relationship to other 

member functions and data items; and, the OSD is used to collect dynamic behavior of 

class objects (Kung, Gao, Hsia, Toyoshima, & Chen, 1996). When a change is made in 

an OO program, this change can propagate to different levels. This means that regression 

testing should be done at all the levels the change has affected. Class changes can be 

classified into class interface changes, class relation changes, object behavior changes 

and class member changes. A class firewall is used to identify the effects of a class 

change at the class level while the concept of test order was proposed as a test strategy 

for class unit retesting and class reintegration testing. (Kung, Gao, Hsia, Toyoshima, & 

Chen, 1996). This approach has showed promising results in realistic applications such as 

the InterViews class library (Kung, Gao, Hsia, Toyoshima, & Chen, 1996). 

 

Rothermel and Harrold (Rothermel & Harrold, 1994) introduces a new selective retest 

policy for object-oriented software. Their approach builds on the concept of program 

dependence graphs (PDGs). PDGs encompass both control and data dependence 

(Rothermel & Harrold, 1994). Classes, unlike a program can have multiple entry points. 

This is as a result of classes having multiple public methods. To perform class testing, a 

driver is used to call different methods in the class in varying order. The PDG links all 

the driver programs together by selecting a root driver and adding edges to it from the 

public methods in the class (Rothermel & Harrold, 1994). 
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2.2.3 Regression Testing of Graphical User Interfaces 

Graphical User Interface (GUI) testing is difficult since it involves many inputs, events 

and states. One other serious problem with testing GUIs is that the output can be 

graphical or may be an event. This means that if the maintenance engineer doesn’t have 

sufficient knowledge of the GUI, and performs testing with the expectation of observing 

a fault and no visible change is seen, bugs can still be overlooked. 

 

GUI interaction testing is one approach to this problem (White, 1996). This method seeks 

to test the pairwise interactions between all GUI objects and selections in an automatic 

and effective way. Two ways these interaction problems can arise are statically and/or 

dynamically (White, 1996). Static GUI interaction uses a single graphical screen whereas 

in dynamic GUI interaction a single action on one screen causes another screen to be 

brought up and the process can be repeated. Three algorithms were investigated in this 

approach: enumerate the elements of the interacting GUI objects (factors) and duplicate 

elements when necessary; generate the elements of each factor randomly, duplicating 

elements when needed; and, generate elements of each factor by using Mutually 

Orthogonal Latin Squares (White, 1996). If certain conditions are met, the algorithm 

based on the concept of Latin Squares results in the minimum number of tests generated 

(White, 1996). 
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More recently, a framework was developed to do frequent and automated retesting of 

GUIs. DART (Daily Automated Regression Tester) automates the entire testing process 

from structural GUI analysis, test case generation, test oracle creation, and code 

instrumentation to test execution, coverage evaluation, regeneration of test cases, and 

their re-execution (Memon, Banerjee, Hashmi, & Nagarajan, 2003). In the initial stages, 

DART performs GUI ripping by analyzing the Application Under Test (AUT) GUI 

structure, traversing each of the GUI’s windows and identifies objects and their 

properties (Memon, Banerjee, Hashmi, & Nagarajan, 2003). These are then extracted and 

placed in an XML file. The GUI structure is used to create event-flow graphs and an 

integration tree which are used to create test cases and evaluate test coverage. The event-

flow graph represents a top level action and the subsequent actions that can follow 

whereas the integration tree is constructed using the event-flow graph and shows the 

interaction among components (Memon, Banerjee, Hashmi, & Nagarajan, 2003). 

According to the authors, the effectiveness of DART will be studied by analyzing the 

number of faults detected.  
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CHAPTER 3: LIFELIKE 

LifeLike is a system geared at developing an interactive avatar prototype of Dr. Alex 

Schwarzkopf who is a program director at NSF. It comprises various modules that 

seamlessly communicate visually, aurally and orally with a user. The three main modules 

are the Speech Recognizer (SR), the Dialog Manager (DM) and the Responsive Avatar 

Framework (RAF). The SR module is responsible for doing speech-to-text translation of 

a response provided by the user. The DM module uses the output from the SR along with 

its knowledge base to make sense if what was said. The RAF provides a life-like image 

of Dr. Schwarzkopf along with text-to-speech capabilities. The entire system is bound by 

a message passing communication protocol implemented using sockets. It helps to keep 

the modules of the system in synch by providing a channel for acknowledgement to and 

from each module. The remained of this chapter will be dedicated to giving an in-depth 

view of LifeLike as it formed the development system in which ART is tested.  

3.1 Speech Recognizer Module 

This module was designed using a layered model to allow greater flexibility so as to 

support various COTS engines. Figure 4 provides a visual understanding of the layers 

that make up SR architecture i.e. the SRC, SRE and Smart Layer. The SRC provides 

functionality to allow compatible COTS recognition engines to be used.  The SRE is 

currently implemented using SAPI version 5.3 but can be replaced by other SREs made 
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by Dragon (Nuance Communications, 2008), Nuance (Nuance Communications, 2008) 

and IBM (Embedded ViaVoice, 2008). 

 

The SRE uses the incoming audio signal captured by the audio capture device and 

compares it with its standard dictionary using the stochastic process of Markov Chains 

(Juang & Rabiner, 1991). This process matches each phoneme to the most probably text 

match for a particular language. Markov Chains finds the future states probabilistically. 

Therefore, the SRE can predict which word to match to a phoneme based on the 

probability of the word being in a particular sentence given certain rules.  

 

The SRC layer is implemented using Chant SpeechKit 5 (Chant Inc., 2008). This allows 

the use of SREs from different vendors enabling code portability and reduced 

developmental time. Although Chant supports a wide array of programming languages, 

C# was chosen as the language of choice for the development of the SR due to its simple, 

modern, general-purpose, object-oriented nature.  

 

The Dialog Manager also acts as a communication server to which the SR is connected 

via TCP/IP (Transmission Control Protocol/Internet Protocol). The DM sends a 

“microphone on” signal to the SR indicating that the SR should listen for a response from 

the user. After the user has made one (or more) utterance(s), the underlying SR 

automatically shuts the microphone off and sends the recognized event to the DM. The 
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microphone is turned off at this point to avoid spurious noise from interfering with 

recognition events. 

 

Activation of the SR invokes the primary recognition strategy which is grammar-based. 

The grammars are grouped in the XML file by specific top-level rules which are 

synonymous with a specific context in this domain. The DM indicates through the socket 

which rule to make active for a particular instance of recognition. This provides the 

recognizer with only a small subset of active grammars which reduces the likelihood of 

confusion encountered in the recognizer if all rules were simultaneously made active in 

the XML file. A secondary backup strategy employed in the SR is dictation or free-

speech mode. This has been employed as a secondary approach to parsing which is 

performed in parallel. The dictation results attempts to provide a failsafe backup during 

recognition that can be used if there was no recognition achieved the primary grammar-

based approach. Even though it might not be as accurate as grammars, it still helps in 

somewhat identifying what the user was trying to say. One scenario of this is having an 

active grammar rule containing the phrase “director”; and, when the user speaks into the 

microphone the recognizer does not pick up “director” but rather “directing”. This is 

where the free-speech mode is automatically activated and outputs “directing”. Although 

it is not an exact match to “director”, it helps to provide some data to the DM which can 

ultimately be used to understand what the user was trying to convey. Table 1 gives a few 

more examples of these cases. 



40 

 

 

Table 1: Examples of Utterances and their corresponding output  

Utterance Grammar Result Dictation Result 

director director directing 

evaluator evaluator evaluate 

University of Central 
Florida 

University of Central 
Florida 

University of Central flower 

University of Texas at 
Austin 

University of Texas at 
Austin 

University of Texas at 
dustin 

Micheal Lovell Micheal Lovell Micheal Powell 
 

Anjan Bose Anjan Bose Anjan hose 
 

 

The grammar rules and phrases used in the grammar mode are automatically generated 

from a relational database that facilitates dialog development, maintenance and 

portability. New speech information for any domain can be added to the database and 

functions can be invoked to create a new grammar file. This automatic file creation and 

the use of an XML file allow the recognition engine to quickly switch between different 

recognition domains. Along with the creation of grammars, the SR posses the ability to 

record and store the user’s vocal output in a wave file. These wave files can then be used 

to do numerous tasks such as regression testing and reconstruction of the conversation. 
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3.2 Dialog Manager Module 

The dialog manager is the primary controller module of the LifeLike system. This 

module receives text streams from the Speech Recognizer module which helps it to 

determine how to react to contextual shifts. The DM also coordinates communication 

between the modules. The DM is tasked with making sense of what was decoded by the 

SR. It does this by using data stored in the database along with the context-specific text 

string(s) passed from the SR.  

3.2.1 Natural Language Processing (NLP) 

Natural Language Processing refers to a branch of Artificial Intelligence (AI) where a 

human agent interfaces a machine in his own native tongue. This interaction can be in the 

form of text based entry or spoken word speech input. There are four major issues 

associated with NLP; two of which will be explained below: linguistic systems and 

knowledge representation structures (Wilks, 2005).  

3.2.1.1 Linguistic Systems 

Linguistic Systems are those systems which interpret user input at the grammatical level. 

These systems have what is known as a parser, used to interpret a human’s intent. 

Lieberman et al (2005) mention how difficult it is for a system to understand and 

disambiguate two phonetically similar sentences with different semantic print. They 

exemplified this claim with the use of “wreck a nice beach” as a homonym for “recognize 
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speech.” Although these phrases sound alike, they have a completely different meaning. 

Speech recognition systems utilize HMMs to correctly decode each correctly pronounced 

word, but do nothing to interpret the semantic meaning of the sentence. Interpreting the 

series of words is challenging and resolving these ambiguities often require the use of 

contextual cues to constrain the number of possible matching words for the user’s 

utterance.  

 

Syntactic confusion occurs when parts of sentences can be interpreted in an array of 

permutations. For example, “the man drank coffee with a straw” can be interpreted as a 

man drinking a beverage with the aid of a straw, or it could be understood as a man 

drinking a particular cup of coffee that contained a plastic straw. Nevertheless, the 

sentence is confusing and requires additional information to interpret the semantic 

meaning. This kind of ambiguity often causes confusion in human minds, and 

understandably presents difficulty to automated systems. Once again, contextual 

recognition remains paramount in maintaining conversational cohesion. Combining 

knowledge of the current state of the environment with the current conversation goes a 

long way in resolving these syntactic ambiguities.  

 

Semantic ambiguity refers to situations where sentence parts may be understood in 

multiple ways. These types of ambiguities can as a results of homophones; i.e. words that 

are pronounced the same but are different in meaning regardless of if they are spelled the 
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same or not. For example, “pitcher” can create bewilderment for any system. An instance 

of this type of confusion occurs in the following: “The cycle has stopped.”  In this 

sentence, the semantic intent of ‘cycle’ is in question since it could mean either a bicycle 

or a recurring sequence. Since there is no real justification in choosing either meaning, it 

is once again necessary to be equipped with the context related to the current state of 

affairs.  

 

Creating linguistic systems based on NLP systems is at best inaccurate and ambiguities 

can be resolved with a good grasp of the situational context associated with the linguistic 

utterances.  

3.2.1.2 Knowledge Representation 

Knowledge representation is crucial to resolve ambiguities. Wilks (2005) mentions that 

language has been viewed as a trivial issue once knowledge is established in a proper 

representation. Traditionally, this knowledge representation is expressed in logic-based 

systems. Knowledge modeling is concerned about the storing and processing of 

information so that computer programs can interpret this knowledge to aid, in this case, 

with speech recognition. Wilks (2005) mentions three viewpoints on the relationship of 

language and logic statement. The first dictates that logic inferences must be derived 

from conversation. Instead of parsing a sentence for its face value, the meaning of the 

utterance may have logical attachments that must be inferred from a back-end knowledge 
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model. The second viewpoint maintains meaning can exist outside logic. This essentially 

assumes some sort of association between words that is not established using logic alone. 

Lastly, the third viewpoint says that both logic and language suffer from the same 

problem of ambiguity. Since knowledge representation is usually expressed in logic-

based syntax, creating a predicate logic rule-base allows easy sentence formation by 

reading off each individual rule. This concept aligns itself well with LifeLike which 

strives to have a natural conversation with the user.  

3.2.2 Dialog Manager Architecture 

Conversational goal management is achieved using a context-based approach (DeMara, 

et al., 2008). A context refers to a situation refers to a particular situation that is dictated 

by the configuration of internal and external circumstances such as the internal state of 

the conversation agent and the perceived state of the human trainee.  A goal condition is 

associated with ever context and a group of relevant actions that can be executed to 

achieve this condition. A goal condition is defined as an end state that an agent desires to 

reach to impart specific knowledge to the trainee (DeMara, et al., 2008).  



45 

 

 

 

It is critical that conversational goals are properly handled by the dialog system since the 

user can have multiple goals or introduce new goals at any time. This means that the 

system must be able to service multiple goals simultaneously while at the same time be 

able to take on new goals, unannounced. This ability to alternate between goals in real-

time lends itself to the Context-Based Reasoning (CxBR) used by Stensrud, Barrett, Trinh 

and Gonzalez (Stensrud, Barrett, Trinh, & Gonzalez, 2004). CxBR agents provide 

responses that are directly related to active content. The fact that contexts correspond to 

accomplishing particular goals combined with the idea that conversational goals take on a 

very fluid nature, yields the assertion that goal management can be facilitated with CxBR 

methods.  
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Recognizer 

 
 

Speech Output 

 
 
 

 
 
 

Knowledge 
Manager 

 
 
 

Context-based 
Dialog Manager 

 
Speech 
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Figure 5: LifeLike Dialog Manager Architecture (DeMara, et al., 2008) 



46 

 

 

Figure 5 shows the architecture of the Dialog Manager, which is made up of three 

components: the Speech Disambiguator, the Knowledge Manager and the CxBR Dialog 

Manager. The Semantic Disambiguator serves as a listening comprehension filter. It uses 

the input from the SR and converts it to conversationally-relevant content to be processed 

by the person, known as the Disambiguated Input (DeMara, et al., 2008). The Knowledge 

Manager acts as a person’s rote memory. The Speech Disambiguator along with the 

CxBR Dialog Manager send keyword-based requests to it and the Knowledge Manager 

outputs relevant information in the form of a contextualized data base (DeMara, et al., 

2008). The Dialog Manager facilities the output of comprehensive responses to the 

Speech Output system. These responses are formulated by input from the Speech 

Disambiguator along with its own internal context-based mechanisms. 

 

Goal management in the LifeLike DM comprises goal recognition, goal bookkeeping and 

context topology (DeMara, et al., 2008). Goal recognition refers to the process of 

analyzing user input utterances to determine the proper conversational goal that is to be 

addressed. This is somewhat similar to the context activation process in CxBR methods. 

Goal bookkeeping incorporates keeping track and servicing identified goals in an ordered 

fashion. Immediately after a goal is recognized, it is placed on a goal stack. Context 

topology refers to the entire set of speech acts of the conversation agent (DeMara, et al., 

2008). This structure also includes the transitional actions when moving between contexts 
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when a goal shift is detected. The context topology, upon receiving the activated goal to 

be addressed from the goal stack, operates on this signal to provide the proper agent 

response. This in effects helps to clear out the goal bookkeeping stack. Goal recognition 

is accomplished using linguistic analysis of each user utterance. This is similar to the 

context activation process in CxBR methods where conditioned predicate logic rules 

determine the active context according to the state of the environment. The difference 

with the goal recognizer, however, is that the context is resolved using keywords and 

phrases that are extracted from the parts-of-speech parsing of input responses. By using a 

contextually-organized knowledge base, the user utterance is interpreted, and the context 

associated with this understanding is activated.  

 

In order to facilitate the communication between modules, a customized protocol based 

on a message passing algorithm using sockets was created. A series of messages from the 

DM control the synchronization and operation of the different modules. Below, in Figure 

6, is an example of a generic message that the DM would send to the SR indicating the 

activation of Context 1 and Context 2. These contexts are synonymous with rules in the 

grammar XML files. 
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It is possible to have one or more double-semicolon-delimited contexts in the frame 

depending on which stage of the dialog the system is in. The acknowledgement number is 

used by the DM to ensure a module had received the message sent to it and also to 

coordinate the synchronization of the entire system. The “module name” field contains 

the name of the module for which the frame was intended. Different modules require 

different operation-dependent frames but every frame used in the LifeLike domain 

contains a common header consisting of the acknowledge number, module name and 

command.  

3.3 Responsive Avatar Framework 

Creating a realistic active digital representation of particular human being is a 

challenging and multifaceted task (DeMara, et al., 2008).  Investigations were conducted 

to identify and evaluate the interoperability of COTS packages for facial modeling, 

rendering of real-time graphics, motion-capture, and text-to-speech synthesis.  The result 

was a customized Graphical Asset Production Pipeline which encapsulates the tasks 
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Figure 6: LifeLike Procotol Frame sent from DM to SR 
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needed to create a visual representation of a human character (DeMara, et al., 2008).  

Furthermore, the options and best practices for recording vocal mannerisms and non-

verbal mannerisms were evaluated and identified.  

 

FaceGen, used by Heinrichs, Müller, Tewes and Würtz (2006), was incorporated into this 

framework. FaceGen is a tool used to generate three-dimensional (3D) head and face 

models using frontal and side photographic images. It provides a neutral face model that 

can be controlled parametrically to emulate almost any facial expression (DeMara, et al., 

2008). FaceGen also enables a wide range of control over features of the model including 

age, race and gender. While this is initially sufficient, more advanced techniques such as 

modeling the sub-surface light scattering properties of the skin tissue can be done to 

improve realism (Donner & Jensen, 2005).  

 

To enable motion capture, a new motion capture system equipped with eight high 

resolution infrared tracking cameras was used. Motion capture is the widely used in the 

film and video game industries for acquiring realistic human figure animation. A series of 

simple motions are recorded and the avatar is used allowed to “re-enact” them. This 

motion capture data can also be manipulated in real-time to allow more naturalistic 

behaviors of the avatar.  
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The Object-oriented Graphics Rendering Engine (OGRE) was used to render the real-

time graphics of the avatar. OGRE provides a high-level interface for working with 

graphical objects as well as provides low-level shader control functions to create 

specialized visual effects to aid in building more realistic avatars. Text-to-speech 

synthesis was afforded by Microsoft’s SAPI version 5.1 (Microsoft Corporation, 2008). 

SAPI 5.1 provides an event generation mechanism that reports the status of a phoneme or 

word change during the synthesis of voice in real-time. These events are used to provide 

real-time lip synchronization. 
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Figure 7: LifeLike Responsive Avatar Framework (DeMara, et al., 2008) 

Numerous commercial speech systems provide an interface to SAPI 5.1 which allows 

applications to transparently leverage a multitude of speech systems. Figure 7 depicts the 

LifeLike Responsive Avatar Framework (RAF) which controls the avatar and provides 

connectivity to the SR and DM. The RAF is responsible for the avatar’s operation to 

create a realistic representation that is capable of speech input, provides locomotion and a 
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vocal response. The RAF has two separate sources of input: the Dialog Manager and 

user’s behavioral information, such as eye-gaze. The DM provides whole sentences or 

phrases which are intended to be spoken by the avatar. These sentences will eventually 

contain tagged information which can be displayed on a whiteboard in the avatar space 

and also which relate behavioral information to the avatar. Eye-gaze tracking was done 

by the use of retro-reflective markers on a headband and an infrared camera. 

 

The most significant component of the RAF is the Expression Synthesizer. It uses the 3D 

models and applies motion-capture data to produce a sequence of facial and body 

animations that fit the context of what is being spoken. Three major components of the 

Expression Synthesizer are: the Skeletal Animation Synthesizer, the Facial Expression 

Synthesizer and the Lip Synchronizer. Research is ongoing to achieve better control of 

the animations using complicated algorithms. One example of this is the motion-capture 

skeletal animations can be exaggerated or attenuated based on emotional changes in the 

avatar.  

3.4 LifeLike Database 

Currently, LifeLike-related data is stored in a Microsoft Access database. This includes 

contextualized knowledge along with data necessary to populate the XML grammar file. 

This database contains three main tables: the Context table, the University Names table 

and the Center Contact table. 



53 

 

 

The Context table contains agreed-upon context-related words that are used as the rule 

name in the grammar XML file. Each word has a numerical valued associated with it. 

This value is passed from the DM to the SR during recognition to activate specific 

grammars in the XML file. Figure 8 below shows the different Contexts with their 

associated numerical values.  

 

 

Figure 8: Screenshot showing LifeLike’s Context table 

Each module in the LifeLike domain has shared access to this table to allow for 

synchronization of the entire system. Of the six contexts showing in Figure 8, only four 

are used, context number 0, 1, 2 and 5. 

 

The University Names table contains the names and acronyms of approximately one 

hundred and sixty eight universities in the USA. Each university has one or more centers 
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and each center has a director associated with it. Currently, there are about seventy two 

different centers. The names of each university is extracted, manipulated and written the 

XML grammars file. Manipulation of the university name allows the addition of special 

characters before or after each word in the university name so as to facilitate recognition 

of a wider variety of responses with only a single line being written to the XML 

grammars file. An example of this is “Washington State University” which is commonly 

referred to as “Washington State”. Instead of writing two lines in the XML grammar file 

to accommodate either response from the user, this university name is written as 

“Washington State ?University.” The inclusion of the symbol before the word 

“University” indicates that this word is optional. University acronyms are also read from 

this table and written to the XML grammar file under a different rule, without any 

manipulation. When the numerical context for Universities is sent from the DM to the 

SR, both rules are simultaneously activated. 

 

The Center Contact table contains the names of the current directors of the different 

centers at each university. Multiple schemes were devised and tested to include these 

names in the XML grammars file in order to achieve optimal name recognition. 

Effectively identifying the user of the LifeLike system is important because this holds the 

key to creating the perception of a life-like conversation. The first and last names were 

split into two separate rules since, when a person is asked his name he replies with either 

his first or last name but rarely both. However, systems are in place to recognize 
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complete names. When the SR correctly recognizes a name, it passes the name to the DM 

which then uses the database to perform search queries to retrieve information about the 

user. If a user responds to the system with only his first name, and there are multiple 

persons with the same first name from different centers, the avatar then asks the user 

which university he is from in order to discern his true identity.  The Center Contact table 

is also used to form relations between different directors of related centers at different 

universities. This way the avatar is allowed to introduce directors with the same interest 

to foster new relations into new research ideas or work collaboratively on a single idea.  

 

Figure 9: Screenshot showing a portion of LifeLike's Center Contact table 



56 

 

Figure 9 above shows a few records of the Center Contact table. As can be seen in the 

diagram there are multiple centers with the same name but located at different 

universities. These ambiguities must be dealt with using grammars and present unique 

regression testing challenges. 
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CHAPTER 4: AUDIO REGRESSION TESTER 

The Audio Regression Tester (ART) is a standalone automated regression testing interface 

that has used LifeLike as a testbed to develop and demonstrate its capabilities. ART, in 

addition to running regression tests, allows a user to record and store voice clips. One of 

its most signifgicant features is that it also automatically creates new XML files from the 

LifeLike database. Oracle speech-to-text files, that contain the results of testing against 

the old grammar file, will be created. Once this has been done and the voice files 

recorded and put in place, regression testing can begin. Since we have already established 

the oracles and know that recognition performs well with the current XML grammar file, 

we can now assume that new data has been added to the database. New data being added 

to the database necessarily means that a new grammar XML file needs to be created. 

ART will then be used to test the previously recorded voice samples against the new 

XML grammar file. The results are compared to the oracle speech-to-text files and if 

there is mismatch in the comparison, ART’s built in file comparator is invoked to show 

the differences between the two XML files. These differences necessarily have caused 

recognition to deteriorate.  

4.1 ART System Components  

ART consists of three modules that operate independent of each other; the XML 

translator module, the audio capture module and test sequence module. The user is 
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afforded the privilege of selecting a LifeLike database from which to read data in order to 

create a new XML file.  

 

Figure 10: Screenshot of ART showing a newly created grammar XML file 

After selecting a database and it has been successfully loaded, a message will be shown 

indicating that the process was successful and the disabled “Create XML” menu item 

under the “Build” menu will be enabled. When the user clicks on “Create XML,” the 

program then connects to the database and selects data from the relevant tables in order to 

build an XML grammar file. Special grammar markup tags are written to the file along 
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with the information from the database. Upon creation, the XML file is loaded in the text 

window of the XML translator as shown in Figure 10 at which time a message box pops 

up, indicating that the file was successfully created. This window affords a scrollable 

view of the newly created XML grammars file. The user is not allowed to manually edit 

this XML file with ART since doing so defeats the concept of automation. The user can 

now either record audio or perform regression tests with pre-recorded audio.  

 

Audio capture is based on Chant’s SpeechKit 5 (Chant Inc., 2008) and Microsoft’s SAPI 

5 (Microsoft Corporation, 2008). SpeechKit 5 provides the capability to record what the 

user is saying and store it as a wave file. After loading the appropriate grammar file, the 

check boxes corresponding to the rules in the XML grammars and the “START 

RECORDING” button, are enabled. Using the check boxes, grammar rules can be 

selectively activated. When the user clicks on any of the check boxes, the already 

selected XML grammar file is compiled to ensure it adheres to the SRGS before it is 

actually used. If the compile process has failed, an error message is displayed in the text 

window on the audio capture pane. This error is an indication that the integrity of the data 

in the database might have been compromised. Certain special characters are not allowed 

in the XML file; one such character is the ampersand (“&”). If however, the file has been 

compiled properly and is ready for use, a message indicating same will be presented to 

the user at which time he can begin recording by clicking the “START RECORDING” 

button. When recording begins, the speech recognizer will simultaneously output 
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recognized speech events as the user is speaking. There are two modes of speech 

recognizing: free speech and grammar-based speech. Free speech is automatically 

activated and aids grammar-based speech recognition when the user deviates from the 

phrases contained in the XML grammar file. The output wave file will however contain 

anything the user says whether it was recognized as regular or grammar constrained 

speech. The user can click “STOP RECORDING” to stop the actual audio capture and 

create a wave file with the recorded data. The filename of the saved file is stamped with 

the current month, day, year, and time. Audio recording can be performed with a single 

phrase or multiple phrases i.e. the user is allowed to store a single utterance per file or 

store multiple utterances in the same file. In either case, the regression tester will be able 

to use the file to output all recognized events.  
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Figure 11: Screenshot of ART showing the Audio Capture Window 

Figure 11 shows the audio capture window in ART. The “Grammar Rules” group box 

contains several check boxes whose names correspond to different rules in the currently 

loaded XML grammar file. As the rule are enabled or disabled (by selecting or 

deselecting the checkboxes), a message indicating this is shown in the text window of the 

audio capture pane. Figure 11 shows that the “ROLES” and “UNIVERSITY” rules were 

initially selected and some recording was performed. Later on, the “ACRONYM” and 

“PIFNAME” rules were enabled. This indicates that the speech recognizer will enable 

these four rules in the XML grammar file and try to constrain any utterance match to the 
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words contained in these rules. If a suitable match is found, it is output; otherwise the 

fail-safe free speech mode is automatically activated and tries to recognize what the user 

had said. In Figure 11, the initial two recognized words were “University of Central 

Florida” and “director,” each of which are contained in separate grammar rules in the 

XML file. The last utterance detected is not part of the XML grammars and was 

recognized as free speech. Below the check boxes in the “Grammar Rule” group box, is a 

volume meter. The meter measures the audio level from the sound card to give the user 

an indication that ART is receiving signals adequately from the sound capture device. 

The volume meter uses a small buffer which it periodically queries to receive the latest 

samples in order to update the progress bar values.    

 

The third and most important module is the test sequence. After creating a new XML 

grammar file, and recording wave files (or using pre-recorded audio files), the user can 

proceed with regression testing. Before performing tests, the user is required to load into 

the program the appropriate wave file and XML grammar file that he needs to do testing 

on. After this has been completed, messages will be displayed on the regression test 

window indicating whether the operation was successful or not. If the two load operations 

are successful, the “RUN TEST” button is enabled. Figure 12 below is a screenshot of 

ART showing the files being successfully loaded along with two grammar rules being 

enabled.  
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Figure 12: Screenshot of ART showing the Regression Testing pane 

At this point the user can begin running tests. When the “RUN TEST” button is clicked, 

the primary playback function is invoked and the sound file is played back through the 

system with the grammar-based speech recognition mode enabled via the rules in the 

checkbox. Upon completion, the test could either pass or fail.  

4.2 ART Operation 

If the test has passed then a message is displayed informing the user of the success of the 

test. Since a passed test means that the output results using a new grammar file matches 
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the output results when the old file was used, the user is prompted to discard the original 

grammar file and use the new XML file as the grammar oracle. This essentially involves 

deleting the old XML grammar file and renaming the newly created file. The user is 

allowed to run more tests before eventually deciding to use the new XML file as the 

grammar oracle.  

 

Figure 13: Screenshot of a successfully run test in ART 
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Figure 13 shows a successful regression test. The user can either choose “No” in the 

message box to run further tests with the new grammar file and different audio files; or, 

choose “Yes” to use the new file as the grammar oracle. 

 

If the test has failed, a new pane, the “Result Pane,” is created and both the original 

grammar file and the newly created grammar file are shown side by side in scrollable 

windows. A line-by-line comparison is done between the two files and the difference is 

highlighted. It can be argued that this difference caused recognition to deteriorate or 

ultimately fail.  

 

The results of the line by line comparison are color coded to allow for easy interpretation. 

If a line is highlighted ‘red’ in the source file and ‘grey’ in the destination file it means 

that the specific line is present in the source but not in the destination. This is an 

indication that some database records were removed. If a line is highlighted ‘red’ in the 

source file but ‘green’ in the destination file it can be interpreted that the lines correspond 

but there are changes within the line. A ‘green’ highlight in the destination with a 

corresponding ‘grey’ highlight in the source indicates that lines are missing in the source. 

These results indicate that records were added to the database which is why the 

destination output XML file contained extra records not found in the original oracle 

grammar. Table 2 summarizes these color codes with their meaning 
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Table 2: Test Discrepancy 

Source Color/Destination Color Interpretation of Discrepancy 

Red/Grey Line present in source but not in destination 

Red/Green Line present but contain changes in destination 

Grey/Green Line present in destination but not in source 

 

Figure 14 below shows ART’s comparison window. The oracle grammar is loaded in the 

left pane while the newly created grammar file is presented in the right pane. These 

scrollable panes allow the user to easily navigate through the XML files and when a real 

comparison is done, to see the difference in the output. If there is a difference in the 

output, ART will color code the lines as explained above to allow the user an easy view 

of the errors.  
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Figure 14: ART's Comparison Window 
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CHAPTER 5: TESTING AND EVALUATION 

5.1 Overview 

Three users were allowed to use the system and record their voices with the audio capture 

features found in ART. Using these results, the correlation between the speech-to-text 

results obtained by using the users’ real voice compared to that of using their recorded 

voice will be calculated. If the correlation is high, it will provide sufficient evidence to 

support the use of a regression testing system with recorded human voice. Results 

indicating this are provided below. 

 

ART offers tremendous benefits since we will only require the user to store his voice 

once and perform multiple tests with that single stored voice file as compared to doing 

manual testing where the user will have to be present throughout all the tests. Test cases 

will be created using error-injected XML grammar files to show that ART actually 

captures the differences between the two files, in its Comparison Result Window.  

 

An evaluation has been done on ART to show the effectiveness derived from this system. 

Many evaluation models for regression testing techniques are available but many omit 

important factors and render some types of comparisons between techniques impossible. 

However, one recently published cost-benefit model (Rothermel & Do, 2006) seems to 



69 

 

contain sufficient information to be able to perform an effective comparison between the 

automated regression testing and manual regression testing.  

 

5.2 ART Test Results 

A sample regression test was done with ART to show the output of the tester. A newly 

created XML file along with a sample test case wave file, were chosen to do testing. The 

wave file contained the spoken words “director” and “friend.” The original grammar 

oracle contained phrases to recognize the words “director” and “friend.” This implies that 

when the user chose the wave file, the created speech-to-text oracle should contain the 

words “director” and “friend.” After the necessary files have been loaded, the “RUN 

TEST” button was clicked. Figure 15 and Figure 16 below show the result of the test.  
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Figure 15: Failed regression test in ART 

In Figure 15, the output of the regression tester indicates that the results from the test 

uncovered hidden anomalies in the grammars. Instead of the expected outcome of 

“director” and “friend” we now have a speech-to-text translation of “director,” “director,” 

and “I’m a director,” a clear indication that the addition to or deletion from the grammars 

had precipitated unwanted recognition behavior. If the window view is changed, by 

clicking on the Comparison Result tab in ART (shown in Figure 16), we are presented 

with a line-by-line comparison of the oracle grammar and the newly created XML 

grammar files.  
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Figure 16: Comparison Result view of failed regression test in ART 

Figure 16 above shows highlights of the difference between the two grammar files. It can 

be clearly seen that lines 12 and 13 from the file on the left (the oracle grammar) are 

missing from the file on the right (the newly created grammar file). Since the phrase in 

line 12 is necessary for the tester to properly translate the wave file to text and was 

missing from the XML file, we can now argue that this has caused recognition to 

deteriorate. A quick check revealed that these words were mistakenly left out in the 
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database used to create the new XML file. Hence, the database’s integrity had been 

compromised and would have caused recognition to deteriorate in the next iteration of the 

LifeLike system, hadn’t the regression tester detected the error.  

 

It should be noted that ART does not only detect errors when omitted grammar phrases 

causes deterioration in recognition quality, but also allows for detection when phrases 

may have been incorrectly input into the database and hence into the new grammar XML 

file.  

5.3 User Test Cases 

Three uses were given three sets of grammar phrases, G1, G2, G3, from the LifeLike 

domain to conduct a series of recognition tests. The first set of phrases, G1, comprises 

fifteen randomly chosen directors’ names from different universities that receive funding 

from NSF. The recognition rates using the users’ natural voice was compared to the 

recognition rates when their recorded voice was used. The recognition observed with 

recorded voice was obtained by using the regression testing abilities of ART to see how 

well the system could use a recorded voice sample to do speech-to-text. 

 

Table 3 below shows the raw data collected from the three users. A checkmark in the 

table indicates that the name was correctly recognized.  
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Table 3: Recognition data for Directors' Names (G1) 

Director Name 
(G1) 

User 1 User 2 User 3 
Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

Betty Cheng       

Charles Petty       

David Goodman       

Frank Allen       

Jay Lee       

Shah Jahan       

Balakrishna 
Haridas 

      

Don Taylor       

Samuel Oren       

Ram Mohan       

Nikos 
Papanikolopoulos 

      

Richard Muller       

Rahmat Shoureshi       

Steven Liang       

Sami Rizkalla       

 

Table 4 below shows the recognition data for fifteen randomly chosen university names.  
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Table 4: Recognition data for University Names (G2) 

University Name 
(G2) 

User 1 User 2 User 3 
Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

University of 
Central Florida 

      

University of 
Texas at Austin 

      

North Carolina 
State University 

      

Oregon State 
University 

      

Purdue University       

University of Utah       

Ohio State 
University 

      

Michigan State 
University 

      

Clemson 
University 

      

Iowa State 
University 

      

University of 
Maryland 

      

University of New 
Mexico 

      

George 
Washington 
University 

      

Carnegie Mellon 
University 

      

University of 
Houston 
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Table 5 below contains the data accumulated when the users were asked to test the 

system with the acronyms of fifteen different university names.  

 

Table 5: Recognition data for University Name Acronym (G3) 

University Name 
Acronym (G3) 

User 1 User 2 User 3 
Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

UND       

UCF       

FIU       

UL       

UU       

OSU       

UNL       

UP       

UCLA       

USD       

RU       

ASU       

CU       

FSU       

TAMU       
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From the results gathered, the recognition rates of the system using natural voice and 

recorded voice were computed for each data set G1, G2 and G3. It is important to note that 

there was only a single wave file for each grammar set for each user and speech-to-text 

undoubtedly performs better with shorter utterances than longer ones. Also, in the 

LifeLike domain each user response will be captured in a single wave file containing no 

more than two utterances. Table 6 summarizes the recognition rates observed when the 

three users did voice recognition with ART. 

 

Table 6: Recognition rates for three different grammar sets 

Grammar Set 

User 1  
Recognition Rate 

User 2 
Recognition Rate 

User 3 
Recognition Rate 

Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

Natural 
Voice 

Recorded 
Voice 

G1 80% 60% 46.7% 33.3% 73.3% 60% 

G2 93.3% 66.7% 46.7% 40% 80% 66.7% 

G3 100% 73.3% 86.7% 46.7% 80% 53.3% 

 

5.4 Product-Moment Correlation Coefficient 

These results obtained will be used to calculate the Pearson’s Product-Moment 

Correlation Coefficient (SpringerLink, 2001) of each data set. This coefficient, which lies 



77 

 

between -1.00 (a perfect negative correlation) and +1.00 (a perfect positive correlation), 

will establish if and how natural voice and recorded voice are related. 

 

The Pearson’s Product-Moment Correlation Coefficient (r) is given by:  

 

where  is the standard score, , is the mean and  is the standard deviation, for 

X. In these calculations we will take n = 3 (since this represents the number of users in 

the test), X will represent Natural Voice and Y will represent Recorded Voice.  

 

The calculated correlation coefficients for grammar set, Gi, where 1≤ i ≤ 3 are: 

 

Table 7: Correlation between natural voice and recorded voice 

Grammar Set (G) Correlation (r) 

G1 0.98175 

G2 0.96086 

G3 0.83431 

 

The results shown in Table 7 indicate for each grammar set there is a high positive 

correlation between the Natural Voice and Recorded Voice of the users. With these 

results it can now be conclusively stated that our claims for using recorded voice to do 
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automated regression testing has been substantiated; i.e. the recorded voice of a subject is 

just as good as using the real voice of the subject.  

5.5 Error Detection Rate 

The audio wave files used in gathering the data for the correlation results were used to 

calculate the error detection rates in ART. For the initial set of grammars, G1, two words 

were randomly picked to be excluded from the set of fifteen words, for each user. This 

means the words will be excluded from the new grammar XML file to see whether ART 

can determine if there was an error or not.  

 

For User 1 and grammar set G1, the names “Don Taylor” and “David Goodman” were 

both removed from the grammar XML file. When ART was run on the modified XML 

file, the speech-to-text results produced did not contain those two names. The file 

comparator was invoked and the difference was shown in ART. 
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Figure 17: Results of test with G1 and User 1 

In the oracle pane, both directors’ first names are highlighted in red because of their 

omittance from the newly created XML grammar file. The directors’ last names were also 

omitted and the right pane shows in line 447, a blank line which should’ve contained 

“Goodman.”  

 

A series of tests were conducted with different phrases being omitted for each grammar 

set for a different user and the results are summarized below in Table 8. A checkmark in 

the table indicates that ART successfully detected the condition. 
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Table 8: Error Detection 

Omitted Word (User i) Error Detected by ART 

David Goodman (User 1)  

Don Taylor (User 1)  

Clemson University (User 1)  

Oregon State University (User 1)  

TAMU  (User 1)  

UNL (User 1)  

Frank Allen (User 2)  

Shah Jahan (User 2)  

University of Maryland (User 2)  

North Carolina State University (User 2)  

UCF (User 2)  

FSU (User 2)  

Samuel Oren (User 3)  

Charles Petty (User 3)  

University of Texas at Austin (User 3)  

George Washington University (User 3)  

UU (User 3)  

RU (User 3)  
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Of the 18 omitted words, ART was able to detect every case where a word was missing 

from the new XML grammar file due to deteriorated speech-to-text. It should be noted 

that the words picked to be omitted were all words that were correctly translated from 

speech to text by ART. Based on the data collected, ART had a 100% error detection 

rate. This was expected since the oracle grammar contains all the words that were omitted 

and if the wave file is played against the oracle, there would be correct speech-to-text 

translation (see Table 3, Table 4 and Table 5).  

5.6 Cost-Benefit Analysis 

Rothermel and Do (2006) presented a cost-benefit model for regression testing systems 

that incorporates various factors. ART will adapt to this model to show the benefits 

derived from the system as opposed to having a human do testing. The two primary 

equations that comprise their model are as follows: 
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In this model it is assumed that we are considering a regression technique R, n releases of 

software system S denoted S1, S2, …, Sn, and n versions of test suite T (one per release of 

S) denoted T1, T2,…, Tn (Rothermel & Do, 2006).  

 

The terms and coefficients used in the equations defined by Rothermel and Do (2006) are 

as follows: 

 

• i is an index denoting a particular release Si of S. 

• u is a unit of time (e.g. hours of days) 

• REV is an organization’s revenue in dollars per time unit u, relative to S. 

• ED(i) is the expected time-to-delivery in units u for release Si when testing 

begins. 

• PS is a measure of the cost (average hourly salary) associated with employing a 

programmer per unit of time u. 
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• CS(i) is the setup cost for testing release Si. 

• COi(i) is the cost of identifying obsolete tests for release Si. 

• COr(i) is the cost for repairing obsolete tests for release Si. 

• CAin(i) is the time needed to instrument all units in i2. 

• CAtr(i) is the time required to collect traces for test cases in Ti -1 for use in 

analyses needed to regression test release Si. 

• CR(i) is the time required to execute R itself on release Si. 

• CE(i) is the time required to execute test cases on release Si (either all of the test 

cases in Ti or some subset of Ti). 

• CVd(i) is the cost of applying automated differencing tools to the output test cases 

run on release Si (all test cases in Ti or some subset of Ti). 

• CVi(i) is the (human) cost of checking the results of test cases determined to have 

produced different outputs when run on release Si all test cases in Ti or some 

subset of Ti). 

• CD(i) is the cost associated with delayed fault detection feedback on release Si.  

• ain(i) is the coefficient used to capture reductions in costs of instrumentation 

required for release i following change, in terms of the ratio of the number of 

units instrumented in i to the total number of units in i:  

 

 When all units are instrumented, this ratio is 1. 
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• atr(i) is a coefficient used to capture reductions in cost of the trace collection 

required for i following changes, in terms of the ratio of the reduced number of 

traces collected when focusing on changes in I to the total number of traces that 

would need to have been collected otherwise. 

 

 When all traces are collected, this ratio is 1. 

• b(i) is a coefficient used to capture reductions in cost of executing and validating 

test cases for I, when only a subset of T is rerun: 

 

When all test cases are run, this ratio is 1. 

• c(i) is the number of faults that could be detected by T on release i but that are 

missed due to execution of subsets of T 

 

This model keeps track of the cost and benefits across entire sequences of system 

releases. In the case of ART we will consider two sequences of the software when 

calculating the cost and benefit. The cost-benefit analysis will be conducted for 

automated regression testing (A) and computed as CostA and BenefitA while CostB and 

BenefitB will represent the cost and benefit of using human (manual) regression testing 

(B). We can determine the difference in value between A and B by calculating: 
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with positive values indicating that A has greater value than B, and negative values 

indicating that B has a greater value than A. 

 

To carry out the cost-benefit analysis of ART, the following values were used for the 

different variables in the calculations: 

 

• u will be measured in minutes. 

• Assume the average pay for a programmer (PS) to do these regression tests is $50 

per hour ($0.833 per minute) which will remain constant throughout all 

calculations.  

• CS(i) for A is approximately 0.5 minutes and for B is approximately 4 minutes. 

• COi(i) for A and B would remain constant at 10 minutes since ART doesn’t have a 

way to automatically detect obsolete test cases.  

• COr(i) will be 0 since we won’t consider repairing a test case.  

• bi(i), ain(i) and atr(i) will be set to 1 for A and for B hence we will assume all test 

cases are run, all units are instrumented and all traces are collected.  

• CVd(i) will be 0.0001667 minutes. This was calculated by the automated 

differencing tool used by ART to compare the two grammar XML files. 
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• CF(i) as stated by Rothermel and Do (2006) is difficult to calculate and we shall 

assume there were ordinary faults and use the default cost of 96 minutes. 

• REV  will be approximated at $5 per unit time u. 

• ED(i) for LifeLike is a few days and in these calculations we will set it at 4320 

minutes (3 days). 

• CAin(i) could not be measured directly and will be assumed as 3 minutes for both 

A and B. 

• CAtr(i) will be set to the value 5 minutes for B and 0.1 minutes for A throughout 

all calculations. 

• CR(i) measured on average for technique A is approximately 0.0166667 minutes 

and for technique B approximately 2.2 minutes. 

• CE(i) was measured at 0.1666667 minutes for technique A and 3 minutes for 

technique B. 

• CVi(i) is approximated as 14 minutes since this is the time it took on average to 

manually compare the two XML files to determine if there were any differences 

between the two. 

• CD(i) will be set to 0 since we are not considering delayed fault detection 

feedback. 
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Table 9: Cost-Benefit Analysis for techniques A and B 

Technique Cost ($) Benefit ($) 

A (automated regression testing with ART) 88.71 21461.08 

B (manual regression testing) 91.63 21393.99 

 

 

From the results gathered above it can clearly be seen that: 

 which implies  

This means that applying automated regression testing has a larger benefit than manual 

regression testing. This evaluation provides substantial justification for the need and use 

of an audio automated regression testing technique like ART provides, in domains akin 

LifeLike. 
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CHAPTER 6: CONCLUSION 

6.1 Summary 

Automated regression testing has been in use for over four decades and has provided a 

cost-saving alternative to manual testing. The real advantage of regression testing is seen 

in software systems that contain enormous test buckets and require rigorous testing to 

ensure effective usability. It is impractical to hire humans to do the same tests a machine 

can do in a fraction of the time with accuracy and precision beyond human 

comprehension. 

 

LifeLike requires quick effective prototyping which is tedious on the part of the SR. 

Grammars need to be built and tests need to be conducted to ascertain if the new set of 

grammars has affected previous recognition. Manual grammar building and testing 

simply is not able to perform as effectively as automated building and testing, in this 

regard.  

 

Audio Regression Tester (ART) has been designed, and evaluated based on metrics 

which seek to show its advantage in the domain of regression testing. ART has 

accomplished what it had set out to do. We have shown substantial evidence to support 

the use of ART in the realm of automated audio regression testing. This method of 

testing, as shown in CHAPTER 5, has a greater benefit than manual regression testing 



89 

 

and costs less. ART’s high error-detection rate is due to its effective speech to text 

translation and file comparison method employed. It can be argued that manual file 

comparison is still faulty; one reason being that it is hard to detect a single space between 

characters with the naked eye. This single space, although negligible to humans, 

negatively impacts computer systems and could cause recognition to deteriorate in 

domains such as LifeLike.  

 

It is imperative that we seek to improve the quality of software and decrease the time 

between specification and production of the system; ART is just one step in this 

direction. Not limited to LifeLike, ART can be used in other audio domains that require 

regression testing, for example call reservation. Since many of  these systems employ a 

similar speech recognition strategy, updates to the system might require testing with 

previously collected data to ensure that recognition had not significantly deteriorated. 

6.2 Future Work 

This research can be extended to allow a better test selection policy. Since tests may 

become obsolete as the software ages, this selection policy will only select valid tests to 

be performed with the system. This will definitely reduce the time it takes to sort through 

tests to decide which have expired and which have not. 
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Usability testing was not conducted for the current prototype and doing so may open a 

doorway to allow us to improve the current design and provide additional functionality as 

needed.  

 

Additional tests need to conducted over the lifetime of LifeLike to ascertain whether or 

not the quality of recognition has increased by using automated regression testing as 

compared to manual regression testing. This gives a fair idea of how well ART has 

performed in the domain of regression testing with speech recognition grammars. 
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