
Page 1 of 4

Effects of Full-Adder Circuit Design on Assembly

Program Total Energy Consumption

Megan Driggers

Department of Electrical and Computer Engineering

University of Central Florida

Orlando, FL 32816-2362

Abstract—Energy consumption is a very important

factor that should be minimized as much as possible. The

total energy consumption of an assembly program as a

factor of full-adder circuit design will be examined. The

assembly program takes a user input for a word and checks

the word frequency within a hardcoded sentence. The

program considers the uppercase/lowercase variation

between the input word and word found in the sentence to

provide a match even if the characters of the word are in

different case. The word frequency value is then printed

after checking for the word through the whole sentence.

Several full-adder circuit designs were evaluated, and the

Spin Transfer Torque-Magnetic Full Adder (SST-MFA)

design [3] provided the least total energy consumption for

this assembly program which was 140.146733 nJ.

Keywords— Full-Adder, Full-Adder Approximation,

Energy Consumption, ALU Design, Conventional Mirror

Adder (CMA), Spin Transfer Torque-Magnetic Full Adder

(SST-MFA), Assembly Programming, MIPS

I. PROJECT DESIGN

 The assembly program begins by allocating 10

characters of space for the user input word using label ‘word’

and hard coding the sentence/paragraph using label ‘sentence’.

The purpose of this program is to find the frequency of the

‘word’ within the ‘sentence’. Then, "Please input first word:

Knight (or KnIGhT, knight, …):\n" is printed and the user

input is stored in the allocated space labeled ‘word’. Next, the

program prints "Input Word Frequency within Sentence:". The

address of the sentence is then loaded into register $t0, and the

address of the input word is loaded into registers $t1 and $t2.

The main loop begins using label ‘Loop’. The

sentence character found at address $t0 is then loaded into

register $s0, then the word character found at address $t1 is

loaded into register $s1. A branch statement is used to

determine if the input word character (stored in register $s1)

equals 'enter'/ascii value 10 which means that the word has

been incremented all the way through. If yes, then that means

a word match has been detected within the sentence and jumps

to label ‘wordmatch’. The word character is reset by loading

the address of the input word into register $t1 and the word

frequency counter is incremented by adding 1 to register $t9.

Then the program jumps back to the label ‘Loop’. If no, then

the program moves on to another branch statement used to

determine if the sentence character (stored in register $s0)

equals 'null'/ascii value 0 which means that the sentence has

been incremented all the way through. If yes, it jumps to label

‘end’ where the input word frequency stored in register $t9 is

printed then the program ends. If the sentence character does

not equal null, then the program moves on to another branch

statement.

In order to determine if the input word character

(stored in register $s1) is equal to the sentence character

(stored in register $s0), the uppercase/lowercase variation

needs to be takin into account. This can by done using three

separate branch statements to determine if $s0=$s1 OR

$$s0=$s1+32 OR $s0=$s1-64 keeping in mind that the ascii

value for a uppercase and lowercase letter are separated by 32.

If the answer is yes to any of those three statements, the

program jumps to the label ‘charmatch’ because a character

match has been detected. The word and sentence character are

Fig.1: Flowchart of the assembly program.

then incremented by adding 1 to registers $t0 and $t1, then it

jumps back to label ‘Loop’. If the answer is no to all of the

three branch statements, the program continues to a branch

statement to determine if the input word character being

compared (address stored in $t1) is equal to the to the first

character of the input word (address stored in $t2). If yes, then

it jumps to label ‘nomatch’ because the two characters are not

a match. The word character is reset by loading the address of

the input word into register $t1, the sentence character is

incremented by adding 1 to register $t0, and the program

jumps back to label ‘Loop’.

If the input word character being compared (address

stored in $t1) is not equal to the to the first character of the

input word (address stored in $t2) then the sentence character

also needs to be compared to the first character of the input

word. For example, if the input word is “ABC” and the

sentence is “ABABC”. The program would find a character

match for the first ‘A’ then the first ‘B’ within the sentence,

however since the third letter within the sentence is not a ‘C’ it

is not a word or character match. But, it still needs to be

compared with the first character of the input word to

determine if it is the start of a word match. Therefore, if the

input word character being compared is not equal to the to the

first character of the input word then the program jumps to

label ‘possiblynomatch’. The address of the user input word is

loaded into register $t1, and the first character of the input

word is loaded into register $s1 using the address stored in

register $t1. Then three branch statements are used to

determine if the input word character (stored in register $s1) is

equal to the sentence character (stored in register $s0) which

are if $s0=$s1 OR $$s0=$s1+32 OR $s0=$s1-64. If yes to any

of the three branch statements, then a character match has

been detected and jumps to label ‘charmatch’. If no to all three

branch statements, then it is not a character match and jumps

to label ‘nomatch’.

Test Program #1 was chosen to test if the program

output matches the sample output given the user input word

“KNIGHT” and the hardcoded sentence “UCF, its athletic

program, and the university's alumni and sports fans are

sometimes jointly referred to as the UCF Nation, and are

represented by the mascot Knightro.The Knight was chosen as

the university mascot in 1970 by student election. The Knights

of Pegasus was a submission put forth by students, staff, and

faculty, who wished to replace UCF's original mascot, the

Citronaut, which was a mix between an orange and

anastronaut. The Knights were also chosen over Vincent the

Vulture, which was a popular unofficial mascot among

students at the time. In 1994, Knightro debuted as the Knights

official athletic mascot.”. The output for Test Program #1 can

be found in Figure 2 which matches the sample output

perfectly.

Test Program #2 was chosen to test if the sentence

character is also being compared to the first character of the

input word, if the original input word character being

compared is not equal to the to the first character of the input

word. The user input word “ABC” was compared to the

sentence “ABABC” which follows the example written earlier

in this section. The program handled this situation flawlessly

and the output for Test Program #2 can be found in Figure 3.

Test Program #3 was chosen to test how the program

reacts to nothing. The user input word was purely the enter

key/ascii value 10 while the hardcoded sentence was “”. The

code did not react well as it never stopped running. The output

for Test Program #3 can be found in Figure 4.

II. FULL-ADDER CIRCUIT

 There are many different ways to minimize the

energy consumption of the full-adder (FA) circuit. Reference

[1] tackles this issue by starting with the Conventional Mirror

Adder (CMA) which has a total of 24 transistors and

approximates the full adder circuit by reducing the number of

transistors in the CMA [1]. The inputs to the circuit include A,

B, and Carry-in which are to be added together to produce the

outputs Carry-out and Sum [1]. However, the trend appears

that the greater the number of transistors removed from the

full adder circuit then the worse the approximation will be [1].

The inputs, accurate outputs, and 3 separate cases of

approximation outputs can be found in Figure 4 which show

this trend [1]. Reference [2] follows a very similar method to

reference [1] in reducing the energy consumption of the full-

adder circuit by approximation and reduction of transistors.

The less number of transistors used in the full-adder

approximation, the greater the power savings were compared

to the conventional mirror adder [2]. Approximately 15 years

before reference [1] was published, power savings were being

achieved in full adder circuit designs by minimizing the

number of transistors [4]. The static energy recovery full adder

Fig.2: Assembly output for Test Program #1

Fig.3: Assembly output for Test Program #2

Fig.4: Assembly output for Test Program #3

(SERF) design was published in 1999 which focused on

having low power and low transistor count [4]. Although it

was not the fastest full-adder design of those compared in

reference [4], the SERF design ended up being the most

energy efficient [4].

 Reference [3] focuses on reducing energy

consumption with a design of a spin transfer torque magnetic

full adder (STT-MFA) based off the design of spin transfer

torque magnetic random-access memory (SST-MRAM) [3].

The pre-charge sense amplifier (PCSA) circuit is used in the

SST-MFA design to allow “the amplification

from analog data to digital with ultra-low power” and allow

“the read disturbance induced by sensing operations can

be significantly decreased” [3]. This design also allows

efficient area minimization and reaches output values based

off the resistances of transistors within the STT-MFA circuit

[3]. Although the inputs for this design [3] are the same as

references [1], [2], and [4] the outputs are different due to

design differences. The inputs and outputs of this design can

be found in Figure 5.

III. RESULTS AND DISCUSSION

Energy consumption is a very important factor that should

be minimized as much as possible. When it comes to the

assembly program above, we will be examining its total

energy consumption as a factor of full-adder circuit design

which is assumed to be present in every dynamic ALU

instruction. The energy consumption for each ALU instruction

for the designs found in references [1-3] can be found in Table

I. The dynamic instruction counts for each instruction type

contained in the assembly program can be found in Table II.

Assuming the energy consumption for branch instructions is 3

pJ, jump instructions is 2 pJ, memory instructions is 100 pJ,

and other instructions is 5 pJ, the total energy consumption of

the assembly program based off of which full-adder design is

used (from references [1-3]) can be found in Table III.

 The full-adder circuit design with the least amount of

total energy consumption is the STT-MFA circuit design from

reference [3]. This design uses approximately 0.142 nJ less

energy than the least energy efficient design which is the

conventional mirror adder from reference [2].

Figure 4: Truth Table from Reference [1] where FA

approximation 3 has less transistors than FA

approximation 2 which has less transistors than FA

approximation 1

Figure 5: Truth Table from Reference [3] of SST-MFA

Table I: Energy consumption for a single ALU Instruction

in the designs provided in [1-3].

Design
Energy Consumption

For Each ALU Instruction

[1] 5 fJ

CMA [2] 39 fJ

AMA [2] 12 fJ

[3] 1 fJ

Table II: Dynamic Instruction Count for the assembly

program specified in Program Design by Instruction Type.

Instruction

Type
Dynamic Instruction Count

ALU 3733

Jump 629

Branch 4285

Memory 1260

Other 6

Total 9913

Table III: Total Energy consumption for the assembly

program using designs provided in [1-3].

Design Total Energy Consumption

[1] 140.161665 nJ

CMA [2] 140.288587 nJ

AMA [2] 140.187796 nJ

[3] 140.146733 nJ

IV. CONCLUSION

 The full-adder circuit design used within an assembly
program can have a significant impact on the total energy
consumption. Here are the main points to take away from this
paper:

• When trying to minimize the energy consumption for a
specific assembly code, try to minimize the dynamic
instruction count as much as possible. Make sure to
prioritize minimizing the types of instruction count
with the highest energy consumption per instruction.

• Accurate CMAs require more energy consumption
than an approximation based off this design

• Even if a FA design is the most energy efficient, it does
not mean that the design is the fastest or provides
efficient area minimization

• Energy consumption, speed, area, and approximations
are all factors that need to be considered when picking
the best FA design for specific applications

• There are many ways to design a low energy
consumption FA which has a big impact on the total
energy consumption of an assembly code

• Between the designs mentioned in references [1-3], the
Spin Transfer Torque-Magnetic Full Adder (SST-
MFA) design from reference [3] provided the least total
energy consumption for this assembly program which
was 140.146733 nJ.

REFERENCES

[1] A. A. Naseer, R. A. Ashraf, D. Dechev, and R. F. DeMara,
“Designing energy-efficient approximate adders using
parallel genetic algorithms,” SoutheastCon 2015, Fort
Lauderdale, FL, 2015, pp. 1-7.

[2] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K.
Roy, “IMPACT: imprecise adders for low-power
approximate computing,” In Proceedings of the 17th
IEEE/ACM international symposium on Low-power
electronics and design (ISLPED '11), Piscataway, NJ, USA,
409-414.

[3] E. Deng, Y. Zhang, J. O. Klein, D. Ravelsona, C. Chappert
and W. Zhao, "Low Power Magnetic Full-Adder Based on
Spin Transfer Torque MRAM," in IEEE Transactions on
Magnetics, vol. 49, no. 9, pp. 4982-4987, Sept. 2013.

[4] R. Shalem, E. John, and L. K. John, “A Novel Low Power
Energy Recovery Full Adder Cell” , Proc. Great Lakes
Symp. VLSI, pp. 380-383, Feb. 1999

