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Abstract—Energy consumption is a very important 

factor that should be minimized as much as possible. The 

total energy consumption of an assembly program as a 

factor of full-adder circuit design will be examined. The 

assembly program takes a user input for a word and checks 

the word frequency within a hardcoded sentence. The 

program considers the uppercase/lowercase variation 

between the input word and word found in the sentence to 

provide a match even if the characters of the word are in 

different case. The word frequency value is then printed 

after checking for the word through the whole sentence. 

Several full-adder circuit designs were evaluated, and the 

Spin Transfer Torque-Magnetic Full Adder (SST-MFA) 

design [3] provided the least total energy consumption for 

this assembly program which was 140.146733 nJ. 
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I. PROJECT DESIGN 

 The assembly program begins by allocating 10 

characters of space for the user input word using label ‘word’ 

and hard coding the sentence/paragraph using label ‘sentence’. 

The purpose of this program is to find the frequency of the 

‘word’ within the ‘sentence’. Then, "Please input first word: 

Knight (or KnIGhT, knight, …):\n" is printed and the user 

input is stored in the allocated space labeled ‘word’. Next, the 

program prints "Input Word Frequency within Sentence:". The 

address of the sentence is then loaded into register $t0, and the 

address of the input word is loaded into registers $t1 and $t2.  

 

The main loop begins using label ‘Loop’. The 

sentence character found at address $t0 is then loaded into 

register $s0, then the word character found at address $t1 is 

loaded into register $s1. A branch statement is used to 

determine if the input word character (stored in register $s1) 

equals 'enter'/ascii value 10 which means that the word has 

been incremented all the way through. If yes, then that means 

a word match has been detected within the sentence and jumps 

to label ‘wordmatch’. The word character is reset by loading 

the address of the input word into register $t1 and the word 

frequency counter is incremented by adding 1 to register $t9. 

Then the program jumps back to the label ‘Loop’. If no, then 

the program moves on to another branch statement used to 

determine if the sentence character (stored in register $s0) 

equals 'null'/ascii value 0 which means that the sentence has 

been incremented all the way through. If yes, it jumps to label 

‘end’ where the input word frequency stored in register $t9 is 

printed then the program ends. If the sentence character does 

not equal null, then the program moves on to another branch 

statement. 

 

In order to determine if the input word character 

(stored in register $s1) is equal to the sentence character 

(stored in register $s0), the uppercase/lowercase variation 

needs to be takin into account. This can by done using three 

separate branch statements to determine if $s0=$s1 OR 

$$s0=$s1+32 OR $s0=$s1-64 keeping in mind that the ascii 

value for a uppercase and lowercase letter are separated by 32. 

If the answer is yes to any of those three statements, the 

program jumps to the label ‘charmatch’ because a character 

match has been detected. The word and sentence character are 

Fig.1: Flowchart of the assembly program. 



then incremented by adding 1 to registers $t0 and $t1, then it 

jumps back to label ‘Loop’. If the answer is no to all of the 

three branch statements, the program continues to a branch 

statement to determine if the input word character being 

compared (address stored in $t1) is equal to the to the first 

character of the input word (address stored in $t2). If yes, then 

it jumps to label ‘nomatch’ because the two characters are not 

a match. The word character is reset by loading the address of 

the input word into register $t1, the sentence character is 

incremented by adding 1 to register $t0, and the program 

jumps back to label ‘Loop’. 

 

If the input word character being compared (address 

stored in $t1) is not equal to the to the first character of the 

input word (address stored in $t2) then the sentence character 

also needs to be compared to the first character of the input 

word. For example, if the input word is “ABC” and the 

sentence is “ABABC”. The program would find a character 

match for the first ‘A’ then the first ‘B’ within the sentence, 

however since the third letter within the sentence is not a ‘C’ it 

is not a word or character match. But, it still needs to be 

compared with the first character of the input word to 

determine if it is the start of a word match. Therefore, if the 

input word character being compared is not equal to the to the 

first character of the input word then the program jumps to 

label ‘possiblynomatch’. The address of the user input word is 

loaded into register $t1, and the first character of the input 

word is loaded into register $s1 using the address stored in 

register $t1. Then three branch statements are used to 

determine if the input word character (stored in register $s1) is 

equal to the sentence character (stored in register $s0) which 

are if $s0=$s1 OR $$s0=$s1+32 OR $s0=$s1-64. If yes to any 

of the three branch statements, then a character match has 

been detected and jumps to label ‘charmatch’. If no to all three 

branch statements, then it is not a character match and jumps 

to label ‘nomatch’. 

 

Test Program #1 was chosen to test if the program 

output matches the sample output given the user input word 

“KNIGHT” and the hardcoded sentence “UCF, its athletic 

program, and the university's alumni and sports fans are 

sometimes jointly referred to as the UCF Nation, and are 

represented by the mascot Knightro.The Knight was chosen as 

the university mascot in 1970 by student election. The Knights 

of Pegasus was a submission put forth by students, staff, and 

faculty, who wished to replace UCF's original mascot, the 

Citronaut, which was a mix between an orange and 

anastronaut. The Knights were also chosen over Vincent the 

Vulture, which was a popular unofficial mascot among 

students at the time. In 1994, Knightro debuted as the Knights 

official athletic mascot.”. The output for Test Program #1 can 

be found in Figure 2 which matches the sample output 

perfectly. 

Test Program #2 was chosen to test if the sentence 

character is also being compared to the first character of the 

input word, if the original input word character being 

compared is not equal to the to the first character of the input 

word. The user input word “ABC” was compared to the 

sentence “ABABC” which follows the example written earlier 

in this section. The program handled this situation flawlessly 

and the output for Test Program #2 can be found in Figure 3.  

 

Test Program #3 was chosen to test how the program 

reacts to nothing. The user input word was purely the enter 

key/ascii value 10 while the hardcoded sentence was “”. The 

code did not react well as it never stopped running. The output 

for Test Program #3 can be found in Figure 4. 

 

II. FULL-ADDER CIRCUIT  

 There are many different ways to minimize the 

energy consumption of the full-adder (FA) circuit. Reference 

[1] tackles this issue by starting with the Conventional Mirror 

Adder (CMA) which has a total of 24 transistors and 

approximates the full adder circuit by reducing the number of 

transistors in the CMA [1]. The inputs to the circuit include A, 

B, and Carry-in which are to be added together to produce the 

outputs Carry-out and Sum [1].  However, the trend appears 

that the greater the number of transistors removed from the 

full adder circuit then the worse the approximation will be [1]. 

The inputs, accurate outputs, and 3 separate cases of 

approximation outputs can be found in Figure 4 which show 

this trend [1]. Reference [2] follows a very similar method to 

reference [1] in reducing the energy consumption of the full-

adder circuit by approximation and reduction of transistors. 

The less number of transistors used in the full-adder 

approximation, the greater the power savings were compared 

to the conventional mirror adder [2]. Approximately 15 years 

before reference [1] was published, power savings were being 

achieved in full adder circuit designs by minimizing the 

number of transistors [4]. The static energy recovery full adder 

Fig.2: Assembly output for Test Program #1 

 

 
Fig.3: Assembly output for Test Program #2 

 

 
Fig.4: Assembly output for Test Program #3 



(SERF) design was published in 1999 which focused on 

having low power and low transistor count [4]. Although it 

was not the fastest full-adder design of those compared in 

reference [4], the SERF design ended up being the most 

energy efficient [4]. 

 

 
 

 Reference [3] focuses on reducing energy 

consumption with a design of a spin transfer torque magnetic 

full adder (STT-MFA) based off the design of spin transfer 

torque magnetic random-access memory (SST-MRAM) [3]. 

The pre-charge sense amplifier (PCSA) circuit is used in the 

SST-MFA design to allow “the amplification 

from analog data to digital with ultra-low power” and allow 

“the read disturbance induced by sensing operations can 

be significantly decreased” [3]. This design also allows 

efficient area minimization and reaches output values based 

off the resistances of transistors within the STT-MFA circuit 

[3]. Although the inputs for this design [3] are the same as 

references [1], [2], and [4] the outputs are different due to 

design differences. The inputs and outputs of this design can 

be found in Figure 5. 

 

 

III. RESULTS AND DISCUSSION 

Energy consumption is a very important factor that should 

be minimized as much as possible. When it comes to the 

assembly program above, we will be examining its total 

energy consumption as a factor of full-adder circuit design 

which is assumed to be present in every dynamic ALU 

instruction. The energy consumption for each ALU instruction 

for the designs found in references [1-3] can be found in Table 

I. The dynamic instruction counts for each instruction type 

contained in the assembly program can be found in Table II. 

Assuming the energy consumption for branch instructions is 3 

pJ, jump instructions is 2 pJ, memory instructions is 100 pJ, 

and other instructions is 5 pJ, the total energy consumption of 

the assembly program based off of which full-adder design is 

used (from references [1-3]) can be found in Table III.  

 

 
 

 
 

 
       

 The full-adder circuit design with the least amount of 

total energy consumption is the STT-MFA circuit design from 

reference [3]. This design uses approximately 0.142 nJ less 

energy than the least energy efficient design which is the 

conventional mirror adder from reference [2]. 

 

 
Figure 4: Truth Table from Reference [1] where FA 

approximation 3 has less transistors than FA 

approximation 2 which has less transistors than FA 

approximation 1 

 
Figure 5: Truth Table from Reference [3] of SST-MFA  

Table I: Energy consumption for a single ALU Instruction 

in the designs provided in [1-3]. 

 

Design 
Energy Consumption 

For Each ALU Instruction 

[1] 5 fJ 

CMA [2] 39 fJ 

AMA [2] 12 fJ 

[3] 1 fJ 

 

Table II: Dynamic Instruction Count for the assembly 

program specified in Program Design by Instruction Type. 

 

Instruction 

Type 
Dynamic Instruction Count 

ALU 3733 

Jump 629 

Branch 4285 

Memory 1260 

Other 6 

Total 9913 

 

Table III: Total Energy consumption for the assembly 

program using designs provided in [1-3]. 

 

Design Total Energy Consumption 

[1] 140.161665 nJ 

CMA [2] 140.288587 nJ 

AMA [2] 140.187796 nJ 

[3] 140.146733 nJ 

 



IV. CONCLUSION 

 The full-adder circuit design used within an assembly 
program can have a significant impact on the total energy 
consumption. Here are the main points to take away from this 
paper: 

• When trying to minimize the energy consumption for a 
specific assembly code, try to minimize the dynamic 
instruction count as much as possible. Make sure to 
prioritize minimizing the types of instruction count 
with the highest energy consumption per instruction. 

• Accurate CMAs require more energy consumption 
than an approximation based off this design 

• Even if a FA design is the most energy efficient, it does 
not mean that the design is the fastest or provides 
efficient area minimization 

• Energy consumption, speed, area, and approximations 
are all factors that need to be considered when picking 
the best FA design for specific applications 

• There are many ways to design a low energy 
consumption FA which has a big impact on the total 
energy consumption of an assembly code 

• Between the designs mentioned in references [1-3], the 
Spin Transfer Torque-Magnetic Full Adder (SST-
MFA) design from reference [3] provided the least total 
energy consumption for this assembly program which 
was 140.146733 nJ. 
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