
AUTONOMOUS RECOVERY OF RECONFIGURABLE LOGIC DEVICES USING
PRIORITY ESCALATION OF SLACK

by

NAVEED IMRAN
M.S. Electrical Engg. University of Central Florida, Orlando, 2010

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering
in the College of Electrical Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2013

Major Professor: Ronald F. DeMara

c⃝ 2013 Naveed Imran

ii

ABSTRACT

Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware

architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based

fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capabil-

ity of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection,

diagnosis, and recovery phases.

To extend these concepts to semiconductor aging and process variation in the deep submicron

era, resilient adaptable processing systems are sought to maintain quality and throughput require-

ments despite the vulnerabilities of the underlying computational devices. A new approach to au-

tonomous fault-handling which addresses these goals is developed using only a uniplex hardware

arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon-

figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither

requires test vectors nor suspends the computational throughput, but instead observes the value

of a health metric based on runtime input. The deterministic flow of the fault isolation scheme

guarantees success in a bounded number of reconfigurations of the FPGA fabric.

FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy

scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare

arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques

are seen to provide several promising avenues for improving resilience. The scheme developed is

demonstrated by hardware design of various signal processing circuits and their implementation on

a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion

Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM),

and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A

iii

significant reduction in power consumption is achieved ranging from 83% for low motion-activity

scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a

typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The

diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Com-

pared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB

from the fault-free baseline by escalating healthy resources to higher-priority signal processing

functions. The results indicate the benefits of priority-aware resiliency over conventional redun-

dancy approaches in terms of fault-recovery, power consumption, and resource-area requirements.

Together, these provide a broad range of strategies to achieve autonomous recovery of reconfig-

urable logic devices under a variety of constraints, operating conditions, and optimization criteria.

iv

To all those whose innovations and efforts make the world a better place to live

v

ACKNOWLEDGMENTS

I am deeply grateful to my advisor Dr. Ronald F. DeMara whose continuous guidance, encour-

agement, and support made this dissertation possible. I really appreciate his exceptional advice,

valuable time and very generous attitude throughput my doctorial studies.

I would like to thank Drs. Wasfy B. Mikhael, Mingjie Lin, Jiann-Shiun Yuan, and Christopher D.

Geiger for their great suggestions and for their time to evaluate this dissertation as my advisory

committee members.

I would also like to thank Dr. Jooheung Lee at Hongik University, Seoul, South Korea, for his

valuable input during my collaborative work with him. I thank my friends for my unforgettable

happy memories during my stay in Orlando.

Finally, I would like to thank my parents and sisters for their endless love, support and passionate

encouragement throughout my life. I am greatly thankful to my wife and sons for their unremitting

love, patience and support throughout this journey.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xiv

LIST OF TABLES . xx

LIST OF ACRONYMS . xxii

LIST OF NOTATIONS .xxvi

CHAPTER 1: INTRODUCTION . 1

Need for Reliability and Survivability . 1

Characteristics of Fault-Tolerant Systems . 4

Soft Resilience of Signal Processing Systems . 7

Quality-Oriented Architectural Adaptations . 10

Contributions of the Dissertation . 12

CHAPTER 2: RELATED WORK . 14

Static Redundancy . 15

Resource Testing by BIST . 17

System-Level Diagnosis . 18

vii

Evolvable Hardware Techniques . 19

Reconfiguration Techniques . 21

Comparison of Techniques . 22

CHAPTER 3: ADAPTIVE AREA MANAGEMENT FOR LOCAL PERMANENT DAM-

AGE . 25

A Self-Configuring TMR Scheme utilizing Discrepancy Resolution 25

The SCDR Approach . 26

Encoding Representation of the TMR Pathways 28

Fitness Function . 28

Fitness Evaluation . 29

Fitness Selection . 30

Genetic Operators . 30

Experiment Design . 31

Simulation Results . 32

Intrinsic Hardware Evaluation using SCDR 32

Faults-Aware Simulation Paradigm . 34

Performance Bound Comparison to Exhaustive Search 36

viii

Heterogeneous Concurrent Error Detection (hCED) Based on Output Anticipation 36

Alternate CED Arrangements . 38

The Baseline Setup . 41

Spatial Heterogeneous CED . 43

Temporal Heterogeneous CED . 45

Amorphous Slack (AS) Fault-Handling Methodology 47

Simulation Results . 49

Case Study-1: Video Encoder . 50

Case Study-2: Edge Detector . 52

Distance-Ranked Fault Identification (DRFI) . 53

Fault Detection . 53

System-Level Diagnosis of Hardware Configurations 54

Exhaustive Evaluation . 57

The SFH Fitness States Transitions Diagram Method 59

The DRFI Approach . 64

Fault Recovery Results . 68

Experiment-1: MCNC benchmark circuits 69

ix

Experiment-2: DCT core . 74

Experiment-3: Partial Recovery . 75

CHAPTER 4: SOFT-RESILIENCE USING AN ONLINE MULTI-OBJECTIVE GA . . . 77

Self-Aware Signal Processing Architectures . 78

Previous Techniques of Soft Resilience . 81

Problem Formulation and Methodology . 84

Multi-Objective function . 88

Throughput Degradation . 89

Power Consumption . 90

Guidance Function . 90

Execution Results . 93

Synthetic Nodes Simulation . 93

A Computer Vision Case-Study: Support Vector Machine (SVM) 96

An Image/Video Processing Case-Study: Discrete Cosine Transform 103

Comparison of Proposed Approach with Conventional Fault-Handling Techniques 107

Modular Redundancy . 107

BIST-based Evaluation . 107

x

CHAPTER 5: POWER AND QUALITY-ORIENTED SOFT-RESILIENCE 109

Motion Estimation . 109

Previous Techniques of Low Power ME . 112

Activity Based Resource Allocation Framework . 113

Computational Demand Anticipation . 116

Faults Mitigation Strategy . 119

Detection of Hardware Faults . 121

Fault Diagnosis using Dynamic Redundancy 122

Fault Recovery . 125

Case-Study : FPGA-based Implementation of Full Search FHME 125

Evaluation Results of FHME . 129

Energy Saving in Reconfigurable Design . 129

Online Recovery Results of FHME core . 133

CHAPTER 6: HEALTH METRIC BASED DYNAMIC RESOURCE ALLOCATION . . . 136

Fault-Handling Method . 136

Functional diagnosis to record discrepancy history . 140

Reconfiguration Algorithm 1: Divide-and-Conquer Method 143

xi

Reconfiguration Algorithm 2: FaDReS . 147

Hardware Organization in FaDReS Technique . 150

Hardware Components . 151

Fault Detection, Isolation and Recovery . 152

Experimental Results . 157

Performance Improvement . 157

Power Analysis . 159

Diagnosis by voting . 160

Diagnosis by Comparison . 162

Reconfiguration Algorithm 3: PURE . 163

Diagnostic Flow . 164

Fault Detection Criteria . 168

PSNR as a Health Metric . 168

Output Discrepancy as a Health Metric 173

PURE Functional Testing as Compared to Physical Resource Testing 174

Experimental Results . 179

Case Study-1: Prioritized elements of the DCT core 181

xii

Case Study-2: Fault Resilience of a Multi-PE Design 183

Energy Duty Cycle . 185

CHAPTER 7: CONCLUSION . 187

Technical Summary . 187

Scope and Limitations . 192

Future Directions . 195

The Road Ahead . 196

LIST OF REFERENCES . 198

xiii

LIST OF FIGURES

1.1 Characteristics of an ideal autonomous recovery technique 6

1.2 System block diagram illustrating the scope of reconfiguration techniques . . 9

1.3 A roadmap diagram illustrating the techniques evaluated herein 12

3.1 Circuit realization to employ the SCDR recovery mechanism 27

3.2 Mapping between an individual and configuration 28

3.3 The evolutionary recovery process in the context of a standard GA [1] 31

3.4 A faulty TMR configuration . 32

3.5 The consensus fitness history of the population 33

3.6 A repaired instance in the new configuration 33

3.7 The amplitude spectrum of the output signal 35

3.8 The absolute fitness history of the population 35

3.9 Various CED configurations . 37

3.10 The DCT matrix . 39

3.11 Floorplan of various FE configurations realizing a DCT module 42

3.12 Spatial heterogeneous CED arrangement realizing a DCT module 43

xiv

3.13 Temporal heterogeneous CED arrangement of the DCT module 46

3.14 Throughput reduction of temporal Heterogeneous CED arrangement 47

3.15 Fault isolation using AS technique . 50

3.16 An operational example in a faulty scenario of video encoder 51

3.17 Improvement in average PSNR after fault recovery 52

3.18 Gaussian kernel and qualitative results . 53

3.19 A CED arrangement of a functional element 54

3.20 Online fault-diagnosis strategies evaluated herein 55

3.21 Fault-diagnosis cost of exhaustive evaluation method 58

3.22 Fitness states of a design configuration during a circuit’s life time 59

3.23 Identifying healthy configurations in a suspect pool 61

3.24 Probability of success for various trials with replacement 63

3.25 An example of configurations ranking . 67

3.26 An example of fault-injection into the simulation model of the circuit 68

3.27 CDV, and PR of various configurations for different simulation runs (a), and (b) 71

3.28 The discrepancy history of various configurations of the circuit 72

3.29 A comparison of fault-diagnosis methods for various MCNC benchmarks . . 73

xv

3.30 An operational example of a circuit on a x104 evaluations scale 74

3.31 An image in the frame memory of video encoder 75

3.32 Partial recovery results of the scheme . 76

4.1 Reliability issues of digital systems built with deep submicron devices 78

4.2 Hierarchy of fault-mitigation techniques at various abstraction levels 82

4.3 Cross-layer fault-handling architecture with hierarchical support 87

4.4 An array of 7 configurable PEs and its genetic representation 88

4.5 Cost functions . 95

4.6 Pareto set of solutions for the synthetic graph MOOE problem 96

4.7 Functional block arrangement in a Self-Healing SVM case study 97

4.8 Effect of population size on recovery results 99

4.9 Effect of crossover fraction on convergence property of the GA, p=25 100

4.10 Effect of mutation on convergence property of the GA 101

4.11 Effect of elite count on convergence property of the GA, p=25, fc=0.5 102

4.12 Pareto set of solutions for the SVM MOOE problem 102

4.13 Floorplan of DCT module for Virtex-4 device 104

4.14 Fault recovery results for various 4cif test video sequences [2] 106

xvi

5.1 Flexible configuration of Amorphous Processing Elements (APEs) 111

5.2 Computation of a motion vector . 115

5.3 Effect of search range on motion vector’s values for various video sequences . 116

5.4 Effect of ME’s SAD error on encoder’s bitrate, QP = 10 117

5.5 The effect of QP on bitrate, S = 15 . 118

5.6 RD curve showing the effect of increasing search range 120

5.7 Fault injection results for container video sequence 120

5.8 The effect of Nf on iterations required for the fault-diagnosis algorithm . . . 124

5.9 Hardware architecture of FHME . 127

5.10 Evaluation Setup: FPGA based FHME’s interface with on-chip processor . . 128

5.11 Power saving at the cost of increased bitrate for Soccer video sequence 130

5.12 Dynamic computational resource prediction for crew video sequence 131

5.13 Energy saving results of FHME with low overhead of bitrate 132

5.14 Power and quality tradeoff results for city.4cif video sequence 133

5.15 An example of online fault-handling . 135

6.1 Self-adapting resource escalation of the FPGA device 138

6.2 Overview of recovery algorithms evaluated herein and the evaluation approach 140

xvii

6.3 Divide-and-conquer method for fault diagnosis 145

6.4 Various reconfiguration instants in the divide-and-conquer approach 146

6.5 CPDC demonstrating diagnosis benefit of additional slacks 149

6.6 The FaDReS approach applied to an H.263 architecture 150

6.7 The fault isolation and recovery process flow chart 153

6.8 Upper Bound on number of iterations for fault isolation 155

6.9 An example of the fault isolation and recovery scheme 156

6.10 An operational example of the video encoder 158

6.11 Qualitative results on sequence from ASU video library [3] 158

6.12 Fault-diagnosis in the FaDReS approach . 161

6.13 The diagnosability of a topology with various reconfiguration iterations . . . 166

6.14 An example of fault diagnosis in PURE approach 166

6.15 The worst case scenario for the diagnostic phase with two defective nodes . . 167

6.16 The impact of faults on PSNR and image quality 170

6.17 Diagnosis latency of the PURE approach for Ns = 1 177

6.18 Diagnosis latency of the PURE approach for Ns = 2, N = 8 177

6.19 PSNR and bit-rate of the encoder employing PURE 179

xviii

6.20 Operational examples of the three algorithms 180

6.21 Floorplan of the AES core for Virtex-4 chip 184

7.1 The techniques developed herein to meet evaluation criteria 188

xix

LIST OF TABLES

2.1 Comparison of fault-tolerance techniques for SRAM-based FPGAs 22

3.1 Resource utilization for spatial hCED arrangement 44

3.2 Resource utilization summary of the DCT core 75

4.1 Example of priority values, P , and healthiness of resources, H 94

4.2 GA paramters . 94

4.3 Fault impact on the classifier output . 98

4.4 Fault recovery for Covertype[4] dataset . 98

5.1 Hardware utilization summary for Virtex-4 FPGA 129

5.2 Number of vacated APEs while bitrate within 3% tolerance 129

5.3 Bitrate of encoded bitstream for foreman video sequence 135

6.1 Dynamic power consumption of the static design 160

6.2 Dynamic power consumption of the reconfigurable design 160

6.3 Dynamic energy consumption of the PR design during FI phase 160

6.4 Latency vs. throughput comparisons . 168

xx

6.5 Effect of ∆FD = 3% tolerance using Failure-Free Resources for city.qcif . . . 172

6.6 Effect of ∆FD = 3% tolerance using PEs with 5% degraded output 172

6.7 Fault detection performance (∆FD = 3%) 172

6.8 Quality-oriented fault-diagnosis . 173

6.9 Configuration bitstream sizes in DCT core 178

6.10 Fault impact in 128 AES Computational FE 183

6.11 Utilization summary of the AES design . 184

7.1 A summary of the dissertation and lessons learned 194

xxi

LIST OF ACRONYMS

ACE Advanced Configuration Environment

AE Active Element

AEs Active Elements

AES Advanced Encryption Standard

APE Amorphous Processing Element

APEs Amorphous Processing Elements

BIST Built-in Self Test

CDM Comparison Diagnosis Model

CED Concurrent Error Detection

CLBs Configuration Logic Blocks

CRR Competitive Runtime Reconfiguration

CUT Circuit Under Test

DCT Discrete Cosine Transform

DMR Dual Modular Redundancy

DRFI Distance-Ranked Fault Identification

DR Dynamic Replica

xxii

DRs Dynamic Replicas

DSP Digital Signal Processing

ECC Error Correcting Code

EM Electromigration

FaDReS Fault Demotion using Reconfigurable Slack

FIAT Fault Injection and Analysis Toolkit

FPGAs Field Programmable Gate Arrays

FD Fault Detection

FE Functional Element

FI Fault Isolation

FR Fault Recovery

FT Fault Tolerance

FH Fault Handling

FHME Fault-Handling Motion Estimation

GA Genetic Algorithm

GAs Genetic Algorithms

hCED Heterogeneous CED

HDL Hardware Description Language

ISE Integrated Software Environment

xxiii

ICAP Internal Configuration Access Port

ME Motion Estimation

MV Motion Vector

NUT Node Under Test

NMR N-Modular Redundancy

PE Processing Element

PEs Processing Elements

PSNR Peak Signal-to-Noise Ratio

PLB Programmable Logic Block

PR Partial Reconfiguration

PRR Partial Reconfiguration Region

PRRs Partial Reconfiguration Regions

PURE Priority Using Resource Escalation

QoS Quality of Service

QP Quantization Parameter

RN Reconfigurable Node

RS Reconfigurable Slack

SEU Single Event Upset

SET Single Event Transient

xxiv

SA Stuck At

SCDR Self-Configuring Discrepancy Resolution

SNR Signal-to-Noise Ratio

SEUs Single-Event Upsets

SCDR Self-Configuring Discrepancy Resolution

STARs Self-Testing AReas

TDDB Time-Dependent Dielectric Breakdown

TMR Triple Modular Redundancy

xxv

LIST OF NOTATIONS

G(V,E) An undirected graph, where V is the set of all nodes, E is the set of edges

C Connectivity matrix

C(t) Connectivity C at time instant t

Ψ Syndrome Matrix

Φ̂ Estimated Fitness State Vector

P Priority Vector

t(G) Diagnosability of G

d(G) Average degree of a node in G

Va Set of active nodes

Vs Set of Reconfigurable Slack (RS) to diagnose the active nodes by
comparison-based diagnosis

Vh Set of healthy nodes

VNMR Set for N-Modular Redundancy checking

M Number of PRRs

Na Number of nodes in the datapath (i.e., |Va|)

Ns Number of Reconfigurable Slacks (i.e., |Vs|)

Nd Number of defectives

r Testing arrangement instance (may involve multiple reconfigurations)

s Slack update instance (a slack is reconfigured with some function)

t Time instant

Trecon Reconfiguration Time

Teval Evaluation window period

xxvi

F Functions assignments vector

F ∗ Solution vector F after recovery

Td Latency of fault detection

Tdiag Latency of fault diagnosis

Trec Recovery time

Nr Number of testing arrangement instances before the diagnosis completes

Nsup Number of slack updates

NAE , NDR, NRS Number of AEs, DRs, and RSs, respectively

N Total number of APEs defined in the reconfigurable device

N Macroblock’s size (N × N)

Φ Predicted fitness status (0:healthy, 1:faulty, or x:suspect)

VT APEs in the pool under test

S Search Range

n Number of SAD’s computed by an APE per clock cycle

TCAE Current Testing Candidate APE in the active datapath (i.e., AE)

Tr Time to reconfigure an APE

Ŝ Search range anticipated

µ Average magnitude of motion vectors over a video frame

τSAD Threshold to increased search range

∆SAD Difference in SAD values

xxvii

CHAPTER 1: INTRODUCTION

Survivability, reliability, and availability are indispensable characteristics of mission critical digital

systems. To achieve these characteristics in electronics systems used in space, satellite, or other

difficult to access environments where the manual intervention may not be feasible, autonomous

repair capability becomes a desirable property. This chapter highlights the significance of the prob-

lem, and provides an overview of the techniques widely used in fault-tolerant designs on reconfig-

urable platforms. Afterwards, innovations of the proposed resilience approaches are identified and

listed in the Contribution of Dissertation section.

Need for Reliability and Survivability

With the continued reducing feature size of semiconductor technology, device reliabil-

ity and system survivability for mission-critical systems poses increasingly significant chal-

lenges [5][6][7] [8]. Error-resiliency and self-adaptability of future electronic systems are subjects

of growing interest [5][9]. In some situations, even survivability in the form of graceful degra-

dation is desired if a full recovery cannot be achieved. Transient, so called soft, errors as well as

permanent, hard, errors in electronic devices caused by aging or radiation in space environment

require autonomous mitigation as manual intervention may not be feasible [10]. The reliability

problem of highly complex VLSI systems in sub-90 nanometer process, caused by soft and hard

errors, is increasing. Therefore, the importance of addressing reliability issues is growing to sustain

a high level of integration, performance, and transistor density on chip.

The self reconfiguration capability of Field Programmable Gate Arrays (FPGAs) is appealing for

building fault-tolerant circuits. Various configurations of a design can be studied for throughput,

1

power, and reliability analysis. Fault recovery of FPGA-based designs can be realized by employ-

ing fault-free logic resources at runtime. Given some faulty resources in a particular region in

an FPGA chip, the circuit can be repaired by assigning its functionality to a pristine area in the

chip. Equivalently, if a circuit realized by a particular configuration-bitstream manifests faults, an

alternate configuration-bitstream utilizing only the fault-free resources can be downloaded into a

chip.

Another reason for research interest in fault-tolerance of FPGA based design is due to their pop-

ularity in mission critical systems [11]. The regular structure of an FPGA-fabric is amenable to

reconfiguration-based recovery. A high regularity of FPGA logic resources allows movement of a

function implemented over a defective region to a fault-free region [12] [13] [14] [15]. FPGAs are

popular among space exploration community for its reconfigurability [10] [16]. On the other hand,

FPGAs are also susceptible to transient as well as permanent faults, for example Single Event

Upset (SEU) in the configuration memory, and Stuck At (SA) faults in the logic resource [17].

These errors can occur while operating in deep space environments when FPGAs are subjected

to cosmic rays and high energy radiations. For fault detection capability, a duplex of the design

can be instantiated on the chip and a discrepancy in the output can be monitored via a discrepancy

detector [18].

At the circuit level, scaling the supply voltage Vdd and threshold voltage Vt have been effective

methods to drastically reduce power consumption in digital circuits [19]. However, a mere scaling

of operating voltage can lead to output degradation as it can result in increased delays of critical

paths. For example, a low voltage operation of Discrete Cosine Transform (DCT) in a video

encoder impacts Peak Signal-to-Noise Ratio (PSNR) quality metric due to erroneous output [20].

Without controlling the supply voltage adaptively, the power gains are diminished due to increased

sensitivity of the circuits to manufacturing variations and longer critical path delays. Otherwise,

choosing a (Vdd,Vt) combination becomes necessary for error-free computation and power gains

2

become limited accordingly [21].

In addition to voltage scaling-induced errors and manufacturing Process Variations (PV), other

types of hardware faults include aging-induced degradations [22] and radiation-created perma-

nent faults. Systems in which some manual intervention remains no longer a feasible option af-

ter deployment, the absence of provision of an autonomous fault-handling capability may lead

to a catastrophic system failure [23]. Thus, the provision of capability to adapt the hardware

is an essential characteristic for self-organizing hardware systems and reconfigurable hardware

paradigm [24][25][26] is favorable in such a scenario. A unified scheme of mitigating hardware

errors irrespective of their underlying causes is desirable to achieve output at sufficient quality

levels. Nevertheless, hardware faults necessitate mitigation to sustain computational correctness.

While low power Digital Signal Processing (DSP) designs focus on reducing redundancy in com-

putations, conventional error mitigation techniques rely on introducing some form of redundancy

in computations. Therefore, for low power designs intended for modern or future nano-scale hard-

ware platforms, the design poses a dilemma. Achieving power efficiency as a design objective

seeks those algorithms which can be efficiently mapped to fewer computational units. However,

such a reduction makes every computational unit more critical and hence more susceptible to er-

rors. This becomes a significant concern when the intended algorithm is mapped to unreliable

hardware fabrics. At the other end of the spectrum, to achieve robustness as a design objective,

architectures are sought which exploit or even introduce redundancy in the design. As this type

of approach brings in new alternatives to distribute the reliance to multiple hardware units, over-

all fault-tolerance is enhanced. However, it can realize power hungry designs as the redundancy

to mask errors becomes a significant overhead. To combat these challenges in a unified manner,

we propose a design framework which introduces the concept of dynamic modular redundancy

utilizing computational priorities. We utilize a reconfigurable approach to avoid redundancy dur-

ing normal operation of the Circuit Under Test (CUT) and dynamically introduce it at run-time to

3

mitigate fault scenarios.

Characteristics of Fault-Tolerant Systems

Fault tolerant systems are characterized by the reliability and dependability they provide in mission

critical systems. The fault detection capability, or detectability, is an important attribute of the fault

tolerant systems by which faults or a system failure can be detected [27]. An indication is required

in situation of faults when the output of the system deviates from its desired operation. While the

detectability can be implemented by observing the behavior of a system through certain variables,

another way is to replicate the system to realize a duplex configuration. A disagreement in output

of the two instances indicates the faulty nature of operation as an error in at least one of the two

instances.

A survivable system is defined as one that, when enabled by likely regeneration strategy, can

operate without substantial depreciation throughout its expected lifetime even when subjected to

multiple internal or external fault-invoking conditions. Specifically within the domain of DSP, a

device is said to be survivable if it is capable of handling imminent failures throughout its lifetime

by taking the actions necessary to maintaining desired signal processing performance above some

minimum threshold. The threat of diminished component reliability becomes more unpredictable

due to escalating thermal profiles, process-level variability, and harsh DSP environments such

as deep-space and high-altitude flight. Furthermore, increasing density and complexity renders

preventing or eliminating all possible design faults to be increasingly infeasible. All these factors

pose renewed challenges to designing signal processing circuits resistant to unpredictable damage

or malfunction.

Two conventional approaches to handle permanent faults in FPGAs are through Triple Modular

4

Redundancy (TMR) via tools such as Xilinx XTMR, or progressive resolution via distinct detec-

tion, diagnosis, isolation, and recovery processes. Typically, recovery relies upon reconfiguring

the impaired functional block in a different fault-free portion of the fabric. Partial Reconfigu-

ration (PR) capability is beneficial in achieving runtime adaptability with reduced time and space

overhead. Compared to resource-oriented Built-in Self Test (BIST) based schemes [28], functional

testing techniques offer model-free fault-diagnosis [18]. Moreover, autonomous survivability is de-

sired to continue operation without halting service. Ideally, an online fault handling scheme would

not interrupt the continuous throughput of the system while only temporarily degrading the spa-

tial/temporal resolution, or PSNR quality. Nonetheless, minimal impact on PSNR is desirable and

rapid fault recovery becomes an important design objective.

Dynamic redundancy techniques have been widely used to increase reliability of critical sys-

tems in which reconfiguration is employed at runtime to utilize spare units in response to fail-

ures [29] [30] [31]. While some techniques rely on pre-allocation of dedicated spare units, a

dynamic spare pool sharing approach can be favorable in terms of extending fault-capacity [8].

Redundancy enables fault-tolerance, however, how wisely redundancy is employed at runtime de-

termines the sustainability of the system exposed to cumulative failures. Fig. 1.1 illustrates these

characteristics of an ideal autonomous recovery technique and the techniques developed in this

dissertation in the context of exiting approaches towards achieving these goals. A favorable fault-

tolerance technique minimally impacts the throughput datapath. In addition, the area-overhead of

a fault-handling controller, δ should be very low as compared to the baseline area where δ is fixed,

independent of the datapath complexity, and a fraction of the size of the datapath.

Biological systems have inherent self-repairing capabilities which have inspired signal processing

research to mimic these natural adaptive processes in silicon-based systems. Thus, research in-

terest has been increasing toward electronic systems which can sustain considerable damage, yet

still remain operational or at least partially operational. Consequently, self-repair and self-healing

5

mechanisms have been proposed for digital hardware by various researchers [32][33][34]. These

mechanisms rely on identifying or employing some form of redundancy, reconfiguration, or both.

To realize these properties in a signal processing system, it is useful to identify how a layered

model emphasizing the impact of signal processing tasks on output correctness and the runtime

reconfiguration of FPGA resources based on Evolvable Hardware can be leveraged.

Figure 1.1: Characteristics of an ideal autonomous recovery technique

Evolvable Hardware has been proposed in literature as a reconfiguration-based approach to achieve

fault tolerance in electronic designs. These methods extend static fault tolerance techniques at

design-time which attempt to make designs which are more robust to faults [35][36]. In particular,

runtime evolvable hardware techniques reconfigure hardware resources at runtime to refurbish the

circuit [18]. Previous works establish the successful use of Evolutionary Algorithms for adaptive

self-recovery of hardware systems based on reconfigurable logic platforms, especially in FPGA-

6

based systems [18][37][38]. A survey of techniques ranging from passive to dynamic in classi-

fication are presented in [39] to tackle hard faults in SRAM-based FPGAs for small circuit case

studies. For example, modular redundancy is exploited in [40] for achieving fault recovery of a

4-bit x 4-bit multiplier. Moreover, novel techniques are sought which are scalable to large modular

signal processing systems.

Researchers have devised runtime evolutionary techniques to realize fault-resilient electronics

through iterative selection [41][42][43]. The fault-detection technique in [43] employs redundant

cells in the reconfigurable fabric to check the operating resources by detection discrepancies among

replicated outputs. Although, previous attempts have been made to combine architecture and algo-

rithm level knowledge [44][45], there remains a need to develop frameworks utilizing cross-layer

information in a way that leverages the soft-resilience present in signal processing applications.

Soft Resilience of Signal Processing Systems

In the domain of DSP, a system is said to be resilient if it is capable of handling failures throughout

its lifetime to maintain the desired signal processing performance within some tolerance. The

threat of diminished component reliability becomes more critical to maintaining these tolerances

due to process-level variability, as well as escalating thermal profiles which can accelerate aging

effects [46] [47]. Additionally, harsh DSP environments such as deep-space and high-altitude flight

can further exacerbate lifetime reliability concerns. Meanwhile, increasing device density and

system complexity can make the use of design margins and timing guard-banding techniques more

difficult [48]. All these factors pose renewed challenges to designing signal processing systems

resistant to process variation and aging-induced malfunction.

Dynamic redundancy techniques based on reconfiguration have been widely used to increase re-

7

liability [30][31]. While traditional fault-handling techniques rely on pre-allocation of dedicated

spare units, more recent approaches based on dynamic spare pool sharing can be favorable in terms

of reducing area overhead[46] [49]. Resiliency is achieved when a regeneration strategy allows a

system to operate without substantial depreciation throughout its lifetime, even when subjected to

multiple internal or external fault-invoking conditions. Redundancy enables fault-tolerance, how-

ever, how wisely redundancy is employed at runtime determines the sustainability of the system

after exposure to cumulative failures. Adaptive reconfiguration can reduce the size of a sustainable

spare pool, and it also enables the novel resiliency strategies developed herein.

FPGAs offer two important features towards resilient signal processing architectures. First, FP-

GAs have been used to achieve significant acceleration of DSP applications over conventional

computing platforms [50][51]. Second, FPGAs provide hardware support for adaptive recon-

figuration. From a reliability perspective, the regular structure of an FPGA-fabric is amenable

to reconfiguration-based recovery. A high regularity of FPGA logic resources allows movement

of a computational function implemented over a defective region to a fault-free region [15][52].

This characteristic has already made FPGAs popular for application in the space exploration

community[10][16][53]. On the other hand, SRAM-based FPGAs are also susceptible to soft

(transient) errors as well as hard (permanent) faults [54] that can be addressed using the techniques

developed in this work.

Aggressive scaling of semiconductor technology to cope with today’s intensive processing de-

mands leads to seeking new autonomous reliability approaches for logic devices. In particular, the

reliability concern of VLSI signal processing systems implemented in a sub-32 nanometer process,

caused by soft and hard errors, is increasing. Therefore, the importance of providing resiliency is

increasing in order to achieve a high level of integration, throughput performance and quality, and

the classical trends of transistor density per chip.

8

Router

Comparison

-based

functional

diagnosis

f1
PE1

f2
PE2

fN
PEN

Adaptive

Reconfiguration

Controller

Health metric

(e.g., PSNR)

Extrinsic fault sources,

Aging-induced
degradations,

Manufacturing process
variations

Configuration

Bitstreams

Software

Application

(e.g. video

encoder)

Processing Array

 Configuration Port (e.g. ICAP)

. . .

f1

f2

fN

User-level decisions

 (e.g., reliability/

quality/throughput/

power

tradeoffs)

...

Reconfigurable
Logic Fabric

Figure 1.2: System block diagram illustrating the scope of reconfiguration techniques

In this dissertation, a strategy is presented for autonomously mitigating permanent faults in order

to improve system availability and mission lifetime. The scheme is advantageous in terms of

continuous operation, power consumption, and area-overhead while improving reliability. We

consider a Functional Element (FE) which has been decomposed into various Processing Elements

(PEs) for throughput enhancement. Such a distributed implementation is also beneficial in terms

of fault-tolerance. Some of the PEs can be used at runtime to perform diagnosis while others

can be configured as operational resources to compensate for failures and maintain performance

requirements. Without loss of generality, we term each of these PEs as Reconfigurable Slack (RS).

Each RS region denotes a contiguous 2-dimensional reconfigurable region of FPGA logic resources

used to diagnose the active PEs. An RS has size and shape which is identical to an active PE in

throughput datapath, yet is not currently configured to contribute to the throughput. Multiple

9

RS’s are not required for the techniques herein, but are shown to decrease the fault diagnosis

latency. A system level block diagram to illustrate the framework used in this work for evaluating

the techniques developed herein is given in Fig. 1.2. The reconfiguration management of logic

resources for fault-handling purposes is performed by reconfiguration controller. The configuration

bitstreams are stored in an external memory module. Results from comparison-based diagnosis are

monitored at software level. These reconfiguration bitstreams represent alternate configurations to

recover from faults. They are loaded from the storage memory as needed dynamically, under

control of autonomous algorithms executing on the reconfiguration controller. Thus, from a high-

level viewpoint, the objective of this dissertation is to develop algorithms for the reconfiguration

controller that best address the fault-handling characteristics identified in Figure 1.1

Quality-Oriented Architectural Adaptations

To deal with susceptibility to aging and process variation in the deep submicron era, signal process-

ing systems are sought to maintain quality and throughput requirements despite the vulnerabilities

of the underlying computational devices. The Priority Using Resource Escalation (PURE) online

resiliency approach is developed herein to maintain throughput quality based on the output PSNR

or other health metric. PURE is evaluated using an H.263 video encoder and shown to main-

tain signal processing throughput despite hardware faults. Its performance is compared to two

alternative reconfiguration algorithms which prioritize the optimization of the number of reconfig-

uration occurrences and the fault detection latency, respectively. For a typical benchmark video

sequence, PURE is shown to maintain a PSNR baseline near 32dB. Compared to the alternatives,

PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by

escalating healthy resources to higher-priority signal processing functions. The diagnosability, re-

configuration latency, and resource overhead of each approach is analyzed. The results indicate

10

the benefits of priority-aware resiliency over conventional redundancy in terms of fault-recovery,

power consumption, and resource-area requirements.

Voltage scaling has been an effective approach to reduce the power consumption in DSP systems

due to the quadratic dependence of power on operating voltage. However, variations in the fabri-

cation process can manifest soft errors in devices built with deep submicron technology [47][55].

The reliability issues of modern signal processing architectures due to voltage scaling are being

addressed in recent research [56][57]. Many of these works take various approaches to leverage

the role of priority in the signal processing computation to improve resiliency, along with its area

and energy costs. For example, the general concept of asymmetric reliability is developed in [46]

to prioritize the protection of higher order bits in error resilient architectures supporting proba-

bilistic applications. Algorithmic level properties are utilized to realize area efficient replicas of

motion estimation blocks to achieve reliable operation under energy efficiency constraint in [58].

Likewise, to minimize the power overhead of error resilience while maintaining signal quality, the

scheme proposed in [47] exposes only less crucial blocks to process variation and channel noise.

In this dissertation, the developed techniques exploit health metric based feedback to perform

reconfiguration in order to meet resiliency, availability, energy efficiency, and survivability objec-

tives. Various applications are considered as case studies. These health metrics include PSNR of

video encoder, bitrate of the compressed bitstream, and measure of confidence from DCT, Motion

Estimation (ME), and SVM modules, respectively. In other case studies where a readily available

health metric is not feasible, the discrepancy information is used to assess the erroneous behavior of

the hardware fabric. Fault-diagnosis algorithms developed herein engage the priority of processing

blocks in order to sustain partial throughput during the recovery period. The recovery strategy also

considers functional priorities when mitigating hard faults. Furthermore, the tradeoffs of quality

and energy efficiency are explored by a multi-objective formulation of the reconfiguration problem.

11

Contributions of the Dissertation

The primary focus of this work is to develop novel and effective techniques for autonomous fault-

handling in digital systems. To this end, reconfiguration based diagnosis and recovery techniques

are proposed to effectively utilize redundancy needed for fault-tolerance.

4 Case Studies

Fault Detection Latency

Diagnosability

Online Functional Diagnosis

Graceful degradation of Health Metric

(e.g., PSNR, Measure of Confidence)

Low energy duty-cycle

Availability during fault-handling

Survivability despite hard faults and aging

effects, Improved mission lifetime

Throughput quality for a given power

budget

Power Savings for a given quality level

Video Encoder
(DCT, ME)

AES Encryption
Algorithm

Support Vector
Machine

MCNC Benchmark
Circuits

Evaluation MetricsApproach Emphasis Challenges

Baseline Arrangement: TMR Fault-masking
Area, power,

resiliency

Adaptive Area Management

Survivability

despite multiple

failures

Area Overhead

similar to CED and

TMR

Soft-Resilience Using an Online

Multi-Objective GA

A config. from the

pareto set to

realize quality and

energy tradeoffs

Reduced

throughput during

diagnosis

Power And Quality-Oriented

Signal Processing Soft-

Resilience

Predict the

computational

demand based on

signal

characteristics

Availability vs.

Diagnosis latency

runtime trade-off

Health Metric Based Dynamic

Resource Allocation Strategies

Maintain

throughput during

recovery, Uniplex

area requirement

Extension to

General Purpose

Computing

Figure 1.3: A roadmap diagram illustrating the techniques evaluated herein

Fig. 1.3 illustrates the emphasis of various techniques presented in this dissertation and evaluation

metrics in the context of some signal processing case-studies. Here, the five novel approaches

for autonomous fault-handling developed in this dissertation are listed. The last approach listed is

the capstone work in the dissertation using an observable health metric. In the next column, each

approach has a technical focus or objective related to the desirable characteristics for autonomous

fault handling mentioned earlier ranging from simple fault-masking to sophisticated maintenance

of throughput during recovery while incurring negligible area overhead. To achieve these objective,

each approach faces technical challenges ranging from reduced throughput during diagnosis to

recovery latency. Next, four case studies were selected to evaluate each approach. These case

12

studies were chosen due to their popularity in signal processing, communication systems, machine

learning, and computer architecture. Each case study was then evaluated using one or more metrics

as listed on the right side of Figure 1.3. While progress was made on improving many of these, a

focus on fault-handling latency and recovery quality proved especially effective as will be shown in

Chapter 6. The main contributions of the dissertation are listed in the following, while the chapters

following a chapter on the related work describe these techniques in detail.

• Developed area management techniques for the fault handling problem in reconfigurable

logic devices with δ area-overhead, less than 5% throughput degradation, and ability to

sustain multiple failures in the hardware resources. These are A Self-Configuring TMR

Scheme Utilizing Discrepancy Resolution (SCDR), Heterogeneous Concurrent Error De-

tection (hCED), Amorphous Slack (AS) Fault-Handling Methodology, and Distance-Ranked

Fault Identification (DRFI) presented in Chapter 3.

• Formulated the objective of maintaining the quality-of-service and power consumption into

a generalizable runtime mapping problem based on the underlying resource performance

and operating workload. A multi-objective GA approach is developed for this mapping opti-

mization problem in which a population of solutions is guided by a novel adaptive guidance

function as presented in Chapter 4.

• Demonstrated use of PSNR as a health metric to achieve autonomous monitoring of opera-

tion for graceful degradation, low-power operation, and survivability in presence of multiple

failures. These techniques are Fault-Handling Motion Estimation (FHME) Engine, Fault

Demotion Using Reconfigurable Slack (FaDReS), and Priority Using Resource Escalation

(PURE) Escalation presented in Chapters 5 and 6, respectively

13

CHAPTER 2: RELATED WORK

Fault Handling (FH) systems typically employ a sequence of resolution phases including Fault

Detection (FD), Fault-Diagnosis, and Fault Recovery (FR). A system can be considered to be

fault-tolerant if it continues operation in the presence of failures, perhaps in a degraded mode with

partially restored functionality [59]. Reliability and availability are desirable qualities of a system,

which are measured in terms of service continuity and operational availability in presence of ad-

verse events, respectively [60]. In this work, reliability is attained by employing the reconfigurable

modules in the fault-handling flow, whereas availability is maintained by minimum interruption of

the main throughput datapath.

The redundancy based FD methods are popular among fault-tolerant systems community, with

costs of area and power overhead. In the Comparison Diagnosis Model [61][62], a pair of units is

evaluated subjected to the same inputs and a discrepancy indicates failure. For example, a Concur-

rent Error Detection (CED) arrangement utilizes either two concurrent replicas of a design [18], or

a diverse duplex design to reduce common mode faults [30]. Its advantage is a very low fault de-

tection latency. A TMR system [63][64] utilizes three instances of a datapath module. The outputs

of these three instances become inputs to a majority voter, which in turn, provides the main output

of the system. In this way, besides fault detection capability, the system is able to mask its faults

in the output if distinguishable faults occur within one of three modules. However, this incurs an

increased area and power requirement to accommodate three replicated datapaths. It will be shown

that these overheads can be significantly reduced by either considering the instantaneous PSNR

measure obtained within video encoder as a precipitating indication of faults or periodic checking

of the logic resources.

The Fault Diagnosis phase consists of distinguishing properly-functioning components from some

14

larger set of suspect components. Traditionally, in many fault tolerant digital circuits, the compo-

nents are diagnosed by evaluating their behavior under a set of test inputs. This test vector strategy

can isolate faults while requiring only a small area overhead, yet incurs the cost of evaluating an

extensive number of test vectors to diagnose the functional blocks as they increase exponentially

according to the number of inputs. The proposed active dynamic redundancy approach combines

the benefits of redundancy with a negligible computational overhead. Static redundancy tech-

niques reserve dedicated spare resources for fault-handling. In contrast, in the presented approach,

the redundant modules are continually utilized in the datapath during the normal mission operation.

While reconfiguration and redundancy are fundamental components of a FR process, both the

choice of reconfiguration scheduling policy and the granularity of recovery affect the availability

during recovery phase and quality of recovery after fault-handling. Here, it is possible to exploit

the algorithm’s properties so that the reconfiguration strategy is constructed taking into account

varying priority-levels associated with required functions.

Various methods of achieving fault-tolerance in FPGAs include device level, passive redundancy,

resource-oriented testing, functional testing, GA, configuration level, multiple configurations, and

scrubbing techniques. The relevant work is described in detail in the following.

Static Redundancy

A passive redundancy based scheme, TMR is popular in FPGA-based reliable designs for protec-

tion against permanent as well as transient faults. As a matter of fact, a vendor’s tool XTMR is

available to triplicate the user logic [63]. The errors can be masked in the output to some extent.

A Dual Modular Redundancy (DMR) arrangement is also commonly used for fault detection in

situations in which area and power overhead of a TMR is unaffordable.

15

A research of different forms of the CED setup was presented by Mitra et. al [30]. The CED

schemes rely on some form of redundancy for fault detection purpose. Sometimes, the functional

modules are implemented in the form of a diverse duplex system which involves two alternative

implementations of the same design. This helps error detection in case of common mode failures.

Besides duplex systems, CED schemes also realize parity based systems [30]. For example, an

even/odd parity can be used to ensure the correctness of an output sequence of a digital system.

Temporal redundancy techniques have been explored in fault-tolerant microprocessor systems. A

typical error detection scheme involves running a duplicate thread for the comparison purpose on

a chip multiprocessor (CMP). Hyman et. al [5] proposed an extension to the scheme by exploiting

various redundancies in instructions in multi-core processors framework. Thus, if an instruction is

affected by transient errors in the execution path, the duplicate execution would provide a fault de-

tection capability. However, if the faults are of permanent nature, the re-execution of an instruction

would have the same result and the error detection becomes impossible. This is because a given in-

put data will exercise the logic resource in the same way no matter how many times an instruction

is executed. In the proposed Heterogeneous CED (hCED) approach, we apply the desired function

to the input data at one instant, and the redundant computation is performed on the difference data

in the second instant. Thus, the logic resource is exercised with different input data in each case.

In this way, the approach is able to detect errors in case of permanent faults also, in addition to

transient errors.

In the context of previous work, the followings are the key-points of the hCED approach: FD

in spatial hCED mode with resource saving, FD in temporal hCED mode with uniplex chip area

requirement at the cost of reduced throughput, and the coverage of transients as well as permanent

faults in FD using temporal hCED.

The Algorithmic Noise Tolerance (ANT) technique [58] offers area efficiency which consolidates

16

an application oriented approach to achieve fault-resilience. In the ANT scheme, a reduced preci-

sion replica of CUT is employed which is less energy hungry; then CED is performed to check the

CUT for output discrepancy. Alternatively, in [45], fault-handling is demonstrated in uniplex mode

of operation using the runtime reconfiguration property of FPGAs. Fault-detection was performed

by observing the behavior of the PSNR metric while diagnosis was performed by re-mapping the

APEs contained in the DCT core itself with significantly less area overhead as compared to ANT.

Varying priorities of DCT coefficients were exploited to recover from faults scenarios.

Resource Testing by BIST

Resource-based Testing techniques rely on testing the logic resources using some test vectors. The

output response of the logic resources is analyzed to identify their health. Online BIST and Roving

Self-Testing AReas (STARs) are based on the principle that part of a chip is subjected to test inputs,

and the test area is moved around while keeping the system online. The techniques proposed by

Emmert et al. [6], Dutt et al. [65], and Gericota et al. [66], are some examples of resource oriented

techniques. The heterogeneous nature of FPGA resources (e.g., LUTs, FFs, BRAMS, DSP Blocks)

makes it intractable to come up with a generic testing methodology. Moreover, the scalability of

resource testing techniques with huge growth of on-chip resources is also a concern. Therefore,

functional testing is an appealing alternative to resource testing.

Resource testing techniques for fault isolation of FPGA resources have been proposed in litera-

ture in the form of either offline testing or online testing [67]. In an offline BIST method, all the

active resources are released from their active functionality and a testing sequence is conducted

to verify the correctness of these resources. However, this method is less practical for real-time

systems having specific timing deadlines, or mission critical systems in which device outage may

be problematic to the mission. On the other hand, Online Testing schemes may employ the dy-

17

namic reconfiguration capability of FPGA and tests can be performed during runtime. Online

BIST techniques [6] check a small area of the chip in concurrence while keeping the remaining

non-tested regions in operation. Resource testing typically involves pseudo-exhaustive input-space

testing of the physical resources to identify faults, while functional testing methods check the fit-

ness of the datapath functions [65]. In Gericota et. al’s approach [66], the active logic resources are

concurrently replicated to support a runtime testing procedure. Their active replication technique

concurrently creates replicas of Configuration Logic Blocks (CLBs) to improve the reliability. Dutt

et. al [65] extended the BIST method to offline as well as online testing modes. In their approach,

the output of a Programmable Logic Block (PLB) is compared to that of an identically configured

PLB. A discrepancy in the output flags the PLB as faulty. The exhaustive evaluation of all the re-

sources through test vectors may be a long process. Our scheme can be conceptualized as resource

testing through actual inputs of the circuit.

BIST techniques are characterized by the fact that fault detection latency may be long depending

upon the chip area. Moreover, transient errors are not detectable in these schemes. In our approach,

by introducing some redundancy for error checking purpose, the transient errors are also detectable

with a negligible fault detection latency. Gao et. al [68] proposed a resource testing scheme using

time multiplexing of different components through the reconfiguration capability of FPGA. As the

reconfiguration time is a considerable entity in current FPGA technology, the Self-Configuring

Discrepancy Resolution (SCDR) technique multiplex the inputs to a fixed hardware fabric instead

of reconfiguring the resources with alternating functions.

System-Level Diagnosis

There is a body of research dealing with the problem of identifying faulty components by employ-

ing system diagnosis theory. A pioneer work in diagnosis theory is by Preparata et al. [62] in

18

which the problem of identifying faulty nodes in a digital system is formulated as a connection

assignment procedure. Various components of a digital system are represented by nodes in a graph

described by a connection matrix. A given edge in the graph connects two nodes, one being the

node under test and the other being testing node. The diagnosibility of digital systems containing

faulty modules has been studied by various researchers [69][70]. In the proposed scheme, recon-

figurable hardware’s bitstreams can be conceptualized as nodes of a graph representing a digital

system.

In general, the process of identifying faulty nodes in a system G is called Fault Diagnosis. The

maximum number of faulty nodes which a scheme guarantees to identify is known as diagnos-

ability of the system. System-Level Diagnosis is a widely used technique for fault resilience in

multiprocessor systems. In Comparison Diagnosis Model (CDM) [61] [71], [72], [73], a pair of

units is evaluated subjected to the same inputs and a discrepancy indicates some failure. The im-

pact of a topology on diagnosability of a network is thoroughly discussed in [74] [75]. In the

proposed adaptive reconfiguration schemes, we will consider a fully connected topology so that

the diagnosis can be performed between any pair of nodes. Then, after identifying a faulty node, it

can be replaced by any of the available healthy nodes. It will be shown that fault-handling can be

performed online by time varying topology of the PEs.

Evolvable Hardware Techniques

Evolvable hardware techniques focus on adapting hardware to achieve fault tolerance. These

methods rely on finding a configuration which meets fitness criteria under a given fault scenario.

A Competitive Runtime Reconfiguration (CRR) [18] scheme uses evolution to repair the faulty

resources of a CED arrangement. We can divide these evolutionary schemes into two types 1)

Design-time fault tolerance 2) Runtime fault tolerance. The focus in design time fault tolerance

19

is to build circuits which are robust to faults in different components, yet the disadvantage is that

fault recovery is limited to only anticipated faults. On the other hand, the focus in runtime fault tol-

erance schemes is to recover during runtime operation. Using the dynamic partial reconfiguration

capability and the presented recovery sequence, PURE approach is able to achieve a high degree

of runtime fault tolerance.

Keymeulen et al. [36] proposed an evolutionary approach to circumvent the faults in reconfigurable

digital circuits. They proposed genetic algorithms to evolve the population of fault tolerant circuits

by applying genetic operators like mutation and crossover over the circuit representation. Another

technique [76] is based upon bitstream manipulation by evolutionary algorithms to recover from

faults.

Heng and DeMara [77] developed a Multilayer Runtime Reconfiguration Architecture for au-

tonomous fault handling in FPGA. They split the task into logic, translation and reconfiguration

layers and manipulate the hardware configurations using on-chip resources for autonomous repair.

Lach et al. [78] split the design into tiles and calculate the reliability of each tile instantiated into

the design implemented in FPGA. On identifying the tile that uses faulty resources, they assign the

allocated spare resources to that element. Multiple configurations are generated by [18] for fault

handling purpose whereas the configurations are repaired using evolutionary algorithms.

Sharma et al. [79][80] used group testing techniques to isolate fault locations in FPGA. Once the

resources are isolated, the recovery is made by utilizing alternative logic resources. The method

presented in this dissertation does not require explicit fault isolation phase, while the configurations

are only generated at design time thereby not necessitating the vendor’s synthesis and implemen-

tation tool at runtime. Fault handling is accomplished by promoting the hardware configurations

which utilize fault-free resources [12]. The proposed Distance-Ranked Fault Identification (DRFI)

approach is a system-level fault-diagnosis technique by which healthy configurations are identified

20

in a configuration pool, while the instantiation of two healthy configurations in a duplex manner

completes the fault-recovery process.

Reconfiguration Techniques

Hardware autonomy is desirable in space systems because manual intervention may be an infeasi-

ble option. Steiner et. al [81] proposed an autonomous system in which hardware computational

resources are managed at runtime. Their demonstrated system can dynamically parse and syn-

thesize digital circuit netlists, place-and-route on FPGA at a very fine granularity. It relies on a

customized implementation tool. Our method operates at a coarse granularity of block-level in

the circuit corresponding to pipelined stages of hardware core. The autonomous operation can

be realized using dynamic reconfiguration capability, an on-chip microprocessor and the internal

access port for reconfiguration. An autonomous operation of hardware is also desirable for other

applications involving certain objectives such as power optimization.

FPGAs are widely used in signal processing, image processing and video applications [82] due

to their parallel nature. In addition, the reconfiguration capability [83] provides flexibility in ex-

ploring different hardware architectures. The dynamic reconfiguration of FPGA resources can be

performed in a fault handling scheme to avoid the faulty resources.

Dynamic partial reconfiguration capability of FPGAs has been explored for useful tasks by various

researchers [84], [85], [86]. Fault recovery methods of FPGA-based designs usually exploit the

reconfigurable nature of the device. After completion of the fault isolation phase, the faulty re-

sources are avoided by reconfiguring the chip so that the design is relocated to a fault-free area. On

the other hand, evolutionary techniques such as Genetic Algorithms (GAs) have been employed

to generate circuits at design-time which are robust to faults [36]. In the current work, the circuit

21

is evolved at runtime to reach the desired level of functionality. The GAs being soft computing

stochastic search process, the bounds on search time are not achievable; however, related work

using GAs demonstrated very acceptable recovery time for circuits with various number of LUTs.

Comparison of Techniques

Table 2.1: Comparison of fault-tolerance techniques for SRAM-based FPGAs

Approach Area
requirement

Basis for
Recovery

Detection
Latency

Number of
Reconfigs

Additional
Components
Required

Granularity Guarantee of
improvement

TMR 3 fold
Requires 2
datapaths are
operational

Negligible Not Applica-
ble

2 of 3 Major-
ity Voter

Function or Re-
source level

100% for sin-
gle fault, 0%
thereafter

Evolutionary Hard-
ware

Not Applica-
ble

Redundancy
and Com-
petitive
Selection

Not Ap-
plicable

Only when
fault is
present;
Non-
deterministic

GA Engine Logic Blocks No

CRR Duplex Recovery
complexity Negligible

Only when
fault is
present;
Varies

CRR con-
troller Function level No

Online Recovery
(Roving STARs,
Online BIST)

Roving Area Available
Spares

Significant:
linear in
number of
PLBs

Continuous
reconfigura-
tion

Test vector
genera-
tor, Output
response
analyzer

Logic Blocks Yes

PURE (the approach
proposed herein) Uniplex Priority of

functionality Negligible

Only when
fault is
present;
Linear in
number of
functions

Reconfig.
Controller

Computational
Functions Yes

Reliability of FPGA based designs [87] can be achieved in various ways. Table. 2.1 provides a

comparison of previous approaches towards fault-handling in FPGA based systems. Passive re-

covery techniques, such as TMR, are popular but incur significant area and power overheads. The

TMR technique involves a triplication of the design where the three copies of system components

are active simultaneously. The fault recovery capability is limited to the faults within one instance

only. This limitation of TMR can be overcome using self-repair [68] [88] approaches to increase

sustainability, such as refurbishing the failed instance using jiggling [76]. Other active recovery

22

techniques incorporate control schemes which realize intelligent actions to cope with a failure.

Evolutionary techniques [36] avoid the area overhead of pre-designed spares and can repair the

circuit at the granularity of individual logic blocks, yet lack a guarantee that a recovery would be

obtained within a certain number of generations. They may require hundreds of Genetic Algo-

rithm (GA) iterations before finding an optimal solution, thus undesirably extending the recovery

time. On the other hand, PURE operation is bounded in terms of maximum number of evalua-

tions required. Many evolvable hardware techniques have been presented in literature that rely on

modifications in current FPGA device structure. In addition, a fitness evaluation function must

be defined a-priori to select the best individuals in a population, which may in turn necessitate

knowledge of the input-output truth table. PURE avoids both of these complications. Altogether,

they allow PURE to evaluate to the actual inputs, instead of exhaustive or pseudo-exhaustive test

vectors, on any commercial off-the-shelf FPGA with PR capability.

One approach to reducing overheads associated with TMR is to employ the Comparison Diagnosis

Model with a pair of units in an adaptable CED arrangement subjected to the same inputs. For

example, the CRR [18] scheme uses an initial population of functionally identical (same input

output behavior), yet physically distinct (alternative design or place-and-route realization) FPGA

configurations which are produced at design time. At run-time, these individuals compete for

selection to a CED arrangement based on a fitness function favoring fault-free behavior. Hence,

any physical resource exhibiting an operationally-significant fault decreases the fitness of those

configurations which use it. Through runtime competition, the presence of the fault becomes

occluded from the visibility of subsequent operations.

Other runtime testing methods, such as online BIST techniques [6] offer the advantages of a rov-

ing test, which checks subset of the chip’s resources while keeping the remaining non-tested re-

sources in operation. Resource testing typically involves pseudo-exhaustive input-space testing

of the FPGA resources to identify faults, while functional testing methods check the fitness of

23

the datapath functions [65]. In [89], a pair of blocks configured with identical operating modes are

subjected to resource-oriented test patterns. This STARs approach keeps a relative small area of the

device off-line and being tested, while the rest of the device is online and continues its operation.

STARs compares the output of each Programmable Logic Block (PLB) to that of an identically

configured PLB. This utilizes the property that a discrepancy between the output flags the PLB

as suspect as outlined by Dutt et. al’s Roving Tester (ROTE) technique [65] and used in Gericota

et. al’s active replication technique [66] which concurrently creates replicas of CLBs. In STARs

approach, each block-under-test is successively evaluated in multiple reconfiguration modes, and

when a block is completely tested then the testing area is advanced to the next block in the de-

vice. To facilitate reconfigurability to relocate the system logic, there is a provision to temporarily

stop the system operation by controlling the system clock. The recovery in STARs is achieved by

remapping lost functionality to logic and interconnect resources which were diagnosed as healthy.

In contrast, Fault Demotion using Reconfigurable Slack (FaDReS) and PURE perform functional

testing of the resources at higher granularity by comparing outputs of PEs which execute functions

that comprise a signal processing algorithm. This allows resources to be tested implicitly within

the context of their use, without requiring an explicit model of each PE’s function. In the pro-

posed dynamic resource allocation schemes, the testing components remain part of the functional

datapath until otherwise demanded by the fault-handling procedure. Upon fault detection, these

resources are designated for fault diagnosis purposes. Later, upon the completion of fault diagnosis

and recovery, the reconfigurable slacks may then be recommissioned to perform priority functions

in the throughput path.

24

CHAPTER 3: ADAPTIVE AREA MANAGEMENT FOR LOCAL

PERMANENT DAMAGE

In the conventional TMR arrangement, if one module becomes faulty, two other healthy modules

are able to provide throughput as long as no discrepancy is observed in their output. Yet, an

additional fault in one of these two healthy modules can result in a mission’s failure, or equivalently

a discrepancy in the output of an operational pair (or CED pair) flags one of these two instances

as faulty [90]. The observable faults are those which manifest their behavior during an evaluation

period. The effect of evaluation period on fault detection in CED pair was examined in [91].

Under these conditions, repair schemes are presented to mitigate permanent faults in which the

discrepancy between the output of a CED pair initiates the genetic recovery process. Upon fault

detection in a CED pair, or two instances of a TMR arrangement, the system is recovered through

reconfiguration by repairing faulty instances.

A Self-Configuring TMR Scheme utilizing Discrepancy Resolution

Evolutionary techniques have been proposed in literature for achieving fault tolerance in FPGAs.

The logic resources or interconnects are somehow represented by individuals of a population to be

evolved. The genetic operators are performed to either repair the circuit or to create a robust circuit

at design-time. These techniques require the knowledge of input-output values to evaluate the fit-

ness criteria. However, for large circuits having many possible input-output values, the evaluation

of every possible combination of input-output becomes an infeasible option. We employ a fitness

criterion in which an absolute knowledge of the correctness of output values is not required. The

followings are the advantages of the proposed repair mechanism:

25

• A self-healing TMR system is proposed with improved fault capacity. Initially, there are

three instances of a module in operation, then in event of faults in two modules, the repair

is performed to switch the system into duplex mode. Thus, in effect, the fault capacity of a

TMR is improved.

• The fitness evaluation is performed using the actual inputs of the system, avoiding any test

vectors. Thus, an optimal solution is sought in the relevant input subspace.

• The fault handling process does not require an explicit fault isolation phase. The faulty

modules are consequently avoided by the evolutionary recovery process.

• Fault handling of sequential circuits is demonstrated. A considerable throughput is main-

tained during the fault recovery process.

The SCDR Approach

The TMR realization of a sequential circuit is illustrated in Fig. 3.1(a). A CUT is replicated 3 times

resulting into Instance1, Instance2 and Instance3 of the CUT. The majority voter computes the

system’s main output by enabling the majority output value. Faults are thus masked in the output

if a single instance is affected.

To improve the reliability, in the presence of multiple faults which may occur during long mission

durations, adaptation of the datapaths can be applied. For this purpose, switches are inserted

between various pipeline stages of the circuit to steer the datapath. Combinational circuits can also

be partitioned into blocks. The configuration of these switches determine which module is selected

as an active element of each instance. The SCDR concept is to avoid the faulty blocks and utilize

the healthy blocks in the processing datapath.

In Fig. 3.1(a), the shaded blocks represent faulty stages. A Module Switch (MS) element, which

26

can be realized as a multiplexer or a custom-routing circuit, is connected between every pipeline

stage of a digital sequential circuit (or a block more generally) to steer the output of a block to

one of three blocks in the following stage. A Router Box (RB) is a realization of the three MS

elements, one for each instance of a TMR pathway. It supports six possible input-output pairnings

(i.e. 3!=6) as shown in Fig. 3.1(b). It can be implemented in hardware by either routing wires

through partial reconfiguration or using multiplexers. The former has the advantage that no delay

is introduced by the multiplexers in the datapath. However, it comes at the cost of reconfiguration

latency during the fault recovery process. On the other hand, fault recovery time can be improved

by introducing dedicated multiplexers at design time, but this introduces a drawback that the MS

elements remain in the active throughput path at all times.

Stage1 Stage2 Stage3 Stagen

Stage1 Stage2 Stage3 Stagen

Stage1 Stage2 Stage3 Stagen

OutputInput

An Instance

Voter

(a) The TMR realization of a sequential circuit

)(11 MStagei−

)(21 MStagei−

)(31 MStagei−

)(1MStagei

)(2MStagei

)(3MStagei

(b) A Router Box

Figure 3.1: Circuit realization to employ the SCDR recovery mechanism

27

Encoding Representation of the TMR Pathways

In the presented SCDR scheme, an evolutionary fault recovery process is used to explore the search

space of RB settings to obtain a more suitable TMR realization. An individual of the population

represents one possible configuration of the TMR system. The number of variables in a GA in-

dividual is equal to the number of pipeline stages or number of blocks n in an instance of the

TMR arrangement. Therefore, the length of a chromosome is n. Each variable can assume one

of 6 possible values while each value corresponds to a unique configuration of the RB. The GA

representation of the routing between each stage is exemplified in Fig. 3.2 where a chromosome’s

values correspond to different configurations of the RB. The representation of the GA problem is

such that it exploits the dynamic partial reconfiguration capability of FPGA. The faulty blocks of

a duplex can be swapped with healthy blocks of the third instance of TMR arrangement during

runtime. In the following, the scheme is presented in the context of a standard GA [1] to facilitate

conventional analysis.

Stage1(Instance1) Stage2(Instance1) Stage3(Instance1)

Stage4(Instance2) Stage5(Instance2)Input Output

An Individual = 1 3 6 2

Figure 3.2: Mapping between an individual and configuration

Fitness Function

Given many possible configurations of the system, it is difficult to ascertain which is superior in

terms of desired functionality of the system. Many previous approaches store the input-output test

28

vectors or truth-tables of the circuit. The SCDR avoids this approach because of two drawbacks:

1) the storage requirement would be prohibitive for large circuits 2). The application of test vectors

may require the system taking offline. Therefore, we employ a previously developed Competitive

Runtime Reconfiguration (CRR) approach [90] in which individuals are selected based upon their

behavior consistency with the consensus of the other population members.

A Discrepancy Value (DV) is defined as the Euclidean distance between the outputs of two in-

stances of a TMR in a given evaluation window. The objective is to minimize the DV between

Instance1 and Instance2.

DV =
||Y1 − Y2||√

E
(3.1)

where

Y1 = Output of the Instance1

Y2 = Output of the Instance2

E = Evaluation Window

which is used to access the fitness of competing TMR pathways.

Fitness Evaluation

For the purpose of evaluation, each individual of the population is instantiated on the chip and

its fitness is updated after a temporal sliding window of input samples. In the SCDR approach,

the individuals are evaluated subjected to the actual inputs of the system rather than synthetic test

vectors. The input is applied to the TMR arrangement and the output of the individual instances is

observed during the evaluation window period, E. Upon the completion of the evaluation window,

29

a new configuration of the TMR is introduced into operation. Once all the individuals have been

evaluated, a generation of the GA is complete. Thus, fitness scores of the individuals which is based

upon their agreement/disagreement history, becomes available at the end of a generation. The

SCDR proceeds next to select which configurations should be retained for subsequent operations.

Fitness Selection

Fitness Selection is the strategy of choosing individuals from the population to be parents which

produce offspring that realize new arrangements. The fitness selection strategy in this section is

based on the rank selection [92]. The fitness score of the individuals is converted into the respective

rank, then the probability of an individual being selected as a parent is inversely proportional to the

square root of its rank. Recall that we want to minimize the fitness score which is the DV. Thus,

the use of a rank selection strategy makes it more probable that the configurations having small

DV would survive to produce new configurations in the next generation.

Genetic Operators

A crossover operator interchanges the segments of chromosomes between two parents to produce

offspring. A crossover rate specifies how many individuals go through the crossover operation

in one population generation. The mutation operator relocates the chromosome parts within an

individual to diversify the population.

In summary, the evolutionary process for the recovery mechanism is shown in Fig. 3.3. The exit

criteria of the algorithm is the realizing of at least one configuration able supporting duplex mode

with a full consensus, i.e., discrepancy-free outputs. The implication is that these configurations

are those precisely which avoid known faulty resources as we discuss in the next section.

30

Figure 3.3: The evolutionary recovery process in the context of a standard GA [1]

Experiment Design

A 25 stage FIR filter is implemented in Verilog HDL using the Xilinx ISE 9.2i development tool.

An ML410 development board is used which contains Virtex-4 FPGA chip, Compact Flash in-

terface, DDRAM, and UART. For experimental purpose, the GA was simulated on a desktop PC

rather than using the PowerPC on-chip processor at this time. Although the PowerPC is a hard-

ware overhead of the GA-based SCDR recovery process, yet it is not on the critical throughput

path. Thus, the use of PowerPC for just recovery purpose is likely to be amenable to most appli-

cations. The logic resources utilized by one instance of the TMR arrangement are 2810 number

of LUTs and 500 FFs excluding those needed by the bus macros which are needed for partial

reconfiguration flow in Xilinx ISE 9.2i.

Then, the circuit is replicated three times to realize a TMR system. The effect of random Stuck-At

(SA) faults for injection into different stages of the FIR filter was realized by modifying the LUT

contents in the post place-and-route simulation model. This simulates faults in different pipeline

31

stages of a sequential circuit. An instance of the experiment is shown in Fig. 3.4, where faults

are injected in the three stages of the Instance1 and 5 stages of the Instance3. The experiment

objective is to achieve fault recovery of two instances constructing a CED pair.

Figure 3.4: A faulty TMR configuration

Simulation Results

Intrinsic Hardware Evaluation using SCDR

The fitness history of the recovery process is shown in Fig. 3.5. These plots depict the average

behavior and best behavior of the arrangements in each generation. Even with use of this realistic

case study consisting of 25 stage FIR filter utilizing 2810 LUTs and with 8 faulty stages simulta-

neously present, the GA is able to converge to a minimum score within 70 generations. Here, the

population size used was 50, the crossover rate was 0.8, and the size of the evaluation window was

100 input samples.

The zero value fitness score of an individual corresponds to a TMR configuration in which two

instances completely agree in terms of their output. A repaired instance after the genetic recovery

process is shown in Fig. 3.6 where arrows depict the selected data pathway. It can be observed

that this instance avoids any faulty resource, although any knowledge of faulty behavior of the

resources was made unavailable. This demonstrates that consensus-based fitness evaluated over

a sufficient window can provide a good approximation of the actual fitness of the system thus

32

identifying faulty modules.

10 20 30 40 50 60 70
0

50

100

150

200

250

Generations

D
is

cr
ep

an
cy

 V
al

ue

Average Fitness Score
Best Fitness Score

Figure 3.5: The consensus fitness history of the population

Figure 3.6: A repaired instance in the new configuration

The amplitude spectrum of the input signal contains two periodic sine waves of frequency 50 Hz

and 100 Hz. The cut-off frequency of the low-pass FIR filter is set to 75Hz. The spectrum of

the output signal from the filter is shown in Fig. 3.7. After fault injection, the output spectrum is

also given in Fig. 3.7 which is different than what is desired for the filter functionality. In addition,

Fig. 3.7 depicts the output of the preferred recovered TMR arrangement after completing the SCDR

fault recovery process. To quantify the recovery quality, the Signal-to-Noise Ratio (SNR) is defined

by the ratio of signal power, Px to the noise power, Pe. In this case, the SNR is computed by:

SNR = 10 ∗ log10
Px

Pe

(3.2)

The difference signal is defined by:

33

e(t) = x(t)− y(t)

where

x(t) = Input signal to the filter

y(t) = Output signal from the filter

It is evident from Fig. 3.7 that the SNR measure of the signal after fault recovery process of the

system is identical to the original fault-free system. Thus, the desired functionality of the FIR filter

is retained.

Faults-Aware Simulation Paradigm

To further evaluate the SCDR scheme, a simulation was performed in which the absolute fitness

was assessed in the presence of knowledge about the faulty modules locations. The objective cost

to be minimized is the utilization of a minimum number of faulty blocks on data pathway , and is

defined by:

cost =
3∑

i=1

n∑
j=1

Stagej(Instancei).FS (3.3)

where

n = Number of pipeline stages in the circuit

Stagej(.).FS fitness state ∈ {0, 1}

In the above set, ’0’ corresponds to Healthy condition, and ’1’ corresponds to Faulty condition of

a module.

34

0 100 200 300 400 500
0

0.5
The Amplitude spectrum of the output signal from the original system

Frequency (Hz)

|Y
(f

)|

0 100 200 300 400 500
0

200

400
The Amplitude spectrum of the output signal from the faulty system

Frequency (Hz)

|Y
(f

)|

0 100 200 300 400 500
0

0.5
The Amplitude spectrum of the output signal from the repaired system

Frequency (Hz)

|Y
(f

)|

SNR = −0.62dB

SNR = −0.62dB

SNR = −45.53dB

Figure 3.7: The amplitude spectrum of the output signal

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Generations

Fi
tn

es
s

Sc
or

e

Average Fitness Score
Best Fitness Score

Figure 3.8: The absolute fitness history of the population

Fig. 3.8 shows that although average behavior of the population for various generations is same

in both the SCDR and the faults-aware simulation cases (i.e., Fig. 3.5 and Fig. 3.8), the best in-

dividual is found in smaller number of generations in the later case. It is due to the fact that the

knowledge about faulty nature of the modules is made available to the fitness function and the

GA readily evolves towards the objective of minimum number of faulty resources utilization. This

35

case, however, utilizes ideal information which may not be available during fielded missions.

Performance Bound Comparison to Exhaustive Search

Finally, we compare with a case when all the possible configurations are evaluated exhaustively

instead of employing a GA. As there are 3 instances, each with n variables, the total number of

configurations combinations to be evaluated would be NE = n3.

For n=25 stage circuit, the upper bound on the required number of evaluationsNE becomes 15,625

which is much larger than the number of evaluations taken by the GA to reach the solution. As

shown in Fig. 3.5, the population size of 50 is able to bring the correct configuration in 66 gener-

ations, thereby necessitating only 3,300 evaluations indicating effective recovery for the 25 stage

FIR design. Future work will be to assess and improve recovery time which may be significant

for mission-critical and safety-critical circuits. In addition, the focus will be to conduct generic

analysis in presence of variable number of pipeline stages and granularity of fault handling.

Heterogeneous Concurrent Error Detection (hCED) Based on Output Anticipation

The redundancy based schemes have overhead of resource and power. A TMR and higher-MR

systems [13] have better fault coverage and fault masking capabilities than a CED based system, at

the expense of increased power consumption and the number of components requirement. In this

work, our focus is CED setup and thus, fault detection in a fault tolerant system. A conventional

CED setup is shown in Fig. 3.19, in which two exact replicas of a given module concurrently

operate to compute for the same input. In the figure, a FE is the main required component of the

system which provides the system’s throughput. FE1 and FE2 are two replicas and their output is

monitored by a discrepancy detector. In this way, one of the FEs can provide the system’s output,

36

whereas the other FE can be thought of as a Checker for the main FE.

FE1

FE2

Input

Discrepancy

Detector

Discrepancy

Detector

Fitness

Status

(a) Conventional Concurrent Error Detection ar-
rangement

FE

Checker

Input

Discrepancy

Detector

Discrepancy

Detector

Fitness

Status

(b) Heterogenous Spatial Concurrent Error Detec-
tion arrangement

Desired

Funtion

Checking

Funtion

Input
Discrepancy

Detector

Discrepancy

Detector

Fitness

Status

(c) Heterogenous Temporal Concurrent Error De-
tection arrangement

Figure 3.9: Various CED configurations

Because the sole purpose of a CED setup is the error detection, we can reduce the checker size

compromising some of its capabilities. For example, by marginalizing the checker’s throughput, a

considerable number of resources can be saved. Thus, the checker does not need to be an replica

of the functional module. We present two forms of heterogeneous CED exploiting some properties

of the functional module. In the spatial CED type (Fig. 3.9(b)), the checker size is reduced by

marginalizing its throughput at the cost of some increased fault detection latency. In the temporal

CED form (Fig. 3.9(c)), the same hardware fabric is alternately switched between the actual func-

tion and the checker function. Thus, error detection is possible with uniplex resource requirement

at the cost of some reduction in throughput.

37

Alternate CED Arrangements

As a case study, we consider a DCT hardware core to evaluate two forms of the heterogeneous

CED. DCT function is widely used in image/video compression applications, and hardware im-

plementation is highly desired in many applications due to parallel nature of the image processing

related tasks and their throughput requirements. One example is video encoder application in

which an image frame is first divided into macroblocks and the transform operation is performed

on these macroblocks.

The DCT was introduced by Ahmed et. al [93] in 1974, when an efficient computation of Fourier

Transform (FT) was desired. They defined the DCT of a data sequence as:

Gx(0) =

√
2

M

M−1∑
m=0

X(m)

Gx(k) =
2

M

M−1∑
m=0

X(m)cos
(2m+ 1)kπ

2M
(3.4)

whereGx(k) is the k-th DCT coefficient [93]. As a digital image is represented in computers via 2-

D matrix notation, it is often desired to define 2-D transforms for image processing tasks. The DCT

is used to represent an image by sum of varying sinusoidal amplitudes and frequencies. After the

transform operation, the information content of a natural image is usually concentrated in only first

few coefficients of the DCT. Due to this property, the DCT can be used 1) for image compression

because the information can be contained in fewer coefficients. 2) for pattern recognition as the

feature size to be used in classification can be reduced considerably. Moreover, scale and rotation

variance are easier to handle in frequency domain than that in pixel domain. Gonzalez and Woods

38

[94] represent the 2-D DCT operation as:

r(x, y, u, v) = α(u)α(v)cos
(2x+ 1)uπ

2n
cos

(2y + 1)vπ

2n
(3.5)

where

α(u) =

√

1
n

foru = 0√
2
n

foru = 1, 2, ..., n− 1

The details are given in their book [94].

The DCT matrix is commonly calculated for 2-D input data samples using the equation, and is

given in Fig. 3.10.

Figure 3.10: The DCT matrix

Our current focus is fault detection of the DCT block. In the following, we derive a sufficient

condition to mark a DCT hardware block as faulty.

The 1-dimensional DCT operation on a row of pixels in a macroblock is defined by:

Y = Φ.X (3.6)

39

Where

X = A row of input pixels macroblock.i.e., {x1, x2, ..., x8}

Φ = Matrix of DCT kernels

Y = A row of output DCT coefficients.i.e., {y1, y2, ..., y8}

As the DCT operation is a linear transformation from input pixels space to output coefficients

space, we can make the following derivations:

(Y − Ỳ) = Φ.(X − X̀) (3.7)

where X̀ and Ỳ are the vectors for the previous time instant. Let’s define:

∆X = X − X̀ , ∆Y = Y − Ỳ

then

∆Y = Φ.∆X

The current DCT coefficients can be estimated from the previous coefficients using the difference

values. i.e.,

Ŷ = Ỳ +∆Y (3.8)

40

Thus, a necessary condition for a fault free DCT block can be written as:

Y = Ŷ (3.9)

If the equality is not met, the DCT block may be flagged as faulty. It may be noted that this is

a necessary condition, not sufficient. Thus, even if the equality in the above expression is met, it

does not imply fault-free nature of the module. Manifested fault in the logic or routing resource

of the FE renders it faulty. Manifested faults are those faults which affect the output of any FE.

We compute the output Y of DCT module through the FE, and the predicted output Ŷ through the

Checker. Thus, the checker serves as a predictor of the output that is desired at the module output

for its correct operation.

The Baseline Setup

An 8-point 1-D DCT is implemented in Verilog HDL using Xilinx ISE 9.2i development environ-

ment. The place-and-route report shows that the design can run up to a clock frequency of 108

MHz. An FE consists of 8 Processing Elements (PEs), where each PE computes one DCT coef-

ficient of a row of input pixels. Through the pipelining scheme, we are able to output one DCT

coefficient every clock cycle. The DCT kernels are stored inside these PEs using the Look-up Ta-

bles (LUTs) of the FPGA chip. For example, PE1 contains the DC-kernel, PE2 has the AC0-kernel

and so on. Internally, the PEs use Multiply-Accumulate (MAC) units to perform the dot product

of input data with the kernels. To provide scalability in the implementation [95], different Partial

Reconfiguration Regions (PRRs) are defined to accommodate the PEs. Xilinx PlanAhead is used

for the partial reconfiguration design, and ExploreAhead is used to generate partial bitstreams. The

design is tested on a Xilinx development board ML410 which has a Virtex-4 FPGA. We report the

41

utilized resources in the next section when the resource requirement in two forms of the CED is

compared.

A Processing Element (PE)

A Functional Element (FE)

PowerPC

(a) An FE realizing the DCT
function

A CED Arrangement

of the FE

(b) CED arrangement

A Checker Processing

Element (CPE)

(c) Spatial hCED arrangement

Figure 3.11: Floorplan of various FE configurations realizing a DCT module

The DCT core is interfaced with on-chip PowerPC microprocessor through Xilinx provided GPIO

core. The PowerPC writes the fixed-point format pixels data to the transposition memory. Also,

it generates the control signals for the hardware DCT controller to sequence reads and writes

operations from the frame buffer (transposition memory). The DCT controller manages to perform

the 1-D operation on the pixels data row-wise in the first stage of the DCT, whereas the 2-D

operation is accomplished by repeating the DCT operation on the input data column-wise. The

completion of DCT operation on a macro-block is acknowledged to the PowerPC through GPIO

core after which the processor can read the DCT coefficients from the transposition memory. A

dual port RAM is instantiated to serve as the frame buffer. The physical layout of the design is

shown in Fig 3.11(a). An FE realizing the DCT function and containing 8 PEs, is highlighted. A

conventional arrangement of the CED is realized by the placement illustrated in Fig 3.11(b).

42

Spatial Heterogeneous CED

The architecture of the spatial hCED is given in Fig. 3.12. In the context of Fig. 3.9(b), PE1

through PE8 form an FE computing the DCT of input data. On the other hand, the PE containing

MAC9 serves as a Checker Processing Element (CPE). The CPE performs MAC operation on the

difference input instead of the input pixel values. The CPE utilizes the previous output from FE to

predict the current output of the FE. If a discrepancy is observed between the current output from

FE and the predicted output from CPE, it gives an indication of fault(s) in one of the two elements.

Figure 3.12: Spatial heterogeneous CED arrangement realizing a DCT module

All the DCT kernels for the checker unit are stored inside the CPE. The placement layout of the

processing units is given in Fig. 3.11(c). The CPE computes the DCT coefficients sequentially

unlike the FE which computes all the 8 coefficients in parallel owing to the contained multiple

43

PEs. Thus, one DCT coefficient is available at the checker’s output after every 8 clock cycles

which can be compared with that residing in the output buffer of the FE. A discrepancy between

the predicted coefficient and the actual coefficient indicates an error.

Table 3.1 lists the resource requirement; the chip resources utilized by a PE are given in the first

column, the second column provides a resource count of the 8 PEs in the DCT module. A conven-

tional CED would require two times of this resource count. By using a CPE instead of a replica, a

considerable amount of chip resources is saved as evident in the third column, which in turn saves

power. The 8 PEs utilize 728 Configuration Logic Block (CLB) slices of the chip, while one CPE

implementation requires only 167 slices, saving overall 77% of the FPGA resource. The resource

requirement of a CPE is not 1
8
th of that of an FE as all the DCT kernels are stored in the CPE. On

the other hand, each PE of the FE contains one kernel only.

It may be noted here that this is not very area-efficient implementation of the DCT core. Our ob-

jective is to evaluate the fault detection methodology. We avoid the Xilinx built-in hard multipliers

known as DSP48 blocks, and employed LUTs while synthesizing the design as a generic imple-

mentation is desired to be analyzed for error detection purpose. Moreover, we can inject SA faults

at LUT inputs and analyze their behavior in post place-and-route simulation model.

Table 3.1: Resource utilization for spatial hCED arrangement

Component PE FE CPE
Number of slices 91 728 167
Number of slice FFs 46 368 75
Number of 4 input LUTs 161 1288 308

An analysis of the design by using Xilinx XPower tool reveals that one PE requires an estimated

power of 12.39 mW. On the other hand, a CPE’s estimated dynamic power consumption is 13.33

mW using the clock frequency of 100 MHz. As a CED arrangement will require a total of 8 PEs

to serve as a checker, therefore the power requirement for the checker is approximately 1
8
th which

44

uses a CPE.

This saving in resource and power, however, comes at a cost. Because of the sequential nature

of the CPE, number of comparisons for the discrepancy check that can be made in a given time-

period, are reduced by a factor of 8. The frequency of comparisons defines the latency of detection

in case of fault occurrence. By increasing the processing units for the checker module, the fault

latency can be improved. It may be a worth to be noted here that even a detection latency of 64

clock cycles may be negligible as the design is running at 108 MHz, especially when the resource

saving is considerably large. The latency of fault detection also depends upon the location of

faults and input data. Although, Single-Event Upsets (SEUs) could be missed when using reduced

sampling rate for error detection, they can incur only transient noise in the output image.

Temporal Heterogeneous CED

In this form of the hCED, temporal redundancy is used for fault detection in DCT module. Instead

of applying a repeated function on the same input, we alternately apply the same function on two

different types of inputs. In the first instant, the DCT computation is performed on the input pixels

set. In the next time slot, the same computation is performed on the difference values. In this way,

the hardware fabric is time multiplexed between two types of inputs. In this two shot operation

mode, even permanent faults may be manifested as the diverse inputs exercise the underlying logic

resources in a different way.

Fig. 3.13 shows the temporal hCED setup. At the first time instant (t=1), FE computes the DCT

coefficients (Ỳ) for the given input row of pixel values (X̀). At the second instant (t=2), the DCT

coefficients (Y) are computed for the next row of pixels. At the instance (t=3), same FE is used

for the DCT computation of the ∆X , which is a difference between two consecutive rows of input

pixels. The output ∆Y is used as an alternative computation (i.e., prediction Ŷ), which can be

45

used for the discrepancy check.

Figure 3.13: Temporal heterogeneous CED arrangement of the DCT module

If we dedicate one time instant out of 3 instants for the prediction computation, the effective

throughput would reduce to 66.7%. It means that 2 of the three computations are providing the

actual desired output of the DCT module. By performing the redundant computation of difference

input data less frequently, the useful throughput can be improved from the worst case. Fig. 3.14

shows the overhead in terms of throughput reduction. The plot provides the frequency of compar-

isons in terms of Comparisons per Row (CPR) vs. throughput reduction. As it is evident, reducing

the frequency of redundant computations for the comparison purpose, the throughput reduction

can be improved.

46

Figure 3.14: Throughput reduction of temporal Heterogeneous CED arrangement

Amorphous Slack (AS) Fault-Handling Methodology

To achieve fault-handling operation, we propose an Amorphous Slack (AS) technique to time-

multiplex the processing PRRs for different functions and compare their outputs with those from

the active modules in the logic datapath. A discrepancy between the outputs of two modules re-

sults in them remaining in the Suspect pool, whereas the agreement marks them as Healthy after

the evaluation window elapses. This diagnosis procedure runs concurrently with DSP processing,

without decreasing signal processing throughput. Each processing slack can check multiple dis-

tinct functional blocks, therefore being area efficient, by leveraging the FPGA’s inherent property

of reconfiguration.

We consider a typical DSP application which can be pipelined into multiple stages to accelerate the

throughput. Consider a FE which can be partitioned into multiple PEs. Some of the PEs operate

as Reconfigurable Checker Elements (RCEs) for discrepancy checking purposes while others are

kept in the throughput datapath for computation purposes. The total number of checker elements,

designated as slack denoted by Ns, available for comparison purposes can be varied depending

upon input signal characteristics, area margin, and power budget. These RCE can either be spares

reserved at design-time, temporarily vacated PEs during runtime, or part of another FE performing

47

some other task of lower priority. The term RS is used for the PEs corresponding to the first two

cases. Algorithm 1 is used for fault isolation purpose in a core containingN PEs. Upon identifying

faulty PEs, their functionality is assigned to healthy PEs which may either be slacks reserved at

design time or some PEs computing lower priority-functions. In case of a DCT, the DC-Coefficient

computation function is more significant than AC-Coefficients computing functions since the DC-

Coefficient contains the most content information about a natural image.

Algorithm 1 Fault-isolation algorithm
Require:N , Ns

Ensure:Φ̂
1: Initialize Φ̂ = [x x x ... x]T , i = 1
2: while ({k|k ∈ Φ̂, k = 0} = ϕ) do
3: Designate PEs as checker(s) (N + 1) ≤ s ≤ (N +Ns)
4: while i ≤ N do
5: Reconfigure RCE(s) with the same functionality as PEi

6: Perform N-Modular Redundancy (NMR) majority voting to identify at least one healthy
RCE, ϕ̂i ← 0 for PEi which shows no discrepancy then go to step-11, ϕ̂i ← x otherwise

7: i← i+ 1
8: end while
9: Move the RCE by updating N = N −Ns, Re-initialize i = 1

10: end while
11: Use a healthy RS to check all other PEs

The AS fault handling scheme identifies the faulty PE(s) by employing the RCE(s) as follows.

Step-1 of Algorithm 1 initially labels all PEs as Suspect. An entry ϕ̂i = 1 in a vector Φ̂ of length

(N +Ns) stands for faulty nature of the PEi, ϕ̂i = 0 for healthy PEi, and ϕ̂i = x for suspected PEi.

Initially, the set containing tested and verified fault-free Healthy PEs is an empty set (ϕ) as labelled

step-2. The RCE can either be the blank PEs available in the system, some low-priority PEs,

or PEs temporarily decommissioned from another FE. Initially, the RCE (or multiple RCEs) is

reconfigured with the same functionality as that of the most important functional PE, for example,

the module for computing DC-coefficient (step-3 and step-5).

The location of a faulty PE is detected by performing the discrepancy check in an NMR arrange-

48

ment (step-6). For DMR, faulty status of one of the modules whereas for NMR faulty status

of more than N − 2 modules marks each of the instances as Suspect. Therefore, we proceed to

reconfigure the RCE with the second priority function and so on (step-3). Once an agreement

between two modules over a complete evaluation window is observed, the two modules are de-

clared as Healthy and their fitness state is updated (step-6). The identification of a healthy RCE

implies we do not need to reconfigure the PEs as checkers further. A healthy RCE can be used

to check the fitness of all the modules (step-11). The discrepancy of a suspected module in

pair with a healthy module reveals its Faulty nature. On the other hand, an observed discrepancy

between suspected modules does not provide any information and keeps them marked Suspect. If a

Healthy RCE is not identified in the first iteration even after reconfiguring with all of the functions

in the datapath, it is moved to the next PE, and so on (step-9). Upon the completion of fault

isolation, the priority functions are moved to the Healthy PEs, achieving recovery.

The number of RCE to be employed depends upon the design margin desired within the resources

available. If higher quality is to be maintained during the fault handling process yet no more PEs

are available to be spare to serve as checker, then a smaller Nc should be selected. On the other

hand, to speed-up the fault isolation process, a larger number of checkers are desirable. We will

discuss in later chapters that input signal characteristics can be exploited to free some PEs to deploy

them as checkers.

Simulation Results

First, we validate the proposed fault handling flow for the DCT core. The core consists of 8 PEs,

each PE computing one coefficient of the 8 × 8 DCT. Fig. 3.15(a) shows the number of group

reconfigurations required to isolate the faulty modules. For example, if the current DCT mode is

8 × 8 and one RS is available, approximately 50% of the fault scenarios are successfully isolated

49

in the first iteration. As there are total 9 modules, there are 512 possible combinations of the

faulty/healthy modules. Out of these 512 cases, about half of the cases require only one iteration

to find a healthy RS. Fig. 3.15(a) shows that increasing the number of RS, fault isolation process is

accelerated. Fig. 3.15(b) shows the probability of isolating the faulty modules in the first iteration

for different number of RS. Compared to a single slack, more failure scenarios are resolved with

two slacks.

(a) Number of Reconfigurations re-
quired for fault isolation

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of Faulty PEs

of

 C
as

es
 H

ea
lt

hy
 R

S

Id
en

ti
fi

ed
 in

 t
he

 F
ir

st
 I

te
ra

ti
on

 (
%

)

Ns=1
Ns=2
Ns=4

(b) Probability of finding a Healthy RS in the
first iteration

Figure 3.15: Fault isolation using AS technique

Case Study-1: Video Encoder

To analyze the quality degradation of a faulty DCT core during the AS fault-handling process,

the H.263 video encoder application is executed on the on-chip PowerPC processor of a Virtex-

4 FPGA provided on Xilinx ML-410 development board. The DCT module is implemented in

hardware. A 256 MB memory module is used which can hold the code as well as it provides the

data memory required to hold the images.

The data from the first stage of the DCT is not overwritten, rather it is kept in its own space in the

frame buffer. Xilinx PlanAhead is used for PR flow while the software and hardware system is built

50

using Xilinx Platform Studio (XPS). Various PRRs are defined where each PRR corresponds to a

PE of the DCT core. Xilinx Internal Configuration Access Port (ICAP) is used for downloading

the partial bitstreams from external compact flash. The Xilinx System Advanced Configuration

Environment (ACE) is a controller to manage configuration data [96]. It provides an interface

between CompactFlash and the FPGA. This controller is connected in slave mode over the PLB bus

and the embedded processor can read the bitstreams stored on the Compact Flash. The combined

ACE file consisting of full system reconfiguration file (.bit) and the executable file (.elf) can

be stored on Compact Flash. The FPGA chip is configured with the stored ACE file upon a power-

ON event.

(a) Graceful degrdation of PSNR during
and after fault-handling

(b) The bitrate of the compressed bit-
stream

Figure 3.16: An operational example in a faulty scenario of video encoder

An example of the video encoder in faulty scenario is presented in Fig. 3.16(a). The faulty situation

of PE1 and PE4 is examined here. The healthy nature of the RS makes it possible to isolate the

faulty PE in the first iteration in which two reconfigurations are involved. As soon as the RS

output is compared with PE2 which is healthy, the RS is identified as healthy. As the faulty PE1

was performing an important function, that is, the computation of the DC coefficient, therefore

a healthy PE is assigned to this functionality. Fig. 3.16(a) illustrates that the quality degradation

is spanned to a few frames in this case. The bit rate for the fixed Quantization Parameter (QP)

QP=10 is also shown in Fig. 3.16(b).

51

The quality degradation of images in the frame buffer of the video encoder depends upon the lo-

cation of faults. For example, the faulty behavior of a PE computing the DC coefficient impacts

the video quality more than that of a PE computing the higher frequency AC coefficients. There-

fore, recovery of an important function PE provides more improvement in the quality of results.

Fig. 3.17 shows improvement in PSNR in case of different faulty PEs location, for three QP val-

ues. The scheme is more advantageous for small QP value, i.e., higher visual quality of image.

Similarly, recovering from a case when a PE computing DC coefficient is faulty (i.e., PE1), is the

most beneficial.

Figure 3.17: Improvement in average PSNR after fault recovery

Case Study-2: Edge Detector

The sustainability of edge detecting applications is desirable in harsh operating environments [97].

A Canny edge detector [98][99] is popular for image-processing due to its enhanced edge detection

capability. Therefore, we evaluate the behavior of faults in a Canny edge detection module. For

this purpose, as shown in Fig. 3.18(a), a 5 × 5 Gaussian Kernel is used for smoothing phase of

the detector. We employed a distributed architecture where the convolution operation is performed

52

by multiple PEs to accelerate the performance of the edge detection. Fig. 3.18 illustrates the

qualitative result of fault-handling for an image in the dataset available online [100].

1
2

3
4

5

1

2

3

4

5
0

0.05

0.1

0.15

0.2

(a) 5×5 Gaussian Kernel for smoothing (b) Original image

(c) Edge detection by a faulty detector (d) Edge detection after fault recovery

Figure 3.18: Gaussian kernel and qualitative results

Distance-Ranked Fault Identification (DRFI)

Fault Detection

A pair of configurations bitstreams is randomly selected to realize a CED pair. Only those configu-

ration pairs can be instantiated which utilize mutually exclusive device resources. Mutual exclusion

53

can be ensured either by virtually dividing the chip into two halves[18], keeping a record of the

utilized tile’s locations during runtime, or using two FPGAs for a given circuit. An instantiated

pair provides the desired DMR which can be used for error detection as illustrated in Fig. 3.19.

In the following discussion, the configurations in a DMR arrangement are referred as the CUT

and the RS corresponding to Active Circuit-Under-Test and Reconfigurable Slack, respectively. A

discrepancy between the outputs of the two instances in DMR arrangement reveals the faulty na-

ture of at least one of those configurations. Afterwards when a discrepancy in the outputs occurs,

fault detection is asserted and fault handling methodology is initiated. The problem of identify-

ing healthy configurations out of suspected configurations is then formulated as a system-level

diagnosis problem.

Instance2

A physical instantiation of

another configuration

mapped over a mutually

exclusive resources of the

reconfigurable fabric

discr

Functional Input

Isolated by

busmacros

Multiplexer

and

Comparator

Functional Output

Isolated by

busmacros

1.bit

2.bit

N.bit

Instance1

A physical instantiation of

a unique configuration

mapped over the

reconfigurable fabric

Functional

Configurations

Storage Memory

Reconfigurable

Fabric

0:{Healthy}

1: {Faulty, Suspect}

Figure 3.19: A CED arrangement of a functional element

System-Level Diagnosis of Hardware Configurations

The fault(s) occurring in an FPGA chip may affect multiple circuit implementations in the con-

figuration pool. Thus, after fault detection, the health of all of the configurations is Suspect. The

54

objective becomes identifying correct configurations which utilize pristine resources. Formally,

given a pool of N configurations out of which Nf configurations are faulty, the objective is to

identify Nh fault-free configurations that utilize pristine resources. At least 2 healthy configura-

tions are necessary to realize a DMR arrangement after fault recovery.

Fig. 3.20 outlines the scope, diagnosis approaches, and metrics of this paper. The diagnosability

formulation for identifying faulty nodes is developed herein using a syndrome function. The three

diagnosis algorithms of Exhaustive Evaluation approach, the State Transitions approach, and the

DRFI approach employing PageRank technique developed are described in Sections 3, 3, and 3,

respectively. Section 3 reports experimental results for MCNC benchmark circuits and H.263 video

encoder’s DCT hardware core.

Approach Emphasis Challenges

Baseline Arrangement:

TMR
Fault-masking

Area, power,

resiliency

Algorithm 1: Exhaustive

Evaluation

Quality of

recovery

Diagnosis

latency

Algorithm 2: SFH State

Transitions

Reduced

diagnosis

latency by

employing

evaluation

history

Quality of

recovery due to

false negatives

Algorithm 3: DRFI

Availability

by

maintaining

throughput

during

recovery

Diagnosis

latency and

recovery quality

tradeoff

Case Studies
Evaluation Metrics

Online Functional Diagnosis

Graceful degradation

Quality of Recovery

Survivability despite hard faults

MCNC Circuit

Benchmarks

DCT Core

Figure 3.20: Online fault-diagnosis strategies evaluated herein

The same diagnosis formulation applies to each of the three algorithms developed and is described

first here. Given an undirected graph G(V,E) of vertex set V and edges set E, the diagnosis

objective is to identify faulty nodes. The nodes of G correspond to either PEs or processors in a

multiprocessor network connected through an interconnection network. The diagnosis process is

described in terms of CED comparisons to identify discrepancies. However, the formulation is not

55

restricted to a pair-wise comparison. Instead, the fault diagnosis process can utilize N-Modular

Redundancy (NMR) in accordance with availability of resources. NMR is a generalization of

TMR where N ≥ 2 modules provide N − 1 redundant instances, which has found applicability in

adaptive fault-handling [56] [101].

An element (u, v) in the edge set E indicates the feasibility that the output from corresponding

PEs can be compared. Let the actual fitness states of nodes be represented by vector Φ, and

the fitness states estimated based upon the fault-diagnosis process by vector Φ̂. We define the

Connectivity Matrix C to show the comparison performed between two nodes in G. Thus, an

entry cij = 1 denotes that a comparison between node i and node j is performed. Syndrome

Matrix Ψ indicates the outcome of comparisons. An entry ψij of this matrix denotes comparison

outcome corresponding to the outputs of node i and node j. Both of these matrices are symmetric

about the diagonal due to commutativity of pairwise comparison for discrepancy.

Ψ =

0 ψ12 . . . ψ1N

ψ21 0 . . . ψ2N

...
...

ψN1 ψN2 . . . 0

 (3.10)

Where ψij = 1 indicates that output from node i and j is discrepant for the same input, ψij = 0

shows their agreement, while ψij = x stands for the case when no comparison has been performed

between the corresponding nodes. A ψii = 0 on the diagonal corresponds to the comparison

outcome for a node i with itself,

The syndrome matrix Ψ can be used to estimate the fitness states of nodes in G under certain

condition as we will discuss 3 diagnosis methods in further sections. Thus, faulty nodes can be

identified based upon the syndrome matrix values. After fault detection, all the entries of Ψ except

those on the diagonal are initialized with x implying that the health of all the PEs is suspect. The

56

following identifies the condition for healthiness, with the estimated fitness vector being updated

accordingly:

Condition: ψ(i, j) = 0 for any 1 ≤ i ≤ N and 1 ≤ j ≤ N , where i ̸= j and cij = 1

Update: ϕ̂i = 0

Exhaustive Evaluation

To address the identification of faults without loss of generality, it is assumed that no correctness

information is known a-priori for the functionality of the bitstreams in configuration pool. In

particular, there are no configurations that are known to be fault-free nor resilient to faults. Such

components have been referred to in the literature as golden elements [76]. Golden elements are

subcircuits which are assumed be remain fault-free throughout the duration of the mission. As there

are no golden configurations by which we can examine the fitness of other Suspect configurations,

one unsophisticated way is to exhaustively evaluate all the configuration pairs in a mutual checking

paradigm as given by Algorithm 2. Given a configuration pair instantiated in a CED manner, a

complete agreement in their output throughout all the possible inputs affirms their healthy nature.

Assume that an I-input circuit is instantiated in duplex manner. The cardinality of the input set is

2I and all distinct combinations of input samples need to be applied to evaluate the behavior of the

circuit to the entire input space. If the number of defective configurations is not known a-priori, an

upper bound on diagnosis time in terms of number of input evaluations can be derived as given in

the following: the number of ways in which k objects can be chosen out of a set of N objects is

given by Binomial Coefficient [102]. To realize a CED pair, two configurations are selected out of

the pool. Thus,

Number of all possible configurations pairings =
(
N
2

)
57

Algorithm 2 Exhaustive evaluation of configurations for fault diagnosis
Require:N
Ensure:Φ̂

1: Initialize CUT = 1
2: while CUT < N do
3: Designate the CUT as active configuration, and RS = CUT + 1 as slack. Then, the pair

under test is given by: VCED = {CUT,RS}
4: Perform concurrent comparison to the same inputs for various edges of the graph repre-

sented by connectivity matrix C
5: Update the Syndrome Matrix Ψ based upon comparisons outcome of all possible inputs
6: end while
7: Given Ψ, isolate the faulty nodes:
ϕ̂i ← 0 and ϕ̂j ← 0, if cij = 1, and ψij = 0

ϕ̂i ← 1 if ϕ̂j = 0, cij = 1, and ψij = 1

Total number of input evaluations required to test all configuration-pairs =
(
N
2

)
2I

Fig. 3.21 shows the upper bound on number of reconfigurations required to identify faulty config-

urations by duplex evaluations for various configuration pool sizes.

0 20 40 60 80 100 120 140 160
0

2000

4000

6000

8000

10000

12000

14000

X: 100
Y: 4950

Number of Configurations, N

U
pp

er
 b

ou
nd

 o
n

nu
m

be
r

of
 p

ai
r

ev
al

ua
tio

ns

For a total of 100
configurations, 4950
configuration pairs need to
be evaluated given the number
of defectives are unknown.

(a) Upper bound on number of reconfigurations re-
quired to isolate faulty bitstreams

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

Number of Configurations, N

U
pp

er
 b

ou
nd

 o
n

of

 in
pu

t e
va

ls
.(

in
 M

ill
io

ns
)

I=6
I=7
I=8
I=9

(b) Upper bound on number of input evaluations re-
quired to isolate faulty bitstreams

Figure 3.21: Fault-diagnosis cost of exhaustive evaluation method

58

The SFH Fitness States Transitions Diagram Method

As a competing approach to the DRFI technique, we consider a state transitions diagram method

based upon the Suspect, Faulty, and Healthy (SFH) fitness transitions of the configuration bit-

streams. An individual configuration undergoes different transitions in its fitness state throughout

the life of a circuit. After fault detection, the fitness state of every configuration is Suspect. If

two configurations show complete agreement in a given Evaluation Period, E, both are declared as

Presumed Healthy. However, if a Suspect configuration exhibits discrepancy with a Healthy one,

it is marked as Faulty. The state transition diagram is illustrated in Fig. 3.22. The objective of the

state transitions flow is to identify Healthy configurations in a pool of Suspect configurations which

in turn, helps to identify faulty items. The problem is similar to the counterfeit coin identification

problem [103] with a restriction that only two coins can be tested at a time.

Figure 3.22: Fitness states of a design configuration during a circuit’s life time

The SFH method is evaluated using monte-carlo simulation of the configurations’ behavior. Let, ui

represent configuration labels ∀1 ≤ i ≤ N for a configurations pool V of size N . The number of

healthy configurations areNh = N−Nf , and we identify them using discrepancy information. For

59

Algorithm 3 SFH state transition algorithm for functional diagnosis of configurations
Require:N
Ensure:Φ̂

1: Initialize CUT = 1
2: while (Vh == ϕ)&(CUT < N) do
3: Designate the CUT as active configuration, and RS as slack. Then, the pair under test is

given by: VCED = {CUT,RS}
4: Perform concurrent comparison to the same inputs for various edges of the graph repre-

sented by connectivity matrix C
5: Update the Syndrome Matrix Ψ based upon comparisons outcome during an evaluation

interval
6: Increment the reload number nr = nr + 1
7: Given Ψ, isolate the faulty nodes:

ϕ̂i ← 0 and ϕ̂j ← 0, if cij = 1, and ψij = 0

ϕ̂i ← 1 if ϕ̂j = 0, cij = 1, and ψij = 1
8: end while
9: Use a healthy identified configuration to test all other configurations

this purpose, a configuration pair {CUT,RS} is randomly chosen to be instantiated on the chip,

where {CUT,RS} ∈ V . The CUT and RS correspond to active and slack configurations of a

CED pair, respectively. Once a discrepancy is detected, the fitness state of all of the configurations

is suspected.i.e.,

ui.FS = Suspect; ∀1 ≤ i ≤ N

As the knowledge about fitness of those configurations is not available initially, the estimated num-

ber of healthy configurations is N̂h = 0. Afterwards, another pair of configurations is randomly

selected for instantiation while incrementing a variable Reload Number, nr as listed in Algorithm 3.

If two configurations completely agree in terms of their output throughout their instantiation pe-

riod, their fitness state is updated to fault-free while incrementing number of Presumed Healthy

configuration, N̂h by 2.

vCUT,RS.FS = Healthy, N̂h = N̂h + 2

60

To reduce the number of configurations reloads, as it costs reconfiguration latency which, in turn,

would affect the throughput, a without replacement policy is also evaluated. In this strategy, an

identified healthy pair is never re-instantiated during the diagnosis process under SFH approach.

Fig. 3.23 shows history of knowledge about various configurations while they are instantiated

for evaluation. The y−axis of the plot shows percentage of total number of presumed healthy

configurations correctly identified using the discrepancy information. i.e., N̂h/(N −Nf). We can

see from the plot that required number of configuration reloads increases with increased number of

defective configurations,Nf . Moreover, the without replacement policy provides better results than

the with replacement policy given no additional faults occur upon initiation of the fault diagnosis

phase. In the following, we provide some probability analysis of the problem. The diagnosis

problem of configuration-bitstreams can be formulated as given below:

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Reload Number

%
ag

e
of

 to
ta

l c
or

re
ct

ly
 id

en
tif

ie
d

he
al

th
y

co
nf

ig
ur

at
io

ns

Nf=5
Nf=15
Nf=25

(a) With Replacement

0 50 100 150 200
0

20

40

60

80

100

120

Reload Number

%
ag

e
of

 to
ta

l c
or

re
ct

ly
 id

en
tif

ie
d

he
al

th
y

co
nf

ig
ur

at
io

ns

Nf=5
Nf=15
Nf=25

(b) Without Replacement

Figure 3.23: Identifying healthy configurations in a suspect pool

Given a collection containing a mix of defective and nondefective items, what is the probability that

two items selected at random are nondefective [102]. To analyze this problem, first suppose p(h)

is the probability of selecting a single nondefective (healthy) item, and p(f) is the probability of

selecting a defective (faulty) item. Using the notation introduced in the previous section, p(h) =

61

Nh

N
and p(f) =

Nf

N
. Thus, the probability of selecting a nondefective pair is given by p(hh) =

p(h) ∗ p(h|h) where p(h|h) is the probability that the second item is nondefective given the first

item was nondefective. The experiment of instantiating and evaluating a configuration pair is a

Bernoulli trial whose outcome is either success when a healthy pair is selected or a failure when

at least one of the configurations is faulty. The probability of k successes in the outcome of n

Bernoulli trials with replacement strategy is given by binomial probability law [102]:

p(k) =

(
n

k

)
pk(1− p)n−k

where p is the probability of success of a Bernoulli trial.

As each trial consists of picking a pair of items instead of a single item, the probability mass

function (pmf) [102] becomes:

pdf(k) =

(
n

k

)
p(hh)k(1− p(hh))n−k

The cummulative distribution function (cdf) of a random variable X provides the probability that

the event will be found with value less than or equal to k [102].i.e.,

cdf(k) = P [X ≤ k]

The probability of finding nondefective items in a batch of 100 items with various number of trials

is shown in Fig. 3.24. Out of one hundred items, 5 items are assumed to be defective. The pmf and

cdf depend upon p, k, and n. For example, the pmf for n = 100 trials shows that the probability

62

of choosing exact k = 91 nondefective pairs is only 0.1331. In addition, the cdf plot shows that

probability of success of selecting k ≤ 91 healthy pairs in n = 100 trials is 0.6549.

To relate the probability analysis with the results from the monte-carlo simulation in Fig. 3.23,

assume that we are interested in finding the probability of success greater than k given n trials.

This measure relates to probability that each healthy configuration is selected at least once paired

with a healthy other configuration, in a certain number of loading of configuration bitstreams of

pairs. The cdf in Fig. 3.24 shows that probability of successes k ≤ 95 is approximately 0.1 given

110 trials, implying that probability of successes, k > 95 is 0.9, i.e., p(k > 95) = (1.0 − 0.1).

Thus, we can expect that 90% of the trials would be successful in terms of selecting k > 95

nondefective pairs in n = 110 trials. It is evident from Fig. 3.23 that roughly 90% of nondefective

items are isolated in 110 iterations under SFH transitions method of input evaluations of various

pairs.

70 75 80 85 90 95 100 105 110
0

0.2

0.4

0.6

0.8

1

1.2

X: 100
Y: 0.6453

number of successes, k

cu
m

m
ul

at
iv

e
di

st
ri

bu
tio

n
fu

nc
tio

n,
 c

df
(k

)

X: 82
Y: 0.6659

X: 91
Y: 0.6549

n=90
n=100
n=110

Figure 3.24: Probability of success for various trials with replacement

It is essential to note our assumption here that if two configurations are loaded for a given eval-

63

uation period, they will exhibit discrepancy at least once if at least one of them is faulty. This

assumption may not be true in many cases as we discuss in the next section. This is acceptable

since SFH is just providing a baseline for comparison of the proposed DRFI approach.

The DRFI Approach

The DRFI technique of fault-diagnosis using a functional testing paradigm fully exploits the dy-

namic reconfiguration capability of contemporary FPGAs. This technique utilizes the information

about difference in output values of the duplex, in addition to discrepancy information. The di-

agnosis process begins with building a circuit similarity graph, and then applying the PageRank

algorithm to compute the rank score of each node in the graph. The top µ configurations, having a

score greater than the average score of a pool, are assumed to be fault-free and hence can be used

by the system. However, if no healthy configuration exists, then the pool is sorted in ascending or-

der according to the scores and higher score configurations are preferred. Algorithm 4 lists various

steps in the DRFI technique of functional diagnosis to rank hardware configurations in a reconfig-

urable, fault-resilient hardware platform. Fitness and throughput heuristic can be customized by

considering the throughput quality during diagnosis phase and fault detection latency tradeoffs.

Building the Circuit Similarity Graph:

The CSG is a graph G = (V,E,W), where V is the vertex set, E is the set of edges and W is the

weight adjacency matrix associated with the graph. This is similar representation used for image

features in a feature similarity graph of [104]. Each entry of W represents the degree of match

between the corresponding circuits in terms of their output.

For constructing the weight adjacency matrix W, for each entry the corresponding pair of the con-

figurations forming a CED arrangement are evaluated during an evaluation period. The Euclidean

64

Algorithm 4 DRFI algorithm of ranking the functional configurations
Require:N
Ensure:Φ̂

1: while (1) do
2: Select CUT by using the fitness and throughput heuristic
3: Designate the CUT as active configuration, and RS as slack. Then, the pair under test is

given by: VCED = {CUT,RS}
4: Perform concurrent comparison to the same inputs for various edges of the graph repre-

sented by connectivity matrix C
5: Update the Syndrome Matrix Ψ based upon comparisons outcome during an evaluation

interval
6: Build the Circuit Similarity Graph from Syndrome Matrix
7: Use PageRank Algorithm to rank the configuration pool according to the fitness assessment.
8: end while

distance between the outputs xi and xj represents the dissimilarity of the two circuits for online

inputs. In general the Euclidean distance d between two points x and y in n-dimensional space is

defined as [105]:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2

Where n refers to the number of inputs in an evaluation interval. Then, the distance is normalized

so that the measure becomes the matching score of the two circuits. For this purpose, Gaussian

kernel is used to compute the matrix entries wij that represent the pair-wise similarity of corre-

sponding indices [106].

wij(xi, xj) = e−
||xi−xj ||

2

2σ2 (3.11)

where σ2 represents the variance of the Gaussian kernel.

A pair having consistently matched outputs with each other for a whole range of inputs will get

higher score as compared to the configurations differing in their outputs. In addition, the configura-

65

tions completing agreeing during evaluation window are rewarded by subtracting a Reward Score

from their associated DV . Consequently, a sparse matrix W is obtained for the configurations

pool by randomly selecting different configuration pairs.

The size of the CSG seems a significant concern of the proposed method. It growths rapidly as

the number of configurations increase. The size of CSG is directly impacted by the number of

configurations created at design time and are determined by the extent to which fault capacity

is desired. A large number of configurations at design time implies increased storage memory

required, increased fault-handling latency due to evaluation time, yet an improved fault-coverage

due to increased diversity of resource usage.

Ranking via PageRank:

Given the CSG, we are interested in assigning score to each node where each node represents

a particular circuit configuration. The idea is to give more score to the circuit whose output is

consistently matched with the other circuits. Faults injected at random locations affect the different

circuit configurations in different ways, and hence the circuits behave inconsistently to the inputs

when evaluated in pair with the other circuits. The CSG may be thought of as a graph similar to that

of all linked web pages. The webpage which gets many votes or gets vote from high ranked pages,

receives higher rank. Therefore, to rank the pages according to their importance we apply the

PageRank algorithm, which is demonstrated in Section 3. For web, the rank vector is computed

for n web pages by observing the hyperlinks coming to and leaving from the webpages. For n

circuit configurations, the rank vector Pr is 1 × n vector where each value of Pr represents the

PageRank score of the corresponding configuration.

The PageRank of a page A is computed by [107]:

PR(A) = (1− d) + d(
PR(T1)

c(T1)
+ ...+

PR(Tn)

c(Tn)
) (3.12)

66

where PR(A) = PageRank of a page A

T1...Tn = The pages which refer to page A

c(A) = Number of links going out of page A

d = Damping Factor, empirically set to 0.85

The PageRank is a probability distribution over all the linked web pages, and a random reference

occurs to a webpage with a probability given by its PageRank value PR(A) [107].

An example of configuration ranking process after evaluating multiple number of reconfigurations

is shown in Fig. 6.9. A pool of six design-time generated configurations are represented by nodes

in a graph. The similarity of these configurations in terms of their output is given by the matrix,

which represents the weights of edges between nodes. The PageRank value of the nodes is given

below the node labels. As it is evident that configuration label 3’s similarity measure is higher

among other configurations; therefore, it is ranked higher by the algorithm and thus preferred for

fault recovery as described in the following section.

(a) A pool of 6 configuration bitstreams represented by
a graph with similarity measure on edges and Pr in black

(b) The matrix representing edges
weights

Figure 3.25: An example of configurations ranking

67

Fault Recovery Results

(a) Before Fault Injection (b) After Fault Injection

Figure 3.26: An example of fault-injection into the simulation model of the circuit

The fault model used in the experiment work to evaluate the proposed fault handling scheme is

Stuck-At (SA) model in which fault can occur at any of the LUT inputs. The SA model reasonably

models the permanent affect of aging-degradation and radiation hazards on an FPGA device in a

space environment. In addition, DRFI technique deals with the faults at a higher level, that is, by

functional evaluation of the overall circuit and therefore, it should be capable of handling a wide

variety of fault models. SA faults are injected in the simulation model of circuit generated by

the Xilinx Xtool flow. We utilized our previously developed Fault Injection and Analysis Toolkit

(FIAT) which invokes various commands of the Xilinx flow to study fault behavior. An example

68

of injecting SA fault to one of the LUT-inputs is shown in Fig 3.26.

Experiment-1: MCNC benchmark circuits

To evaluate the DRFI technique of fault-handling, MCNC [108] benchmark circuit z4ml is an-

alyzed in detail first, then recovery of other circuits in the MCNC benchmark are assessed. The

benchmark circuits are implemented targeting a Virtex-4 device. We used the MATLAB imple-

mentation of the PageRank algorithm by Gleich [109]. The ISim simulator output is an interface

to the MATLAB program which issues commands to the ISE.

The selection of number of functional configurations is lower-bounded by the amount of diversity

required to mitigate faults while upper-bounded by the tractability to handle the CSG. In this

experiment, a total of 100 diverse configurations for the z4ml are generated at design time. Then

faults were randomly injected into the post place-and-route simulation model affecting 86 circuit

configurations thereby leaving only 14 designs fully functional. The healthy configuration labels

are listed here: (3,5,11,19,25,45,51,54,55,57,72,76,77,90). The CSG is built by

evaluating a pair of circuits to a subset of random inputs, specifically E = 30. A sliding window of

size 20 with overlapping 10 is selected to evaluate the circuits in sub-pools. Instead of evaluating

all exhaustive pairs, to all exhaustive set of inputs, the similarity matrix is built using a smaller

set thereby resulting in a sparse CSG. The observed reduction in input evaluations is over 75%

when using this approach for an MCNC benchmark circuit. By computing the PageRank for the

resulting graph, the results are shown in Fig. 3.27 in which the PageRank value of each circuit

implementation identified by its configuration label is plotted. The Cummulative Discrepancy

Value (CDV) defined as:

CDV =
τ∑

i=1

DVi

69

Where τ denotes the evaluation interval as the number of input pairs applied. DV’s are represented

as signed value prior to converting into the evaluation distance. CDV is used to build the CSG,

and then PageRank is computed given the CSG of the reconfigurable design. As it can be seen

from the plots, the CDV of various configurations cannot assist much in differentiating the healthy

configurations from faulty configurations. However, the corresponding PageRank values clearly

distinguish the healthy and faulty groups.

70

10 20 30 40 50 60 70 80 90 100
−1000

0

1000

2000
C

um
m

ul
at

iv
e

D
V

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

Configuration Label

Pa
ge

R
an

k

(a) first run

10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

C
um

m
ul

at
iv

e
D

V

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

Configuration Label

Pa
ge

R
an

k

(b) second run

Figure 3.27: CDV, and PR of various configurations for different simulation runs (a), and (b)

71

Analyzing the circuits with relatively high score in Fig. 3.27, we observe that they utilize fault-

free resources. It is, however, worth noting here that as few as two configurations are needed

at any given time for the circuit to produce validated output, although we have identified much

more successfully. The cumulative Consensus Similarity Value history of first 10 configurations is

plotted in Fig. 3.28. It is evident that the CSV of C3 and C5 increases with time as both utilize

fault-free resources.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Number

C
on

se
ns

us
 S

im
ila

ri
ty

 V
al

ue

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10

Figure 3.28: The discrepancy history of various configurations of the circuit

As compared to the exhaustive testing method which involves evaluating all possible pairs with all

possible set of inputs, DRFI achieved considerable improvement, as evident by Fig. 3.29 which

shows the results for other benchmarks. For example, number of configurations evaluations are

reduced by 75% when using DRFI approach over the exhaustive testing approach in misex1

benchmark circuit. Thus, considerable fewer configuration pairs are needed for evaluation using

the DRFI approach.

72

0

10000

20000

30000

40000

50000

60000

z4ml 5xp1 misex1

#
o
f
E
v
a
lu
a
ti
o
n
s
R
e
q
u
ir
e
d

Benchmark Circuit

Exahustive Search

DRFI

SFH Transitions method

Figure 3.29: A comparison of fault-diagnosis methods for various MCNC benchmarks

The operation of the circuit in duplex manner is simulated in Fig. 3.30. The DV between outputs

of the duplex circuit in each evaluation window is shown. During the normal operation period of

the circuit, when no fault is present, the discrepancy value is zero. After one or more faults occur,

the difference in output increases. During repair process, different pairs of configurations are

loaded and evaluated using random inputs. After a sparse similarity matrix is build, the PageRank

algorithm is executed. Once the configurations are ranked and identified correctly, the normal

operation of the circuit is recovered. It should be noted that Fig. 3.30 is only for the illustration of

the system’s operation and not scaled by actual time, which depends upon the time complexity of

the controller and the configuration under test (CUT).

73

Figure 3.30: An operational example of a circuit on a x104 evaluations scale

Experiment-2: DCT core

The DRFI scheme is validated using H.263 video encoder’s 1-dimensional DCT block imple-

mented in FPGA using Xilinx ISE and PlanAhead for partial reconfiguration flow. There are 8

Processing Elements (PEs) computing the DCT coefficients [94], [110] of a row of pixels in 8x8

macroblock. Each PE’s function is to compute one coefficient of the DCT function. For example,

PE0 computes the DC-coefficient, PE1 computes the AC0 coefficient and so on. The 2-D DCT is

computed by using the 1-D DCT twice. Table 3.2 lists the resource utilization generated by the

Xilinx tools for the DCT core interfaced with the on-chip PowerPC processor [96] which illustrates

a significant reduction in reconfigurable resources when embedded multipliers are used.

74

Table 3.2: Resource utilization summary of the DCT core

Used by the Used by a PRR
Logic Resource static region Used by a PRR employing multipliers
Number of Slices 4516 169 62

Number of Slice Flip Flops 5961 79 44
Number of 4 input LUTs 6155 312 100

Number of FIFO16/ RAMB16s 45 0 0
Number of DCM ADVs 1 0 0

Number of DSP48 Blocks 0 0 1

Fig 3.31 shows qualitative results of the fault identification scheme. A frame in the video encoder’s

frame memory is shown in Fig. 3.31(a). A total of 10 alternate configurations are generated at

design time which utilize various PRRs in the chip. The DCT core is instantiated in the CED mode

to provide error detection capability. Fig. 3.31(b) shows an intra-frame after a fault is injected in

the PE0 of the DCT core. The system is recovered by instantiating a pre-generated configuration

which uses fault-free resources, as given in Fig. 3.31(c).

(a) fault-free system (b) faulty system (c) recovered system

Figure 3.31: An image in the frame memory of video encoder

Experiment-3: Partial Recovery

In many signal processing applications, the underlying algorithms are inherently robust and a com-

plete recovery is not necessary. While the latency of fault-diagnosis may be excessive to get

diminishing returns, sometimes it may barely improve the overall health metric of the system.

75

On the other hand, a partial recovery can be quick and sufficient for the application. In a broad

sense, provision of resilience in reconfigurable architectures for signal processing can take advan-

tage of a shift from a conventional accurate computing model towards an approximate computing

model [111],[112],[113],[20]. This significance-driven model provides support for operational

performance which is compatible with the concepts of signal quality and noise.

If all the configurations become faulty, then in the current scheme a complete recovery is not

possible. However, we are interested in at least those configurations whose behavior exhibits

more correct outputs than the others for the relevant online input subspace. In a case, in which

no individual configuration in the design pool is operational due to the faults affecting all the

configurations, it is beneficial to assign higher scores to the circuits which are relatively better.

Fig. 3.32 shows results of a simulation in which all the pre-generated configurations are affected

by fault. The discrepancy check is made on the DC and AC0-coefficients output values which

contain most of the information about the image content. Fig. 3.32(b) shows a case in which faults

are injected in PE1. As it can be seen that the image in Fig. 3.32(d) is visually better than that in

Fig. 3.32(b) as the former is an output of the configuration which utilizes a fault-free PE1. Although

the recovered system utilizes a faulty PE3, a graceful degradation is made by the proposed recovery

solution. Thus, the image quality in the frame buffer reflects the benefit of such partial recovery.

(a) faulty system
(PSNR=28.38dB)

(b) error of faulty
system

(c) recovered
system
(PSNR=30.75dB)

(d) error of recov-
ered system

Figure 3.32: Partial recovery results of the scheme

76

CHAPTER 4: SOFT-RESILIENCE USING AN ONLINE

MULTI-OBJECTIVE GA

A self-aware signal processing architecture is proposed based on adaptive resource escalation

which is guided by a multi-objective GA. The GA prioritizes tasks within a reconfigurable hard-

ware fabric to maintain the quality-of-service and power consumption objectives. Attainment of

these objectives is subject to the intrinsic reliability and performance of the computational ele-

ments in the resource pool. A health metric at the application layer, such as PSNR measurement in

a DCT or Measure of Confidence in a Support Vector Machine (SVM) classifier, is used to assess

throughput performance. When performance decreases beyond acceptable tolerances, the primary

objective is to maximally recover output quality. The secondary objective is to minimize power

consumption which also depends upon the input signal characteristics, in addition to the utilized

computational resources. An adaptive guidance function for GA-driven recovery is proposed and

validated for these objectives. It retains healthy processing elements in the throughput datapath to

gracefully-degrade throughput by optimizing resource selection.

The developed scheme is evaluated using signal-processing case studies on a Xilinx Virtex-4 FPGA

device. A SVM classifier with original accuracy of 75.7% is recovered in a low power configura-

tion to 73.2% accuracy from a failure impact of 59.1% accuracy. Similarly, the PSNR of output

from an evolvable hardware DCT module indicates maintenance of quality objectives by recov-

ering the PSNR to 34.1dB from a fault impact of 25.2dB. When the GA was invoked during the

resource escalation phase in these case studies, an individual configuration arrangement from the

pareto set is found to realize advantageous quality and energy tradeoffs. Overall, the proposed

technique of health metric based multi-objective online evolution provides a promising method to

facilitate soft computing by evaluating modules subject to their actual real-time inputs, rather than

exhaustive test vectors.

77

Self-Aware Signal Processing Architectures

Autonomicity is a desirable property for signal processing architectures in dynamic real-time en-

vironments. Ideally, image processing systems should autonomously maintain the desired lev-

els of accuracy with rapid convergence and optimized power consumption throughout a range of

operating and reliability conditions. Survivability under these constraints can be enhanced by

the provision of self-awareness properties at the system-level [114][115][116]. These attributes

are most critical in real-time environments where the reliability of CMOS devices in nanoscale

regimes is becoming increasingly sensitive to variations in temperature, process manufacturing

tolerances, aging effects, and supply voltage stability [117][56][8][31]. For example, to achieve

energy-efficiency in nanoscale CMOS circuits, voltage scaling [55] continues to be realized as one

of the most effective methods. However, near threshold voltage operation of these circuits can

manifest process defects and variations as run-time computational errors which appear in the con-

text of signal processing applications as accuracy degradation [118][19]. This chapter develops a

cross-layer signal processing architecture which uses self-adaptation to address these concerns.

Inter-die Process

Variations

Intra-die Process

Variations

Aging Induced

Degradations

Radiations Effects

Reliability Issue Mitigation TechniquesImpact

Manufacturing Yield

Performance of Worst

Case Design

Voltage Scaling Effects

on Critical Delays

Survivability

Performance

Availability

Statistical Timing Analysis

Design Guardbands

Built-in Self Testing

Triple Modular Redudancy

Scope of

Resource

Escalation

Approach

Figure 4.1: Reliability issues of digital systems built with deep submicron devices

Fig. 4.1 provides an overview of stability and reliability issues in sub-90 nm CMOS systems and

78

some popular corresponding mitigation techniques. This layered model can be adapted and lever-

aged in Digital Signal Processing (DSP) applications due to their inherent soft-resilience to errors.

The soft-resilience property arises from redundancies in input data as well as the statistical nature

of employed algorithms [112] and at the application-level from inexact perception of output qual-

ity by the user [113]. For instance, an example of soft-resiliency at the algorithm-level is Kalman

filtering in which errors in prediction at a given instance are corrected in subsequent iterations.

Soft-resiliency is compatible with a recent trend of attempting to sustain Moore’s law by design-

ing computing systems using various error-permissible computing models [111][113][119]. The

inherent resiliency of signal processing algorithms allows some relaxation of exact computation to

embrace this type of soft-computing paradigm. In particular, the provision of error de-sensitizing

mechanisms and hardware graceful degradation is desirable to maintain output quality objectives.

We present a cross-layer soft-computing approach which leverages the different priorities that DSP

tasks inherently have on the overall output accuracy. These are evaluated at runtime by monitor-

ing a specific health metric or dynamic operating condition which is observed at the cognitive

layer along with decisions to trigger adaptation. This avoids the complexity of search space over-

generation from rigid exhaustive fault coverage by handling only those subset of errors which affect

the output quality beyond acceptable tolerances. Thus, the system adapts concisely to manifested

errors while nullifying any false-positive demands. In addition, the need to synthesize test vectors

with high resource coverage becomes unnecessary.

The proposed system is demonstrated using FPGAs which are widely chosen to realize signal

processing applications in hardware due to their processing speed and potential for accelerated

execution. As a computational platform, an additional major advantage of FPGAs is their runtime

reconfigurability. Various reconfigurable regions can be defined at design-time for a circuit and

later at runtime these regions can be re-assigned to alternative tasks dynamically. To reconfigure

a Processing Element (PE) with an alternative task, the other regions of the device which are not

79

being reconfigured need not be removed from service. This online partial reconfiguration ability

provides great flexibility for novel soft-computing approaches at the architectural level [120].

Herein, the problem of reconfiguration to maintain accuracy and performance is formulated as a

multi-objective optimization problem. The term configuration will be used to denote a distinct

mapping of tasks assigned to PEs. The event of reconfiguration will be used as a synonym for

the task re-allocation process within a reprogrammable hardware fabric. As various tasks have

different priority levels, the tasks are best mapped for execution when their priorities are directly

correlated to the healthiness of underlying resources in the computational fabric. Thus, those

configurations are preferred in which prioritized tasks are mapped to healthier elements in the

resource pool of reconfigurable regions. The number of potential mappings can be quite large

so we have employed the optimization capability of multi-objective Genetic Algorithms (GAs)

to search the mapping space for throughput quality and power consumption alternatives. The

proposed approach is evaluated for signal processing applications including a SVM and a DCT

implemented in FPGA hardware. Performance metrics such as power consumption, measure of

confidence, and PSNR demonstrate that a health metric based multi-objective online evolution

approach achieves those objectives while incurring acceptable runtime overhead costs.

The following are the main contributions of this work:

1. The tradeoffs of reliability and power savings are formalized as a generalizable runtime

mapping problem based on the underlying resource performance and operating workload.

2. A multi-objective GA approach is proposed for this mapping optimization problem in which

a population of solutions is guided by a novel adaptive guidance function.

3. Instead of reserving redundant units for fault-detection, a throughput health metric is iden-

tified. Thus, fault-detection is feasible using a uniplex instance of the datapath without re-

80

quiring redundancy for error checking. This also allows a consolidation phase to distinguish

transient conditions in the detection method.

4. Soft resilience is introduced as an iterative task remapping process to maintain the out-

put quality metric within acceptable limits. Namely, an integrated diagnosis and recovery

scheme is presented which neither requires a voting mechanism nor bringing the system

entirely offline as recovery progresses.

Previous Techniques of Soft Resilience

Although a greedy algorithm like [45] is successful at small-scale optimization with single objec-

tives (i.e., throughput), large-scale multi-objective problems necessitate meta-heuristic algorithms

to explore the associated large search space. The proposed scheme is based on the technique of

performing iterative reconfigurations until the system’s output meets quality objectives. To avoid

the requirement of redundancy which can incur significant area overhead in the case of cold-spares

and power consumption in the case of replicated paths for comparison-based detection, the pro-

posed approach leverages a health metric and the inherent computational priority in its system

design. Such an approach is especially promising for signal processing applications which can

accommodate a graceful degradation of functionality.

81

Fault-resilient hardware/

software

Checkpoint/rollback

mechansims

Noise tolerance, error

correcting codes

Modular Redudancy,

BIST

Guardbanding, increasing

threshold voltage

Adaptive Body Biasing

Observe/maintain a health

metric at application layer

(e.g., PSNR in a video

encoder)

Graceful degradation by

retaining prioritized tasks

(e.g., DC coefficient in

DCT computation)

Priority-driven power

gating and fault-isolation

(e.g., reduce the DCT

mode)

Fault-recovery by

reconfiguration

Figure 4.2: Hierarchy of fault-mitigation techniques at various abstraction levels

As illustrated in Fig. 4.2, there is a spectrum of techniques dealing with error-tolerance of signal

processing systems ranging from the device-level up to the system-level. Fault-handling at the

architectural-level is often oblivious to the error-mechanisms in the underlying hardware. For ex-

ample, a Triple Modular Redundancy (TMR) arrangement is a technique in which a datapath is

replicated to create three identical instances and then each output is passed into a majority voter

for selection [63]. Although, a TMR scheme maintains all three instances in the datapath thereby

achieving fault-masking capability, the resource overhead is considerable in both area and power

consumption, even for the vast majority of the device lifetime which may be error-free. Namely,

a TMR arrangement incurs a power consumption overhead that is approximately three-fold higher

than a uniplex arrangement even if the voter overhead is negligible and throughput operation is

fault-free. A Concurrent Error Detection (CED) arrangement detects faults by comparing the out-

put of two replicas subjected to the same inputs [31]. A discrepancy reveals faulty nature of either

instance without identifying which of the modules is faulty. Again, the area and power overhead are

significant concerns in CED as they are doubled over the baseline design. As an alternative, Built

82

In Self Test (BIST) mechanisms diagnose faulty components by evaluating them with some test

inputs generated by an Automated Test Pattern Generator (ATPG) to provide one-time or periodic

fault-assessment. In practice, a BIST scheme rarely achieves 100% coverage, yet may generate

false alarms [121]. Moreover, an evaluation of some test vectors may not necessarily correspond

to the actual runtime scenario of a module under test. On the other hand, the proposed technique

of health metric based multi-objective online evolution relies on the actual behavior of the signal

processing module under runtime conditions. We show that an evolutionary inspired scheme of

reconfiguration which correlates the output history information with task mapping can meet these

goals.

Algorithmic-level fault-handling approaches exploit signal processing algorithm properties to make

the system robust and error-resilient. Hegde and Shanbhag et al. [122] proposed an Algorithmic

Noise-Tolerance (ANT) technique to compensate the errors introduced into DSP architectures due

to voltage scaling. Voltage scaling has been an effective method of reducing power consumption,

yet the correctness of throughput becomes an issue when the supply voltage is scaled beyond a

critical voltage. To mitigate these concerns, the authors developed a prediction-based error con-

trol scheme which requires knowledge of the system transfer function which was a digital filter

in their prototype case. Applying algorithmic-level fault-handling to video processing, Varatkar et

al. [123] proposed a sub-replica of the motion estimation block to concurrently check the error-

prone main block. Meanwhile for image processing, Kim et al. [56] proposed a soft voter em-

ploying a Bayesian detection technique. The soft voter is demonstrated to provide correct output

in a Discrete Cosine Transform (DCT) based image coder. Lisboa et al. [124] proposed a fault-

tolerance technique to mitigate faults in matrix multiplication algorithms, which comprise the heart

of many signal/image processing applications.

Research have also studied area and accuracy tradeoffs for various computationally-intensive appli-

cations such as data encryption [125] and less-than-exact computation [20] for Signal processing

83

applications. To further reduce the power consumption or enhance the throughput of DSP ap-

plications, numerous architectural and algorithmic approaches have been taken over the years. To

combat both challenges in a unified manner, this article specifies a multi-objective design paradigm

using GAs. While area and delay multi-objective optimization using genetic algorithms [126] has

been a well established technique in electronic design [127][128][129][7] prior to manufacture, the

methodology developed herein adopts the concept of runtime adaptation to meet the performance

and energy objectives according to the signal’s characteristics.

Finally, power consumption remains one of the key issues in rapidly-scaling CMOS technology.

This is especially true in both high-density deep submicron designs due to cooling considera-

tions, as well as portable electronic systems where battery life, size, and weight are concerns.

Although voltage scaling has been used to drastically reduce power consumption, this increases

the circuits’ susceptibility to faults, and hence the desirability for soft-resilient operation under

these conditions. While there is a body of research work dealing with power versus fault-tolerance

tradeoff at design time [130], there remains a need to develop runtime tradeoff techniques. Run-

time techniques are also promising to handle faults in unforeseen mission-critical scenarios as well

as commonly encountered manufacture-induced process variations that impact the yield, stability,

and aging-behavior of commercial products. The presented health metric based multi-objective

online evolution scheme addresses the issue of power consumption and quality tradeoffs through a

novel runtime architectural adaptation technique formalized below.

Problem Formulation and Methodology

Consider a computing Array-Under-Test (AUT) realized by a set of N -PEs namely PE1, PE2, . . . ,

PEN each executing a task T1, T2, . . . , TN , respectively. The priority of the tasks assigned to

the PEs is given by a vector P = {p1p2 . . . pN} having its ith component denote the priority of

84

the ith task. As a fault-recovery provision, a PE can be reconfigured to an alternative function

or equivalently, a task can be re-assigned to an alternate PE at runtime. Given a homogeneous

computing array of PEs, a reconfiguration controller can re-assign an alternative task to any PE

in the array. Let the healthiness of resources which comprise the PEs be denoted by a vector

H = {h1h2 . . . hN} as illustrated below. In the proposed fault-handling scheme, the defectiveness

degree of PEs is assumed to be unknown. The formulation here allows utilization of a-priori

information about the priority of tasks mapped at runtime as discussed in Section 4 and Section 6.

Power consumption in such an AUT can be reduced by power gating of some of the PEs [131],[132]

which acts to exclude them from operation. The choice of PEs selected for use depends upon

input signal characteristics, assigned tasks priorities, and desired quality levels. To maintain the

generality of the notation without becoming restricted to a specific signal processing algorithm,

consider a zero-task denoted by T0 which corresponds to the power-gating OFF condition of the

underlying computational resources for which the task has been mapped. In practice, a T0 task

can be realized by a power-gating technique in an ASIC implementation or by configuring a blank

bitstream into a FPGA reconfigurable region. We have selected the latter approach for our case

studies as we are utilizing a FPGA device.

A set of active PEs is defined as Va = {PEi};∀iTi ̸= T0. Thus, Va contains those PEs which are

assigned by non-zero task and operate to provide the throughput of the system. There is a one-to-

one mapping of tasks to active PEs such that the cardinality of the set of active PEs is given by

|Va| = Na where Na ≤ N . In the following discussion, the terms processor node and PE are used

interchangeably. It is worth highlighting the assumptions of the above formulation:

1. A PE node can be configured with any task, namely, a homogeneous array of PE resources

is considered here.

2. Input data can be multiplexed to any or all of the PE nodes. This can be realized using bus

85

macros in the target FPGA platform, e.g., as per the Xilinx-specified partial reconfiguration

based design flow [133].

Fig. 4.3 shows an architectural view of the proposed fault-handling approach employing pareto set

solutions, health metrics, task priorities, computational resources, and on-demand power-gating.

The computationally demanding portion of a signal processing application has been mapped to an

array of PEs to accelerate throughput. The reconfigurable PEs array is managed by the reconfig-

uration controller to map tasks into the computational regions. A health metric is communicated

from the software application to the reconfiguration controller. The overall software application

can be executed on a PowerPC processor as such on-chip processors are already provided in most

commercially-available FPGA chips. The value of the health metric will vary due to either in-

put signal characteristics or hardware defects. To identify the latter case, a health metric outside

nominal operating range triggers the fault-identification process. To keep the area overhead min-

imal, fault-identification is performed by a comparison-based discrepancy detector on a PE-scale

resolution rather than at a system-wide resolution. In particular, an RS [45] region is utilized to

consolidate a non-transient fault-detection of decreased health metric value. In particular, a RS is

a single task-grained tile reserved as a cold-spare for the entire design; only one RS is needed re-

gardless of N . Operationally, an RS is loaded to test suspect PEs successively, and in order of their

priority of impact on the output quality. Namely, a discrepancy between the output of an active

PE and RS indicates a transient or permanent hardware error. Thus, fault-identification is asserted

without rendering any decision about exact location of fault being either in the active PE or the RS.

Afterwards, the diagnosis and recovery process is carried out by the GA engine embedded in re-

configuration controller to locate which of these two is actually faulty. However, if no discrepancy

is observed between the active PE and RS, then the health metric is assumed to have exceeded

tolerance simply due to the input characteristics or due to a transient fault in the computational

resources which has subsequently resolved. Thus, we focus below on the case where the active PE

86

and the RS outputs are discrepant.

Observe a health metric at

application level

Complexity management at

algorithm level

Resource (de-)allocation at

architecture level

Graceful degrading power-gating

at circuit level

User-level decision Power vs. quality tradeoff

solution from Pareto set

For example:

A classifier’s confidence

measure

PSNR of a video encoder

Emphasize prioritized tasks, for

example:

Important support vectors

Important DCT coefficeints

Power-gating according to input

signal characteristics

Maintain healthy computational

elements in throughput datapath

Abstraction layer Method

Reconfiguration

Controller

Application

PE1

T1

.

.

.

PEs Array

Discrepancy

Detector

Fault Detection
Reconfig.

Health Metric

Pareto Set

Quality vs. Energy

tradeoff user input

PE2

T2

PEN

TN

Figure 4.3: Cross-layer fault-handling architecture with hierarchical support

The fault-handling processes employs a data structure representing the task mapping to PE re-

sources. The PE array and corresponding task mappings use a fixed-length chromosome in this

formulation which is suitable for GA processing [1]. The genetic representation is illustrated in

Fig. 4.4 which shows array of 7 PEs concurrently executing a set of tasks communicating with

data memory for the tasks inputs and outputs. A PE can be configured with any task Ti where

0 ≤ i ≤ N . For example, PE1 is configured to execute the task T1, PE2 is configured to execute

the task T3, and so on. An example of the task-mapping chromosome is shown in Fig. 4.4. The

number of fields in a chromosome is equal to the number of PEs in the processing array. The value

of a particular field identifies the task number allocated to the corresponding PE. For example, the

third field in the chromosome contains the value 4 implying that PE3 is assigned to execute task

T4. It is worth noting the exemplified task mapping of PE4 being allocated T0 which corresponds

to configuring a blank bitstream on this particular PE; zero or more PEs may be configured with T0

87

based on the instantaneous or near-term throughput quality requirements. Such a dynamic assign-

ment of blank tasks acts to reduce and dynamically optimize power consumption at the expense

of some quality degradation whereby some functional task, for instance the corresponding DCT

coefficient, is omitted from computation. The formulation of the tradeoff of these objectives is

described below.

1 3 4 0

PE1 PE2 PE3 PE4

A chromosome defines tasks

assignments to the PEs

Data Memory

1

T0

T1

T2

T3

T4

T5

T6

T7

2

T0

T1

T2

T3

T4

T5

T6

T7

3

T0

T1

T2

T3

T4

T5

T6

T7

4

T0

T1

T2

T3

T4

T5

T6

T7

5

T0

T1

T2

T3

T4

T5

T6

T7

6

T0

T1

T2

T3

T4

T5

T6

T7

7

T0

T1

T2

T3

T4

T5

T6

T7

7 5 6

PE5 PE6 PE7

PEs Array

Tasks

The chromosome

fields correspond to

the PE numbers

The value of a

chromosome field

specifies the task

allocated to the

corresponding PE

Figure 4.4: An array of 7 configurable PEs and its genetic representation

Multi-Objective function

The power versus quality tradeoff in DSP systems is formulized as a optimization problem using

the composite function to be minimized given by:

f = w1f1 + w2f2 (4.1)

88

where w1 and w2 are corresponding weights of the opposing functions f1 and f2. The functions f1

and f2 represent the throughput degradation and power consumption, respectively, of the current

task mapping using the selected computational resources. An effort to improve f1, i.e. minimize

quality loss, results in degradation in f2, i.e. consumption of more power, and vice-versa. The

pareto solution set to this problem corresponds to a set of configurations aimed at exploring the

design space of the quality versus energy efficiency tradeoff. The goal of soft-resilience is achieved

by mapping prioritized tasks to the healthy resources, while energy efficiency is achieved by load-

ing blank bitstreams into both failed and healthy PEs. Of course, disabling healthy PEs while

saving power, degrades throughput as discussed below.

Throughput Degradation

The evaluation interval size τ is defined as the period of calculations over which the fitness as-

sessment of an AUT is performed, expressed in units of the number of input instances. For higher

throughput quality and accuracy over an evaluation interval, the following metric which is essen-

tially a measure of Mean Squared Error (MSE), should be small:

f1 =
1

τ

τ∑
i=1

||Γi − Γ̈||2 (4.2)

where Γ̈ is desired value of health metric. The health metric selected can include the PSNR, bitrate,

measure of confidence, or other application-level quality of throughput indicator.

89

Power Consumption

Power consumption of an array of PEs is directly proportion to its size N . Therefore, a normalized

power consumption measure is defined in terms of N and is given by:

f2 =

∑
∀k∈Va

πk∑N
i=1 πi

(4.3)

where Va is the set of PEs assigned with non-zero tasks and πk is the power consumption of the

kth task. Thus, the AUT’s power consumption is maximized when all N PEs are assigned to have

active tasks resulting in N0 = 0. On the other hand, power consumption is minimized when all the

PEs are assigned with zero-task assignment yielding N0 = N , yet throughput quality in that case

is also non-existent and hence not an option selected in practice.

The objective functions given in Eq. 4.2 and Eq. 4.3 are oppositional. A higher number of active

PEs results in increased throughput quality at the expense of increased power consumption. On the

other hand, power gating of the PEs results in reduced power consumption while incurring output

quality degradation. A runtime multi-objective GA approach is used in finding a pareto optimal

set as described below, thus spanning throughput versus power optimization, and also error soft-

resilience, by a single strategy.

Guidance Function

Although a solution to the minimization of Eq. 4.1 is the objective realizes the desired soft-

resilience operating point, the search space of the mapping problem is considerably large. For

example, an exhaustive search will require (N + 1)! reconfigurations in a cluster of size N to

explore the search space in the worst case. Thus, exhaustive or randomized approaches can be

90

intractable for absolute minimization of large-size problems which render the practicality of non-

guided search to be very limited. To this end, we propose to incorporate evaluation history informa-

tion of the influence of mapping on throughput quality which further guides the population towards

the pareto front. The history information of the individuals helps developing a health estimate of

computational resources which in turn prunes the search space of the problem. Thus, adaptive

guidance of the population using runtime healthiness estimate acts to benefit the convergence of

the online multi-objective GA.

An a-priori knowledge of tasks’ default priorities is generally useful in terms of carrying out a

graceful degradation strategy, and is available in many cases such as the coefficient computing

functions in the DCT core whereby the DC coefficient should be computed on the healthiest re-

source. However, such a knowledge of healthiness of computational resources is often dynamic

and may be subject to soft-faults due to agressive voltage scaling, aging, and supply variations,

or even permanent faults. Thus, it is beneficial to estimate the healthiness of computing resources

at runtime to evaluate Eq. 4.5. This uses the nodes’s output discrepancy history to develop its

healthiness estimate. Thus the overall error observed in the output is automatically weighted by

the priority level of its assigned task. Thus, hi(t) = 1/di(t) where di(t) denotes the defectiveness

estimate at evaluation instance t as follows:

di(t) = di(t− 1) + pj ∗ |Γ− Γ̈| (4.4)

where pj = priority value of task j assigned to PEi.

Thus, to calculate the defectiveness estimate di of a node i, the throughput degradation is weighted

by the task-priority value and accumulated into the previous estimate of di. By employing the fault

articulation history as well as the task priorities, the defectiveness estimate becomes an effective

measure to guide the adaptation towards an optimal mapping.

91

The guidance function can then be defined as:

g =
|
∑N

i=1 pihi −
∑
∀kk∈Va

pkhk|∑N
i=1 pihi

(4.5)

This measure g to be minimized guides the GA to find the pareto front while maintaining partial

throughput during fault-resolution phase. Here, the tasks’ priorities are weighted by the healthiness

of the underlying resources on which the tasks are mapped to. As eq 4.5 reveals, a minimum value

of g corresponds to the mapping when vectors H and P are highly correlated. That is, high

priority tasks are mapped to healthier resources. Guidance function assists in guiding the evolution

according to the fitness function when system is faulty. Otherwise, the fitness function continues

to use f1 and f2 functions for throughput assessment and power optimization, respectively.

The proposed fault-handling methodology is summarized below:

1. detect when the application-level health metric exceeds tolerance,

2. consolidate non-transient fault-identification via a CED-based discrepancy-based detection

using a RS,

3. invoke the GA during the healthy resource escalation phase of task remapping, and

4. select an individual from the obtained pareto set to finally map tasks on to the fabric based

upon their quality and power consumption tradeoff.

92

Execution Results

Synthetic Nodes Simulation

To illustrate the process and the impact of the function given in Eq. 4.1, the approach is evaluated

using an array of simulated nodes. For this purpose, a PE-array of size N = 7 is chosen and

the fault scenarios are simulated by assigning healthiness values to the PEs as listed in Table 4.1.

The priority values are assigned to various tasks such that T1 receives the highest priority (i.e., the

maximal value of 7 for an arrangement comprising 7 possible tasks, while T7 receives the least

priority, i.e.,the value minimal non-zero task value of 1. Thus, P vector’s component values re-

flects the reverse ordering of Task Numbers. For example, in a DCT, Task T1 would correspond to

the computation of the DC coefficient. However in this illustrative example, for generality assume

the effect of priority values on the overall output is unknown at this point. Therefore, it is not

feasible to initially evaluate the first term of the objective function given in Eq. 4.1. Instead, the

healthiness values are assumed to be already available in this scenario in the form of a monotoni-

cally decreasing linear function while the guidance function of Eq. 4.5 is considered to be the first

term of the objective function of Eq. 4.1. The duration of the evaluation interval is considered as

one sample here such that τ = 1, i.e., the objective function is evaluated for every input in this

synthetic nodes case study. It is worth mentioning here that although the healthiness and priority

values are generated by a linear function in the synthetic nodes simulation case, these values can be

substituted with results from any fault model and the impact on output quality in the practical case

studies as discussed further below. For example, the fault impact is simulated by a stuck-at fault

model and the corresponding PEs are evaluated for functional output in the practical case studies

with favorable results.

93

Table 4.1: Example of priority values, P , and healthiness of resources, H

PE Number i 1 2 3 4 5 6 7
Hi 0.25 0.2143 0.1786 0.1429 0.1071 0.0714 0.0357

Task Number j 1 2 3 4 5 6 7
Pj 7 6 5 4 3 2 1

The GA parameters used are given in Table 4.2. The Population Size corresponds to various tasks

configurations to the AUT. Migration parameters specify the individuals of population’s movement

among multiple sub-populations. The individuals are created by a uniform function while being

selected using rank criteria [134]. The standard two-point crossover operator is used with the

mutation option compatible with a standard GA [1]. The elite count parameter ensures that some

of the best individuals are guaranteed to be propagated to the next generation [134].

Table 4.2: GA paramters

Parameter Value
Population Size 25
Migration Direction forward
Migration Interval 20
Migration Fraction 0.200
Population Creation Function Uniform
Fitness Scaling Function Rank
Selection Function Uniform
Crossover Function Two-point
Elite Count 2
Crossover Fraction 0.7
Mutation Rate 0.01

Figure 4.5 shows the throughput degradation and power consumption objective costs on the vertical

axis for various iterations as two curves over time in units of generation number on the horizontal

axis. The two curves depict the average behavior of the population as the upper scatter plot and

the best-performing individual’s behavior as the lower curve on each plot. The throughput degra-

94

dation is described in terms of the guidance function. The best solution reached by the GA was

{1, 2, 4, 3, 5, 6, 7} after 500 generations. As Figure 4.5 shows, the average behavior significantly

improves within 100 generations, and then fluctuates due to the mutation operation. A sufficient

population size together with a mutation function is necessary in order to diversify the population

to reach a good solution in terms of meeting multiple criteria. The cost scores are defined in terms

of the number of active PEs as well as the synthetic priority and health values. Then, after normal-

ization, the unit-less ratios are the cost scores to be minimized. A converging trend of the cost plots

after 100 generations implies that the proposed evolutionary methodology can achieve power and

quality goals by employing the runtime-behavior information of the processing array. The global

optimum solution for this problem is {1, 2, 3, 4, 5, 6, 7} as it corresponds the resource escalation of

the weighted prioritized tasks over the reconfigurable fabric. Thus, the GA is successful in find-

ing a near optimal configuration in this problem, within a very reasonable number of generations

suitable for runtime operation.

50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generations

C
os

t

Average Fitness Score
Best Fitness Score

(a) Throughput degradation

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

C
os

t

Average Fitness Score
Best Fitness Score

(b) Power consumption

Figure 4.5: Cost functions

Figure 4.6 shows the pareto set of solutions of the Multi-Objective Online Evolution (MOOE)

problem. Here, both costs, namely throughput degradation and power consumption are employed

95

to engage quality and energy efficiency tradeoffs, respectively. For example, a 40% tolerable

behavior in terms of throughput degradation allows power consumption reduction to 30% of the

maximum budget. A further reduction in power consumption is feasible as low as to only 10%

yet only if approximately 80% throughput degradation can be tolerated. As the result shows, the

proposed evolvable hardware MOOE recovery formulation allows finding a set of optimal solutions

which facilitates design space exploration in terms of quality and energy efficiency tradeoffs.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective 1

O
bj

ec
tiv

e
2

Pareto front

Figure 4.6: Pareto set of solutions for the synthetic graph MOOE problem

A Computer Vision Case-Study: Support Vector Machine (SVM)

In this Section, a SVM is used as a case study to evaluate the health metric based multi-objective

online evolution scheme. A hardware core of a SVM is monitored for its health status by observing

the Measure of Confidence. The intuition is that an unusually low confidence measure from a SVM

may indicate hardware failures. Thus, the proposed online evolution mechanism architecturally

adapts the SVM core to recover from failures by utilizing the health metric based feedback in the

recovery loop.

96

SVMs are popular as supervised machine learning methods in classification problems. While the

learning phase can either be carried out offline or online, the testing phase is usually desired online

due to real-time requirements of many applications. Thus, hardware implementation is favorable,

and also to accelerate intensive computations involved. We employed LIBSVM [135] for training

purpose, and thereafter the learned kernels are implemented in hardware by MAC-based PEs.

Because SVMs are favorable in image detection tasks in space missions [136], we consider them

as a case study to evaluate the proposed self-healing mechanism.

.

.

.

GA-based fault-

recovery

mechanism

Reconfigurable PEs

Classifier’s

Output
(.)Input

Features

PE1

PE2

PEN

Figure 4.7: Functional block arrangement in a Self-Healing SVM case study

An architectural view of the proposed self-healing SVM is provided in Fig. 4.7. In this pattern

recognition task, the SVM’s measure of confidence is employed as a feedback health metric to

guide the architectural adaptation through fault scenarios and power efficiency tradeoffs. As the

objectives such as power consumption are secondary to minimally-acceptable throughput quality,

first the proposed approach is evaluated in terms of correctness under fault-handling conditions.

Fault injection and fault recovery results are listed in Table 4.3 and Table 4.4, respectively. As the

results demonstrate, the measure of confidence based online evolution scheme recovers a faulty

SVM classifier with only 50.24% classification accuracy to 69.12% accuracy whereas the original

fault-free classifier had a 75.68% classification accuracy. Such a graceful degradation can be ac-

97

ceptable, or even desirable in many image pattern recognition tasks, especially when low-power

and survivability objectives are to be sustained simultaneously.

Table 4.3: Fault impact on the classifier output

Fault-free Classifier Faulty Classifier
Sample Number Estimation Probability Detector Output Estimation Probability Detector Output Actual Class

1 -1.0675 False -0.8485 False False
2 -1.0645 False -0.8472 False False
3 -1.0019 False -0.7211 False False
4 -0.8932 False -0.6180 False True
5 -1.0126 False -0.7939 False False

Table 4.4: Fault recovery for Covertype[4] dataset

Number of Faulty PEs Faulty Classifier’s Accuracy Recovered Classifier’s Accuracy
1 69.12% 75.19%
2 59.09% 73.24%
3 58.09% 73.02%
4 52.26% 72.83%
5 50.24% 69.12%

Fig. 4.8 illustrates the effect of population sizes on convergence of a single objective GA. A large

population size is advantageous in terms of exploring the problem’s search space as it is evident

for population size of 30 as compared to a population size of 5 which needs far more number

of generations of the GA to converge. Convergence required approximately 160 generations for

population size of 5, approximately 100 generations for population size of 10, and about 30 gen-

erations for larger population sizes. However, it’s worth mentioning that a large population size

requires a longer duration to evaluate the individuals for the purpose of estimating their fitness

behavior. Thus, a large population size may not necessarily correspond to faster convergence. Re-

gardless of population size selected, it is important to note that only single instance of hardware

resources is used; the population size represents only the number of entries in the data structure

used to represent the dynamic set of mapping perumations being explored by the GA.

98

20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

14

16

18

20

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(a) p=5

20 40 60 80 100 120 140
2

4

6

8

10

12

14

16

18

20

22

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(b) p=10

20 40 60 80 100 120
2

4

6

8

10

12

14

16

18

20

22

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(c) p=15

20 40 60 80 100 120
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(d) p=20

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(e) p=25

10 20 30 40 50 60 70 80
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(f) p=30

Figure 4.8: Effect of population size on recovery results

A critical operation in GAs is crossover which combines attributes of two existing individuals in

the population to create a novel individual. Fig. 4.9 illustrates the impact of the cross-over opera-

tion. In this experiment, a fixed population size of 25 is selected based on the sufficiency of that

population size indicated by the previous experiment. In this experiment where 20% of the popu-

lation undergoes crossover operation (i.e., fc = 0.2), the cost score improves after 100 generations

with elitism of the 2 best-performing individuals. Thus, the guidance function is effective at esca-

lating the computational resources as per application needs. On the contrary, the cost score levels

only after 25 generations for an exceesive crossover fraction parameter (i.e., fc = 0.9). However, it

is to be noted in the later case that the algorithm cannot further improve the best fitness value after

generation 14, because all the individuals in the population become essentially identical. Such an

overly-early convergence does not help to find the best individual in a fewer number of genera-

99

tions. Thus, this case study illustrates that the latency to converge the reconfiguration solution and

the quality of the desired solution should be taken into account to determine the crossover fraction

parameter in practice.

Fig. 4.10 depicts the effect of the choice of the mutation operation on the soft-resilience search

progression. As Fig. 4.10(a) reveals, a mere use of crossover without any mutation improves the

fitness behavior of the population to some initial level. However, at that point, a local minimum

solution is reached and no further improvement is observed beyond 20 generations. Further GA

operations without mutation are seen to not improve the average nor best-performing objective

score. On the other hand, using a mutation operation only as in Fig. 4.10(b), the random changes

applied by the algorithm exploit the diversity in solutions and hence a better solution is eventually

realized, although after a larger number of generations than use of crossover and mutation together

with suitable occurence probabilities.

20 40 60 80 100 120 140
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(a) fc=0.2

10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

20

22

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(b) fc=0.9

Figure 4.9: Effect of crossover fraction on convergence property of the GA, p=25

100

10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

20

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(a) With No Mutation

20 40 60 80 100 120 140
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(b) With Only Mutation

Figure 4.10: Effect of mutation on convergence property of the GA

To analyze the effect of elitism, a fixed population size of 25 is used with a crossover fraction of 0.5

in Fig. 4.11. A lower number of elite count, such as 2, maintains the opportunity of realizing diverse

individuals through the rest of the population. On the other hand, a very high number of elite count

can result in slower progression towards convergence when poor average behavior occurs as those

elite members become the dominating individuals and prevent more diverse exploration of the

search space.

Fig. 4.12 shows the pareto set of solutions for the multi-objective evolution problem. The health

metric degradation is specified in terms of degradation in measure of confidence on a normalized-

to-maximum value scale. Similarly, the other objective cost to minimize, i.e., power consumption,

is described on a normalized scale. For an example, if a throughput degradation of 40% is accept-

able, it reduces power consumption to 30%. A further throughput degradation to an extent of 60%

allows degraded operation at only 15% power consumption of the maximum power budget.

101

20 40 60 80 100
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(a) nE=2

20 40 60 80 100 120
0

5

10

15

20

25

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(b) nE=10

10 20 30 40 50 60 70 80
2

4

6

8

10

12

14

16

18

20

22

Generations

C
os

t S
co

re

Average Fitness Score
Best Fitness Score

(c) nE=20

Figure 4.11: Effect of elite count on convergence property of the GA, p=25, fc=0.5

Thus, the measure of confidence results from the SVM core demonstrate the applicability of health

metric based multi-objective online evolution approach to realize self-recovery. We investigated

the effect of GA parameters on the convergence properties of evolving hardware at runtime. By

carefully choosing a set of parameters, the designer can tradeoff various objective metrics such

as power consumption, quality in terms of measure of confidence, throughput degradation of the

SVM core during the recovery phase, latency of fault-recovery, and the reconfiguration controller

overhead. Furthermore, these diverse objectives are achieved using a single cohesive strategy.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Measure of Confidence Degradation

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

Pareto front

Figure 4.12: Pareto set of solutions for the SVM MOOE problem

102

An Image/Video Processing Case-Study: Discrete Cosine Transform

Another case-study, DCT, is used to evaluate the health metric based multi-objective online evolu-

tion scheme to recover from hard-faults within the DCT core. In the hardware arrangement, PSNR

is employed as a health metric to guide the architectural adaptations needed for fault-mitigation.

We demonstrate that PSNR based fault-detection and fault-recovery together with the proposed on-

line multi-objective hardware evolution framework is a low-overhead technique to realize a fault-

tolerant, self-healing, and low-power version of the DCT core.

To analyze the quality degradation of a faulty DCT core during the fault-handling process, the

H.263 video encoder application is executed on the on-chip PowerPC processor of a Virtex-4

FPGA provided on a Xilinx ML-410 development board. The DCT module is implemented in

hardware. A 256MB memory module is used to hold the executable code (.elf file) of the video

encoder as well as providing the data memory required to hold the images. Namely, the data

from the first stage of the DCT is not overwritten, rather it is kept in its own span of the frame

buffer. Xilinx PlanAhead is used for Partial Reconfiguration (PR) flow while the software and

hardware system is built using Xilinx Platform Studio. Various Partial Reconfiguration Regions

(PRRs) are defined where each PRR corresponds to a PE of the DCT core. The Xilinx Internal

Configuration Access Port (ICAP) is used for downloading the partial bitstreams from external

compact flash. The Xilinx System ACE is a controller to manage configuration data. It provides an

interface between CompactFlash and the FPGA. This controller is connected in slave mode over

the PLB bus and the embedded processor can read the bitstreams stored on the Compact Flash.

The combined ACE file consisting of full system reconfiguration file (.bit) and the executable

file (.elf) can be stored on Compact Flash. The FPGA chip is configured with the stored ACE

file upon a power-ON event.

103

A Processing Element

(PE)

Bus Macros

PowerPC

PE8

RS

PE1

Figure 4.13: Floorplan of DCT module for Virtex-4 device

The floorplan of the DCT hardware is shown in Fig. 4.13. There are 9 reconfigurable PEs shown,

each PE communicates to the static logic through the Bus Macros. The static modules of the

design include PowerPC, DCT controller, Frame Buffer, Digital Clock Manager, DDR SDRAM

controller, CompactFlash controller, and GPIO cores. The RS is reserved at design time to provide

redundancy needed for fault-handling. Initially, the RS is configured with a blank bitstream. After

fault-detection, iterative reconfiguration of the slack is performed to identify faulty PEs in the

throughput datapath. If a faulty PE is identified in the datapath, the RS is configured with its

functionality and introduced into the datapath thereby completing the recovery process.

In order to demonstrate fault recovery capability of the proposed MOOE resource escalating ap-

proach, throughput degradation is described in terms of PSNR-degradation. To demonstrate the

energy saving capability of the proposed adaptive methodology, power consumption is reported as

an evaluation metric. Fig. 4.14 shows the qualitative and quantitative results of fault-tolerant DCT

module. In this evaluation scenario, no availability of a slack PE is considered, i.e, Ns = 0. Thus,

fault recovery is realized by the sucessive re-mappings of DCT functions on the reconfigurable fab-

104

ric. As the PSNR results show, the proposed soft-computing framework can realize near-healthy

quality objective by architectural adaptations. For example, a PSNR of 32.86dB is achieved with

the power consumption of 119mW after fault-recovery when the faulty-DCT provided a PSNR

of 28.21dB at 142mW power consumption. This quality recovery is reasonably comparable to

the fault-free DCT’s output which was 33.04dB. The reduction in power consumption becomes

feasible due to the feasibility of power-gating of a least priority PE whose output was not much

of a contributing factor in terms of the PSNR. In this way, the PSNR-based multi-objective online

evolution explores the search space by the architectural re-mappings and their corresponding effect

on output quality. In Fig. 4.14, left column shows images in frame buffer of 142mW healthy DCT,

center column for 142mW faulty DCT, while right column for post fault-recovery 119mW DCT.

105

(a) PSNR=33.31dB (b) PSNR=27.76dB (c) PSNR=33.18

(d) PSNR=36.96dB (e) PSNR=32.62dB (f) PSNR=36.95dB

(g) PSNR=34.06dB (h) PSNR=25.25dB (i) PSNR=34.06dB

(j) PSNR=37.72dB (k) PSNR=31.43dB (l) PSNR=37.60dB

(m) PSNR=33.04dB (n) PSNR=28.21dB (o) PSNR=32.86dB

Figure 4.14: Fault recovery results for various 4cif test video sequences [2]

106

Comparison of Proposed Approach with Conventional Fault-Handling Techniques

Modular Redundancy

Comparing our technique to the conventional approaches used in the fault-tolerance domain, there

are several criteria of improvement. For example, TMR will require 24 modules for 8x8 DCT

computations and the fault capacity would be limited to errors in only one voting path. However,

the proposed approach allows additional modules during normal operations, and can handle even

the case when 6 out of 8 modules are faulty. Thus, compared to the TMR scheme, the area and

power requirements are about one third, yet fault tolerance is improved. Moreover, fault-handling

can be adjusted by the DSP circuit designer based upon the tradeoff desired between detection

latency and the area overhead incurred. In addition to fault-capacity, TMR power consumption is

significantly higher. On the other hand, the proposed health metric based multi-objective online

evolution strategy achieves power and quality objective at uniplex area cost and significantly re-

duced power consumption especially for the majority proportion of the mission lifetime which is

fault-free.

BIST-based Evaluation

An exhaustive test vector strategy would require 296 vectors (8 values of 12 bit precision) to exer-

cise all the logic inside a module computing a DCT function, which is computationally intractable.

However, the proposed scheme evaluates the modules subjected to their actual inputs. Given the

contained faulty resources do not interfere with the desired functionality, a PE can be continued

to be deployed in the circuit. In the DCT core, each PE spans one Partial Reconfiguration Region

(PRR) and each PRR consists of 1152 LUTs. In addition, there are other resources like FF, BRAM

and DSP48 blocks. In a BIST-based resource testing scheme [89], these resources need to be tested

107

exhaustively, at all times even before a fault occurrence. This affects throughput as well as power

consumption. However, in the proposed approach, the fault isolation phase is initiated only after a

fault is detected as significant. Here, the PRR is treated as a black box in terms of the contained

resources to check its health. Thus, a health metric based multi-objective online evolution offers

a promising soft-resilience technique which tackles operationally significant faults rather than in-

nocuous faults. Meanwhile, it covers both quality and power optimization using the same cohesive

strategy.

108

CHAPTER 5: POWER AND QUALITY-ORIENTED SOFT-RESILIENCE

An architecture proof-of-concept is developed which adapts the throughput datapath based on the

anticipation of computational demand in dynamic environments is demonstrated and evaluated for

a ME engine. The input signal characteristics are exploited to anticipate the time varying com-

putational complexity as well as to instantiate Dynamic Replicas (DRs) to realize fault-resilience.

The scheme employs Amorphous Processing Elements (APEs) which either perform as Active Ele-

ments (AEs) to maintain quality/throughput, serve as DRs to increase reliability levels, or hibernate

passively as RS available to other tasks.

Experimental results from a hardware platform for FPGAs-based video encoding demonstrate

power efficiency and fault-tolerance of the ME engine. A significant reduction in power con-

sumption is achieved ranging from 83% for low-motion-activity scenes to 12.5% for high motion

activity video scenes. The scenes motion activity is utilized to improve redundancy for the purpose

of priority based diagnosis of the computing modules. In addition, a graceful degradation strategy

is developed to recover from hard errors by adapting the search range of candidate motion vectors.

This adaptive hardware scheme is shown to automatically demote the faulty resources in FPGA

devices based on streaming performance.

Motion Estimation

The demand for low power video encoders is growing while it is also desirable that their op-

eration is maintained on acceptable quality levels. The Motion Estimation (ME) kernel can be

considered to be one of the most computationally intensive units in a video encoder system [137]

such as MPEG, H.263, H.264, and HEVC. Thus, a significant amount of system’s overall en-

109

ergy consumption can be reduced by designing a low power version of the ME core [58]. To this

end, various approaches have been taken to optimize ME at algorithmic level [138], architectural

level [132][139][140][141], or circuit level [142], as discussed below.

There are extensive research works on reduction in power consumption at algorithmic levels. Usu-

ally these methods rely on reducing the computational complexity of ME for objectives including

reduction in power consumption or throughput enhancement. The computational complexity issue

has been tackled by techniques focusing motion search patterns, motion starting points, or adaptive

search etc. [143]. Some of the examples are dynamic search window adjustment (DSWA) [144],

Three-Step Search (TSS) [145][146], Diamond Search[147], Enhanced Predictive Zonal Search

(EPZS) [148], and Hierarchical search [149] algorithms. The scene’s activity characteristics have

also been employed to reduce the computational complexity of ME [150].

The above mentioned approaches were aimed for software implementations. However, as compu-

tational demand of video coding systems is very high, hardware implementations can be preferred

especially for real-time systems [151]. Conventionally, hardware-oriented schemes usually involve

fixed-regular structures to conveniently map the algorithms onto the hardware. In other words, the

static nature of hardware implementations lacks the capability to incorporate time-varying compu-

tational demand which varies significantly due to input signal characteristics. The presented work

combines software flexibility and hardware performance by proposing a complexity prediction al-

gorithm which interfaces with a dynamically reconfigurable architecture. This co-design approach

allows to adapt the hardware according to runtime conditions and input signal characteristics.

In this work, a novel Fault-Handling Motion Estimation (FHME) core is developed which lever-

ages the priority of functions to guide power reduction and fault-mitigation. A unified approach to

mitigate aging-induced degradations, PV effects, and radiation-induced temporary or permanent

faults is developed for various objectives such as survivability, power efficiency, and availabil-

110

ity. A resource allocation scheme is developed to reconfigure the parallelized architecture of the

ME at runtime. The concept of directed management of computational resources to achieve fault-

resiliency and energy efficiency is illustrated in Figure 6.1. Figure 6.1 conceptually depicts the de-

mand and response flow of the component bitstreams. An Amorphous Processing Element (APE)

can be configured as either Active Element (AE) to serve as a processing unit of the ME core,

Dynamic Replica (DR) to concurrently check an AE, or RS to reduce energy consumption when

processing low-activity video scenes.

AE

AEs Queue

(Active Element (Computing Module)

for output quality and efficiency
enhancement)

AEAEAEAEAEAEAE AE

DRs Queue

(Dynamic Replicas to

realize fault-resilience)

AEAEAEAEAEAEDR

APE (Amorphous

Processing

Elements) Pool
APE APE APE APE APE

AE

Completed AEs Queue

AEAEAEAEAEAEAE

RSs Queue

(Reconfigurable Slack for power

gating in low activity video scenes)

AEAEAEAEAEAEAERS

Scheduling of AEs, DRs, and
RSs on the Reconfigurable

Hardware for Fault Resilience

Figure 5.1: Flexible configuration of Amorphous Processing Elements (APEs)

The following are the main contributions of the presented work:

• A computational resource prediction algorithm combined with a reconfigurable architecture

is proposed. The scene’s motion activity runtime knowledge is incorporated to utilize/vacate

the computational fabric from computations. This framework allows a significant reduction

in average power consumption especially for low-activity input video.

111

• A fault-handling flow is proposed to tackle PV and permanent faults due to radiations effects

in a unified manner. In terms of the throughput, the system remains partially online during

the diagnosis process.

• During fault-diagnosis, input signal characteristics are exploited to create some dynamic

redundancy. Thus, the provision of an online repair mechanism is realized with small area-

overhead. In fact, during fault-free normal operation, the area requirement is uniplex. Al-

though not necessary, the proposed scheme also allows utilization of some back-up units

depending upon their availability to further enhance reliability levels.

• FHME employs a graceful degradation strategy when full recovery becomes an unfeasible

option. For a given power-budget, the FHME design is shown to outperform a baseline

design in terms of the compression efficiency of the video encoder. Meanwhile, an increase

in average bitrate of encoder’s output is very small compared to the baseline design.

Previous Techniques of Low Power ME

Power efficiency of the ME engine of a video encoder has been achieved by numerous techniques

ranging from algorithm level optimizations to architecture level modifications. As discussed in the

previous section, algorithm level techniques typically reduce computational complexity thereby

decreasing the required number of computations per seconds and possibly the number of memory

references which would otherwise incur power overhead. While such optimizations with some

quality tradeoffs are beneficial in terms of architectural independence, they lack exploiting some

architecture level knowledge which is necessary for efficient management of resources. That is

because these algorithms are targeted for software implementations intended for those hardware

platforms that are general purpose machines. On the other hand, architecture level enhancements

usually focus a specific ME algorithm and try to eliminate or reduce some redundant compu-

112

tational units. For example, by computing an approximation initially, the search space can be

pruned. For this purpose, as long as the approximator circuit has less area overhead, a reduction in

average power can be achieved [139]. Recently, reconfigurable hardware based hardware-software

co-design approaches [152][153][154] have been proposed to realize scalable video coding. Run-

time reconfigurable architectures are of current interest such as Reconfigurable Bit-plane Match-

ing [155], [156], Reconfigurable Systolic PE Array [153], and SoC recongurable architecture for

multi-standard video compression [157]. Thus, it’s desirable to combine algorithm information

with underlying architectural behavior to dynamically adapt the system according to runtime con-

ditions. Although, as a case study, we present a full-search based ME core, our intention is to

develop a framework for activity-based resource allocation without constraining to any specific

estimation algorithm.

The inherent robustness of ME to a certain extent has been identified previously. However, the

modern trend of integrating a large number of computational modules into a System-on-Chip (SoC)

design justifies the need to incorporate design for testability in video systems [158]. BIST-based

approaches have been adopted to improve the manufacturing yield of video coding systems [159].

The impact of manufacturing PVs can be masked via variation tolerant design of ME exploiting

some algorithmic properties [160]. A variety of approaches for fault-resilience of ME architectures

have been proposed in literature [161].

Activity Based Resource Allocation Framework

Block-based motion estimation algorithms involve searching for a block in a reference frame that

most closely matches with the MB in a current frame. Sum of Absolute Difference (SAD) is widely

used as a matching metric to compare the MB of current frame with that of reference frame. Typi-

cally, instead of evaluating all block positions in a reference frame, a search range S is defined and

113

the search is performed within that search window [−S, S]. To pipeline the computation, the data

corresponding to various sub-regions within a search window can be assigned to multiple APEs.

As shown in Figure 5.2, AE1 computes the matching metric between current frame’s MB and an

MB located at the same location in the reference frame. AE2 computes the matching metric for

reference frame’s data located at displacements -1 and +1 pixels with respect to current MB’s lo-

cation, and so on. Overall, an Na number of AEs operate for the search window data to compute a

Motion Vector (MV). Thus, each APE is comprised of n PEs where n ∈ {1, 2, 4, 8, ...}. Since the

number of APEs in the active datapath directly corresponds to the search window defined, Na can

be reduced for low-motion-activity video input in which a large search range is not required. Fig-

ure 5.2 illustrates computation of MV spatially along j-axis in a reference frame’s search window

with n = 2

FHME exploits the time varying nature of input video frames to the ME to adapt the underlying

hardware resources. We consider a data parallel architecture of ME in which various APEs con-

currently operate on sub-regions of input video frames. We will discuss the implementation details

of such an architecture in next sections. However, it is worth mentioning here that the resource

allocation framework developed here employs reconfigurable APEs. Specifically, each APE can

be reconfigured to operate on the dataset of any other APE. In addition, an APE can be power gated

for reducing the power consumption of the ME core.

114

Current MB

(NxN)
SS

S

Search Window

S

i

j

(x,y)

.

.

.

reference

pixels

simultaneous

computations

PE1 of AE1 computes:

PE1 of AE2 computes:
PE2 of AE2 computes:

PE1 of AE16 computes:

PE2 of AE16 computes:

Figure 5.2: Computation of a motion vector

Runtime analysis of time varying characteristics of input data is beneficial in predicting the compu-

tational complexity and hence the required hardware resources. Hardware parallelism combined

with software flexibility provides architectural support to deal with these time-varying comput-

ing workloads. Section 5 provides an algorithm to dynamically anticipate computational demand

based upon scene’s activity. In addition, the hardware resources released by the computational

demand prediction scheme are utilized to provide the capability needed for fault-diagnosis once

fault-handling scheme is triggered. We described the proposed fault-handling methodology in Sec-

tion 5. The evaluation results show that fault isolation can be improved by taking into account the

input signal characteristics.

115

Computational Demand Anticipation

To analyze the impact of motion activity in a video scene on the magnitude of MVs computed by

ME and their fault effects, various video sequences [3] are in assessed in formats ranging from

.qcif in Figures 3, 4, and 5 through .4cif in Figure 14. Figure 5.3 shows the average and stan-

dard deviation of magnitude of MVs for video sequences with varying activity levels. Although,

high-motion-activity sequences (e.g., football and soccer) effectively utilize the maximum search

range as evident by the magnitude of the MVs, yet the utilization is very poor in the case of low-

motion-activity video sequences. For example, the average MV’s magnitude in foreman is only

about 2 pixels even though the search range was set to S = 15. When the search range is decreased

from S = 15 to S = 10, its impact on the MV’s magnitude is not significant even for a medium

activity sequence crew. On the other hand, its impact on the magnitude of MVs is considerably

increased in the case of high-motion-activity sequences.

0 5 10 15
0

2

4

6

8

10

12

Search Range

A
ve

ra
ge

 |M
V

|

bridgefar
carphone
city
coastguard
crew
football
foreman
harbour
ice
soccer

(a) Average of MVs’ magnitude

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Search Range

S
ta

nd
ar

d
D

ev
ia

tio
n

|M
V

|

bridgefar
carphone
city
coastguard
crew
football
foreman
harbour
ice
soccer

(b) Standard deviation of MVs’ magnitude

Figure 5.3: Effect of search range on motion vector’s values for various video sequences

The above discussion implies that the search range can be safely reduced for some video sequences.

116

Since the search range parameter is directly related to the number of active computational units

(i.e., NAE), energy savings can be achieved by power gating some AEs. However, an aggressive

reduction of search range also impacts the compression efficiency of a video encoder. The average

bitrate of a compressed video bitstream from the encoder’s output increases considerably for high-

motion-activity sequences when the search range is reduced from S = 15 down to S = 0. This

is because a too small search range becomes insufficient to identify best matching MBs and SAD

error increases consequently. Motion prediction errors increase the SAD values and in turn this

impacts the energy compaction capability of the DCT block in a video encoder loop. Thus, the

entropy coding compression efficiency is reduced, and hence the output bitrate of the encoder

increases. The impact of SAD magnitude on bitrate is illustrated via Figure 5.4.

500 1000 1500 2000 2500 3000 3500 4000
0

5000

10000

15000

Average SAD

B
it−

R
at

e
(b

ps
)

bridgefar

carphone

city
coastguard

crew

football

foreman

harbour

ice

soccer

Figure 5.4: Effect of ME’s SAD error on encoder’s bitrate, QP = 10

117

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

QP

B
it−

R
at

e
(b

ps
)

bridgefar
carphone
city
coastguard
crew
football
foreman
harbour
ice
soccer

Figure 5.5: The effect of QP on bitrate, S = 15

The compression ratio of a video encoder also depends upon Quantization Parameter (QP) value

which is user selectable. A higher QP value implies higher intended compression ratio; thus a

reduced bitrate compressed video stream can be achieved although with some PSNR degradation.

As shown in Figure 5.5, an increase in QP is more effective in high-motion-activity scenes than

that in low-motion-activity sequences.

Next, we describe the algorithm for search range and hence computational demand prediction at

run-time. Algorithm resource predict is used to predict the computational resources based

upon MVs and SAD values and should always be activated. For initialization purposes, all of the

available APEs are utilized in the datapath. i.e., S ← n(N−1)
2

. The search range is reduced for low-

motion-activity scenes when we observe smaller MVs. On the other hand, this reduction results

in increase SAD, and hence reduced compression efficiency for high motion activity videos. The

search range is adapted to accommodate larger MVs in that case. Consequently, a threshold τSAD

is defined and the change in minimum SAD error (∆SAD) is compared to this threshold to check

if S should be either increased or decreased. The computational resource prediction is performed

at a temporal resolution of 5 frames. We take into account standard deviation of MVs, bitrates for

118

various search range values, QP and reconfiguration time Tr to empirically choose the threshold to

τSAD = 100 and temporal window duration. After applying resource prediction algorithm, some

APEs released from the ME engine are available for fault-handling purposes.

Algorithmresource predict: Dynamic computational resource prediction based on motion activ-
ity
Require:n, µ, S, SAD
Ensure:NAE

1: Ŝ ← round(1.3∗µ). Predict search range according to motion vectors. A value 1.3 is selected based upon the average and standard deviation
of MVs’ magnitudes in benchmarks used.

2: if (Ŝ < S) . search range can be reduced for power saving then
3: S ← Ŝ . Adapt the search range according to the prediction
4: else
5: Ŝ ← S . Keep the same search range
6: end if
7: ∆SAD = SAD − SADprev

8: if (∆SAD > τSAD) then
9: Ŝ ← S + n . Increase the search range
10: end if
11: if (Ŝ >

n(N−1)
2

) . If the predicted search range cannot be attained using available APEs then
12: Ŝ ← n(N−1)

2
. Utilize all the available APEs in the datapath

13: else
14: if (Ŝ = 0) then
15: Ŝ ← 1 . lower threshold on search range
16: end if
17: end if
18: SADprev ← SAD

19: NAE ← 2Ŝ
n

+ 1 . Compute the computational demand of predicted search range

Faults Mitigation Strategy

As discussed in the previous section, multiple APEs are allocated on the computational fabric,

where each APE is used for n SAD computations per row corresponding to a sub-region in ref-

erence frame’s search area. In addition, some empty APEs are reserved at design time to provide

reserve for fault recovery. In absence of such spares due to area or power constraints, some low

priority AEs can be vacated to perform more prioritized computations as discussed here.

In video encoders, PSNR is possibly maintained by fixing the QP while allowing the bitrate of the

encoded bitstream output to vary. Our choice of the ME architecture is based upon the intuition that

defectiveness of some of the APEs can be compensated by a reduction in the search range. Such

119

an approach is promising in terms of graceful degradation when confronting faults and mitigating

their effects. A decrease in the search range results in reduced coding efficiency as demonstrated

by bitrate increase in Figure 5.6. On the other hand, its impact on the PSNR measure and hence

visual quality of the images is imperceptible as shown by PSNR curve in Figure 5.6. Hence, the

bitrate can be used as a health metric to detect hardware faults in the ME engine. After fault-

detection, the scheme proceeds to identify/isolate faulty APEs, and then the fault recovery phase

involves avoidance of those isolated APEs. A re-mapping of tasks from faulty AEs to healthy

APEs completes the recovery process. We discuss each phase of fault-handling below.

Figure 5.6: RD curve showing the effect of increasing search range

(a) PSNR for various number of defective APEs (b) Bitrate for various number of defective APEs

Figure 5.7: Fault injection results for container video sequence

In the experiments to evaluate the proposed detection, isolation, and recovery, variable bitrate mode

is selected for video encoder. In addition to scene’s high-motion-activity, a failure in ME process-

120

ing due to hardware faults can also be causal in increasing the bitrate of encoded video stream,

thereby degrading overall compression efficiency. The PSNR and bitrate of encoded bitstream for

the container input video sequence for various fault-scenarios are shown in Figure 5.7(a) and

Figure 5.7(b), respectively, in which ’d’ corresponds to number of faulty APEs.

Detection of Hardware Faults

As we discussed, the bitrate should correspond to the MV values for fault-free operation. For ex-

ample, a small MV with a larger enough search range, yet producing large bitrate compressed video

stream may imply potential hardware errors. Faults in ME core result in incorrect computation of

MVs and hence the SAD increases. To adaptively allocate the resources for power efficiency and

fault-mitigation, we monitor the MVs as well as the bitrate for a given search size and QP. When

the bitrate of the compressed bitstream from the encoder increases, we evaluate the following two

possible scenarios:

1. For the variable bitrate mode (i.e., fixed QP), prediction for P frame is not working quite

well due to the high motion activity in the scene, or

2. Hardware faults on ME occurred.

Since we do not have an a-prior knowledge about the cause, we first assume that scenario-1 oc-

curred. Therefore, more APEs are assigned as per Algorithm resource predict to increase

the search window, and the bitrate change is observed by monitoring the output buffer occupancy of

the encoder as well. If the change in minimum SAD error is significant as a result of search range

increase, then the fault-handling mechanism is not triggered. However, if a widening of search

121

range still does not correlate with the changes in SAD error, then the proposed fault-handling

scheme is triggered to detect and isolate any faulty modules. It is worth mentioning here that the

proposed fault-handling scheme runs at a higher layer than the computational layer and does not

impact the throughput datapath. The proposed reconfiguration scheme does not contribute to the

critical path which would otherwise degrade the performance of the ME core. An additional bene-

fit of keeping it outside the datapath is that the FHME scheme does not impact the functionality of

the ME for those video sequences which are outliers to the threshold selected.

Fault Diagnosis using Dynamic Redundancy

After fault-detection, the next step is to perform CED at the APE level so that faulty APEs are

identified by a pairwise comparison diagnosis procedure. Such a functional testing approach does

not require the CUT to be brought offline for input test vector evaluation. Thus, the CUT sustains

partially useful throughput even during the diagnosis phase.

Phase-1-Identifying a healthy APE: We assign different priorities to each APE according to the

relative importance of input data which they process. For example, the APE used to search the

locations near the predicted MV point in inter-frame mode has higher priority, while the APE to

search the unlikely locations is assigned a lower priority. Initially, some low priority APEs are

configured as DRs to serve as checkers for those APEs which are in the throughput datapath. Such

a temporary replacement operation of least priority APEs minimally impacts the output’s bitrate

as shown in Figure 5.3. Alternatively, the availability of some healthy RSs obviates the need even

to temporarily vacate the least priority APEs for diagnostic purposes. Nonetheless, irrespective of

availability or unavailability of healthy RSs, the diagnosis Algorithm FHME proceeds to identify

a healthy APE in the resource pool. It illustrates how dynamic redundancy is employed in fault-

diagnosis process to check the APEs in the throughput datapath.

122

Algorithm FHME: Comparison-based diagnosis to identify at least a single healthy APE
Require:Current Search Range (S), Number of slacks available for ME (NRS), Number of dynamic replicas to employ in the diagnosis procedure
(NDR)
Ensure:Identified set of healthy APEs, Vh

1: Initialization: Vh = ∅, TCAE = 1 . Current testing candidate APE
2: if NDR < NRS then
3: NRS ← NRS −NDR . Remove from slack
4: else
5: S ← S − n(NDR−NRS)

2

6: NAE ← 2S
n

+ 1 . Reduce the search range
7: end if
8: while ((Vh = ∅) ∧ (VT ̸= ∅)) do
9: (APEj .function ← APETCAE .function) ∀j where NAE < j ≤ (NAE + NDR) . Configure NDR APEs as DRs to check the

APETCAE , .e.g., check the zero vector APE first
10: VT ← {APETCAE , APEj}∀jNAE < j ≤ NAE +NDR . Form a pool under test
11: v = majority(VT .output) . Perform majority voting of the pool under test
12: if APEi.output = v then
13: ϕi ← 0, Vh ← APEi

14: else
15: ϕi ← x; ∀i∈VT

. Estimate the health status of the pool under test
16: end if
17: if TCAE < NAE then
18: TCAE ← TCAE + 1 . Update the test candidate APE
19: else
20: if (NAE −NDR) ≥ 1 then
21: NAE ← NAE −NDR . Configure the AEs as DRs
22: else
23: if NAE > 1 then
24: NDR ← NAE − 1
25: Na← 1
26: else
27: NAE ← 0, VT ← ∅
28: end if
29: end if
30: TCAE = 1 . Re-check the first APE with a different DR
31: end if
32: end while

Figure 5.8 shows the number of group reconfigurations required to isolate the faulty modules.

For example, if the current NAE = 8 and one RS is available to serve as a DR for diagnosis,

approximately 50% of the fault scenarios are successfully isolated in the first iteration. As there

are 9 modules in total, there are 512 possible combinations of the faulty/healthy modules. Out

of these 512 cases, about half of them require only one iteration to find a healthy DR. It is clear

from Figure 5.8(a) that the fault isolation process is accelerated by increasing the number of DRs.

Figure 5.8(b) shows the probability of isolating the faulty modules in the first iteration for different

number of DRs. As compared to the case when using a single DR, more faulty scenarios are

resolved using a pair of DRs.

123

(a) Number of reconfigurations required

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Number of Faulty PEs

of

 C
as

es
 H

ea
lth

y
D

R
 Id

en
tif

ie
d

in
 th

e
F

irs
t I

te
ra

tio
n

(%
)

N

DR
=1

N
DR

=2

N
DR

=3

(b) Probability of finding a Healthy DR in the first iter-
ation

Figure 5.8: The effect of Nf on iterations required for the fault-diagnosis algorithm

Phase-2-Isolation of faulty APEs: After at least a single healthy APE is identified, it is used to

check the health state of all other APEs in the overall resource pool. In case of multiple healthy

identified APEs, the fault-isolation process can be accelerated by concurrently checking the output

discrepancy of multiple AEs. For an identified healthy APEj , the fitness state ϕi of a suspect APEi

is updated as follows:

ϕi ← 0;

whilei∈VT
{ if (APEi.output ̸= APEj.output)

then ϕi ← 1; }

Next, faulty APEs are reconfigured with blank configuration bitstreams thereby eliminating any

switching/processing to save power. For non-reconfigurable devices, this step can be accomplished

by power gating the identified faulty APEs. Lastly, the faulty APEs are removed from the resource

pool, i.e., N ← N − d.

124

Fault Recovery

In video encoders, the predicted MV which is calculated by the surrounding MBs’ motion vec-

tors becomes the search center since differential coding is used to encode the current MB’s MV

information to save bits. If the Coded MB Indication (COD) bit in the output bitstream is set to 1,

no further information is transmitted for the given MB, meaning that it is an inter-MB with MV

for the whole block equal to zero and with no coefficient data. This saves considerable bits in

static scenes. In the proposed hardware architecture, SAD(0,0) computation, which corresponds

to predicted MV location, is assigned to AE1. Thus, AE1 performs the most prioritized compu-

tational function, i.e., computing the SAD corresponding to zero MV data. AENa computes the

SAD values corresponding to candidate block positions which are farthest from the current block’s

predicted position.

In the recovery phase, the datapath is reconfigured by selecting healthy APEs using a reconfigu-

ration controller. In addition, AEs priority is also engaged when recovering from a fault situation.

For example, to mitigate the defectiveness of faulty AE1, its faulty resource is demoted by releas-

ing its pre-assigned task. A healthy resource from the least priority AE is promoted to perform

this important task. Finally, the APEs are re-labeled after the reconfigurations so that AEs sorted

in ascending order perform computations in descending order of priorities.

Case-Study : FPGA-based Implementation of Full Search FHME

A full-search (FS) approach of ME [162] guarantees optimality by exhaustively searching for the

minimum SAD metric to match the Macro Block (MB) in current frame over all possible positions

of candidate MBs within a designated search area in the reference frame. In Figure 5.2, all the

candidate positions within a search window are evaluated to find the best matching block position

125

for an MB in current frame. Here, an MB of size (NxN) in current frame located at (x, y) is

evaluated for various block positions in the range (−S, S) along the row and column indices, i and

j, respectively in the previous frame. For instance, a search area ranging from -15 to +15 pixels

requires 961 SAD computations as it can be deduced from Figure 5.2 where SAD(x,y) represents

the SAD value computed for MB location (x,y) in a current frame.

This regular architecture of conventional FS style of ME facilitates reconfiguration for fault-

handling and runtime resource management to reduce power consumption while output signal

quality degrades gracefully. As shown in Figure 5.9, the APEs are defined with a data-parallel

organization and each APE operates on a sub-region in an image. Except APE1, each APE com-

putes 2 SADs for a given row of pixels in the previous frame. This type of architecture maps

well to the inherently regular fabric of FPGAs. FPGAs provide a reconfigurable fabric of fixed

size. Utilizing some of the fabric as standby APEs does not increase static power consumption

compared to the case when APEs are not defined. Any techniques that reduce standby power of

the fabric remain applicable to our architecture. In addition, it may be noted that our proposed

scheme is not limited to FPGAs. For ASIC implementations, it is beneficial to consider the term

reconfiguration in a context where routing component is controlled so that data is multiplexed to

the desired target computational modules by the Array Control Unit shown in Figure 5.9. The

signal lines din current, din reference, and ref pels denote input pixels of a current

frame, input pixels of a reference frame, and pixels from reference frames buffer, respectively.

Both current frame data as well as reference frame data is cached in an FPGA’s BlockRAM. All

elements depicted in Figure 5.9 reside in the FPGA’s fabric.

Memory access is key constraint in the motion estimation architectures of video processing which

have been investigated by many previous works [163] so that the total number of memory accesses

is reduced by maximizing the data reuse. Once the pixel data are read from the frame memory,

they are kept in the pipelined datapaths of ME to be reused row and column wise in the given

126

search range during the calculation of the motion vector matching criterion such as SADs. In this

work, while optimized address generation scheme to reduce the accesses to the frame memory and

buffering of pixel data are handled in the presence of a conventional memory interface as shown in

Figure 4, we mainly focus on optimizing the use of processing elements to support fault-handling

through architectural adaptation at the algorithmic level.

APE15

APE2

Min

Comparator

P

I

S

O

Reconfiguration

Controller

Min. SAD

SAD(x,-15),SAD(x,15)

Array

Control Unit

Current

Frame Data

Mem.

(16x16)

Reference Frame

Data

Mem.

(46x46)

Reg1

Reg2

Reg16

SAD(x,-14),SAD(x,14)

SAD(x,-1),SAD(x,1)

APE1

APE16

SAD(x,0)

R
o
u
ti

n
g

Reg31

Reg32

MVx,,MVy

ref_pels

ref_pels

A
d

d
re

ss

G
en

er
at

io
n

din_current

din_reference

enable

F
o
rm

/T
o
 M

ai
n
 M

em
o
ry

Figure 5.9: Hardware architecture of FHME

The FHME core has been described using Verilog Hardware Description Language (HDL), and

then synthesized and implemented in Xilinx Virtex-4 FPGA using Xilinx Integrated Software En-

vironment (ISE) version 14.3 design tool. PlanAhead 14.3 [164] is used for defining reconfigurable

partitions (RPs) [165], mapping the reconfigurable modules (RMs) to those regions [166], and par-

tial bitstream (.bit) files. Xilinx Embedded Development Kit (EDK) is used to build the overall

processor-based system while the software is built in the Xilinx Software Development Kit (SDK)

environment. We used Xilinx ML410 development kit which is an evaluation board for Virtex-4

devices with two on-chip PowerPC processors. The on-chip processor shown in Figure 5.10 im-

plements software-based Reconfiguration Controller shown in Figure 5.9. It reads the output of

APEs via Parallel-In-Serial-Out (PISO) buffer to diagnose the APEs by detecting the output dis-

127

crepancy, and subsequently performs reconfiguration of the datapath. Partial .bit files are stored

on a compact flash and are used by the processor to activate/power-gate certain APEs by fetching

them to configuration memory. Depending upon the size of the .bit files and the overhead of

library functions, a reconfiguration of an RP takes 170 milliseconds on average. Thus, the recon-

figuration time is comparable to 5 frames of video at 30 frames per second input frame rate. The

on-chip processor also executes a modified software implementation of Telenor TMN H.263 video

encoder’s blocks except for the ME block which is performed by a hardware-implemented core.

The hardware utilizations for Virtex-4 4vfx60ff1152-12 device in the baseline ME design

and the FHME design which includes a router component to facilitate reconfiguration are listed in

Table 5.1. It indicates that although FHME incurs some area overhead, the maximum operational

clock frequency still remains the same as the multiplexors contained in the router component do

not impact the worst path delay of the circuit. Other components not listed in Table 5.1 include

compact flash for storing the bitstreams, Double Data Rate-Synchronous DRAM (DDRAM) for

holding the software implemented video encoder blocks, and hardware Internal Configuration Ac-

cess Port (ICAP) core for reconfiguration through the internal programming port of the FPGA.

Table 5.1 also indicates that the overhead of FHME in terms of increased resources is only a few

percent.

Power PC

SDRAM

System ACE

Compact

Flash

ICAP

Config.

Memory

HWICAP

UART

HyperTerminal

GPIO
Array

Controller

Processor

Local Bus

(PLB)

FHME Core Dynamic Reconfiguration

Figure 5.10: Evaluation Setup: FPGA based FHME’s interface with on-chip processor

128

Table 5.1: Hardware utilization summary for Virtex-4 FPGA

Utilization
Resource Baseline Using FHME % increase

Number of Slices 1484 1575 6.1
Number of Slice FFs 1374 1374 no change

Number of 4 input LUTs 2383 2639 10.7
Number of FIFO16/RAMB16s 3 3 no change

Clock frequency 150 MHz 150 MHz no change

Evaluation Results of FHME

Energy Saving in Reconfigurable Design

Given some tolerance of bitrate variation, the number of APEs that can be vacated depends upon

a scene’s motion activity as illustrated by results from videos in Table 5.2. Thus, a significant

number of RSs can be created dynamically for low motion activity video scenes. On the other

hand, disabling the AEs in high motion activity video scenes causes an increase in bitrate. One

way to examine these interacting effects is to calculate power savings of the ME architecture as

the PEs are power gated. The number of inactive PEs influences the bitrate overhead which can be

measured for a given video sequence. For example, Figure 5.11 shows the trend of saving between

20 mW and 120 mW as NRS is varied.

Table 5.2: Number of vacated APEs while bitrate within 3% tolerance

Baseline ME FHME

Video sequence Motion
activity

PSNR
(dB) Bitrate PSNR

(dB) Bitrate NRS

Soccer High 32.32 8.43 32.31 8.62 1
Football High 31.44 14.22 31.45 14.61 2
Ice Medium 33.56 6.29 33.51 6.38 4
Suzie Low 34.29 2.05 34.22 2.07 5

Figure 5.12(a) illustrates the effectiveness of Algorithm resource predict in adapting the

number of active APEs in the datapath according to the runtime conditions. As it is evident from

129

various frames of a video sequence, the number of predicted computational resources (i.e., NAE)

dynamically adapts according to the average MV value. A higher than the minimum required

search range leads to power overhead while a lower search range increases the SAD values and bi-

trate increases consequently. Furthermore, as demonstrated via Figure 5.12(b), the bitrate increase

is small implying that proposed computational resource prediction algorithm works well. Fig-

ure 5.13 shows power savings and consequently the bitrate overhead of FHME for various video

sequences. The average power consumption is reduced from 320 mW to 280 mW thus saving

12.5% for a high-motion-activity video sequence (football) while the power savings in case of

low-motion-activity sequences is significantly as high as 83% in case of bridgefar. Also, the

bitrate overhead due to prediction errors is negligibly small as it can be seen from Figure 5.13(b)

where columns for FHME and the baseline circuit are comparable.

Figure 5.11: Power saving at the cost of increased bitrate for Soccer video sequence

130

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

Frame number

A
vg

. |
M

V
|

Predicted number of PEs
Average |MV|

(a) Number of active APEs predicted by Algo-
rithm resource predict

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

4

Frame number

B
it−

ra
te

 (
bp

s)

FHME
Baseline

(b) Bitrate variation

Figure 5.12: Dynamic computational resource prediction for crew video sequence

131

(a) Average power consumption

(b) Bitrate

Figure 5.13: Energy saving results of FHME with low overhead of bitrate

132

Figure 5.14 illustrates the qualitative results of a 704 × 576, 30fps, city.4cif video se-

quence [2]. The FHME architecture provides considerable reduction in power consumption with

only a slight degradation in image quality as evident from the PSNR measure as well.

(a) Image in the baseline’s frame buffer,
PSNR= 33.02dB, Power=320mW

(b) Image in the FHME’s frame buffer,
PSNR=32.09dB, Power=120mW

Figure 5.14: Power and quality tradeoff results for city.4cif video sequence

Online Recovery Results of FHME core

We evaluate the effectiveness of the proposed approach by simulating fault injections in the post

place-and-route simulation model of the ME circuit generated by Xilinx software flow. For this

purpose, Verilog HDL (.v) and Xilinx User Constraints File (.ucf) source files are modified

to simulate stuck-at faults at Look-Up Tables (LUTs) inputs, FF-inputs, and routing resource.

A stuck-at ’one’ or ’zero’ fault manifests itself in the form of some output deviation from the

actual. This fault model reasonably simulates Local Permanent Damage, Single Event Latchup,

Electromigration, and Localized Aging due to high switching activity.

Figure 5.15(a) illustrates an operational example from a video encoder containing a FHME core

for foreman video sequence. For this simulation, random faults are injected in AE1 at frame

133

30 which is highlited in Figure 5.15(a) as Event 1⃝. Without any fault information available,

Algorithm resource predict adjusts the search range; however, bitrate does not get improved

because of the faulty AE. Fault detection is triggered at the instant shown by Event 2⃝. Then,

Algorithm FHME is trigged for diagnosis purposes in which evaluation period of 10 frames is

selected for discrepancy check. The reconfiguration of a healthy module from the RS set to AE

set completes the recovery process at instant labeled by Event 3⃝. Figure 5.15(b) shows another

scenario in which two DRs are employed for fault-diagnosis purposes, and hence, fault-isolation

latency is improved from a latency of 51 frames down to 40 frames. Table 5.3 illustrates the

average reduction in compression efficiency in terms of bitrate increase to compare fault-free,

baseline, and FHME modules. This shows a significant reduction in bitrate overhead from 117%

to 24% depending upon the number of DRs available.

134

(a) using a single DR

(b) using a pair of DRs

Figure 5.15: An example of online fault-handling

Table 5.3: Bitrate of encoded bitstream for foreman video sequence

Average Average increase (%)
Condition bitrate (bps) in bitrate (%)

Fault-free ME 3755 0.0% (Ref.)
Faulty Baseline ME 8166 117.4%

FHME with a single DR 5246 39.7%
FHME with a pair of DRs 4678 24.6%

135

CHAPTER 6: HEALTH METRIC BASED DYNAMIC RESOURCE

ALLOCATION

Reconfigurable hardware fabrics have been widely used as platforms for signal processing appli-

cations. The customizable datapath in FPGAs can be very beneficial for accelerating time de-

manding tasks, such as image/video coding applications, cryptographic algorithms, and speech

processing [82]. While erroneous data over a noisy communication channel is usually detected

on the receiver side by employing Error Correcting Code (ECC)-based methods, powerful consis-

tency properties of data transmission have been exploited by using signal processing techniques

by various researchers. For instance, a relevant work in which an SNR measure is employed for

soft-error resiliency has been applied to an FIR filter with objective of achieving reduced energy

operation [55]. For video encoders, PSNR and sum-of-absolute-difference measures are used to

characterize error-resilient architecture of motion estimation kernel [58]. Another technique to

detect errors is by replicating the system to realize a CED pair. The scheme in [167] proposes an

additional decoder to realize an inverse-comparison CED for a data-compressor. The data from

the output of an encoder is reconstructed to match with original source input to detect errors in

the encoder. In contrast to a CED scheme, FaDReS [45] and PURE [168] avoid the duplication of

functional blocks while errors are detected in simplex mode of operation, thereby reducing logic

resources and power.

Fault-Handling Method

A system-level block diagram is shown in Fig. 6.1 which identifies the roles of the Reconfig-

urable Logic Fabric and On-Chip Processor Core of a typical FPGA device. Within the Recon-

figurable Logic Fabric, the desired processing function such as a DCT or Advanced Encryption

136

Standard (AES) core, is realized by the PEs which comprise a processing array. These PEs are re-

configurable at runtime in two ways. First, they can be assigned alternative functions. Functional

assignment is performed to leverage priority inherent in the computation to mitigate performance-

impacting phenomena such as Extrinsic Fault Sources, Aging-induced Degradations, or manufac-

turing Process Variations. Second, the input data can be re-routed among PEs as necessary by

the PURE Reconfiguration Controller. These reconfigurations are only initiated periodically, for

example when adverse events such as aging-induced failures occur based on perturbations to the

health metric. The functional re-mapping is performed by fetching alternative partial Configu-

ration Bitstreams for the PEs which are stored in a Compact Flash external memory device. A

Configuration Port, such as the ICAP on Xilinx FPGAs, provides an interface for the Reconfigura-

tion Controller to instantiate the PEs with the bitstreams used to perform computational functions

in the processing array. The input data used by the PEs, such as input video frames, resides in a

DRAM Data Memory that is also accessible to the On-chip Processor Core. Together these com-

ponents support the data and reconfiguration flows needed to realize a run-time adaptive approach

to resilient architectures.

Relaxing the requirement of test vectors for fault-detection can realize a significant reduction in the

testing overhead of previous approaches. To realize fault-diagnosis and recovery, PURE utilizes

runtime reconfigurability by considering priorities in the underlying computation. To re-assign

the function executed by an identified faulty PE, either a design-time spare is engaged into the

active path, or some least-priority PE is utilized by multiplexing the input-output data. Functional

reassignment is realized by fetching its function-to-PRR mapping configuration bit file from exter-

nal memory into the FPGA configuration logic memory. In addition, the faulty PE is configured

with a blank bitstream to cease switching activity which otherwise would incur additional power

consumption.

137

Data Buffer

Routing Mux

Comparison

-based

functional

diagnosis

f1
PE1

f2
PE2

fN
PEN

PURE

Reconfiguration

Controller

Health metric

(e.g., PSNR)

Extrinsic fault sources,

Aging-induced
degradations,

Manufacturing process
variations

DDR2

Data Memory

Configuration

Bitstreams

Software

Application

(e.g. video

encoder)

Processing Array

On-chip

Processor

Core

DMA

Configuration Port (e.g. ICAP)

Compact

Flash

. . .

f1

f2

fN

User-level decisions

(e.g., reliability/

quality/throughput

tradeoffs)

...

Reconfigurable

Logic Fabric

Figure 6.1: Self-adapting resource escalation of the FPGA device

In a broad sense, provision of resilience in reconfigurable architectures for signal processing

can take advantage of a shift from a conventional precisely-valued computing model towards

a significance-driven approximate computing model [111],[112],[113]. This significance-driven

model provides inherent support for a continuum of operational performance which is compatible

with the concepts of signal quality and noise. In this way, PURE recasts the reliability issues of

contemporary nanoscale logic devices in terms of the significance associated with these computa-

tions.

Similar to previous approaches, the techniques developed herein progress through explicit fault-

handling stages of fault detection, fault-diagnosis, and fault recovery. Fault-detection can be either

performed by continuously observing a system health metric like Signal-to-Noise Ratio (SNR), or

checking the processing nodes in an iterative fashion, as will be discussed in Section 7.2. For ex-

ample, in the case of a video encoder, the PSNR of a video sequence provides a health metric for a

uniplex arrangement without redundancy. On the other hand, in absence of a uniplex health metric

138

such as PSNR, the designer can tradeoff the use of periodic temporal CED [169] [7] or spatial

CED [30] redundant computations based on throughput, cost, and reliability constraints. To illus-

trate the details of operation under each phase of fault-handling, two case studies are developed: a

DCT core in a video encoder and a 128-bit AES core, using PSNR-based and discrepancy-based

CED health metrics, respectively.

In general, the process of identifying faulty nodes in a system G is called Fault Diagnosis. The

maximum number of faulty nodes which a scheme guarantees to identify is known as diagnos-

ability of G. Consider a fully connected topology so that the diagnosis can be performed between

any pair of nodes. Then, after identifying a faulty node, it can be replaced by any of the available

healthy nodes. Hence in this work, the term node applies to both PE and RS regions. The overall

objectives are to maintain the throughput during the diagnosis phase and rapidly identifying the

faulty PEs.

Fig. 6.2 illustrates the scope, approaches, and metrics of this dissertation. While the fault detection

phase is discussed later, a diagnosability formulation for identifying faulty nodes is developed in

Section 4 using a syndrome function. The three diagnosis algorithms of a divide-and-conquer ap-

proach, a latency-sparing approach, and a throughput-sustaining approach developed are described

in Sections 5, 6, and 7, respectively. Section 8 reports experimental results for a H.263 video

encoder’s DCT hardware core and an AES encryption engine. Throughput, fault resilience, and

energy duty cycle results are compared to the baseline TMR approach which are summarized in

the Conclusion in Section 9.

139

Approach Emphasis Challenges

Baseline Arrangement:

TMR
Fault-masking

Area, power,

resiliency

Algorithm 1: Divide and

Conquer

Rapid

isolation,

Fault-

confinement

Reduced

throughput

during

diagnosis

Algorithm 2: FaDReS

Availability

vs. Diagnosis

latency

runtime trade-

off

Reduced

throughput

during

diagnosis

Algorithm 3: PURE

Maintain

throughput

during

recovery

Diagnosis

latency

Case Studies Evaluation Metrics

Online Functional Diagnosis

Graceful degradation of PSNR

Low energy duty-cycle

Survivability despite hard

faults and aging effects

H.263 Video

Encoder

AES Encryption

Algorithm

Figure 6.2: Overview of recovery algorithms evaluated herein and the evaluation approach

Functional diagnosis to record discrepancy history

The same diagnosis formulation applies to each of the three algorithms developed and is described

first here. Given an undirected graph G(V,E) of vertex set V and edges set E, the diagnosis

objective is to identify faulty nodes. The nodes of G correspond to either PEs or processors in

a multiprocessor network connected through an interconnection network. The diagnosis process

is described in terms of CED comparisons to identify discrepancies, however, the analysis is not

restricted to a pair-wise comparison. Instead, the fault diagnosis process can utilize N-Modular

Redundancy (NMR) in accordance with availability of resources. NMR is a generalization of

TMR where N ≥ 2 modules provide N − 1 redundant instances, which has found applicability in

adaptive fault-handling [56] [101].

An element (u, v) in the edge setE indicates the feasibility that the output from corresponding PEs

can be compared. Let the actual fitness states of nodes be represented by vector Φ, and the fitness

states estimated based upon the fault-diagnosis process by vector Φ̂.

The following assumptions are made in the proposed fault diagnosis scheme:

140

1. Faults are of permanent nature.

2. A fault is observable if a faulty node manifests a discrepant output at least once in a given

Evaluation Window period.

3. The outcome of a comparison is positive if at least one of the nodes in a CED pair has an

observable fault.

4. The comparator/voter is a golden element which can be relied upon for fault-free operation.

Let the functions computed by N nodes of a FE be represented by a vector F where fi is the func-

tion performed by node i. In the recovery solution, we seek F ∗ which gives optimal assignments

of functions in a fault-scenario. We define the Connectivity Matrix C to show the comparison

performed between two nodes in G. Thus, an entry cij = 1 denotes that a comparison between

node i and node j is performed. Syndrome Matrix Ψ indicates the outcome of comparisons. An

entry ψij of this matrix denotes comparison outcome corresponding to the outputs of node i and

node j. Both of these matrices are symmetric about the diagonal due to commutativity of pairwise

comparison for discrepancy.

Ψ =

0 ψ12 . . . ψ1N

ψ21 0 . . . ψ2N

...
...

ψN1 ψN2 . . . 0

 (6.1)

Where ψij = 1 indicates that output from node i and j is discrepant for the same input, ψij = 0

shows their agreement, while ψij = x stands for the case when no comparison has been performed

between the corresponding nodes. A ψii = 0 on the diagonal corresponds to the comparison

outcome for a node i with itself,

The syndrome matrix Ψ is used to estimate the fitness states of nodes in G. Thus, faulty nodes are

141

identified based upon the syndrome matrix values. After fault detection, all the entries of Ψ except

those on the diagonal are initialized with x implying that the health of all the PEs is suspect. The

following identifies the condition for healthiness, with the estimated fitness vector being updated

accordingly:

Condition: ψ(i, j) = 0 for any 1 ≤ i ≤ N and 1 ≤ j ≤ N , where i ̸= j and cij = 1

Update: ϕ̂i = 0

Thus, the syndrome matrix is used to update the fitness of various PEs based upon diagnosis history

information. In case of failure to identify a healthy PE after multiple reconfigurations, the slack

is updated to a different PE as described by the specific reconfiguration sequencing algorithms in

Section 5, 6, and 7. When a healthy RS is found in a given slack update iteration s, it indicates that

the previously selected slacks were faulty.

In the proposed recovery schemes, the priority of functions is taken into account while recovering

from fault scenarios. For the DCT case, the PE computing the DC-coefficient is the most important,

AC0-coefficient second most important and so on. Generally, we represent the computational

importance of nodes by an N × 1 size priority vector P, where pi = 1 for the most important node

i and pi = N for the least important node. For an application with equally important cores, the

priority vector is initialized with all ones. In this work, we assigned the priorities at design-time

considering the application properties, e.g., DCT-coefficient computing functions and their impact

on PSNR for various video sequences. An interesting future work can be to compute the priority

values at runtime. The applications which cannot be characterized by priorities at design-time, or

to better utilize the input signal characteristics at runtime, such an approach can be very promising

to realize runtime adaptable architectures. An example is to estimate the priority of DCT PEs

based upon their runtime impact on PSNR according to the input scene’s characteristics.

Given a network, the objective is to identify faulty nodes as soon as possible while maintaining

142

throughput during fault diagnosis phase. For this purpose, the proposed diagnosis schedule de-

motes the predicted fitness of a Node Under Test (NUT) based upon their discrepancy history.

In the following, we describe some variations of the fault-handling phase starting with a divide-

and-conquer approach. The choice of algorithm in an application depends upon the designer’s

preferences about diagnosis latency, throughput availability requirement, and area/power trade-

offs.

Reconfiguration Algorithm 1: Divide-and-Conquer Method

Group testing schemes [170][171][103] have been successfully employed to solve many fault iso-

lation problems in which the number of defective items is much smaller than the size of the over-

all suspect pool. The problem at hand has an analogy to the group testing paradigm, yet with

some important distinctions. Although, the task here is to identify defective elements in a pool of

computational resources, we do not pose an assumption about presence of a known-to-be-healthy

functional output element for testing individual nodes. This assertion makes it infeasible to apply

a hierarchical testing approach in which testing up to the last single item is performed by a known

healthy item. Therefore, the PURE also relies upon the comparison diagnosis model or NMR

voting model to isolate faulty elements.

We identify two scenarios in which this hierarchical divide-and-conquer strategy may be more

appealing to be employed than the two algorithms discussed in further sections:

• If there are no restrictions on throughput or availability during the fault-handling phase, then

halving of the suspect pool [171] offers logarithmic time diagnosis latency, or

• If fault confinement is desirable, that is, limiting the influence of the fault as soon as possible,

then it becomes advantageous to cut off the suspect nodes from the active throughput path

143

as soon as possible. Then, those nodes can be used for health checking of the active nodes.

This scenario is pessimistic, and applies to the case when fault rate is high and a large

number of nodes become defective before the fault-handling scheme is initiated. A more

optimistic approach is to keep the active nodes in processing datapath while performing

diagnosis process as we discuss in the next sections.

Fig. 6.3 illustrates the topologies in the diagnostic flow at various reconfiguration iterations. The

number of edges in the graph of Fig. 6.3 corresponds to the total number of reconfigurations per-

formed for diagnosis purposes. Various steps of the diagnosis phase using a divide-and-conquer

approach are illustrated in Fig. 6.4 in which dotted lined boxes correspond to the checking slacks

and solid lined boxes correspond to active PEs. Algorithm 7 defines the diagnosis process.

To measure the diagnosability of G obtained by the divide-and-conquer reconfiguration method,

we observe from Fig. 6.3(b) that every node has three adjacent nodes. In the worst case, if all

the adjacent nodes of a node i become faulty, then it is impossible to check the fitness of node i

using a comparison diagnosis model. In that case, the system is no longer diagnosable. However,

if only two adjacent nodes of a presumed healthy node j are faulty, then the remaining one node

can be used for checking purposes. Thus, the diagnosability t of a divide-and-conquer topology is

(d(G)− 1) where d(G) is the average degree of a node in G.

144

r=1

r=2

r=3

1

2 3

4

5

67

8

1

2 3

4

5

67

8

1

2 3

4

5

67

8

Reconfigure

Reconfigure

Va={PE1,PE2,PE3,PE4}

Vs={PE5,PE6,PE7,PE8}

Va={PE1,PE2,PE5,PE6}

Vs={PE3,PE4,PE7,PE8}

Va={PE1,PE3,PE5,PE7}

Vs={PE2,PE4,PE6,PE8}

(a) Time varying topologies at various reconfigura-
tion instants

2j

56

(b) Graph represented by C after
3 reconfigurations

Figure 6.3: Divide-and-conquer method for fault diagnosis

145

For example, when PE4 and PE6 are faulty in a system with 8 PEs, then after r = 3 iterations of

diagnosis, the syndrome matrix deduced from Figure is given by:

Ψ =

1 2 3 4 5 6 7 8
1 0 0 0 x 0 x x x
2 0 0 x 1 x 1 x x
3 0 x 0 1 x x 0 x
4 x 1 1 0 x x x 1
5 0 x x x 0 1 0 x
6 x 1 x x 1 0 x 1
7 x x 0 x 0 x 0 0
8 x x x 1 x 1 0 0

(6.2)

where the entry ψ12 = 0 denotes the healthy nature of PE1 and PE2 while ψ42 = 1 shows the faulty

nature of at least one of the PEs in the pair under test.

r=1 r=2 r=3

a
V

s
V

a
V

s
V

Figure 6.4: Various reconfiguration instants in the divide-and-conquer approach

146

Algorithm 7 Divide-and-conquer Fault Diagnosis Algorithm (without recovery)
Require:N
Ensure:Φ̂

1: Partition V into two equal-sized disjoint sets Va and Vs
2: Designate the set Va as FE and Vs as RS
3: Perform concurrent comparison to the same inputs for various edges of the bipartite graph

represented by connectivity matrix C
4: Update the Syndrome Matrix Ψ based upon comparisons outcome
5: Iterate step-1 to step-4 log(N) times
6: Given Ψ, isolate the faulty nodes:
ϕ̂i ← 0 and ϕ̂j ← 0, if cij = 1, and ψij = 0

ϕ̂i ← 1 if ϕ̂j = 0, cij = 1, and ψij = 1

Reconfiguration Algorithm 2: FaDReS

Fault Demotion using Reconfigurable Slacks (FaDRes) achieves dynamic prioritization of avail-

able resources by demoting faulty slacks to the least priority functions [45]. Compared to divide-

and-conquer, it attempts to avoid excessive reconfiguration of the processing datapath. Namely,

whenever a redundant PE is not available then a lower priority functional module can be utilized.

The output from the vacated RS is compared against functional modules in the datapath providing

normal throughput. The discrepancy in output of identical functional modules isolates the perma-

nent or transient fault. Thus, the FaDRes algorithm iteratively evaluates the functional modules

while keeping them in the datapath, as well as slack resources used for checking. In general, the

identification of healthy slack can be formulated as follows: Given a pool of resources in which

the faults are equiprobable in any resource, then what is the probability that at least a single RS

is identified within r iterations. The probability of favorable event corresponding to a RS being

identified is given by:

P (X) =
Number of favorable scenarios

Total number of diagnosable fault scenarios
(6.3)

147

where X = Number of healthy RS identified. The Cumulative Proportion of Diagnosable Condi-

tions (CPDC) is defined as:

CPDC(X ≥ 1) =
N∑
r=1

P (X = r) (6.4)

For the case of N = 9 total PEs with a single RS, a total of Na = 8 number of Active PEs form the

throughput datapath of the circuit while number of slacks is Ns = 1. Since each PE can either be

faulty or healthy, there are 511 unique fault-scenarios in addition to one case where all are healthy.

However, two special cases in which none or only one PE is healthy, are non-diagnosable. This

yields 10 non-diagnosable configurations corresponding to 9 when one PE is healthy plus one when

none are healthy. The RS itself is healthy for a total of 254 of all possible faulty-yet-diagnosable

511− 10 = 501 cases. Thus, the proportion of diagnosable conditions is 254
501

= 0.5070.

If a healthy RS is not identified in the first testing iteration, it is marked and not included in the

second testing iteration. Then, given a total number of N = 9− 1 = 8 PEs yields 127 diagnosable

fault-scenarios involving a healthy RS. Thus, CPDC is given by 254+127
501

= 0.7605 at the r = 2

iteration. Similarly, a failure to identify a healthy RS in the second testing iteration leads to testing

another set of configurations in which N = 7. Here, 63 diagnosable faulty scenarios involve a

healthy RS. Thus, CPDC(r = 3) = 254+127+63
501

= 0.8862, in agreement with Eq. 6.4.

Fig. 6.5 demonstrates benefit of employing multiple slacks during diagnosis procedure. As it can

be seen, the probability of diagnosis completion after the first instance of testing arrangement is

higher in case of Ns = 2 compared to the case Ns = 1.

148

1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Testing Arrangement Instance, rC
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 D

ia
gn

os
ab

le
 C

on
di

tio
ns

Ns=1
Ns=2
Ns=3

Figure 6.5: CPDC demonstrating diagnosis benefit of additional slacks

The proposed FaDReS architecture is overviewed in Fig. 6.6 where redundancy is employed to

isolate and recover from faults, thereby avoiding exhaustive test vectors to test the functions con-

figured on hardware fabric. Once the proposed system detects fault, the fault isolation phase is

initiated by reconfiguring multiple PES with the same functionality for discrepancy checking. The

dynamic reconfiguration property of FPGA is employed to create the redundancy needed for fault

isolation during runtime. If there is no redundant PE available, the lower priority functional mod-

ule can be vacated. The output from the vacated RS is concurrently checked for discrepancy with

that of functional modules in the datapath providing normal throughput. The discrepancy in output

of the same functional modules reveals the permanent or transient fault. The proposed algorithm

iteratively evaluates the functional modules while keeping them in the datapath, as well as slack

resources used for checking. Dynamically configurable slacks can isolate up to N-2 faulty PEs

in a system having N total number of PEs. DMR and TMR techniques have been successfully

adapted to utilize dynamic reconfiguration capability of FPGAs in previous research [7]. We pro-

pose an isolation algorithm employing flexible dynamic redundancy. It will also be shown how the

isolation process can be accelerated by increasing the number of RS.

149

Power PC

SDRAM

System ACE

Compact

Flash

ICAP

Config.

Memory

HWICAP

UART

HyperTerminal

Frame Buffer

PE1

PE2

PE8

DCT

Controller

Processor Local Bus

(PLB)

Bus

Macros

Figure 6.6: The FaDReS approach applied to an H.263 architecture

Hardware Organization in FaDReS Technique

A baseline reallocation strategy of fault demotion for mission-critical applications is proposed that

permits recovery emphasizing small throughput degradations via an RS with stepwise PR demo-

tion. Nonetheless, more efficient reallocation strategies such as Divide and Conquer, and others,

can be employed when their impact on throughput is acceptable [31]. The hardware architecture

to evaluate the proposed scheme is shown in Fig. 6.6 and implemented on a Xilinx ML410 devel-

opment board which contains a Virtex-4 FX60 FPGA. As a case study, the H.263 video encoder

application is run on the on-chip processor. All the sub-blocks except the DCT block [94] are

implemented in software, the later being implemented in hardware. Each PE in the DCT block is

responsible for computing one coefficient of 8-point 1-D DCT.

The development environment for the processor-based system is Xilinx Platform Studio (XPS9.2).

This system is interfaced with the DCT core inside an ISE9.2i project. PlanAhead10.1 manages

the partial reconfiguration regions and generates the bitstreams. The GenACE utility is used to

map the full system bit file and the executable file into an ACE file which is stored on a Compact

150

Flash. The Software Development Kit (SDK) is used to build the software for the encoder. Some

of the hardware modules are described in detail:

Hardware Components

PowerPC: The Xilinx PowerPC 405 processor core is a 32-bit embedded implementation derived

from the PowerPC architecture [172]. There are such two cores embedded in the reconfigurable

fabric, and the design presented here utilizes one of them. The Standalone Board Support Pack-

age (BSP) is used which is a single-threaded simple operating system [173]. It provides minimal

libraries for interfacing with hardware. The video encoder application is operational on the proces-

sor except its DCT core which is implemented in hardware. Moreover, the processor is responsible

for sequencing our fault handling methodology, but without loss of generality it can be realized

directly in the FPGA with appropriate fault tolerance.

DCT Core: The processor communicates with the DCT core through GPIOs. The DCT core

is composed of a DCT controller, transposition memory, and PEs. To meet the Xilinx specific

requirement for a partial reconfiguration design, bus macros are inserted between the transposition

memory and the PEs which define each reconfigurable region. Each PE has a stored DCT kernel

and is responsible for computing one DCT coefficient for a row of input pixels. For instance, PE1

contains the DC kernel of the DCT block and computes the DC value of a row of input pixels.

The DCT controller manages to read pixels for the input of the PEs from the frame buffer row-

wise during the stage-1 of the DCT. The 1-D DCT is computed in the first stage, then in the second

stage the controller reads the frame buffer column-wise. The processor writes the pixel values in

the frame buffer and DCT core computes the coefficients upon the availability of a macroblock.

The precision of the input pixels is set to 9 bits per pixel, and the kernels are stored in a 12-bit

fixed-point format. The output from the second stage is rounded to 12 bits and is communicated

151

to the PowerPC through the GPIO core. We have implemented a pipeline design of the DCT core

taking advantage of the parallel datapath capabilities of FPGAs. The effective throughput of the

DCT core is one pixel per clock. Internally, the PEs use DSP48 blocks available in the Virtex-4

FPGA. Overall nine DSP48 blocks are used for 9 PEs. The core can execute at rates up to 108

MHz. The static modules of the design include PowerPC, DCT controller, Frame Buffer, Digital

Clock Manager (DCM), DDR SDRAM, CompactFlash controller and GPIO cores.

ICAP: The Internal Configuration Access Port (ICAP) in the FPGA chip allows access to configu-

ration bitstream data [174]. This access can be for the readback purpose or partial reconfiguration.

The Xilinx HWICAP core serves as an interface between the PowerPC and the ICAP. The pro-

cessor communicates with the core via Xilinx software library-routines. Using these routines, the

partial bitstreams of PEs are downloaded from the CompactFlash to the configuration memory.

Depending upon the size of the bitstream files and the overhead of library functions, each PE re-

configuration takes about 200 milliseconds on average. This time period constitutes 6 frames of

video at 30 frames per second input frame rate.

Fault Detection, Isolation and Recovery

The fault detection methodology used here is observing PSNR of the recovered frames. The PSNR

is computed based upon the difference between input frame and the image in frame buffer as

described in [58]. Once this measure is below a threshold δ, fault detection is asserted. In this

way, continuous exhaustive testing of the resources is avoided. In addition, avoiding redundancy

during the normal operation is beneficial in terms of power and area requirements. Once a fault is

detected, the proposed fault isolation and recovery process are initiated. The FaDReS algorithm

for Fault Isolation (FI) and Fault Recovery (FR) scheme is given below and illustrated by the flow

chart in Fig. 6.7.

152

Exit

Select the least

priority PE as the RS

Reduce the DCT

mode to (N-1)x(N-1)

Update N=N-1

Yes

Yes

Fault Recovery

Reconfigure the DCT Block to De-

allocate faulty PEs. For this purpose,

reduce the DCT mode to (N-Nf)x(N-Nf)

Update N=N-Nf

Let Ns denote the # of available slacks

Let N be # of PEs for the current NxN

mode of DCT

0sN

No

Current DCT

mode 1x1

Reconfiguration of the Slack(s)

functionPEfunctionPE is ..
)()1(ss NNsN

Ni

Apply Test

Vectors

Yes

}{H

Initialization

SuspectFSPE i .

)(1 Si NNi
1i

Healthy Module j

Concurrently check the output of NMR

to identify healthy RS and update their

FS accordingly

},{. HealthySuspectFSPE s

},{. HealthySuspectFSPEi

1ii

Yes

Move the slack(s)

Re-initialize i = 1

Reduce the DCT mode to (N-Ns)x(N-Ns)

Update N=N-Ns

No

No

Identify the Relatively

Better module

)min(arg Errorj

HealthyFSPE j .

Yes

Top Priority Function Assignment

DCj ffunctionPE .

1HN

Update Ns

[Ns=1 for quality

mode]

1NNs

No

Concurrently check the output of NMR

to identify remaining healthy PEs and

update their FS accordingly

},{. HealthyFaultyFSPE j
Njij)1(,

1

2

34

5

6

7

8

Update FS of the previous PEs

Update FS of the previous slacks

FaultyFSPE j .

ijj1

).arg(SuspectFSPEj j

FaultyFSPE s .
)()1(, ss NNsN

No

sNN

No

Yes

Figure 6.7: The fault isolation and recovery process flow chart
153

1: Obtain current system parameters (e.g., Current DCT mode, Number of Blank PEs)

2: Determine the number of RS(s).

3: Apply the proposed fault isolation algorithm (Fig. 6.7)

4: Isolate faulty PEs (Bounded Number of Reconfigurations as in Fig. 6.8)

5: Reconfigure the functionality for full recovery or a gracefully degraded mode (e.g., DCT

mode)

An NMR system is the one in which N instances compute for the same input and the effective

output is the majority output. In this work, the fault model is that if at least one of two PEs is

faulty in a pair under evaluation, they exhibit discrepancy at least once in a given Evaluation

Window or their output remains the same. Similarly, no discrepancy between the module outputs

reveals their fault-free Healthy status. The terminology used in this dissertation is listed below.

The terms module and PE are used interchangeably.

PEi.FS : Fitness state of ith Processing Element

FS Enumeration : {Healthy, Suspect, Faulty}

PEi.function : The functionality assigned to a particular PE

Functional Modules : The modules providing normal throughput

{H} : The set containing all the healthy modules from RS

Once fault occurs and every module needs to be examined, we proceed to identify the faulty PE(s)

by employing the RS. In the first step, all the PE’s fitness is suspected as labeled block 1 in Fig. 6.7.

The slacks may be the blank PEs available in the system. The RS (or multiple slack) is reconfigured

with the same functionality as that of the most important functional PE, for example, the module

for computing DC coefficient (label 2 and 3).

154

Figure 6.8: Upper Bound on number of iterations for fault isolation

The location of faulty PE is detected by performing the discrepancy check in an NMR arrangement

(label 5). For DMR, faulty status of one of the modules whereas for NMR faulty status of more

than N − 2 modules marks each of the instances as Suspect. Therefore, we proceed to reconfigure

the RS with the second priority function and so on(label 3). Once an agreement between two

modules over a complete evaluation window is observed, the two modules are declared as Healthy

and their fitness state is updated (label 6). The identification of a healthy RS implies we do not

need to reconfigure the PEs as slacks any more. A healthy RS can be used to check the fitness of

all the modules (label 7). The discrepancy of a suspected module in pair with a healthy module

reveals its Faulty nature. On the other hand, an observed discrepancy between suspected modules

does not provide any information and keeps them marked Suspect. If a healthy RS is not identified

in the first iteration even after reconfiguring with all of the functions in the datapath, it is moved to

the next PE, and so on (label 4). Upon the completion of fault isolation, the priority functions are

moved to the healthy PEs (label 8), which accomplishes the recovery process.

The fault isolation scheme is illustrated by an example in Fig. 6.9. Here, the normal operation

is 8 × 8 DCT and therefore the PE1 to PE8 are providing the normal throughput for 1-D 8-point

DCT. Two 1-D DCT operations are performed to compute 2-D DCT. For this arrangement, PE9 is

155

required by the system and reconfigured as blank. For this specific situation, assume that 2 out of

total 9 PEs are faulty. The faulty PEs labelled 1 and 9 are shown by tagged boxes. We choose

the blank PE as the RS for discrepancy check with PE1. Unfortunately, the RS itself is faulty, yet

we have no a-priori knowledge of its fitness state. Therefore, in the first iteration in which the RS

is reconfigured 8 times for the CED purpose, no information is obtained. Every module’s fitness

is unknown and marked as Suspect (S). We proceed to the second iteration. The RS is moved

from PE9 to PE8 and CED is performed with the functional modules, sequentially. No discrepancy

between PE8 and PE2 implies their Healthy (H) nature and therefore, PE1 and PE9 are marked as

Faulty (F) as they did exhibit a discrepancy with the Healthy module.

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

CED

PE9

(RS)

DCf

0ACf

1ACf

2ACf

3ACf

4ACf

5ACf

6ACf

6...ACDCf

6...ACDCf

1
st

Iteration

S

S

S

S

S

S

S

S

S

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

(RS)

PE9

(Blank)

DCf

0ACf

1ACf

2ACf

3ACf

4ACf

5ACf

2
nd

Iteration

S F

S H

S

S

S

S

S

S H

S F

CED

5...ACDCf

5...ACDCf

PE1

(Isolated)

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

(Isolated)

0ACf

1ACf

2ACf

3ACf

4ACf

5ACf

FI Complete

F

H

H

H

H

H

H

H

F

DCf

PE1

(Blank)

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

(Blank)

0ACf

1ACf

2ACf

3ACf

4ACf

5ACf

FR Complete

F

H

H

H

H

H

H

H

F

DCf

Fault

Recovery

Functional

Modules
Functional

Modules

At Step 6 in Fig 2 At Step 7 in Fig 2

Figure 6.9: An example of the fault isolation and recovery scheme

Once the fault isolation process is complete and a healthy RS is identified throughout the evaluation

window, that RS is used for error checking of all the functional modules. If there are N healthy PEs

available, fault recovery is made without quality degradation. However, if there are fewer healthy

modules than the current mode of DCT, then a graceful degradation strategy is employed where

156

the most important functions are prioritized to be retained in the proven resources. In the DCT

case, the most influential function to retain is the DC coefficient’s computation.

Fault detection latency of the proposed approach based upon PSNR is negligible, whereas latency

of isolating faulty PEs is bounded as our algorithm follows a deterministic flow. The idea is to

time-multiplex the RS for different functions and compare the output of the RS with those from

the active modules in the datapath. A discrepancy between the outputs of two modules results in

them remaining in the Suspect pool, whereas the agreement marks them as Healthy. Fig. 6.8 shows

upper bound on the number of iterations when using different number of slacks for various fault

situations. For all these figures, the total number of PEs is 9 but can be extended without loss of

generality. As an example, we require 2 iterations at most to isolate 7 faulty modules out of 9,

when using 4 slacks.

Experimental Results

Performance Improvement

The proposed fault handling scheme is validated by observing the fault behavior of H.263 video

encoder’s DCT block. Faults are injected into the PE1 and PE9 at frame 50. For simulating

the fault behavior, SA faults are injected at logic resources’ inputs in the post-place and route

simulation model of the circuit. For this purpose, we employed Fault Injection and Analysis

Toolkit (FIAT) [175] which modifies the User-Constraints File (UCF) in the Xilinx design flow.

As shown in Fig. 6.10, the PSNR of the video sequence drops below the threshold δ = 28dB at

frame 59 and the fault isolation scheme is invoked. After a few frames, the DCT block is recov-

ered, improving PSNR back to a normal condition. It may be noted, however, that we simulated

a relatively demanding scenario here where the number of healthy PEs available is less than N.

157

Otherwise, there would be no quality degradation. Also, it is worthwhile observing that during

fault isolation, considerable throughput is available. The input video sequence to the encoder is

forman.qcif with the resolution of 176× 144. It was observed that the lowest fault-free PSNR

was 29.96dB throughout the video sequence.

The PSNR measure of the image is a direct indication of its visual quality. Fig. 6.11 illustrates

the qualitative results of the approach. The recovered image in Fig 6.11(c) after applying the fault

handling scheme is visually much better than Fig. 6.11(b) where a faulty PE in the DCT block

disrupts the image in the frame buffer.

Figure 6.10: An operational example of the video encoder

(a) Reconstructed
frame (without
faults)

(b) The effect of a
faulty PE

(c) Recovered
frame (after
fault-handling)

Figure 6.11: Qualitative results on sequence from ASU video library [3]

158

Power Analysis

To analyze the power-overhead of the proposed scheme, Xilinx XPower Estimator (XPE) 11.1

has been utilized. The static non-reconfigurable design power requirement is 1541mW which

consists of 591mW Quiescent and 950mW Dynamic Power. The individual components of the total

dynamic power are listed in Table 6.1. In addition, the power estimates of Partial Reconfiguration

Modules (PRMs) are listed in Table 6.2. An estimate of power consumption for reconfiguration

is based upon the resource count of HWICAP core reported in the Xilinx datasheet [176]. The

measurement and estimation of power consumption in Virtex FPGAs is thoroughly demonstrated

in [177]. The PEs employ a power-efficient design since the utilized DSP48 multipliers generally

consume only 2.3mW operating at 100MHz at a typical toggle rate of 38% [178]. As illustrated

by Table 6.2, considering the example of 8×8 DCT module, fault-tolerant version consumes more

power (i.e., 142mW) than that required by a simple DCT module (i.e., 72mW). However, the extra

cost of power is considerably less than that required by TMR which would consume a factor of

three times the power of a single module. Table 6.3 lists the Dynamic Energy Consumption, E

of the Partial Reconfigurable (PR) design throughout the isolation phases for various fault-rates

described in terms of number of faulty modules, Nf . Thus, operating in uniplex mode with a single

reconfigurable slack, the FaDReS power consumption including the HWICAP totals only 65.7%

of TMR during fault-handling and roughly only 33% of TMR during fault-free operation.

159

Table 6.1: Dynamic power consumption of the static design

Resource Utilization Count Dynamic Power (W)
Clock 2 0.113
Logic 8812 LUTs * 0.328
I/Os 144 0.361

BRAM 1 0.002
DCM 1 0.082

PowerPC Processor 1 0.064
Total 0.950

* Includes dynamic power of 5656 FFs, 445 Shift Registers, and
71 Select RAMs

Table 6.2: Dynamic power consumption of the reconfigurable design

Module Resource Count Dynamic Power (W)
PRM1 82 LUTs, 44 FFs, 1 DSP48 0.021
PRM2 117 LUTs, 78 FFs, 1 DSP48 0.023
PRM3 103 LUTs, 64 FFs, 1 DSP48 0.021
PRM4 120 LUTs, 81 FFs, 1 DSP48 0.023
PRM5 94 LUTs, 56 FFs, 1 DSP48 0.021
PRM6 122 LUTs, 83 FFs, 1 DSP48 0.023
PRM7 107 LUTs, 68 FFs, 1 DSP48 0.023
PRM8 113 LUTs, 74 FFs, 1 DSP48 0.023

HWICAP 2115 LUTs, 728 FFs 0.061
4× 4 DCT 0.044
6× 6 DCT 0.059
8× 8 DCT 0.072

8× 8 DCT with one RS 0.081

Table 6.3: Dynamic energy consumption of the PR design during FI phase

Nf 1 2 3 4 5 6 7
E (Joules) 1.52 2.89 4.37 5.82 7.08 8.04 8.64

Diagnosis by voting

The algorithm for diagnosis employing dynamic NMR voting on module level is given in Algo-

rithm 8. Fig. 6.12 shows various steps in the diagnosis process.

160

Algorithm 8 FaDReS (Greedy fault-diagnosis with subsequent recovery)
Require:N , Ns, P
Ensure:Φ̂

1: Initialize Φ̂ = [x x x ... x]T , i = 1, Na = N −Ns
2: Arrange elements of V in ascending order of P
3: while ({k|k ∈ Φ̂, k = 0} = ϕ) do
4: Designate vs as checker(s) (Na + 1) ≤ s ≤ (Na +Ns) ; thus Vs = {vs}
5: while i ≤ Na do
6: Reconfigure RS(s) with the same functionality as vi, Nsup = Nsup + 1
7: Perform NMR majority voting among NUTs when Ns > 1, or CED between NUTs when

Ns = 1, then update Connectivity matrix accordingly,
Update the Syndrome matrix Ψ based upon discrepancy information,
ϕ̂i ← 0 for vi which shows no discrepancy then go to step-12, ϕ̂i ← x otherwise

8: i← i+ 1
9: end while

10: Move the RS by updating Na = Na −Ns, Nr = Nr + 1, Re-initialize i = 1
11: end while
12: Update the fitness state of the previous RS(s): ϕ̂j ← 1 ; for (s+ 1) ≤ j ≤ N and ψj. = 1

13: Use a healthy RS to check all other nodes in Va, ϕ̂i ← 0; if ϕ̂j = 0, cij = 1, and ψij = 0

Va 1 2 3

4, 5 6 7

Vs 8

Va 1 2 3

4, 5 6

Vs 7

Va 1 2 3

4, 5

Vs 6

Figure 6.12: Fault-diagnosis in the FaDReS approach

161

Fault diagnosis latency Tdiag is defined as:

Tdiag = (Teval + TrecNs)
Nr∑
j=1

Ij (6.5)

where

Nr = Number of testing arrangement iterations during detection

Ij = Number of times a jth RS is reconfigured

Trec = Reconfiguration Latency (PR time for one PE)

Ns = Number of Reconfigurable Slacks

Teval = Duration of Evaluation Window

By substituting Nr = Na and the worst case reconfiguration count, the upper bound on the latency

of the fault-diagnosis is obtained as:

Tdiag,max = (Teval + TrecNs)
Na−1∑
j=0

(Na − j) (6.6)

Diagnosis by Comparison

A variation of Algorithm 2 is made in which a NUT is assigned to only one RS for checking;

whereas more than one RS(s) may be allocated to a NUT in the diagnosis-by-voting case. For

example, in diagnosis by comparison approach with Ns = 2, the first RS is configured with f1 and

the second RS with f2 in the first iteration. Upon failure of identifying a healthy RS, these slacks

are reconfigured to f3 and f4, respectively and so on.

In case of Xilinx FPGAs, the ICAP, on-chip memory called Block-RAM, and Compact Flash exter-

nal memory form a memory hierarchy for reconfiguration functions. The bitstreams which define

the functions configured to various PEs are initially stored in external memory. We employ a local-

162

ity constraint to quantify the distinction between the voting approach and comparison approach. If

an RS is to be configured with a function, the corresponding bitstream needs to be fetched from the

external memory for the first time. However, if another RS needs to be configured with the same

function, a bitstream fetch operation is not required as the access can be granted from on-chip

memory. Thus, if two RS’s are to be configured with the same functionality, the reconfiguration

penalty is not 2 ∗ Trec but just (1 + β) ∗ Trecon where 0 ≤ β ≤ 1 depends upon the ratio be-

tween internal on-chip memory access time and external memory access time. On the other hand,

a comparison diagnosis approach requires 2 ∗Trec reconfiguration time for two slacks as both need

to be configured as separate functions. The preference of one method over the other should be

based upon reconfiguration time Trecon, β factor, and evaluation window period Teval. For devices

with fast on-chip memory access provision, β is a small number and hence comparison-by-voting

can be more advantageous approach. For Virtex-4 device with external compact-flash and inter-

nal block-RAM, we observed a value of β = 0.0013 when operating the reconfiguration port at

100MHz clock frequency.

Reconfiguration Algorithm 3: PURE

PURE achieves dynamic prioritization of available resources by assigning healthy slacks to the

highest priority functions. The distinction between the PURE algorithm and FaDReS arises from

the fact that after a healthy RS is identified, PURE configures it for priority function computation

immediately. An identified healthy RS is used for checking purposes to isolate all other PEs. Thus,

the Algorithm 9 can be used to prioritize throughput while the FaDReS Algorithm 8 can be used

to prioritize fault diagnosis completion.

163

Algorithm 9 PURE (Fault-diagnosis with integrated priority-driven recovery)
Require:N , Ns, P
Ensure:Φ̂, F ∗

1: Initialize Φ̂ = [x x x ... x]T , i = 1, Na = N −Ns

2: Arrange elements of V in ascending order of P
3: while ({k|k ∈ Φ̂, k = x} ≠ ϕ) //Until all suspect nodes are proven to be healthy do
4: while ({k|k ∈ Φ̂s, k = 0} = ϕ) //Identify at least one healthy node in Vs do
5: Designate vs as checker(s) (Na + 1) ≤ s ≤ (Na +Ns) ; thus Vs = {vs}
6: while i ≤ Na do
7: Reconfigure RS(s) with the same functionality as vi, Nsup = Nsup + 1
8: Perform NMR majority voting among NUTs when Ns > 1, or CED between NUTs

when Ns = 1, then update Connectivity matrix accordingly, Update the Syndrome
matrix Ψ based upon discrepancy information,
ϕ̂i ← 0 for vi which shows no discrepancy then go to step-13, ϕ̂i ← x otherwise

9: i← i+ 1
10: end while
11: Move the RS by updating Na = Na −Ns, Nr = Nr + 1, Re-initialize i = 1
12: end while
13: Identify the most prioritized function computing node which is faulty, vpf
14: Use the identified healthy RS to compute a priority function, F ∗s ← Fpf thus RS is removed

from Vs and added to Va
15: end while

Diagnostic Flow

In the PURE approach, the diagnosability of the system is incrementally improved by reconfigu-

ration. The diagnosability tr(G) at a reconfiguration instant, r is defined by the average degree of

active nodes in G, and is given by the equation:

tr(G) = dr(G)− 1 (6.7)

where dr(G) is the average degree of nodes in the graph at r. The topology at r = 1 in Fig. 6.12

is 0-diagnosable since a faulty RS leaves all other nodes suspect after comparisons. However, the

topology defined by C at r = 2 which combines diagnosis information of C(1) and C(2) is 1-

164

diagnosable since a single faulty node is guaranteed to be identified. In general, the diagnosability

at the completion of algorithm is N − 2 after every possible pair combination is evaluated and

the resultant topology is a fully connected graph. Fig. 6.13 shows the diagnosability at various

reconfiguration instants for a network of 8 nodes. As it can be seen, an increase in the number of

slacks results in identification of defective nodes within a few iterations.

Fig. 6.14 shows an illustrative example of the fault diagnosis in the PURE approach. The fitness

state of PEs which are suspect is depicted by rounded-corner blocks. In this example, PE1 and PE7

are afflicted with faults. Upon initialization of the fault-handling algorithm, all PEs are suspect.

Then, PE8 is reconfigured as RS by implementing function f1 and its output is compared with that

of PE1 to check for any discrepancy. An RS is shown by dashed block. In this example, PE1 is also

faulty; therefore, this first comparison does not provide any useful information about the health

of PEs and they remain suspect. Next, PE8 is reconfigured to second priority function f2 and its

discrepancy check is performed with PE2 which implements f2. An agreement reveals their healthy

nature. In addition, it shows that PE1 was faulty as it had exhibited discrepancy with a healthy PE

(i.e., PE8) in the previous step. As soon as a healthy RS is identified, a faulty PE implementing

a priority function is moved to the RS. Thus, PE1 is configured as blank by downloading a blank

bitstream while PE8 is configured with function f1 to maintain throughput. Next, PE7 is chosen as

RS whose discrepancy with a healthy PE2 shows its faulty nature. Lastly, a healthy PE6 serving as

RS accomplishes the diagnosis procedure to update the fitness state of PEs 2 through 5 to healthy.

Overall, the fault recovery is achieved by configuring faulty PEs by blank and healthy PEs by

functions 1 through 6.

165

0

1

2

3

4

5

6

7

1 2 3 4 5

D
ia

g
n

o
s

a
b

il
it

y
Testing arrangement instance, r

Ns = 1

Ns = 2

Figure 6.13: The diagnosability of a topology with various reconfiguration iterations

PE1

f1

PE2

f2

PE3

f3

PE4

f4

PE5

f5

PE6

f6

PE7

f7

PE8

f8

PE1

f1

PE2

f2

PE3

f3

PE4

f4

PE5

f5

PE6

f6

PE7

f7

PE8

f8

Initialization Reconfigure

PE1

f1

PE2

f2

PE3

f3

PE4

f4

PE5

f5

PE6

f6

PE7

f7

PE8

f1-2

PE1

blank

PE2

f2

PE3

f3

PE4

f4

PE5

f5

PE6

f6

PE7

f2

PE8

f1

Reconfigure

PE1

blank

PE2

f2

PE3

f3

PE4

f4

PE5

f5

PE6

f2-5

PE7

blank

PE8

f1

Reconfigure

Vs={8}

Va={1,2,3,4,5,6,7}

Before FH

Va={2,3,4,5,6,8}Va={1,2,3,4,5,6,7,8}

After FH

Figure 6.14: An example of fault diagnosis in PURE approach

Another scenario can be considered for the above example in which two checker PEs are utilized

in the diagnostic stage. As the intermediate results have to be written into data buffer as in Fig. 1,

166

so that the CPU can evaluate for discrepancy check, the data buffer writing timing would be differ-

ent than the previous scenario. In general, for a given faulty-scenario, an increase in Ns can help

reducing the latency of diagnosis completion. On the other hand, to improve the fault-diagnosis

latency, such a choice of larger Ns can incur more throughput degradation during the diagnosis

phase. Thus, the choice of Ns should be made according to maximum tolerable throughput degra-

dation during the diagnosis phase and the desired latency of fault-handling.

For a total of N nodes in G, there are N2 − N possible pairings. As evident by Table 6.4, our

fault-diagnosis schemes require significantly fewer comparisons compared to the exhaustive pair

evaluations where the values are scaled to % of total resources available during diagnosis. Fig. 6.15

shows the worst case scenario for the PURE algorithm in an FE containing 8 PEs. The round corner

blocks correspond to faulty PEs. As shown in Fig. 6.15, as many as 3 reconfiguration iterations are

required as the first two slacks selected were faulty.

r=1

V
a

1
2

3
4

5
6

7

Vs 8

Reconfigurations r=2

Vs 7

V
a

1
2

3
4

5
6

a

s

Figure 6.15: The worst case scenario for the diagnostic phase with two defective nodes

167

Table 6.4: Latency vs. throughput comparisons

Metric Approach
Testing arrangement instance, r

1 2 3

Na during diagnosis
Algo. 1 (Divide & Conquer) 50% 25% 12.5%

Algo. 2 (FaDReS) 87.5% 75% 62.5%
Algo. 3 (PURE) 87.5% 75% 62.5%

No. of bitstream downloads, Nsup

Algo. 1 (Divide & Conquer) 50% 50% 50%
Algo. 2 (FaDReS) 87.5% 75% 62.5%
Algo. 3 (PURE) 87.5% 75% 62.5%

Fault Detection Criteria

PURE adapts the configuration of the processing datapath based on the correctness and perfor-

mance of recent throughput by incorporating a health metric.

PSNR as a Health Metric

PSNR is well-established metric to assess the relative quality of video encoding [179]. The PSNR

of a M ×M frame of n pixel-depth is computed based upon the algebraic difference of the input

frame and the image in the frame buffer in O(M2) steps. In the PURE technique, the PSNR of

each frame is computed in the background using the On Chip Processor already embedded in fabric

without decreasing the throughput of the PE array. In the experiments herein, the computation of

PSNR was measured to take 4.23msec for the DCT input image luma resolution 176×144, and thus

incurs only 2.79% time utilization of the embedded PowerPC. Likewise, the power consumption

overhead during PE reconfiguration is 70mW considering ICAP and RS utilized power [45]. Thus,

this approach can be advantageous in terms of power and area requirements by detecting anomalies

without incurring redundancy within the PE datapath. Meanwhile, PSNR computations on the

processor proceed concurrently with DCT computations in the PE array. PSNR computation is

168

performed as a health metric and is not on the PE array’s critical path of the DCT core. Thus,

the interval of time between successive calculations of PSNR can be selected independently to be

sufficient for health assessment without impacting the DCT core’s throughput.

The occurrence of hardware errors resulting in a decrease in PSNR has been validated in the lit-

erature [56] [180] [20],[47]. For example, in [56] the authors developed an alternative resilience

approach called Soft NMR. It used real-time signal difference to compensate for anomalies ex-

posed by voltage over-scaling, and they evaluated the resilience of their circuits using PSNR. In

[180] and [47], PSNR is used to quantify the graceful degradation achieved in a Motion Estima-

tion engine, DCT application, and an Inverse DCT circuit as the supply voltage is reduced. Their

research investigated supply voltage reduction from 1.2V to 0.71V causing errors that decreased

PSNR 34.9dB to 24.8dB and deemed the maintenance of PSNR above 20dB as achieving ac-

ceptable performance. The impact that faults have on PSNR and the resulting image quality are

also visually apparent. For instance, Fig. 6.16 depicts PSNR of 35.27dB, 7.07dB, 29.86dB, and

34.78dB resulting from error-free, PE1 faulty, PE2 faulty, PE7 faulty respectively, for a typical

frame from the city sequence.

169

(a) Image in frame buffer computed
using healthy PEs, PSNR=35.27dB

(b) Image in frame buffer com-
puted using DCT with a faulty PE1,
PSNR=7.07dB

(c) Image in frame buffer com-
puted using DCT with a faulty PE2,
PSNR=29.86dB

(d) Image in frame buffer com-
puted using DCT with a faulty PE7,
PSNR=34.78dB

Figure 6.16: The impact of faults on PSNR and image quality

While these previous approaches utilize PSNR for assessing resilient architecture performance,

the novelty of the PURE technique is to escalate resources based on their impact on PSNR. In

particular, the PURE scheme maintains quality above a certain user-specified tolerance by adapting

the datapath. Taking a broad view, a system boundary is defined so that external factors such as

environment, occlusions, or signal transmission errors reside outside of the signal processing task.

For example within the system boundary of a video encoding task, PSNR reflects the compression

quality if the input noise is considered to be part of the input signal. Thus, the PSNR reflects

the effectiveness of the signal processing system in terms of its underlying hardware resources.

However, even in the absence of faults, PSNR varies depending on the algorithms ability to perform

170

lossy compression and reconstruction in accordance with the nature of the scene’s content. For

example in the PURE results shown in Fig. 6.19 of the following section, PSNR is seen to decline

from 33dB down to 32dB during frames 1 through 50. When PSNR drops abruptly at frame 51,

due to a hardware fault, it triggers the Fault Detection phase of the PURE algorithm.

The PURE algorithm differentiates failure-induced changes in PSNR from ambient changes in

PSNR using a user-selected maximum tolerable quality degradation during Fault Detection (FD),

denoted as ∆FD. The quantity ∆FD represents an allowable runtime percentage change in PSNR

which would invoke the PURE diagnostic flow. A sliding window of recent PSNR values is used

to accommodate differences in the changing nature of the scene’s content. ∆PSNR is defined as:

∆PSNR = 100× (PSNRavg − PSNRcurrent)

PSNRavg

(6.8)

For example, Table 6.5 and Table 6.6 indicate the feasibility of selecting ∆FD = 3% for the

city input sequence with a sliding window of 6 frames. Although the nominal PSNR value may

vary, Table 6.5 and Table 6.6 together show how a desirable ∆FD value could tradeoff both false

positive and false negative detections. Finally, selection of the sliding window size can take into

account the product of reconfiguration time and frame rate yielding ⌈Trecon × Framerate⌉, e.g.

⌈180ms×30fps⌉ = 6 frames. Table 6.7 lists the effectiveness of using these detection parameters

with a variety of input benchmarks using PEs with 5% degraded output at frame 51, QP=5.

171

Table 6.5: Effect of ∆FD = 3% tolerance using
Failure-Free Resources for city.qcif

Frame ∆PSNR Action Interpretation
7 -0.32% no change correct

23 0.26% no change correct
... ... no change correct
47 7.53% reconfiguration triggered false positive†

... ... no change correct
70 2.01% no change correct

† reconfiguration is triggered

Table 6.6: Effect of ∆FD = 3% tolerance using
PEs with 5% degraded output

Faulty PE ∆PSNR Action Interpretation
1 6.63% reconfig. triggered at 51 correct
2 4.07% reconfig. triggered at 51 correct
3 4.76% reconfig. triggered at 52 correct
4 4.63% reconfig. triggered at 52 correct
5 3.99% reconfig. triggered at 53 correct
6 3.01% reconfig. triggered at 55 correct
7 < 3% no change false negative†

8 < 3% no change false negative†

† innocuous fault below threshold, reconfiguration is not triggered.

Table 6.7: Fault detection performance (∆FD = 3%)

Faulty PE1 Faulty PE2

Sequence Trigger Frame ∆PSNR Interpretation Trigger Frame ∆PSNR Interpretation
Akiyo 51 6.54% correct, latency = 0 frames none - false negative

Carphone 52 4.81% correct, latency = 1 frames 52 3.33% correct, latency = 1 frames
City 51 6.63% correct, latency = 0 frames 51 4.07% correct, latency = 0 frames

Claire 53 3.04% correct, latency = 2 frames 55 3.01% correct, latency = 4 frames
Football 51 41.55% correct, latency = 0 frames 51 16.77% correct, latency = 0 frames

Table 6.8 summarizes the combinations of conditions under which PSNR is a reliable indicator

of faults. The first row indicates that when no fault is present and tolerance is not exceeded then

fault diagnosis is not invoked. The last row corresponds to the scenario whereby fault diagnosis

is initiated in response to a fault detected by exceeding detection tolerance. Both of these scenar-

ios invoke the expected response to maintain the quality objective by seeking a repair only when

172

needed. Conditions corresponding to the middle two rows of Table 6.8 also maintain the desired

quality objective, due to the non-intrusive nature of the PURE reconfiguration process. For instance

in the second row, PURE still minimizes the impact of inadvertent triggering of reconfiguration by

temporarily deallocating the least priority function or reconfiguring the RS. In the third row, the

failure is an innocuous fault in the sense that it does not manifest a degradation in signal quality

sufficient to necessitate repair. In summary, PURE allows the designer to specify the tolerable

range of signal degradation by selecting ∆FD to allow fluctuations up to that value without trigger-

ing the diagnostic flow. Finally, even though PSNR calculation and the Reconfiguration Controller

are not part of the throughput datapath and thus do not impact signal quality, handling of possible

faults in these PURE components can be addressed using techniques identified in [181].

Table 6.8: Quality-oriented fault-diagnosis

Hardware ∆PSNR FD Quality
Faults > ∆FD asserted objective met?

No No No Yes
No Yes Yes→ False Positive Yes†

Yes No No→ False Negative Yes††

Yes Yes Yes Yes
† Small power overhead involved
†† Innocuous fault

Output Discrepancy as a Health Metric

When a health metric such as PSNR is readily available, it can be used to reduce area and power

overheads. However, for applications where such health metric is not feasible, PURE can utilize

CED and priority information without loss of generality. Thus, to detect hardware faults at the

local DCT level instead of an entire encoder level, a periodic checking scheme is employed. Here

a single RS is used which can be either a design-time spare or the least priority PE. In either case, an

RS is sequentially configured with active functions of the throughput datapath to serve as a replica

for discrepancy checking. A discrepancy between an active PE and RS indicates a hardware fault in

173

one of them, but does not indicate which one. Once suspect PEs are identified, the same diagnostic

flow can be invoked that was previously described for the PSNR metric. Afterwards, the PURE

diagnostic flow is initiated to analyze and isolate the faulty PEs.

When using Output Discrepancy as a health metric, PURE gives precedence to checking the high-

est priority PEs. For example, in the case of DCT the PE which computes the DC coefficient is

prioritized first, then the PE computing the AC0 coefficient, and so on. The choice of how fre-

quently an RS is configured and the number of RS utilized, both affect the fault-detection latency.

We will discuss in Section 6 how the fault-handling latency is improved by increasing the number

of utilized RS. Both the above mentioned parameters, i.e., reconfiguration interval and number of

RS, affect the power consumption. An in-depth discussion of using output discrepancy as a health

metric is presented in [14] where a low area overhead estimator is used in lieu of multiple instances

of the fully redundant datapath.

In summary, use of either a PSNR-based or discrepancy-based health metric can be used to ini-

tiate the PURE diagnostic flow. Nonetheless, PURE provides the designer with the freedom to

choose the number of RS and the period between reconfigurations based on area, power, and fault-

detection latency tradeoffs in order to meet the specific design objectives.

PURE Functional Testing as Compared to Physical Resource Testing

There are a number of distinctions between PURE and physical resource testing techniques. For in-

stance, the STARs approach mentioned in Section 2 provides a useful and established online BIST

approach to diagnosis of FPGA Logic Resources by Abramovinci, Stroud, and Emmert [67],[89].

Both techniques focus on providing fault coverage while maintaining useful throughput. How-

ever, they have significant differences including: test and recovery granularity, test input vector

overhead, support for heterogeneous resources, detection latency, and dormant fault coverage.

174

With respect to test and recovery granularity, the techniques differ significantly. Both PURE and

STARs can utilize CED for fault detection. STARs uses CED to compare the outputs of each

fine-grained physical resource individually, whereby every Programmable Logic Block (PLB) is

repeatedly reconfigured for testing against some other PLB. On the other hand, PURE employs

CED at the coarse-grained application level to compare functional outputs, whereby each func-

tion is composed of an arbitrarily large number of PLBs. Thus for signal processing architectures,

PURE is able to take advantage of information from the application-level, such as pipeline stage

organization of the DCT core or video encoder. In the case of PSNR as a health metric, PURE

provides the advantage of needing to reconfigure only when a fault is present and observable. In

terms of scalability, in contrast to fine granularity BIST-style approaches which require reconfig-

urations proportional to the number of physical resources, PURE diagnosis flow executes linearly

with respect to the number of PEs.

With respect to test input vector overhead, PURE avoids exhaustive test inputs by leveraging the

throughput input data to detect discrepancies, as described above. STARs, on the other hand,

requires additional inputs which function only as test vectors, but do not contribute to throughput.

It employs a Test Pattern Generator (TPG) and an Output Response Analyzer (ORA) to test a

block under test. STARs utilizes pseudo-exhaustive test inputs which configure every PLB to every

possible logic function individually to verify correctness. While both PURE and STARs require

periodic reconfiguration, PURE reconfiguration consists of only loading the bitstream for a PE

which is invariant and predefined. STARs reconfigures each PLB in a vast range of arrangements

which must be stored separately or created dynamically. However, this does allow STARs to

locate and remap the fault at the finest possible granularity. This conserves resources which can be

recycled, although contemporary reconfigurable devices have a vast number of resources available.

Nonetheless, this does allow STARs to provide dormant fault coverage even if the PLB is not

active. In PURE, dormant faults are expunged after the region is configured for comparison by the

175

diagnosis flow.

With respect to support for heterogeneous resources, PURE’s use of functional testing can be ad-

vantageous. For instance, considering that many commercial FPGAs provide an abundance of

dedicated functional units embedded in the fabric such as hardware multipliers. Since PURE uses

functional performance for both PSNR and CED based fault detection, testing of the embedded

resources such as a Xilinx DSP48 multiplier become intrinsic in the technique. On the other hand,

resource-oriented tests must seek out special-purpose pseudo-exhaustive tests of these heteroge-

neous resources to avoid combinatorial explosion of the input space.

With respect to detection latency, exhaustive resource testing exhibits a detection latency propor-

tional to the number of PLBs rather than number of PEs. For a N ×N array of PLBs, the expected

value of detection latency for STARs is N2

2
× tPLB

test where tPLB
test denotes the testing time of a PLB

plus overheads incurred by stopping the clock to capture the register states. Use of a hybrid func-

tional CED technique to detect faults and then STARs to diagnosis and recover from them has been

proposed as an enhanced version [182]. For PURE, the expected value of detection latency varies

linearly with the number of PEs. More precisely, an upper bound on the diagnosis time is defined

in terms of the maximum slack-update iterations required to isolate Nd number of faulty nodes in

a network of N nodes employing a single RS, and is given by:

Nsup,max = 1 +
N−1∑

s=N−Nd

s (6.9)

For example, given a network of size N = 8 and Ns = 1, the maximum number of slack updates

occur in the case when PE7 and PE8 are faulty as depicted in Fig. 9. Thus, Nsup,max = 1 + 7 + 6.

The constant term 1 is added to include the reconfiguration required to identify a healthy slack.

Fig. 6.17 shows the upper bound on diagnosis latency using Ns = 1. Fig. 6.18 shows the diagnosis

176

latency when using two slacks for a network of size N = 8. Although, an increase in number of

nodes results in increased diagnosis latency due to the reconfigurations involved, the number of

defective nodes impact the latency more significantly. To diagnose a single defective node with

Ns = 2, as few as one slack update is required as compared to the previous case requiring a

maximum of 8 slack updates when only one slack was employed.

1
2

3
4

5
6

8
9

10
11

12
13

14
15

16

0

20

40

60

80

of defectives
of nodes

U
pp

er
 b

ou
nd

 o
n

di
ag

no
si

s
tim

e
(N

su
p,

m
ax

)
ite

ra
tio

ns

Figure 6.17: Diagnosis latency of the PURE approach for Ns = 1

1 2 3 4 5 6
0

2

4

6

8

10

12

14

of defectives

U
pp

er
 b

ou
nd

 o
n

di
ag

no
si

s
tim

e
(N

su
p,

m
ax

)
ite

ra
tio

ns

Figure 6.18: Diagnosis latency of the PURE approach for Ns = 2, N = 8

177

Table 6.9: Configuration bitstream sizes in DCT core

Function PRR Location .bit Size
fDC SLICE X54Y224:SLICE X71Y255 32KB
fAC0 SLICE X54Y192:SLICE X71Y223 35KB
fAC1 SLICE X54Y160:SLICE X71Y191 34KB
fAC2 SLICE X54Y128:SLICE X71Y159 35KB
fAC3 SLICE X54Y96:SLICE X71Y127 34KB
fAC4 SLICE X54Y64:SLICE X71Y95 36KB
fAC5 SLICE X54Y32:SLICE X71Y63 37KB
fAC6 SLICE X54Y0:SLICE X71Y31 34KB

Table 6.9 lists the configuration bitstream sizes for various PEs in DCT core which can be used

to assess the configuration memory size requirement. The following factors are involved in the

reconfiguration flow, and hence add to the overhead of the diagnostic provision in PURE approach.

PRR Size: For Virtex-4 device, the minimum PRR height that can be defined is 16 CLBs [165]

while the maximum height can span an entire column in the chip. To effectively utilize the PRR

capacity, the resource utilization of the mapped function should also be considered when choosing

the PRR size. For example, each PRR should have a sufficient number of LUTs, FFs, and DSP

multipliers to implement a DCT-coefficient computation function in the DCT core.

Number of PRRs (M): The total number of reconfigurable partitions defined at design-time depend

upon number of functions, throughput requirements, fault-handling capacity to multiple failures,

and desired diagnostic latency. Fault-detection and diagnosis latency can be improved by utilizing

more PEs for the comparison purposes at runtime.

External Reconfiguration Memory Size: Each PRR can perform the computation of a function

while each function mapping generates a partial reconfiguration bitstream. To realize full mapping

capability at runtime so that any function can be mapped to any PE, as many as N ×M number

of configurations equivalent memory is needed. Thus, the compact-flash memory size requirement

increases significantly with both N and M .

178

On-chip Reconfiguration Memory Size: For a tractable number of nodes such as 8, the on-chip

configuration memory size requirement can be fulfilled with today’s FPGAs. However, the on-chip

memory of FPGAs may not scale well for the increased the number of PEs. In such a scenario, a

bitstream relocation approach[183][110] can benefit in saving the memory requirement. In [183],

the authors reported a 50% reduction in number of partial bitstreams in a software defined radio

prototype while a 79.4% saving of the overall bitstream storage size was achieved in [110] by

exploiting the relocatable modules.

Experimental Results

To assess the resilience and power consumption of the PURE algorithm, case studies were evalu-

ated with various benchmarks, using either PSNR or Output Discrepancy as a health metric.

30

30.5

31

31.5

32

32.5

33

33.5

1 21 41 61 81 101 121 141

P
S

N
R

(d
B

)

Frame Number

Fault-Diagnosis
and Recovery

Nominal
Operation

After Fault RecoveryPSNR = 3.44%

>

FD = 3%

(a) PSNR of silent.qcif video sequence

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160

K
b
it
s
p
e
r
fr
a
m
e

Frame Number

Variation in bit rate of predicted frames

(b) Bit-rate of silent.qcif video se-
quence

Figure 6.19: PSNR and bit-rate of the encoder employing PURE

179

(a) Fault-handling using Algorithm 1: Divide-and-
Conquer

(b) Fault-handling using Algorithm 2: FaDReS

(c) Fault-handling using Algorithm 3: PURE

Figure 6.20: Operational examples of the three algorithms

180

Case Study-1: Prioritized elements of the DCT core

To demonstrate the effectiveness of the proposed approach, first consider the case of H.263 video

encoder’s DCT module. The 8 × 8 DCT is computed by 8 PEs. Each PE performs the 1D-DCT

of a row of input pixels to produce an output coefficient. For example, PE1 computes the DC-

coefficient from 8 pixels in a row of frame memory. In the current prototype to evaluate PURE

approach, the video encoder application is run on the on-chip processor. All the sub-blocks except

the DCT block are implemented in software, the later being implemented in hardware. The im-

age data of video sequences is written by the processor to the frame buffer. In order to facilitate

2-D DCT operation, the frame buffer also serves as transposition memory and is implemented by

Virtex-4 dual port Block-RAM. Upon completion of the DCT operation, it is read back from the

frame buffer to the PowerPC through the Xilinx General Purpose Input-Output (GPIO) core. By

the pipeline design of the DCT core, the effective throughput of the DCT core is one pixel per

clock. Internally, the PEs utilize DSP48 blocks available in Virtex-4 FPGAs. A 100MHz core

operation can provide maximum throughput 100M-pixels per second while in order to meet the

real-time throughput requirement for 176 × 144 resolution video frames at 30 frames per second,

the minimum computational rate should be 760K pixels per second. The PSNR computation time

is much longer than that consumed by PEs processing data stream in parallel, i.e., 0.25msec per

frame. It is worth mentioning, however, that a failure to meet real-time deadline in PSNR computa-

tion due to a slow speed processor will only impact the fault-detection/handling latency rather than

the computational throughput of the concurrently operating PEs-array implemented in a hardware

fabric.

The priority of functions is naturally in descending order as the DC-coefficient contains most con-

tent information of a natural image. These 8 PEs in the processing throughput datapath are covered

by the proposed resilience scheme. For this purpose, depending upon area/power margin available,

181

RSs are created at design-time or generated at runtime considering the priority of functions. As

shown in Fig. 6.20, fault-handling is performed at runtime with a small quality degradation during

diagnosis process. The diagnosis time of Algorithm 1 is very short, however, this greedy approach

incurs quality degradation during fault-handling process. The quality degradation during fault-

handling process is improved in Algorithm 2 at the cost of some diagnosis latency. Algorithm

3 provides the best availability of the system during fault-handling and the PSNR is maintained

above 29.5dB. Fig. 6.19 shows the PSNR and bit-rate of the video stream from an operational

encoder before, during, and after fault-handling using the PURE approach.

During diagnosis, PURE can achieve higher useful throughput than alternative approaches due to

escalation of healthy resources to the top priority functional assignments. Fault-handling results

with a video encoder show that average PSNR in PURE’s case is only 3.09dB below that of a

fault-free encoder, compared to a divide-and-conquer approach which incurs average PSNR loss

of 5.12dB during the fault diagnosis phase. This metric provides a useful indication of quality

during refurbishment. The PURE approach maintains throughput by retaining viable modules in

the datapath while divide-and-conquer does not take them into account. Moreover, latency of

diagnosis phase can be reduced by employing multiple dynamic slacks. For instance, a 90% of

diagnosable conditions can be identified in a single reconfiguration using Ns = 3 slacks while

Ns = 1 slack identifies only 50% diagnosable conditions. A 90% CPDC is achieved in more

than 3 testing arrangement instances when using a single slack. Compared to a static topology

scheme where PEs arrangement is fixed at design-time, diagnosability can be increased from a

single defective node to six defective nodes using as few as r = 4 reconfigurations and Ns = 2

slacks. In general, the diagnosability at the completion of PURE’s algorithm is N − 2 after every

possible pair combination is evaluated since at least one healthy pair is necessary to eliminate

suspect status.

182

Case Study-2: Fault Resilience of a Multi-PE Design

Next, to evaluate the PURE approach to applications which do not possess a PSNR-like health

metric, we consider AES [184] in the context of the proposed fault-diagnosis methodology using

a verilog core [185]. For this purpose, the encryption module of 128-bit AES is synthesized and

implemented in Xilinx ISE 13.4 development environment for Virtex-7 xc7v2000t device. SA

faults are injected in the simulation model of circuit generated by the Xilinx Xtool flow. We

utilized our previously developed Fault Injection and Analysis Toolkit (FIAT) [80] which invokes

various commands of the Xilinx flow to study fault behavior. Then, the circuit is evaluated using

test inputs. The test outputs, corresponding actual fault-free outputs, and the outcome in terms of

actual AES functionality are listed in Table 6.10. For the given case of 8 inputs, a total of 4 outputs

being faulty are observed.

Table 6.10: Fault impact in 128 AES Computational FE

Actual Output True Output Test Outcome

66e94bd4ef0a2c3b884cfa59ca342b2e 66e94bd4ef8a2c3b884cfa59ca342b2e incorrect

3ad78e726c1ec02b7ebfe92b23d9ec34 3ad78e726c1ec02b7ebfe92b23d9ec34 correct

45bc707d2968204d88dfba2f0b0cad9b 45bc707d29e8204d88dfba2f0b0cad9b incorrect

161556838018f52805cdbd6202002e3f 161556838018f52805cdbd6202002e3f correct

f5569b3ab626d11efde1bf0a64c6854a f5569b3ab6a6d11efde1bf0a64c6854a incorrect

64e82b50e501fbd7dd4116921159b83e 64e82b50e501fbd7dd4116921159b83e correct

baac12fb613a7de11450375c74034041 baac12fb613a7de11450375c74034041 correct

bcf176a7ea2d8085ebacea362462a281 bcf176a7eaad8085ebacea362462a281 incorrect

To analyze the latency, area, and power consumption of the fault-resilient architecture of the AES

module, we used Xilinx ISE 9.2i for synthesis and implementation flow. The utilization summary

for the design implemented on a xc4vfx60-12ff1136 device is listed in Table 6.11. For the

synthesized design, minimum clock period is 1.821ns (Maximum Frequency 549.058MHz). The

size of each partial reconfiguration bitstream file is 112.8KB. Fig. 6.21 shows the floorplan of AES

core. This allows the PURE approach to occupy only 1
N

area overhead for N PEs.

183

Table 6.11: Utilization summary of the AES design

Utilization
Logic Resource Reconfigurable Capacity

PE PE of a PRR
Number of Slices 416 1021 1024

Number of Slice Flip Flops 625 1778 4096
Number of 4 input LUTs 726 1236 4096

Number of FIFO16/RAMB16s 16 16 16

PE1

PE2 PE8

PowerPC

Processor

Bus

Macros

FIFO/RAM

DSP48

Figure 6.21: Floorplan of the AES core for Virtex-4 chip

184

Energy Duty Cycle

Time-Dependent Dielectric Breakdown (TDDB) and Electromigration (EM) are two significant

causes of permanent faults over the device lifetime [186]. To quantify the survivability of the sys-

tem employing the PURE fault-handing flow, the fault detection, diagnosis, and recovery times are

considered here. The availability is generally defined in terms of Mean-Time-To-Failure (MTTF)

and Mean-Time-To-Repair (MTTR). The impact of radiation and aging-induced degradation on

reliability of FPGA-based circuits has been analyzed by authors in [186], [187], [17].

In this analysis, we use the TDDB failure rate of 10% LUT per year and EM failure rate of 0.2%

per year as demonstrated in [186] for MCNC benchmark circuits simulating their 12-year behavior.

Considering a DCT core, 312 utilized LUTs in a PE spanning one Partial Reconfiguration Region

(PRR) exhibiting a 10.2% failure rate means 32 LUTs fail per year. If the failure rate is uniformly

distributed over time, then a worst case scenario would correspond to a MTTF of 11 days between

LUT failures.

The MTTR is the sum of times required for fault detection, diagnosis, and recovery. To assess

the fault detection latency, faults are injected into the DCT module at frame number 50 of the

news.qcif video sequence [3]. As a result, the PSNR drops at frame number 59. Thus, the

fault detection time is 0.3 seconds for a 30fps frame rate. For a system of N = 8 PEs, the latency

of fault-diagnosis can be computed by using eq. 6.6. Using one slack, the maximum cost is 196

frames or 6.5 second for a frame rate of 30 fps. Given the diagnosis data, the time to identify faulty

nodes is negligible as the on-chip processor operating at 100 MHz clock rate can mark faulty

nodes in very short time once the syndrome matrix is computed. Similarly, time required for 8

reconfigurations during fault recovery is 1.6 seconds. Thus, total time to refurbishment for this

particular example is 8.4 seconds. With these values of MTTF and MTTR, the PURE’s availability

is 99.999%. Moreover, significant throughput is maintained during fault-diagnosis phase as evident

185

by the minimum values of PSNR in Fig. 6.20. Thus, the impact on signal quality even during the

period of unavailability is minimal.

Next, we analyze the dynamic power duty cycle of the proposed scheme. An instance of the simple

DCT module consumes 72mW dynamic power. However, after adding the fault-resilience over-

head, the consumed dynamic power is 142mW. On the other hand, a TMR arrangement would

consume about 216mW dynamic power in addition to the voter, during the 12-year mission-

lifetime. By tackling aging-induced degradation failures in FPGAs, the availability is improved

from 6.027% for TMR to 99.999% for PURE given pessimistic device failure rates. This average

availability measure for TMR is based upon failure of two TMR paths without recovery, as a sys-

tem failure may occur in the worst case upon incidence of the second fault. Since conventional

TMR provides no repair mechanism, in the worst case the system becomes unavailable upon oc-

currence of a second failure, as the correct functioning datapath cannot be discerned by majority

voting. Furthermore, the PURE arrangement consumes only 33% of TMR configuration power

for 99.999% of the mission-period. Meanwhile, it consumes 65.7% of TMR arrangement for only

0.001% mission. A second case study with an AES encryption core implemented on a Xilinx

Virtex-4 FPGA indicates detection and recovery of repeated stuck-at faults using diagnosis-by-

comparison at the module-level while requiring only 1
N

area overhead for N PEs when Ns = 1

slack is used.

186

CHAPTER 7: CONCLUSION

With reduced feature sizes and power consumption, future nano-scale semiconductor devices are

attractive candidates for signal processing platforms to meet computational demands of current and

future video applications. However the reliability of high density devices decreases significantly

when used for computationally-intensive complex signal processing tasks. Thus, autonomous

fault-handling becomes highly desirable to sustain performance in a seamless fashion from the

viewpoint of the middleware and application software. The techniques developed in this work are

summarized in the following section. Next, the scope and limitations of the current work are identi-

fied in Section 7.2, and then possible future directions are discussed in Section 7.3. Finally, Section

7.4 concludes the dissertation by envisioning a path for the road ahead in a broader perspective.

Technical Summary

Figure 7.1 shows various evaluation metrics and the techniques developed in this dissertation to

meet the objectives set forth in Chapter 1. Ideally, a fault-tolerance scheme should have a very

small, δ area-overhead. However, traditional schemes like TMR arrangement incur significant area

cost. A FaDReS arrangement operates with almost uniplex area requirement by employing the

reconfiguration strategy for fault-diagnosis. Similarly, a fault-detecting method is favorable if it in-

curs minimal throughput degradation. The traditional redundancy-based CED method reduces the

throughput by half to enable comparison-based detection. In the hCED scheme proposed herein,

the throughput degradation is improved by multiplexing the hardware fabric for primary operation

and a down-sampled fault detection phase. Furthermore, PURE maintains the throughput of the

datapath by computing the PSNR off the critical path in concurrent with main operation.

187

Metrics From existing achievements towards ideal case

Area

overhead
Reduce from 200% in TMR towards 0%+ for uniplex plus control

Detection

Latency

Less-than-linear increase with number of

resources in BIST to instantaneous fault detection

Isolation

Latency

Avoid taking the device offline as in Offline Testing, rather

maintain throughput during fault isolation

Recovery

Time and

Certainty

Reduce from non-deterministic number of reconfigurations in

Evolutionary approaches to a bounded recovery latency

Recovery

Quality
Avoid catastrophic failure in presence of

multiple faults to achieve a graceful degradation strategy

Results obtained from the dissertation

Only 65.7% of TMR during fault-handling and 34% of TMR

during fault-free operation in FaDReS

167msec latency of detecting operationally significant

faults in PURE

Maintain PSNR degradation < 3% during a 60 frame fault

isolation interval

The expected value of number of reconfiguration iterations

to a complete recovery = 2.54 in FaDReS

Sustain throughput despite multiple hardware failures in

SCDR, DRFI, Online MOGA, FaDRes, and PURE

Throughput

Reduction

Reduce from 100% in CED towards 0%+ for uniplex plus

estimator

11% in temporal hCED by multiplexing the fabric to

compute the anticipated value of output

2.79% time utilization of the embedded processor for

PSNR calculation in PURE s fault detection phase

Figure 7.1: The techniques developed herein to meet evaluation criteria

Starting with the first objective in Figure 7.1, area management techniques for fault handling in

reconfigurable logic devices were presented in Chapter 3. These avoid resource testing of test

vectors and instead utilize discrepancy information during normal throughput computation. The

fault coverage achieved with these techniques spans the utilized logic resources. For instance, the

SCDR adaptive fault-handling scheme configures the throughput datapath in reconfigurable fabric

based systems. The improved SNR as a result of the recovery scheme compared to that of a faulty

system demonstrates the effectiveness of the approach. We evaluated the scheme using a typical

application that is decomposable into distinct pipelined stages with favorable results by metrics of

Signal-to-Noise Ratio (SNR) and PSNR.

To efficiently manage the available area for fault-detection purposes, two forms of the CED method

of fault detection in FPGA-based designs were introduced. The spatial heterogeneous CED form

exhibits reduced resource requirements over a conventional CED technique. Thus, area and power

188

are conserved using the proposed approach at the cost of a negligible fault detection latency over-

head. The temporal heterogeneous CED forms error detection capability of fault coverage includes

permanent faults in logic resources, in addition to transient faults. Moreover, the temporal error

detection form has uniplex area requirement avoiding redundancy in the resources. It has the capa-

bility to manifest permanent faults due to diverse inputs. These results are significant contribution

in the sense that fault coverage is enhanced with negligible resource overhead at the cost of reduced

throughput.

A fault handling mechanism using Amorphous Slack is introduced which has advantages of con-

tinuous throughput with small degradation and low area overhead. Dynamic PR is used with

hardware modularity to provide autonomous capability for survivable systems. Experiments with

video coding and image processing applications indicate that fault resilience is achievable in an

area efficient manner using Amorphous Slack. For example, TMR will require 24 modules for

8× 8 DCT computation and the fault capacity would be limited to errors in only one voting path.

However, the Amorphous Slack approach allows additional modules during normal operations, and

can handle even the case when 6 out of 8 modules are faulty. Thus, compared to the TMR scheme,

the area and power requirements are about one third, yet fault tolerance is improved. Moreover,

fault-handling can be adjusted by the DSP circuit designer based upon the tradeoff desired between

detection latency and the area overhead incurred.

In another adaptive area-management technique, a pool of hardware configurations for a reconfig-

urable platform is generated at design-time by utilizing distinct arrangement of hardware resources.

Once faults occur affecting multiple circuit realizations, the PageRank algorithm is used to iden-

tify the most functional realizations. The experiments indicate that the approach is effective at

identifying the correct configuration in a fraction of the comparisons needed by unguided search,

thereby offering considerably improved throughput. In addition, graceful degradation is realized

by promoting the bitstreams in situations where all configurations are faults-affected.

189

Next, a throughput-driven runtime resource configuring scheme to realize soft-resiliency in self-

repairing computational platforms for signal processing is presented. A health metric-based feed-

back method is used by the multi-objective online evolution to dynamically adapt the processing

blocks to achieve the desired levels of power and quality. The scheme is validated by implementa-

tion on a commercial off-the-shelf Xilinx Virtex FPGA to validate the feasibility of a fault-tolerant

and energy-efficient design. Moreover, the scheme is not dependent upon the technology model of

a specific device. Nonetheless, a dynamic reconfiguration capability of the devices is essential to

implement the proposed fault handling flow.

To improve the fault-handling latency of the evolutionary process, FHME is developed which is

capable of accommodating hard faults using a reconfiguration strategy while maintaining useful

throughput during recovery. Input signal characteristics are exploited to intelligently manage the

computational resources with the objective of power efficiency, graceful degradation, and recovery

time. In addition to leveraging data parallelism, the priorities are identified in sub-modules of an

ME engine and utilized accordingly to recover from fault scenarios. The FHME core prototyped on

a Xilinx Virtex-4 device demonstrates power reduction and resilience in video datasets available

from [3]. The concept of dynamic adaptation is evaluated by considering the tradeoff between

QoS, power consumption, and reliability levels.

Moving on to the last row of Figure 7.1, the issue of recovery quality is addressed. During diag-

nosis, PURE can achieve higher useful throughput than alternative approaches due to escalation

of healthy resources to the top priority functional assignments. Fault-handling results with a video

encoder show that average PSNR in PURE’s case is only 3.09 dB below that of a fault-free en-

coder, compared to a divide and conquer approach which incurs average PSNR loss of 5.12 dB

during fault diagnosis phase. This metric provides a useful indication of quality during refurbish-

ment. The PURE approach maintains throughput by retaining viable modules in the datapath while

divide and conquer and randomized pairing do not take them into account. Moreover, latency of

190

diagnosis phase can be reduced by employing multiple dynamic slacks. For instance, a 90% prob-

ability of diagnosis can be achieved in a single reconfiguration using Ns = 3 slacks while Ns = 1

slack provides only 50% probability of diagnosis. A 90% probability of diagnosis is achieved in

more than 3 testing arrangement instances when using a single slack. Compared to a fixed topol-

ogy scheme, diagnosability can be increased from a single defective node to six defective nodes

using as few as r = 4 reconfigurations and Ns = 2 slacks. In general, the diagnosability at the

completion of PURE’s algorithm is N − 2 after every possible pair combination is evaluated. Sys-

tem’s availability and survivability, which are important characteristics of mission-critical systems

in presence of environmental-effects/aging-induced permanent faults, are significantly improved.

By tackling aging-induced degradation failures in FPGAs, the availability is improved from 6%

for TMR to 99.999% given pessimistic device failure rates.

Compared to a divide-and-conquer approach which incurs peak PSNR loss of 6.67dB during the

fault diagnosis phase, PURE performance of a video encoder achieves peak PSNR degradation of

only 4.02dB, when subjected to identical video inputs and failure conditions. By tackling aging-

induced degradation failures in FPGAs, the availability is improved to 99.999% even for pes-

simistic device failure rates. Thus, detection and isolation latency, recovery latency, and recovery

quality are improved by innovations proposed in this dissertation.

A priority-aware deterministic flow fault-handling algorithm, FaDReS is developed which uses

PSNR as an indicative measure of the hardware’s health. The experimental testing of the FaDReS

algorithm shows advantageous results for fault handling scenarios. The number of iterations in

fault isolation phase is bounded by the number of PEs and RS condition. The PSNR degradation

is minimal throughout this phase by fully utilizing input signal characteristics to reduce DCT size.

The priority of functions is taken into account to achieve the best possible solution in a fault sce-

nario. Although the FaDReS finite state machine is a critical component of the proposed scheme,

some other means of software fault tolerance may be employed for the PowerPC processor [181]

191

which is responsible for sequencing the fault handling mechanism. Although a video encoder was

considered as a case study, a broader range of applications could be feasible. In particular, in ab-

sence of a uniplex health metric (such as PSNR), the designer can tradeoff periodic temporal CED

or spatial CED redundant computations based on throughput/cost/reliability constraints. Alterna-

tively, the slack can be periodically configured in a round-robin manner to check the correctness

of PEs as demonstrated in [18].

To further improve the partial throughput during recovery period PURE scheme is proposed which

also employs a health metric in the feedback loop. PURE provides an adaptive approach to fault-

handling for meeting survivability objectives using dynamic reconfiguration. Dynamic redundancy

realizes autonomicity while gracefully maintaining a defined quality of service measure within

area-resource, power, and energy constraints. PURE achieves these objectives at reduced area and

power overheads compared to static redundancy schemes by adapting a uniplex instance of the

datapath when aberrant behavior occurs. A uniplex configuration is sufficient if a signal-to-noise

metric is known, as well as in applications which possess a readily correlated metric to identify

anomalous behavior.

Scope and Limitations

While PURE provides an adaptive dynamic reconfiguration approach to achieve survivability with

benefits in terms of most metrics, its scope of applicability and limitations are described here. The

foremost is the availability of a reconfigurable fabric. Dynamic reconfiguration of redundancy

permits autonomous operation while maintaining a defined quality measure within area-resource,

power, and energy constraints. PURE achieves these objectives at reduced area and power over-

heads compared to static redundancy schemes by adapting a uniplex instance of the datapath when

aberrant behavior occurs. A uniplex configuration is shown to be sufficient for applications such

192

as DCT when a signal-to-noise metric such as PSNR is available. Yet without loss of generality,

PURE is suitable for any application which possesses a definitive condition identifying anomalous

behavior such as output discrepancy using diagnosis-by-comparison.

Even though logic resources are focused on for fault-coverage, interconnect resources are covered

to some degree. In particular, within the routing permutations available for the pre-defined RS

regions mapped over the PRRs of the reconfigurable fabric. The fault coverage provided includes

logic resources as well as routing resources as their performance is intrinsic to the observed quality

metric. The malfunctioning of any of them will result in the utilizing PE to be flagged as faulty,

and then its assigned function is moved to another area in the chip only if it is found to exhibit

a sufficient operational priority on the output quality. This self-organizing hardware architecture

maintains energy efficiency and quality under various operating conditions by sacrificing non-

critical computations based on input signal characteristics and escalating critical tasks to healthy

computational resources.

For reconfigurable fabrics, an autonomous soft-resilience approach can be advantageous to the

tradeoffs of accuracy and energy efficiency especially if cessation of throughput is acceptable to

the application. For example, a multi-objective GA approach is promising in solving such large

search space problems using the proposed guidance function along the pareto front if it can operate

within a sufficient time window to perform the search. The proposed scheme performs well for a

synthetic node case study as well as SVM and DCT computations. The recovery results demon-

strate self-healing capability, as well as power efficient circuits with provision of the adaptive re-

source escalation approach. An interesting future consideration would be to develop a scheme for

priority estimation at runtime for other applications where task priority information is not known

a-priori.

In summary, the proposed techniques appear to be preferable by several metrics, for applications

193

having a reconfigurable logic fabric as compared to previous approaches for such domains. For use

in Application-Specific ICs, however, large-scale reconfiguration is not possible, and traditional

fault-handling techniques such as static TMR are recommended. These are still preferred when

reconfiguration is not an option or fault-masking capability is desired in order to mask even a

single error to propagate through the output.

Table 7.1: A summary of the dissertation and lessons learned

What worked well?
•Uniformly partitioned SCDR pipeline
•Full search based FHME
•Multi-objective GA to find pareto solution in quality-energy space
•Xilinx platform for dynamic reconfiguration and power estimation
•Video encoder application to demonstrate graceful degradation
•PSNR-based health metric to trigger fault-handling
What did not work as well?
•Vendors proprietary file formats and tool flow support for fault injection
•Fault-handling latency of the evolvable hardware scheme
•A divide and conquer approach to isolate faulty modules (throughput)
•Reconfiguration approach to mitigate soft errors (latency)
Lessons learned
•GAs are better at large scale problems
•Deterministic flows (FaDRes, PURE) perform good for rapid fault
recovery when using comparison diagnosis models
•Reconfiguration is essential to mitigate permanent faults
What challenges remain?
•Extending SCDR to a Processor Pipeline
•Designing the datapaths to support architectural adaptations of the FHME
•Extending the multi-objective approach to large systems
•Extending the reconfiguration concepts to ASICs to mitigate
aging, PV and supporting NTV operation
•Memory Errors

Table 7.1 summarizes the main points of the dissertation along with lessons learned and future

directions. The schemes developed herein require dynamic reconfiguration capability of the un-

194

derlying platform to dynamically adapt the architecture according to runtime characteristics. It

may be noted that the method concentrates on local permanent damage rather than soft-errors

which can be effectively mitigated by Scrubbing [11]. Scrubbing for reconfigurable devices has

been addressed extensively in the literature, including [10],[76], and [188], and it provides a suit-

able approach to narrowly-focused transient soft-errors which would not require the robustness nor

complexity of the techniques developed herein. Especially the need to maintain throughput which

is typically disabled during scrubbing.

Future Directions

The research presented in this dissertation can serve as a unified framework to build advance

schemes in order to enable breakthroughs and to pursue a diverse set research directions for us-

ing autonomous reconfiguration to increase reliability. Similar to the work developed herein is

made possible by previous research efforts, the new horizons of technology breakthroughs call

upon current research efforts. The work presented in this dissertation can be extended in following

ways:

Area Management Techniques:

SCDR: Although, the FIR case study is a very regular circuit, there is no loss of generality as long

as the circuit can be fitted into various PRR stages. A future extension can be the development of

a fault-tolerant pipelined microprocessor core using the SCDR scheme.

hCED: The latency of fault detection in spatial mode may be improved by randomly checking some

of the coefficients in the kernel computation. An important area of future work is the derivation of

necessary fault-free conditions for a generic FE design.

DRFI: An interesting direction can be analyzing the effect of varying the granularity of diagnosis

195

by using the PR model developed in [189]. Also, the TMR model of diagnosis can be helpful to

accelerate fault-isolation.

Soft-Resilience Using An Online Multi-Objective GA:

The objective function can incorporate process-variation models and feature size characteristics to

extend the scheme beyond FPGAs. The reconfiguration capability in full-custom ASICs could be

realized by introducing some programmable logic and routing components.

Health Metric Based Dynamic Resource Allocation:

Although the proposed scheme is evaluated for FS-based ME, energy can be reduced with other

parallelizable architectures. Another future direction is extending the proposed technique of ex-

ploiting free APEs by considering higher resolutions, higher frame rates, advanced motion models

like in H.264 or HEVC which have much higher computational workload demands.

Future work can be to extend these schemes to achieve fault-resilience in general multiproces-

sor networks which have inherent reconfigurablity, although the freedom of task mapping and

increased granularity lessens the focus on maintaining throughput. Another main branch of the

work presented in this dissertation can be to extend the Resource Escalation approach to accom-

modate inter/intra-die process variation and voltage scaling, which can adaptively achieve reliable

computation at low power consumption.

The Road Ahead

As the Moore’s law sustains in the near future, we can expect future chips with a very large number

of transistors. In addition, the reconfigurable fabric is typically present in heterogeneous systems.

Many applications are being mapped to reconfigurable fabric for energy efficiency of computa-

tion, and video applications are good candidates being highly data and computation-intensive. We

196

think it is important to tackle hardware issues such as process variations, power consumption, and

hardware faults, etc., so that they can be handled at the architectural and algorithmic level. A pos-

sible solution is by designing the datapaths as adaptable as possible in order to realize the runtime

feasibility of adding or removing computational elements in a given environment.

Other directions reach beyond traditional digital design paradigms. For example, intelligent self-

healing capability is desirable in micro-electronics based systems which can be achieved through

more advanced biologically-inspired design paradigms which are in their infancy for digital im-

plementation. Adaptive designs seek to increase sustainability of circuit operation when subject to

aging-induced degradation which is increasingly prominent with reduced feature size.

The concept of health metric based dynamic architectural adaptations may be extended to realize a

Metamorphic Data Encoding (MDE) paradigm. For instance, the number of redundant bits in ECC

codeword can be dynamically adjusted based upon runtime conditions. For power efficiency pur-

poses, the computation block can be run at error critical voltage in the vicinity of NTV. Then, using

health metric to instantaneously adapt codeword width to be just sufficient to maintain quality by

power gating the ECC bits can result in energy savings. So, instead of adapting device conditions

when soft errors occur or metamorphism of architecture (FaDReS), Metamorphic Data Encoded

representation is inherently robust to operationally significant errors.

Metamorphic Data Encoding can be a good candidate scheme to mitigate aging by introducing

some ECC bits on demand. By adapting the number of ECC bits dynamically, current operating

conditions of CUT intrinsically select the amount of data redundancy needed to maintain the de-

sired quality under current conditions. In a broader perspective, the MDE can be thought of a way

to adapt what the meaning of bits represent as necessary to maintain quality. In addition, trading

precision for resilience, or other novel ways that a data coding could self-adapt in a Metamorphic

Computational Ecosystem seems an interesting future research direction to pursue.

197

LIST OF REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[2] TNT, “Video test sequences, institute for information processing, leibniz university of han-

nover,” Retrieved on May 26, 2013 [Online] ftp://ftp.tnt.uni-hannover.de/

pub/svc/testsequences/.

[3] Trace, “Video trace library: YUV 4:2:0 video sequences,” Retrieved on January 20, 2012

[Online] http://trace.eas.asu.edu/yuv/.

[4] J. A. Blackard and D. J. Dean, “The forest covertype dataset,”

http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info.

[5] R. Hyman Jr., K. Bhattacharya, and N. Ranganathan, “Redundancy mining for soft error

detection in multicore processors,” Computers, IEEE Transactions on, vol. 60, pp. 1114

–1125, Aug. 2011.

[6] J. Emmert, C. Stroud, and M. Abramovici, “Online fault tolerance for FPGA logic blocks,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15, pp. 216 –226,

Feb. 2007.

[7] K. Paulsson, M. Hubner, and J. Becker, “Strategies to on-line failure recovery in self-

adaptive systems based on dynamic and partial reconfiguration,” in First NASA/ESA Con-

ference on Adaptive Hardware and Systems (AHS), June 2006.

[8] W. Rao, C. Yang, R. Karri, and A. Orailoglu, “Toward future systems with nanoscale de-

vices: Overcoming the reliability challenge,” Computer, vol. 44, pp. 46–53, Feb. 2011.

198

ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
http://trace.eas.asu.edu/yuv/

[9] SPP1500, “Dependable embedded systems,” [Online] http://spp1500.itec.kit.

edu.

[10] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. Friendlich, H. Kim, and

A. Phan, “Effectiveness of internal versus external SEU scrubbing mitigation strategies in a

Xilinx FPGA: Design, test, and analysis,” Nuclear Science, IEEE Transactions on, vol. 55,

pp. 2259–2266, Aug. 2008.

[11] P. Ostler, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, B. Pratt, H. Quinn, and M. Wirth-

lin, “SRAM FPGA reliability analysis for harsh radiation environments,” Nuclear Science,

IEEE Transactions on, vol. 56, pp. 3519 –3526, Dec. 2009.

[12] N. Imran and R. F. DeMara, “A fault-handling methodology by promoting hardware config-

urations via pagerank,” in Presentations at the ReSpace/MAPLD Conference, (Albuquerque,

NM), 2011.

[13] N. Imran and R. F. DeMara, “Cyclic NMR-based fault tolerance with bitstream scrubbing

via Reed-Solomon codes,” in Presentations at the ReSpace/MAPLD Conference, (Albu-

querque, New Mexico), Aug. 2011.

[14] N. Imran and R. F. DeMara, “Heterogeneous concurrent error detection (hCED) based on

output anticipation,” in International Conference on Reconfigurable Computing and FPGAs

(ReConFig), pp. 61–66, Dec. 2011.

[15] N. Imran and R. F. DeMara, “A self-configuring TMR scheme utilizing discrepancy resolu-

tion,” in International Conference on Reconfigurable Computing and FPGAs (ReConFig),

pp. 398 –403, Nov. 30 -Dec. 2 2011.

[16] A. Stoica, D. Keymeulen, R. Zebulum, M. Mojarradi, S. Katkoori, and T. Daud, “Adaptive

and evolvable analog electronics for space applications,” in Proceedings of the 7th inter-

199

http://spp1500.itec.kit.edu
http://spp1500.itec.kit.edu

national conference on Evolvable systems: from biology to hardware, ICES’07, (Berlin,

Heidelberg), pp. 379–390, Springer-Verlag, 2007.

[17] C. Bolchini and C. Sandionigi, “Fault classification for SRAM-Based FPGAs in the space

environment for fault mitigation,” Embedded Systems Letters, IEEE, vol. 2, pp. 107 –110,

Dec. 2010.

[18] R. F. DeMara, K. Zhang, and C. A. Sharma, “Autonomic fault-handling and refurbishment

using throughput-driven assessment,” Applied Soft Computing, vol. 11, pp. 1588–1599,

March 2011.

[19] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold

computing: Reclaiming Moore’s Law through energy efficient integrated circuits,” Pro-

ceedings of the IEEE, vol. 98, pp. 253–266, Feb. 2010.

[20] G. Karakonstantis, N. Banerjee, and K. Roy, “Process-variation resilient and voltage-

scalable DCT architecture for robust low-power computing,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 18, pp. 1461–1470, Oct. 2010.

[21] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold voltage scaling for low

power cmos,” Solid-State Circuits, IEEE Journal of, vol. 32, pp. 1210–1216, Aug. 1997.

[22] E. Mintarno, J. Skaf, R. Zheng, J. Velamala, Y. Cao, S. Boyd, R. Dutton, and S. Mitra, “Self-

tuning for maximized lifetime energy-efficiency in the presence of circuit aging,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, pp. 760–

773, May 2011.

[23] R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara, “Sustainable modular adaptive

redundancy technique emphasizing partial reconfiguration for reduced power consumption,”

International Journal of Reconfigurable Computing, vol. 2011, 2011.

200

[24] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam, “Reconfigurable

fault tolerance: A comprehensive framework for reliable and adaptive fpga-based space

computing,” ACM Trans. Reconfigurable Technol. Syst., vol. 5, pp. 21:1–21:30, Dec. 2012.

[25] F. Cancare, D. B. Bartolini, M. Carminati, D. Sciuto, and M. D. Santambrogio, “On the

evolution of hardware circuits via reconfigurable architectures,” ACM Trans. Reconfigurable

Technol. Syst., vol. 5, pp. 22:1–22:22, Dec. 2012.

[26] A. Nabina and J. L. Nunez-Yanez, “Adaptive voltage scaling in a dynamically reconfigurable

fpga-based platform,” ACM Trans. Reconfigurable Technol. Syst., vol. 5, pp. 20:1–20:22,

Dec. 2012.

[27] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of

dependable and secure computing,” Dependable and Secure Computing, IEEE Transactions

on, vol. 1, pp. 11–33, Jan-March 2004.

[28] M. Tahoori, “High resolution application specific fault diagnosis of FPGAs,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19, pp. 1775 –1786, Oct.

2011.

[29] D. P. Siewiorek and R. S. Swarz, Reliable computer systems: design and evaluation. Natick,

MA 01760: A. K. Peters, third ed., 1998.

[30] S. Mitra and E. McCluskey, “Which concurrent error detection scheme to choose ?,” in

International Test Conference, pp. 985–994, 2000.

[31] S. Mitra, W.-J. Huang, N. Saxena, S.-Y. Yu, and E. McCluskey, “Reconfigurable architecture

for autonomous self-repair,” Design Test of Computers, IEEE, vol. 21, pp. 228–240, May-

June 2004.

201

[32] W. Barker, D. Halliday, Y. Thoma, E. Sanchez, G. Tempesti, and A. Tyrrell, “Fault toler-

ance using dynamic reconfiguration on the POEtic tissue,” Evolutionary Computation, IEEE

Transactions on, vol. 11, pp. 666–684, oct. 2007.

[33] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware: past, present and

the path to a promising future,” Genetic Programming and Evolvable Machines, vol. 12,

pp. 183–215, Sep. 2011.

[34] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Toward robust integrated circuits: The

embryonics approach,” Proceedings of the IEEE, vol. 88, pp. 516–543, April 2000.

[35] P. J. Layzell and A. Thompson, “Understanding inherent qualities of evolved circuits: Evo-

lutionary history as a predictor of fault tolerance,” in Third International Conference on

Evolvable Systems (ICES), (London, UK), pp. 133–144, Springer-Verlag, 2000.

[36] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant evolvable hardware us-

ing field-programmable transistor arrays,” Reliability, IEEE Transactions on, vol. 49, no. 3,

pp. 305–316, 2000.

[37] J. Lohn, G. Larchev, and R. DeMara, “A genetic representation for evolutionary fault recov-

ery in virtex FPGAs,” in in Proceedings of the Fifth International Conference on Evolvable

Systems (ICES), pp. 47–56, 2003.

[38] F. Lombardi, N. Park, M. Al-Hashimi, and H. Pu, “Modeling the dependability of n-modular

redundancy on demand under malicious agreement,” in Dependable Computing, 2001. Pro-

ceedings. 2001 Pacific Rim International Symposium on, pp. 68 –75, 2001.

[39] M. G. Parris, C. A. Sharma, and R. F. DeMara, “Progress in autonomous fault recovery of

field programmable gate arrays,” ACM Comput. Surv., vol. 43, pp. 31:1–31:30, Oct. 2011.

202

[40] S. Vigander, “Evolutionary fault repair of electronics in space applications,” tech. rep., Dis-

sertation, Norwegian University of Science and Technology, Trondheim, Norway, 2001.

[41] M. Liu and J. He, “An evolutionary negative-correlation framework for robust analog-circuit

design under uncertain faults,” Evolutionary Computation, IEEE Transactions on, vol. PP,

no. 99, p. 1, 2012.

[42] R. A. Ashraf and R. F. DeMara, “Scalable FPGA refurbishment using netlist-driven evolu-

tionary algorithms,” IEEE Transactions on Computers, vol. 62, no. 8, pp. 1526–1541, 2013.

[43] S. Kim, H. Chu, I. Yang, S. Hong, S. H. Jung, and K.-H. Cho, “A hierarchical self-repairing

architecture for fast fault recovery of digital systems inspired from paralogous gene regula-

tory circuits,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 20,

pp. 2315 –2328, dec. 2012.

[44] M. Makhzan, A. Eltawil, and F. Kurdahi, “Architectural and algorithm level fault tolerant

techniques for low power high yield multimedia devices,” in International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS, pp. 124–

131, July 2008.

[45] N. Imran, J. Lee, and R. F. DeMara, “Fault demotion using reconfigurable slack (FaDReS),”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 7,

pp. 1364–1368, 2013.

[46] H. Cho, L. Leem, and S. Mitra, “ERSA: Error resilient system architecture for probabilistic

applications,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, vol. 31, pp. 546–558, April 2012.

203

[47] G. Karakonstantis, D. Mohapatra, and K. Roy, “Logic and memory design based on unequal

error protection for voltage-scalable, robust and adaptive DSP systems,” Journal of Signal

Processing Systems (JSPS), vol. 68, pp. 415–431, 2012.

[48] P. Whatmough, S. Das, D. Bull, and I. Darwazeh, “Circuit-level timing error tolerance for

low-power DSP filters and transforms,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 21, no. 6, pp. 989–999, 2013.

[49] W. Rao, A. Orailoglu, and R. Karri, “Nanofabric topologies and reconfiguration algorithms

to support dynamically adaptive fault tolerance,” in VLSI Test Symposium, p. 6, april-4 may

2006.

[50] M. A. V.-R. Juan A. Gmez-Pulido and J. M. Snchez-Prez, “High-speed reconfigurable par-

allel system to design good error correcting codes in communications,” Journal of Signal

Processing Systems, vol. 66, pp. 147–152, 2012.

[51] M. Kthiri, H. Loukil, A. Atitallah, P. Kadionik, D. Dallet, and N. Masmoudi, “FPGA archi-

tecture of the LDPS Motion Estimation for H.264/AVC Video Coding,” Journal of Signal

Processing Systems, vol. 68, pp. 273–285, 2012.

[52] R. Rubin and A. DeHon, “Choose-your-own-adventure routing: lightweight load-time de-

fect avoidance,” in Proceedings of the ACM/SIGDA international symposium on FPGAs,

(New York, NY, USA), pp. 23–32, ACM, 2009.

[53] M. Pereira, L. Braun, M. Hubner, J. Becker, and L. Carro, “Run-time resource instantiation

for fault tolerance in FPGAs,” in NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), pp. 88–95, June 2011.

204

[54] K. Siozios and D. Soudris, “Low-cost fault tolerant targeting FPGA devices,” in NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), Special session on dependability by

reconfigurable hardware, June 2012.

[55] R. Abdallah and N. Shanbhag, “Minimum-energy operation via error resiliency,” Embedded

Systems Letters, IEEE, vol. 2, pp. 115–118, Dec. 2010.

[56] E. Kim and N. Shanbhag, “Soft N-Modular redundancy,” Computers, IEEE Transactions

on, vol. 61, pp. 323–336, March 2012.

[57] S. Narayanan, G. Varatkar, D. Jones, and N. Shanbhag, “Computation as estimation: A

general framework for robustness and energy efficiency in SoCs,” Signal Processing, IEEE

Transactions on, vol. 58, pp. 4416–4421, Aug. 2010.

[58] G. Varatkar and N. Shanbhag, “Error-resilient motion estimation architecture,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, pp. 1399–1412, Oct. 2008.

[59] G. Greenwood, “On the practicality of using intrinsic reconfiguration for fault recovery,”

Evolutionary Computation, IEEE Transactions on, vol. 9, pp. 398–405, Aug. 2005.

[60] J.-C. Laprie, “Dependable computing and fault tolerance : Concepts and terminology,” in

25th International Symposium on Fault-Tolerant Computing - Highlights from Twenty-Five

Years, Jun 1995.

[61] M. Malek, “A comparison connection assignment for diagnosis of multiprocessor systems,”

in Proceedings of the 7th annual symposium on Computer Architecture (ISCA), (New York,

NY, USA), pp. 31–36, ACM, 1980.

[62] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment problem of

diagnosable systems,” Electronic Computers, IEEE Transactions on, vol. EC-16, pp. 848–

854, Dec. 1967.

205

[63] C. Carmichael, “Triple module redundancy design techniques for virtex FPGAs,” Xilinx

Application Note: Virtex Series XAPP197 (v1.0.1), July 6, 2006, 2006.

[64] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal design of triple

modular redundancy logic for SRAM-based FPGAs,” in Design, Automation and Test in

Europe, pp. 1290–1295 Vol. 2, 7-11 2005.

[65] S. Dutt, V. Verma, and V. Suthar, “Built-in-self-test of FPGAs with provable diagnosabilities

and high diagnostic coverage with application to online testing,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 27, pp. 309 –326, Feb. 2008.

[66] M. Gericota, G. Alves, M. Silva, and J. Ferreira, “Reliability and availability in reconfig-

urable computing: A basis for a common solution,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 16, pp. 1545–1558, Nov. 2008.

[67] M. Abramovici, J. M. Emmert, and C. E. Stroud, “Roving STARs: an integrated approach

to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems,”

in The Third NASA/DoD Workshop on Evolvable Hardware, pp. 73–92, 2001.

[68] M. Gao, H.-M. S. Chang, P. Lisherness, and K.-T. T. Cheng, “Time-multiplexed online

checking,” IEEE Transactions on Computers, vol. 60, no. 9, pp. 1300–1312, 2011.

[69] J. Russell and C. Kime, “System fault diagnosis: Closure and diagnosability with repair,”

Computers, IEEE Transactions on, vol. C-24, pp. 1078–1089, Nov. 1975.

[70] A. Friedman and L. Simoncini, “System-level fault diagnosis,” Computer, vol. 13, pp. 47–

53, March 1980.

[71] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., vol. 4, pp. 382–401, July 1982.

206

[72] Z. Ma and A. Krings, “Dynamic hybrid fault modeling and extended evolutionary game the-

ory for reliability, survivability and fault tolerance analyses,” Reliability, IEEE Transactions

on, vol. 60, pp. 180 –196, March 2011.

[73] Z. Ma and A. W. Krings, “Survival analysis approach to reliability, survivability and prog-

nostics and health management (phm),” in Aerospace Conference, 2008 IEEE, pp. 1 –20,

March 2008.

[74] W.-S. Hong and S.-Y. Hsieh, “Strong diagnosability and conditional diagnosability of aug-

mented cubes under the comparison diagnosis model,” Reliability, IEEE Transactions on,

vol. PP, no. 99, p. 1, 2011.

[75] P.-L. Lai, “A systematic algorithm for identifying faults on hypercube-like networks under

the comparison model,” Reliability, IEEE Transactions on, vol. PP, no. 99, p. 1, 2012.

[76] M. Garvie and A. Thompson, “Scrubbing away transients and jiggling around the perma-

nent: long survival of FPGA systems through evolutionary self-repair,” in IEEE Interna-

tional On-Line Testing Symposium (IOLTS), pp. 155–160, 2004.

[77] H. Tan and R. F. DeMara, “A multilayer framework supporting autonomous run-time par-

tial reconfiguration,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 16, pp. 504–516, May 2008.

[78] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low overhead fault-tolerant FPGA

systems,” IEEE Trans. Very Large Scale Integr. Syst., vol. 6, no. 2, pp. 212–221, 1998.

[79] C. A. Sharma and R. F. DeMara, “A combinatorial group testing method for FPGA fault lo-

cation,” in ACST’06: Proceedings of the 2nd IASTED international conference on Advances

in computer science and technology, (Anaheim, CA, USA), pp. 55–60, ACTA Press, 2006.

207

[80] C. A. Sharma, A. Sarvi, A. Alzahrani, and R. F. DeMara, “Self-healing reconfigurable

logic using autonomous group testing,” Microprocessors and Microsystems, vol. 37, no. 2,

pp. 174–184, 2013.

[81] N. Steiner and P. Athanas, “Hardware autonomy and space systems,” in Aerospace confer-

ence, 2009 IEEE, pp. 1–13, March 2009.

[82] H. Flatt, H. Blume, and P. Pirsch, “Mapping of a real-time object detection application

onto a configurable RISC/Coprocessor architecture at full HD resolution,” in Reconfigurable

Computing and FPGAs (ReConFig), 2010 International Conference on, (Quintana Roo),

pp. 452 –457, Dec. 2010.

[83] D. Bouldin, “Enhancing electronic systems with reconfigurable hardware,” Circuits and

Devices Magazine, IEEE, vol. 22, pp. 32 –36, May-June 2006.

[84] A. Jara-Berrocal and A. Gordon-Ross, “VAPRES: a virtual architecture for partially recon-

figurable embedded systems,” in Proceedings of the Conference on Design, Automation and

Test in Europe, pp. 837–842, 2010.

[85] M. Kuehnle, A. Brito, C. Roth, K. Dagas, and J. Becker, “The study of a dynamic reconfig-

uration manager for systems-on-chip,” Annual Symposium on VLSI, 2011.

[86] L. Shannon, “Leveraging reconfigurability in the design process,” International Conference

on Field Programmable Logic and Applications, pp. 731–732, 2005.

[87] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi, “A numerical optimization-based method-

ology for application robustification: Transforming applications for error tolerance,” in

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 161

–170, July 2010.

208

[88] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods for reliability in FPGAs,” in

International Conference on Field Programmable Logic and Applications (FPL), pp. 415–

420, 8-10 2008.

[89] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST and BIST-based diagnosis of fpga

logic blocks,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 12,

no. 12, pp. 1284–1294, 2004.

[90] R. F. DeMara and K. Zhang, “Autonomous FPGA fault handling through competitive run-

time reconfiguration,” in NASA/DoD Conference on Evolvable Hardware, pp. 109–116, July

2005.

[91] K. Zhang, R. F. DeMara, and C. A. Sharma, “Consensus-based evaluation for fault isolation

and on-line evolutionary regeneration,” in International Conference in Evolvable Systems

(ICES’05), pp. 12–24, 2005.

[92] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in Proceedings of the 1st

International Conference on Genetic Algorithms, (Hillsdale, NJ, USA), pp. 101–111, L.

Erlbaum Associates Inc., 1985.

[93] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” Computers, IEEE Trans-

actions on, vol. C-23, pp. 90–93, Jan. 1974.

[94] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice Hall, Upper Saddle

River, NJ., 3rd ed., 2008.

[95] H. Jian, P. Matthew, L. Jooheung, and F. D. Ronald, “Scalable FPGA-based architecture

for DCT computation using dynamic partial reconfiguration,” ACM Trans. Embed. Comput.

Syst., vol. 9, no. 1, pp. 1–18, 2009. 1596541.

209

[96] Xilinx, “Embedded system tools reference manual,” 2008. Retrieved on January 8, 2012

[Online] http://www.xilinx.com/.../edk10_est_rm.pdf.

[97] R. F. DeMara, J. Lee, R. Al-Haddad, R. S. Oreifej, R. Ashraf, B. Stensrud, and M. Quist,

“Dynamic partial reconfiguration approach to the design of sustainable edge detectors.,” in

ERSA’10, pp. 49–58, 2010.

[98] J. Canny, “A computational approach to edge detection,” Pattern Anal. and Mach. Intell.,

IEEE Trans. on, vol. PAMI-8, pp. 679 –698, Nov. 1986.

[99] T. Kim, H. Adeli, C. Ramos, and B.-H. Kang, Signal Processing, Image Processing, and

Pattern Recognition. Springer-Verlag, Springer Heidelberg Dordrecht London New York:

Springer, 2011.

[100] VGG, “Oxford visual geometry group (vgg)’s images dataset : Aerial views,” 2012. Re-

trieved on Feb. 13, 2012 [Online] http://www.robots.ox.ac.uk/˜vgg/data/.

[101] I. Koren and S. Su, “Reliability analysis of n-modular redundancy systems with intermittent

and permanent faults,” Computers, IEEE Transactions on, vol. C-28, pp. 514–520, July

1979.

[102] A. Leon-Garcia, Probability, statistics, and random processes for Electrical Engineering.

Pearson/Prentice Hall, 2008.

[103] C. A. B. Smith, “The counterfeit coin problem,” The Mathematical Gazette, vol. 31, no. 293,

pp. pp. 31–39, 1947.

[104] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos in the wild,” in IEEE

International Conference on Computer Vision and Pattern Recognition(CVPR), (Miami),

2009.

210

http://www.xilinx.com/.../edk10_est_rm.pdf
http://www.robots.ox.ac.uk/~vgg/data/

[105] M. M. Deza and E. Deza, Encyclopedia of Distances. Springer, 2009.

[106] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, “Diffusion maps, spectral cluster-

ing and eigenfunctions of Fokker-Planck operators,” in in Advances in Neural Information

Processing Systems 18, pp. 955–962, MIT Press, 2005.

[107] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Com-

puter Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[108] S. Yang, “Logic synthesis and optimization benchmarks version 3,” tech. rep., Microelec-

tronics Center of North Carolina, 1991.

[109] D. Gleich, “pagerank at mathworks.com.” http://www.stanford.edu/

˜dgleich/programs-old.html, 2006.

[110] J. Huang and J. Lee, “Reconfigurable architecture for ZQDCT using computational com-

plexity prediction and bitstream relocation,” Embedded Systems Letters, IEEE, vol. 3, no. 1,

pp. 1–4, 2011.

[111] K. V. Palem, L. N. Chakrapani, Z. M. Kedem, A. Lingamneni, and K. K. Muntimadugu,

“Sustaining moore’s law in embedded computing through probabilistic and approximate

design: retrospects and prospects,” in International conference on Compilers, architecture,

and synthesis for embedded systems, CASES, (New York, NY, USA), pp. 1–10, ACM, 2009.

[112] V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. Chakradhar, “Scalable ef-

fort hardware design: Exploiting algorithmic resilience for energy efficiency,” in 47th

ACM/IEEE Design Automation Conference (DAC), pp. 555–560, June 2010.

[113] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computation: a voltage-

scalable, variation-aware, quality-tuning motion estimator,” in 14th ACM/IEEE interna-

211

http://www.stanford.edu/~dgleich/programs-old.html
http://www.stanford.edu/~dgleich/programs-old.html

tional symposium on Low power electronics and design (ISLPED), (New York, NY, USA),

pp. 195–200, ACM, 2009.

[114] N. Forbes, “Biologically inspired computing,” Computing in Science and Engineering,

vol. 2, no. 6, pp. 83–87, 2000.

[115] H. Schmeck, C. Mller-Schloer, E. akar, M. Mnif, and U. Richter, “Adaptivity and self-

organisation in organic computing systems,” in Organic Computing A Paradigm Shift for

Complex Systems (C. Mller-Schloer, H. Schmeck, and T. Ungerer, eds.), vol. 1 of Autonomic

Systems, pp. 5–37, Springer Basel, 2011.

[116] SPP1183, “German research foundation (DFG) organic compututing research program,”

[Online] http://projects.aifb.kit.edu/effalg/oc/.

[117] B. Hargreaves, H. Hult, and S. Reda, “Within-die process variations: How accurately can

they be statistically modeled?,” in Asia and South Pacific Design Automation Conference

(ASPDAC), pp. 524–530, March 2008.

[118] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-threshold

voltage (NTV) design: opportunities and challenges,” in Proceedings of the 49th Annual

Design Automation Conference, DAC’12, (New York, NY, USA), pp. 1153–1158, ACM,

2012.

[119] H. Mahdiani, A. Ahmadi, S. Fakhraie, and C. Lucas, “Bio-inspired imprecise computational

blocks for efficient vlsi implementation of soft-computing applications,” Circuits and Sys-

tems I: Regular Papers, IEEE Transactions on, vol. 57, pp. 850–862, April 2010.

[120] R. N. Al-Haddad, An adaptive modular redundancy technique to self-regulate availability,

area, and energy consumptions in mission-critical applications. Phd dissertation, University

of Central Florida, Orlando, Florida, 2011.

212

http://projects.aifb.kit.edu/effalg/oc/

[121] R. W. Butler, “A primer on architectural level fault tolerance,” Tech. Report NASA/TM-

2008-215108, The NASA STI Program Office, Feb. 2008.

[122] R. Hegde and N. Shanbhag, “Soft digital signal processing,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 9, pp. 813–823, Dec. 2001.

[123] G. Varatkar and N. Shanbhag, “Energy-efficient motion estimation using error-tolerance,”

in International Symposium on Low Power Electronics and Design, ISLPED, pp. 113–118,

Oct. 2006.

[124] C. Lisboa, L. Carro, C. Argyrides, and D. Pradhan, “Algorithm level fault tolerance: A

technique to cope with long duration transient faults in matrix multiplication algorithms,” in

26th IEEE VLSI Test Symposium, VTS, pp. 363–370, May 2008.

[125] A. Fathy, I. Tarrad, H. Hamed, and A. Awad, “Advanced encryption standard algorithm: Is-

sues and implementation aspects,” in Advanced Machine Learning Technologies and Appli-

cations (A. Hassanien, A.-B. Salem, R. Ramadan, and T.-h. Kim, eds.), vol. 322 of Commu-

nications in Computer and Information Science, pp. 516–523, Springer Berlin Heidelberg,

2012.

[126] G. Gao, Y. Wang, J. Cui, and R. Yao, “Research on multi-objective on-line evolution tech-

nology of digital circuit based on fpga model,” in Proceedings of the 7th international con-

ference on Evolvable systems: from biology to hardware, ICES’07, pp. 67–76, 2007.

[127] S. Zhao and L. Jiao, “Multi-objective evolutionary design and knowledge discovery of logic

circuits based on an adaptive genetic algorithm,” Genetic Programming and Evolvable Ma-

chines, vol. 7, pp. 195–210, 2006.

[128] H. Kutami, Y. Fukushima, M. Fukushi, I. Yairi, and T. Hattori, “Route-aware task mapping

method for fault-tolerant 2d-mesh network-on-chips,” in Defect and Fault Tolerance in VLSI

213

and Nanotechnology Systems (DFT), IEEE International Symposium on, pp. 472–480, Oct.

2011.

[129] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies for fault-tolerant

network-on-chip multiprocessors,” in Fifth IEEE/ACM International Symposium on Net-

works on Chip (NoCS), pp. 129–136, May 2011.

[130] A. Maheshwari, W. Burleson, and R. Tessier, “Trading off transient fault tolerance and

power consumption in deep submicron (DSM) VLSI circuits,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 12, pp. 299–311, March 2004.

[131] H. Singh, K. Agarwal, D. Sylvester, and K. Nowka, “Enhanced leakage reduction tech-

niques using intermediate strength power gating,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 15, no. 11, pp. 1215–1224, 2007.

[132] B. Zatt, M. Shafique, S. Bampi, and J. Henkel, “A low-power memory architecture with

application-aware power management for motion & disparity estimation in multiview video

coding,” in Proceedings of the International Conference on Computer-Aided Design, IC-

CAD ’11, (Piscataway, NJ, USA), pp. 40–47, IEEE Press, 2011.

[133] Xilinx, “Planahead 10.1 user guide,” 2008.

[134] MATLAB, “Genetic algorithm options,” MathWorks Documentation Center, 2013.

[135] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-

actions on Intelligent Systems and Technology, vol. 2, pp. 1–27, 2011. Software available at

http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[136] D. Decoste and B. Schlkopf, “Training invariant support vector machines,” Machine Learn-

ing, vol. 46, no. 1-3, pp. 161–190, 2002.

214

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[137] P. M. Kuhn and K. P. M., Algorithms, Complexity Analysis and VLSI Architectures for

MPEG-4 Motion Estimation. Norwell, MA, USA: Kluwer Academic Publishers, 1st ed.,

1999.

[138] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, and J. Henkel, “Run-time adaptive

energy-aware motion and disparity estimation in multiview video coding,” in Proceedings of

the 48th Design Automation Conference (DAC), DAC ’11, (New York, NY, USA), pp. 1026–

1031, ACM, 2011.

[139] V. Do and K. Yun, “A low-power vlsi architecture for full-search block-matching motion

estimation,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 8,

pp. 393–398, Aug. 1998.

[140] S. Saponara and L. Fanucci, “Data-adaptive motion estimation algorithm and vlsi architec-

ture design for low-power video systems,” Computers and Digital Techniques, IEE Proceed-

ings, vol. 151, pp. 51–59, Jan. 2004.

[141] C. Kalaycioglu, O. Ulusel, and I. Hamzaoglu, “Low power techniques for motion estima-

tion hardware,” in International Conference on Field Programmable Logic and Applications

(FPL), pp. 180–185, Sep. 2009.

[142] I. S. Chong and A. Ortega, “Dynamic voltage scaling algorithms for power constrained mo-

tion estimation,” in IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), vol. 2, pp. 101–104, April 2007.

[143] I. Ahmad, W. Zheng, J. Luo, and M. Liou, “A fast adaptive motion estimation algorithm,”

Circuits and Systems for Video Technology, IEEE Transactions on, vol. 16, pp. 420–438,

March 2006.

215

[144] L.-W. Lee, J.-F. Wang, J.-Y. Lee, and J.-D. Shie, “Dynamic search-window adjustment and

interlaced search for block-matching algorithm,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 3, pp. 85–87, Feb. 1993.

[145] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated interframe

coding for video conferencing,” in Nat. Telecomm. Conf., New Orleans, LA, 1981.

[146] R. Li, B. Zeng, and M. Liou, “A new three-step search algorithm for block motion estima-

tion,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 4, pp. 438–

442, Aug 1994.

[147] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching motion

estimation,” Image Processing, IEEE Transactions on, vol. 9, pp. 287–290, Feb 2000.

[148] A. M. Tourapis, “Enhanced predictive zonal search for single and multiple frame motion

estimation,” in Visual Communications and Image Processing, (San Jose, CA), pp. 1069–

1079, Jan. 2002.

[149] X. Lee and Y.-Q. Zhan, “A fast hierarchical motion-compensation scheme for video coding

using block feature matching,” Circuits and Systems for Video Technology, IEEE Transac-

tions on, vol. 6, pp. 627–635, Dec. 1996.

[150] S. Na and C.-M. Kyung, “Activity-based motion estimation scheme for h.264 scalable

video coding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20,

pp. 1475–1485, Nov. 2010.

[151] H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao, “A hardware-efficient multi-resolution block

matching algorithm and its vlsi architecture for high definition mpeg-like video encoders,”

Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20, pp. 1242–1254,

Sep. 2010.

216

[152] A. Paul, Y.-C. Jiang, J.-F. Wang, and J.-F. Yang, “Parallel reconfigurable computing-based

mapping algorithm for motion estimation in advanced video coding,” ACM Trans. Embed.

Comput. Syst., vol. 11, pp. 40:1–40:18, Aug. 2012.

[153] O. Tasdizen, H. Kukner, A. Akin, and I. Hamzaoglu, “A high performance reconfigurable

motion estimation hardware architecture,” in Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 882–885, April 2009.

[154] G. Pastuszak and M. Jakubowski, “Adaptive computationally-scalable motion estimation for

the hardware h.264/avc encoder,” Circuits and Systems for Video Technology, IEEE Trans-

actions on, vol. PP, no. 99, p. 1, 2012.

[155] A. Celebi, H.-J. Lee, and S. Erturk, “Bit plane matching based variable block size motion es-

timation method and its hardware architecture,” Consumer Electronics, IEEE Transactions

on, vol. 56, no. 3, pp. 1625–1633, 2010.

[156] C. wei, H. Hui, T. jiarong, L. Jinmei, and M. Hao, “A high-performance reconfigurable vlsi

architecture for vbsme in H.264,” Consumer Electronics, IEEE Transactions on, vol. 54,

no. 3, pp. 1338–1345, 2008.

[157] L. Lu, J. McCanny, and S. Sezer, “Reconfigurable system-on-a-chip motion estimation ar-

chitecture for multi-standard video coding,” Computers Digital Techniques, IET, vol. 4,

no. 5, pp. 349–364, 2010.

[158] C.-H. Cheng, Y. Liu, and C.-L. Hsu, “Design of an error detection and data recovery ar-

chitecture for motion estimation testing applications,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 20, pp. 665–672, April 2012.

217

[159] C.-L. Hsu, C.-H. Cheng, and Y. Liu, “Built-in self-detection/correction architecture for

motion estimation computing arrays,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 18, pp. 319–324, Feb. 2010.

[160] G. V. Varatkar and N. R. Shanbhag, “Variation-tolerant motion estimation architecture,” in

Signal Processing Systems, IEEE Workshop on, pp. 126–131, Oct. 2007.

[161] H. Chung and A. Ortega, “Analysis and testing for error tolerant motion estimation,” in

20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT),

pp. 514–522, Oct 2005.

[162] T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,” Circuits and

Systems, IEEE Transactions on, vol. 36, pp. 1301–1308, Oct. 1989.

[163] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang, and L.-G. Chen, “Analysis

and architecture design of variable block-size motion estimation for H.264/AVC,” Circuits

and Systems I: Regular Papers, IEEE Transactions on, vol. 53, no. 3, pp. 578–593, 2006.

[164] Xilinx, “Planahead user guide,” UG632 (v14.3) October 16, 2012.

[165] Xilinx, “Partial reconfiguration user guide,” UG702 (v14.3) October 16, 2012.

[166] Xilinx, “Partial reconfiguration tutorial: Planahead design tool,” UG743 (v14.1) May 8,

2012.

[167] W.-J. Huang, N. Saxena, and E. McCluskey, “A reliable LZ data compressor on recon-

figurable coprocessors,” in Field-Programmable Custom Computing Machines, 2000 IEEE

Symposium on, pp. 249–258, Apr. 2000.

[168] N. Imran, R. DeMara, J. Lee, and J. Huang, “Self-adapting resource escalation for resilient

signal processing architectures,” Journal of Signal Processing Systems, pp. 1–24, 2013.

218

[169] E. Mizan, T. Amimeur, and M. Jacome, “Self-imposed temporal redundancy: An efficient

technique to enhance the reliability of pipelined functional units,” in 19th International

Symposium on Computer Architecture and High Performance Computing, pp. 45–53, Oct.

[170] R. Dorfman, “The detection of defective members of large populations,” The Annals of

Mathematical Statistics, vol. 14, no. 4, pp. pp. 436–440, 1943.

[171] E. Litvak, X. M. Tu, and M. Pagano, “Screening for the presence of a disease by pooling

sera samples,” Journal of the American Statistical Association, vol. 89, no. 426, pp. pp.

424–434, 1994.

[172] Xilinx, “PowerPC 405 processor block reference guide (ug018),” 2010. Retrieved on Jan-

uary 8, 2012 [Online] http://www.xilinx.com/.../ug018.pdf.

[173] Xilinx, “Os and libraries document collection EDK 9.2i,” 2007. Retrieved on January 8,

2012 [Online] http://www.xilinx.com/.../edk92i_oslib_rm.pdf.

[174] Xilinx, “Virtex-4 FPGA configuration user guide (ug071),” 2009. Retrieved on January 8,

2012 [Online] http://www.xilinx.com/.../ug071.pdf.

[175] R. N. Al-Haddad, C. A. Sharma, and R. F. DeMara, “Performance evaluation of two allo-

cation schemes for combinatorial group testing fault isolation.,” in ERSA’07, pp. 269–272,

July 2007.

[176] Xilinx, “LogiCORE IP XPS HWICAP datasheet,” Retrieved on January 11, 2012 [Online]

http://www.xilinx.com/.../xps_hwicap.pdf.

[177] J. Becker, M. Huebner, and M. Ullmann, “Power estimation and power measurement of

Xilinx Virtex FPGAs: trade-offs and limitations,” in Integrated Circuits and Systems Design,

2003. SBCCI 2003. Proceedings. 16th Symposium on, pp. 283 – 288, Sept. 2003.

219

http://www.xilinx.com/.../ug018.pdf
http://www.xilinx.com/.../edk92i_oslib_rm.pdf
http://www.xilinx.com/.../ug071.pdf
http://www.xilinx.com/.../xps_hwicap.pdf

[178] Xilinx, “XtremeDSP 48 slice,” Retrieved on January 11, 2012 [Online] http://www.

xilinx.com/technology/dsp/xtremedsp.htm.

[179] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-constrained coder

control and comparison of video coding standards,” Circuits and Systems for Video Technol-

ogy, IEEE Transactions on, vol. 13, pp. 688–703, July 2003.

[180] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level DSP synthesis using voltage

overscaling, unequal error protection & adaptive quality tuning,” in IEEE Workshop on Sig-

nal Processing Systems (SiPS), pp. 133–138, Oct. 2009.

[181] M. Bucciero, J. P. Walters, and M. French, “Software fault tolerance methodology and test-

ing for the embedded PowerPC,” in Proceedings of the IEEE Aerospace Conference, (Big

Sky, MT), pp. 1–9, March 2011.

[182] W.-J. Huang, S. Mitra, and E. McCluskey, “Fast run-time fault location in dependable

FPGA-based applications,” in IEEE International Symposium on Defect and Fault Toler-

ance in VLSI Systems (DFT), pp. 206–214, 2001.

[183] T. Becker, W. Luk, and P. Y. K. Cheung, “Enhancing relocatability of partial bitstreams

for run-time reconfiguration,” in 15th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 35–44, 2007.

[184] NIST, “FIPS PUB 197, Advanced Encryption Standard (AES), National Institute of Stan-

dards and Technology, U.S. Department of Commerce, November 2001.,” [Online] http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[185] S. Drimer, Security for volatile FPGAs. Phd dissertation, Univeristy of Cambridge, 15 JJ

Thomson Avenue Cambridge CB3 0FD United Kingdom, 2009.

220

http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[186] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M. Irwin, and K. Sarpat-

wari, “Toward increasing FPGA lifetime,” Dependable and Secure Computing, IEEE Trans-

actions on, vol. 5, pp. 115 –127, april-june 2008.

[187] C. Poivey, M. Berg, S. Stansberry, M. Friendlich, H. Kim, D. Petrick, and K. LaBel, “Heavy

ion SEE test of Virtex-4 FPGA XC4VFX60 from Xilinx,” June 2007.

[188] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP controller for high-reliable

internal scrubbing,” in Aerospace Conference, 2008 IEEE, pp. 1–10, 2008.

[189] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfiguration in fpga

systems: A survey and a cost model,” ACM Trans. Reconfigurable Technol. Syst., vol. 4,

pp. 36:1–36:24, Dec. 2011.

221

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	LIST OF NOTATIONS
	CHAPTER 1: INTRODUCTION
	Need for Reliability and Survivability
	Characteristics of Fault-Tolerant Systems
	Soft Resilience of Signal Processing Systems
	Quality-Oriented Architectural Adaptations
	Contributions of the Dissertation

	CHAPTER 2: RELATED WORK
	Static Redundancy
	Resource Testing by BIST
	System-Level Diagnosis
	Evolvable Hardware Techniques
	Reconfiguration Techniques
	Comparison of Techniques

	CHAPTER 3: ADAPTIVE AREA MANAGEMENT FOR LOCAL PERMANENT DAMAGE
	A Self-Configuring TMR Scheme utilizing Discrepancy Resolution
	The SCDR Approach
	Encoding Representation of the TMR Pathways
	Fitness Function
	Fitness Evaluation
	Fitness Selection
	Genetic Operators

	Experiment Design
	Simulation Results
	Intrinsic Hardware Evaluation using SCDR
	Faults-Aware Simulation Paradigm
	Performance Bound Comparison to Exhaustive Search

	Heterogeneous Concurrent Error Detection (hCED) Based on Output Anticipation
	Alternate CED Arrangements
	The Baseline Setup
	Spatial Heterogeneous CED
	Temporal Heterogeneous CED

	Amorphous Slack (AS) Fault-Handling Methodology
	Simulation Results
	Case Study-1: Video Encoder
	 Case Study-2: Edge Detector

	Distance-Ranked Fault Identification (DRFI)
	Fault Detection
	System-Level Diagnosis of Hardware Configurations
	Exhaustive Evaluation
	 The SFH Fitness States Transitions Diagram Method
	The DRFI Approach

	Fault Recovery Results
	Experiment-1: MCNC benchmark circuits
	Experiment-2: DCT core
	Experiment-3: Partial Recovery

	CHAPTER 4: SOFT-RESILIENCE USING AN ONLINE MULTI-OBJECTIVE GA
	Self-Aware Signal Processing Architectures
	Previous Techniques of Soft Resilience
	Problem Formulation and Methodology
	Multi-Objective function
	Throughput Degradation
	Power Consumption

	Guidance Function

	Execution Results
	Synthetic Nodes Simulation
	A Computer Vision Case-Study: Support Vector Machine (SVM)
	An Image/Video Processing Case-Study: Discrete Cosine Transform

	Comparison of Proposed Approach with Conventional Fault-Handling Techniques
	Modular Redundancy
	BIST-based Evaluation

	CHAPTER 5: POWER AND QUALITY-ORIENTED SOFT-RESILIENCE
	Motion Estimation
	Previous Techniques of Low Power ME
	Activity Based Resource Allocation Framework
	Computational Demand Anticipation
	Faults Mitigation Strategy
	Detection of Hardware Faults
	Fault Diagnosis using Dynamic Redundancy
	Fault Recovery

	Case-Study : FPGA-based Implementation of Full Search FHME
	Evaluation Results of FHME
	Energy Saving in Reconfigurable Design
	Online Recovery Results of FHME core

	CHAPTER 6: HEALTH METRIC BASED DYNAMIC RESOURCE ALLOCATION
	Fault-Handling Method
	Functional diagnosis to record discrepancy history
	Reconfiguration Algorithm 1: Divide-and-Conquer Method
	Reconfiguration Algorithm 2: FaDReS
	Hardware Organization in FaDReS Technique
	Hardware Components
	Fault Detection, Isolation and Recovery
	Experimental Results
	Performance Improvement
	Power Analysis

	Diagnosis by voting
	Diagnosis by Comparison

	Reconfiguration Algorithm 3: PURE
	Diagnostic Flow
	Fault Detection Criteria
	PSNR as a Health Metric
	Output Discrepancy as a Health Metric

	PURE Functional Testing as Compared to Physical Resource Testing

	Experimental Results
	Case Study-1: Prioritized elements of the DCT core
	Case Study-2: Fault Resilience of a Multi-PE Design
	Energy Duty Cycle

	CHAPTER 7: CONCLUSION
	Technical Summary
	Scope and Limitations
	Future Directions
	The Road Ahead

	LIST OF REFERENCES

