Power and Quality-Aware Image Processing
Soft-Resilience using Online Multi-Objective GAs

Naveed Imran

Department of Electrical Engineering and Computer Science,
University of Central Florida,

Orlando, FL 32816-2362, United States

E-mail: naveed @knights.ucf.edu

Rizwan A. Ashraf

Department of Electrical Engineering and Computer Science,
University of Central Florida,

Orlando, FL 32816-2362, United States

E-mail: rizwan.ashraf @knights.ucf.edu

Ronald F. DeMara

Department of Electrical Engineering and Computer Science,
University of Central Florida,

Orlando, FL 32816-2362, United States

E-mail: demara@mail.ucf.edu

Abstract: A self-aware signal processing architecture is proposed based on
adaptive resource escalation which is guided by a multi-objective Genetic
Algorithm (GA). The GA prioritizes tasks within a reconfigurable hardware fabric
to maintain the quality-of-service and power consumption objectives. Attainment
of these objectives is subject to the intrinsic reliability and performance of the
computational elements in the resource pool. A health metric at the application
layer, such as Peak-Signal-to-Noise Ratio (PSNR) measurement in a Discrete
Cosine Transform (DCT) or Measure of Confidence in a Support Vector
Machine (SVM) classifier, is used to assess throughput performance. When
performance decreases beyond acceptable tolerances, the primary objective is
to maximally recover output quality. The secondary objective is to minimize
power consumption which also depends upon the input signal characteristics, in
addition to the utilized computational resources. An adaptive guidance function
for GA-driven recovery is proposed and validated for these objectives. It retains
healthy processing elements in the throughput datapath to gracefully-degrade
throughput by optimizing resource selection.
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NOMENCLATURE
N Total Number of Processing Elements (PEs)
N, Number of Active PEs
T={NT...Ty} Set of Throughput Tasks
Ty Zero-task, i.e., Empty Task
P={pip>...pn} Set of Task Priorities
H={hhy...hy} Set of PE Health Status
Va={PE;};ViT; #Ty Setof Active PEs
f Multi-Objective Function
fe Crossover Fraction for GA
r Current Value of Health Metric
I Target Value of Health Metric
g8 Power Consumption of k" Task
d; Defectiveness Estimate of i PE
p Population Size for Genetic Algorithm (GA)

1 Introduction

Autonomicity is a desirable property for Digital Signal Processing (DSP) architectures
in dynamic real-time environments. Ideally, image processing systems should maintain
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Figure 1: Reliability challenges facing DSP systems due to increased technology scaling

I

the desired levels of accuracy with rapid convergence and optimized power consumption
throughout a range of operating and reliability conditions. Survivability under these
constraints can be enhanced by the provision of self-awareness properties at the system-
level [1]. These attributes are most critical in real-time environments where the reliability
of CMOS devices in nanoscale regimes is becoming increasingly sensitive to variations in
temperature, process manufacturing tolerances, aging effects, and supply voltage stability.
For example, to achieve energy-efficiency in nanoscale CMOS circuits, voltage scaling [2]
continues to be realized as one of the most effective methods. However, near threshold
voltage operation of these circuits can manifest process defects and variations as run-
time computational errors which appear in the context of signal processing applications as
accuracy degradation [3]. This paper develops a cross-layer signal processing architecture
which uses self-adaptation to address these concerns.

Fig. 1 provides an overview of stability and reliability issues in sub-45 nm CMOS
systems and some popular corresponding mitigation techniques. This layered model can
be adapted and leveraged in DSP applications due to their inherent soft-resilience to errors.
The soft-resilience property arises from redundancies in input data and at the application-
level from inexact perception of output quality by the user [4]. For instance, an example
of soft-resiliency at the algorithm-level is Kalman filtering in which errors in prediction
at a given instance are corrected in subsequent iterations. Soft-resiliency is compatible
with a recent trend of attempting to sustain Moore’s law by designing computing systems
using various error-permissible computing models [5][6]. The inherent resiliency of signal
processing algorithms allows some relaxation of exact computation to embrace this type of
soft-computing paradigm. In particular, the provision of error de-sensitizing mechanisms
and graceful degradation is desirable to maintain output quality objectives.

In this paper, a cross-layer soft-computing approach leveraging the different priorities
of DSP tasks on the overall output accuracy is presented. These are evaluated at runtime
by monitoring a specific health metric which is a dynamic operating condition observed
at the cognitive layer to trigger adaptation. This avoids the complexity of rigid exhaustive
fault coverage by handling only those subset of errors which affect the output quality
beyond acceptable tolerances. Thus, the system adapts concisely to manifested errors while
nullifying false-positive demands. In addition, the need to synthesize test vectors with high
resource coverage becomes unnecessary.
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The proposed system is demonstrated using Field Programmable Gate Array (FPGA)
devices which are widely chosen to accelerate DSP applications in hardware. As a
computational platform, an additional major advantage of FPGAs is their runtime
reconfigurability. Reconfigurable regions can be defined at design-time for a circuit and later
at runtime these regions can be re-assigned to alternative tasks dynamically. To reconfigure
a Processing Element (PE) with an alternative task, the other regions of the device which
are not being reassigned do not need to be removed from service. This online partial
reconfiguration ability provides great flexibility for novel soft-computing approaches at the
architectural level.

Herein, the approach of reconfiguration to maintain accuracy and power efficiency is
formulated as a multi-objective optimization problem. The term device configuration will
be used to denote a distinct mapping of tasks assigned to PEs. The event of reconfiguration
will be used to denote the task re-allocation process within a reprogrammable hardware
fabric. As tasks have different priority levels, the tasks are best mapped for execution when
their priorities are positively correlated to the healthiness of underlying resources in the
computational fabric. Thus, those configurations are preferred in which prioritized tasks are
mapped to healthier elements in the resource pool of reconfigurable regions. As the number
of potential mappings can be quite large, the optimization capability of multi-objective
Genetic Algorithms (GAs) to search the mapping space for throughput quality and power
consumption alternatives is employed. The proposed approach is evaluated for a Support
Vector Machine (SVM) and a Discrete Cosine Transform (DCT) implemented in FPGA
hardware. Performance metrics such as power consumption, measure of confidence, and
PSNR demonstrate that a health metric based multi-objective online evolution approach
achieves those objectives while incurring acceptable runtime overhead costs.

The following are the main contributions of this work:

1. The tradeoffs of reliability and power savings are formalized as a generalized runtime
mapping problem based on the underlying resource performance and operating
workload.

2. A multi-objective GA approach is demonstrated for this mapping optimization problem
in which a population of solutions is guided by a novel adaptive guidance function.

3. Instead of requiring redundant units for fault-detection, a throughput health metric is
identified. Thus, fault-detection is feasible using a uniplex instance of the datapath
without requiring redundancy for error checking. This also allows a consolidation
phase to distinguish transient conditions in the detection method.

4. Soft resilience is introduced as an iterative task remapping process to maintain the
output quality metric within acceptable limits. Namely, an integrated diagnosis and
recovery scheme is presented which neither requires a voting mechanism nor bringing
the system entirely offline as recovery progresses.

2 Related Work

Biological systems have inherent self-repairing capabilities which have inspired signal
processing research to mimic these natural adaptive processes in reconfigurable digital
fabrics. Thus, research interest has been increasing toward electronic systems which can
sustain adverse events, yet remain operational or at least partially operational. Consequently,



Power and Quality-Aware Image Processing Soft-Resilience using Online Multi-Objective GAsS

self-repair and self-healing mechanisms have been proposed for hardware by various
researchers [7],[8]. These mechanisms rely on identifying or employing some form of
redundancy, reconfiguration, or both. To realize these properties in a DSP system, it is
useful to identify how a layered model emphasizing the impact of signal processing tasks on
output correctness and the runtime reconfiguration of FPGA resources based on Evolvable
Hardware can be leveraged.

Evolvable Hardware has been proposed as a reconfiguration-based approach to achieve
fault tolerance in electronic designs. These methods extend static fault tolerance techniques
at design-time which attempt to make designs more robust to faults [8]. In particular, runtime
techniques reconfigure hardware resources at runtime to refurbish the circuit [9]. Previous
works establish the successful use of GAs for adaptive self-recovery of hardware systems
based on reconfigurable logic platforms, especially in FPGA-based systems [9]. A survey
of fault-handling techniques ranging from passive to dynamic in classification are presented
in [10] to tackle hard faults in SRAM-based FPGAs for relatively small-sized circuits.

Researchers have devised runtime evolutionary techniques to realize fault-resilient
electronics through iterative selection [11]. Conventionally, fault-tolerance at the system
level is attained by either employing passive redundancy to mask these output errors
immediately or by executing a phased fault-handling flow consisting of fault-detection,
diagnosis, and recovery stages. Although, previous attempts have been made to combine
architecture and algorithm level knowledge [12], there remains a need to develop
frameworks utilizing cross-layer information in a way that leverages the soft-resilience
present in DSP applications.

It is worth-mentioning that a greedy algorithm like [13] is successful at small-scale
optimization with single objectives (i.e., throughput), large-scale multi-objective problems
necessitate meta-heuristic algorithms to explore the associated large search space. The
proposed scheme is based on the technique of performing iterative reconfigurations until
the system’s output meets quality objectives. To avoid the requirement of redundancy which
can incur significant area overhead in the case of cold-spares and power consumption in the
case of replicated paths for comparison-based detection, the proposed approach leverages a
health metric and inherent computational priority in its system design. Such an approach is
especially promising for DSP applications which can accommodate a graceful degradation
of functionality.

As illustrated in Fig. 2, there is a spectrum of techniques dealing with error-tolerance
of DSP systems ranging from the device-level up to the system-level. Fault-handling at the
architectural-level is often oblivious to the error-mechanisms in the underlying hardware.
For example, a Triple Modular Redundancy (TMR) arrangement is a technique in which a
datapath is replicated to create three identical instances and then each output is passed into
a majority voter for selection. Although, a TMR scheme maintains all three instances in the
datapath thereby achieving fault-masking capability, the resource overhead is considerable
in both area and power consumption, even for vast majority of system lifetime which may
be fault-free. Namely, a TMR arrangement incurs a power consumption overhead that is
approximately three-folds as compared to a simplex arrangement even if the overhead of
voter overhead is considered negligible. On the other hand, a Concurrent Error Detection
(CED) arrangement detects faults by comparing the output of two replicas subjected to the
same inputs [14]. A discrepancy reveals faulty nature of either instance without pinpointing
which of the modules is faulty. Again, the area and power overheads are significant concerns
in CED. As an alternative, Built In Self Test (BIST) mechanisms diagnose faulty components
by evaluating them with some test inputs generated by an Automated Test Pattern Generator
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Figure 2: Hierarchy of fault-mitigation techniques at various abstraction levels

(ATPG) to provide one-time or periodic fault-assessment. In practice, a BIST scheme rarely
achieves 100% coverage, yet may generate false alarms [15]. Moreover, an evaluation
of some test vectors may not necessarily correspond to the actual runtime scenario of a
module under test. Thus, the proposed technique of health metric based multi-objective
online evolution relies on the actual behavior of the signal processing module under runtime
conditions. It is shown that an evolutionary-inspired scheme of reconfiguration which
correlates the output healthiness information with the task mapping history can meet these
goals.

Algorithmic-level fault-handling approaches exploit signal processing algorithm
properties to make the system robust and error-resilient. Hegde and Shanbhag ef al. [2]
proposed an Algorithmic Noise-Tolerance (ANT) technique to compensate the errors
introduced into DSP architectures due to voltage scaling beyond the nominal operating
point. Such voltage scaling is an effective method of reducing power consumption, yet the
correctness of throughput becomes an issue when the supply voltage is scaled beyond a
critical voltage. To mitigate these concerns, the authors developed a prediction-based error
control scheme which requires knowledge of the system transfer function which was a digital
filter in their case study. Applying algorithmic-level fault-handling to video processing,
Varatkar et al. [16] proposed a sub-replica of the motion estimation block to concurrently
check the error-prone main block. Meanwhile for image processing, Kim et al. [17] proposed
a soft voter employing a Bayesian detection technique. The soft voter is demonstrated to
provide correct output in a Discrete Cosine Transform (DCT) based image coder. Lisboa
et al. [18] proposed a fault-tolerance technique to mitigate faults in matrix multiplication
algorithms, which comprise the heart of many signal/image processing applications.

Finally, power consumption remains one of the key issues even in deep-scaled CMOS
technology. This is especially true in both high-density deep submicron ASIC/FPGA designs
due to cooling considerations, as well as portable electronic systems where battery life, size,
and weight are concerns. Although voltage scaling has been used to drastically reduce power
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consumption, this increases the circuits’ susceptibility to faults, and hence the desirability
for soft-resilient operation under these conditions. While there is a body of research work
dealing with power versus fault-tolerance tradeoff at design time [19], there remains a
need to develop runtime techniques to autonomously manage these tradeoffs. Runtime
techniques are also promising to handle faults in unforeseen mission-critical scenarios
as well as commonly-encountered manufacturing-induced process variations that impact
yield, and transistor aging characteristics. The presented health metric based multi-objective
online evolution scheme addresses the issue of power consumption and quality tradeoffs
through a novel runtime architectural adaptation technique formalized in the next section.

3 Problem Formulation and Methodology

Consider a computing Array-Under-Test (AUT) realized by a set of N-Processing Elements
(PEs), namely PE|, PE,, ..., PEy each executing a task Ti, 7, ..., Ty, respectively. The
priority of the tasks assigned to the PEs is given by a vector P = {pp, ... py} having its
i component denote the priority of the i task. As a fault-recovery provision, a PE can
be reconfigured to an alternative function or equivalently, a task can be re-assigned to an
alternate PE at runtime. Given a homogeneous computing array of PEs, a reconfiguration
controller can re-assign an alternative task to any PE in the array. Let the healthiness of
resources which comprise the PEs be denoted by a vector H= {hh,...hy} as illustrated
below. In the proposed fault-handling scheme, the defectiveness degree of PEs is assumed
to be unknown. The formulation here allows utilization of a-priori information about the
priority of tasks mapped at runtime as discussed in Sections 4.2 and 4.3.

Power consumption in such an AUT can be reduced by power gating of some of the
PEs [20],[21] which acts to exclude them from operation. The choice of PEs selected for
use depends upon input signal characteristics, assigned tasks priorities, and desired quality
levels. To maintain the generality of the notation without becoming restricted to a specific
signal processing algorithm, consider a zero-task denoted by Ty which corresponds to the
power-gating OFF condition of the underlying computational resources for which the task
has been mapped. In practice, a Ty task can be realized by a power-gating technique in an
ASIC implementation or by configuring a blank bitstream into the reconfigurable region in
an FPGA. The latter approach is selected for the case studies as a FPGA device is utilized
for experiments in this work.

A set of active PEs is defined as V, = {PE;};V; T; # Tp. Thus, V, contains those PEs
which are assigned a non-zero task and thus these PEs realize the computational throughput
of the system. There is a one-to-one mapping of tasks to active PEs such that the cardinality
of the set of active PEs is given by |V,| = N, where N, < N. In the following discussion,
the terms processor node and PE are used interchangeably. It is worth highlighting the
assumptions of the above formulation:

1. A PE can be configured with any task, namely, a homogeneous array of PE resources
is considered here.

2. Input data can be multiplexed to any or all of the PEs.

Each PE can be configured with any task, as the size of PE is determined by the resource
intensive task in T. Consequently, the largest configuration used determines the quantity of
resources available to the set of PE nodes. This along with the reconfiguration capability of
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FPGAs allows to map any task to any physical resource on the FPGA fabric. Furthermore,
the input data can be applied to any node by using bus-macros in the target FPGA platform,
e.g., as per the Xilinx-specified partial reconfiguration based design flow.

Fig. 3 shows an architectural view of the proposed fault-handling approach and the
corresponding mapping algorithm is given in Algorithm 1. The computationally-demanding
portion of a DSP application has been mapped to an array of PEs to accelerate throughput.
The reconfigurable array of PEs is managed by the reconfiguration controller which
maps tasks into the computational regions. A health metric is communicated from the
software application to the reconfiguration controller. The top-level software application
can be executed on a PowerPC processor as such on-chip processors are provided in most
commercially-available FPGA chips. The value of the health metric will vary due to either
input signal characteristics or hardware defects. To identify the latter case, a health metric
outside nominal operating range triggers the fault-identification process. To keep the area
overhead minimal, fault-identification is performed by a comparison-based discrepancy
detector on a PE-scale resolution rather than at the AUT level. In particular, a Reconfigurable
Slack (RS) [13] region is utilized to consolidate a non-transient fault-detection of decreased
health metric value. In particular, a RS is a single task-grained tile reserved as a cold-spare
for the entire design; only one RS is needed regardless of N. Operationally, an RS is loaded
to test suspect PEs successively, and in order of their priority of impact on the output quality.
Namely, a discrepancy between the output of an active PE and RS indicates a transient
or permanent hardware fault. Thus, fault-identification is asserted without rendering any
decision about exact location of fault being either in the active PE or the RS. Afterwards, the
diagnosis and recovery process is carried out by the GA engine embedded in reconfiguration
controller to locate which of these two is actually faulty. However, if no discrepancy
is observed between the active PE and RS, then the health metric is assumed to have
exceeded tolerance simply due to the input characteristics or due to a transient fault in the
computational resources which can subsequently be resolved. Thus, it is necessary to focus
on the case where the active PE and the RS outputs are discrepant as discussed below.

Algorithm 1 Guidance function driven multi-objective GA
Require: T,P,N,wi,w;
Ensure: I’
Initialize Vo = PE;,i=1to N,, N, = N
while f; < I"//System is unhealthy do
Evaluate f =w; x f1 + wax fo
while ({k|k € V,k=0} = ¢) // Identify at least one healthy node do
Designate v, as checker(s) (N, + 1) <s < (N, + N;) thus Vy = {vs}
while i <N, do
Reconfigure RS(s) with the same functionality as v;
Perform CED among CUTs when N; = 1, d; < 0 for v; which shows no discrepancy
Evaluate h; based on Eq. 4 for each node
i<—i+1
end while
Relocate the RS by updating N, = N, — N, Re-initialize i = 1
end while
Evaluate the guidance function in Eq. 5 to determine task mapping using updated N,
end while
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The fault-handling processes employs a data structure representing the task mapping
to PE resources. The PE array and corresponding task mappings use a fixed-length
chromosome in this formulation which is suitable for GA processing. The genetic
representation is illustrated in Fig. 4 which shows array of 7 PEs concurrently executing a set
of tasks. A PE can be configured with any task 7; where 0 < i < N. An example of the task-
mapping chromosome is shown in Fig. 4. The number of fields in a chromosome is equal to
the number of PEs in the processing array. The value of a particular field identifies the task
number allocated to the corresponding PE. For example, the third field in the chromosome
contains the value 4 implying that PE3 is assigned to execute task 74. It is worth noting
the exemplified task mapping of PE4 being allocated 7 which corresponds to configuring
a blank bitstream on this particular PE. Here, zero or more PEs may be configured with Tj
based on the instantaneous or near-term throughput quality requirements. Such a dynamic
assignment of blank tasks acts to reduce and dynamically optimize power consumption
at the expense of some quality degradation whereby a functional task, for instance the
corresponding low priority DCT coefficient, is decommissioned from the datapath. The
formulation of the tradeoff of these objectives is described below.

3.1 Multi-Objective function

The power versus quality tradeoff in DSP systems is formalized as a optimization problem
using the composite function f to be minimized given by:

f=wifi+wafa (1)

where w; and w; are corresponding weights of the opposing functions f; and f>.
The functions f; and f, represent the throughput degradation and power consumption,
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respectively, of the current task mapping using the selected computational resources. An
effort to improve fi, i.e. minimize quality loss, results in degradation in f>, i.e. consumption
of more power, and vice-versa. The pareto solution set to this problem corresponds to a set
of configurations aimed at exploring the design space of the quality versus power efficiency
tradeoff as follows: 1) The objective of soft-resilience is achieved by mapping prioritized
tasks to the healthy resources, 2) The objective of power efficiency is achieved by loading
blank bitstreams into both failed and healthy PEs. Of course, disabling healthy PEs while
saving power, degrades throughput as discussed below.

3.1.1 Throughput Degradation

The evaluation interval size 7 is defined as the period of calculations over which the fitness
assessment of an AUT is performed, expressed in units of the number of inputs as specified
by the user. For higher throughput quality and accuracy over an evaluation interval, the
following metric which is essentially a measure of Mean Squared Error (MSE), should be
minimal:

1< ..
A= Yln=TP @
i=1

where I'; health metric value at time i and " is the target value of health metric as set by the
user. The health metric selected can include the PSNR, bitrate, measure of confidence, or
other application-level throughput quality indicator.
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3.1.2  Power Consumption

Power consumption of an array of PEs is directly proportional to its size N. Therefore, a
normalized power consumption measure is defined in terms of N and is given by:

~ Yvkev, T
h= 72?,: T 3)

where V,, is the set of PEs assigned with non-zero tasks and 7, is the power consumption of
the k" task. Thus, the AUT’s power consumption is maximized when all N PEs are assigned
to have active tasks resulting in Ny = 0. On the other hand, power consumption is minimized
when all the PEs are assigned with zero-task assignment yielding Ny = N, yet throughput
quality in that case is also non-existent and hence not an option selected in practice.

The objective functions given in Eq. 2 and Eq. 3 are oppositional. A higher number
of active PEs results in increased throughput quality at the expense of increased power
consumption. On the other hand, blanking [22] of the PEs results in reduced power
consumption while incurring output quality degradation. A runtime multi-objective GA
approach is used in finding a pareto optimal set as described below, thus spanning throughput
versus power optimization, and also soft-resilience against faults using an autonomous
strategy based on a feedback arrangement.

3.2 Guidance Function

Although a solution to the minimization of Eq. 1 is the objective that realizes the desired soft-
resilience operating point, the search space of the mapping problem is considerably large.
For example, an exhaustive search will require (N + 1)! reconfigurations in a cluster of size
N to explore the search space. Thus, exhaustive or randomized approaches can be intractable
for absolute minimization of large-size problems which render the practicality of non-
guided search. To this end, it is proposed to incorporate evaluation history information of
the influence of mapping on throughput quality which further guides the population towards
the pareto front. The history information of the individuals maintains a health estimate of
the computational resources which in turn prunes the search space of the problem. Thus,
adaptive guidance of the population using a runtime healthiness estimate will be shown to
benefit the convergence of the online multi-objective GA.

An a-priori knowledge of tasks’ default priorities is generally useful in terms of carrying
out a graceful degradation strategy, and is available in many cases such as computing the
coefficients in a DCT core. Here the DC coefficient should be computed on the healthiest
resource. However, such a knowledge of healthiness of computational resources is often
dynamic and may be subject to soft-errors due to aggressive voltage scaling, aging, and
supply variations, or even permanent faults. Thus, it is beneficial to estimate the healthiness
of computing resources at runtime to evaluate Eq. 5. This uses the nodes’s output discrepancy
history to develop its healthiness estimate /;. The overall error observed in the output is also
weighted by the priority level of its assigned task. Thus, defectiveness estimate at evaluation
instance ¢, d;(t) is estimated as follows:

di(t)=di(t —1)+p; x| -1 4)

where d;(t) = 1/h;(t) and p; = priority value of task j assigned to PE;.
Thus, to calculate the defectiveness estimate d; of a node i, the throughput degradation



12 N. Imran et al.

is weighted by the task-priority value and accumulated into the previous estimate of d;.

By employing the fault articulation history as well as the task priorities, the defectiveness

estimate becomes an effective measure to lead the adaptation towards a preferred mapping.
The guidance function g can thus be realized as:

X pihi — Y kev, Prbal
XX, pihi

&)

Its minimization guides the GA to find the pareto front while maintaining partial
throughput during fault-resolution phase. Here, the tasks’ priorities are weighted by the
healthiness of the underlying resources on which the tasks are mapped to. As Eq 5 reveals, a
minimum value of g corresponds to the mapping when vectors H and P are highly correlated.
That is, high priority tasks are mapped to healthier resources. Such a guidance function
assists in guiding the GA according to the fitness function when system is faulty. Otherwise,
the fitness function continues to use f; and f, functions for throughput assessment and
power optimization, respectively.

The proposed fault-handling methodology is summarized below:

1. isolate faulty resources when the application-level health metric exceeds tolerance,

2. consolidate non-transient fault conditions via a CED-based discrepancy-based
detection using RS,

3. invoke the GA during the resource escalation phase of task remapping, and

4. select an individual from the obtained pareto set to finally map tasks on to the fabric
based upon their quality and power consumption tradeoff.

4 Execution Results

4.1 Synthetic Nodes Simulation

To illustrate the process and the impact of the function given in Eq. 1, the approach is
evaluated using an array of simulated nodes. For this purpose, a PE-array of size N =7 is
chosen and the fault scenarios are simulated by assigning healthiness values to the PEs as
listed in Table 1. The priority values are assigned to various tasks such that 77 receives the
highest priority (i.e., the maximal value of 7 for an arrangement comprising 7 possible tasks,
while 77 receives the least priority, i.e.,the value minimal non-zero task value of 1. Thus, P
vector’s component values reflects the reverse ordering of Task Numbers. For example, in a
DCT, Task 77 would correspond to the computation of the DC coefficient. However in this
illustrative example, for generality assume the effect of priority values on the overall output
is unknown at this point. Therefore, it is not feasible to initially evaluate the first term of the
objective function given in Eq. 1. Instead, the healthiness values are assumed to be already
available in this scenario in the form of a monotonically decreasing linear function while
the guidance function of Eq. 5 is considered to be the first term of the objective function of
Eq. 1. The duration of the evaluation interval is considered as one sample such that 7 =1,
i.e., the objective function is evaluated for every input in this synthetic nodes case study.
It is worth mentioning here that although the healthiness and priority values are generated
by a linear function in the synthetic nodes simulation case, these values can be substituted
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Table 1 Example of priority values, P, and healthiness of resources, H, in a synthetic array of

N =T nodes
PE Number i 1 2 3 4 5 6 7
H; 0.25 0.2143 0.1786 0.1429 0.1071 0.0714 0.0357
Task Number j 1 2 3 4 5 6 7
P; 7 6 5 4 3 2 1
Table 2 GA parameters
Parameter Value
Population Size 50
Migration Direction forward
Migration Interval 20
Migration Fraction 0.200
Population Creation Function  Uniform
Fitness Scaling Function Rank
Selection Function Uniform
Crossover Function Two-point
Elite Count 2
Crossover Fraction 0.7
Mutation Rate 0.01

with results from any fault model and the impact on output quality in the practical case
studies as discussed further below. For example, the fault impact is simulated by a stuck-at
fault model and the corresponding PEs are evaluated for functional output in practical case
studies with favorable results.

The GA parameters used are given in Table 2. The Population Size corresponds to
various tasks configurations of the AUT. Migration parameters specify the individuals of
population’s movement among multiple sub-populations. The individuals are created by
a uniform function while being selected using rank criteria [23]. The standard two-point
crossover operator is used with the mutation option compatible with a generational GA.
Elitism ensures that some of the best individuals are guaranteed to be propagated to the next
generation.

Figure 5 shows the throughput degradation and power consumption objective costs on
the vertical axis for various iterations as two curves over time in units of generation number
on the horizontal axis. The two curves depict the average behavior of the population as the
upper scatter plot and the best-performing individual’s behavior as the lower curve on each
plot. The throughput degradation is described in terms of the guidance function. The optimal
solution reached by the GA was {1,2,4,3,5,6,7} after 500 generations. As Figure 5 shows,
the average behavior significantly improves within 100 generations, and then fluctuates due
to the mutation operation. A sufficient population size together with a mutation function is
necessary in order to diversify the population to reach a good solution in terms of meeting
multiple criteria. The cost scores are defined in terms of the number of active PEs as well
as the synthetic priority and health values. Then, after normalization, the unit-less ratios are
the cost scores to be minimized. A converging trend of the cost plots after 100 generations
implies that the proposed evolutionary methodology can achieve power and quality goals by
employing the runtime-behavior information of the processing array. The global optimum
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Figure 5: Cost functions

solution for this problem is {1,2,3,4,5,6,7} as it corresponds the resource escalation of
the weighted prioritized tasks over the reconfigurable fabric. Thus, the GA is successful in
improving the configuration, within a reasonable number of generations suitable for runtime
operation.

Figure 6 shows the pareto set of solutions of the Multi-Objective Online Evolution
(MOOE) problem. Here, both costs, namely throughput degradation and power consumption
are employed to engage quality and energy efficiency tradeoffs, respectively. For example,
a 40% tolerable behavior in terms of throughput degradation allows power consumption
reduction to 30% of the maximum budget. A further reduction in power consumption is
feasible as low as only 10% if approximately 80% throughput degradation can be tolerated.
As the result shows, the proposed evolvable hardware MOOE recovery formulation allows
finding a set of optimal solutions which facilitates design space exploration in terms of
quality and energy efficiency tradeoffs as a continuum.

4.2 A Computer Vision Case-Study: Support Vector Machine (SVM)

A second case study is undertaken using a SVM to evaluate the health metric based multi-
objective online evolution scheme. A hardware core of a SVM is monitored for its health
status by observing the Measure of Confidence. The control feedback mechanism is that an
unusually low confidence measure from a SVM can indicate hardware failures. Thus, the
proposed online evolution mechanism architecturally adapts the SVM core to recover from
failures by utilizing a health metric based feedback in the recovery loop.

SVMs are popular as supervised machine learning methods in classification problems.
While the learning phase can either be carried out offline or online, the testing phase is
usually desired online due to real-time requirements of many applications. Thus, hardware
implementation is favorable, to accelerate intensive computations involved. For training
purpose, LIBSVM [24] is employed, and thereafter the learned kernels are implemented
in hardware by Multiply Accumulate-based PEs. Because SVMs are favorable in image
detection tasks in space missions [25], they are considered as a case study herein to evaluate
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the proposed self-healing mechanism. Furthermore, the approximate classification process
from multi-dimensional dataset allows to study interesting trade-offs of power and quality.

An architectural view of the proposed self-healing SVM is provided in Fig. 7. In this
pattern recognition task, the SVM’s measure of confidence is employed as a health metric
to guide the architectural adaptation through fault scenarios and power efficiency tradeoffs.
As the objectives such as power consumption are secondary to minimally-acceptable
throughput quality, first the proposed approach is evaluated in terms of correctness under
fault-handling conditions. Fault injection and fault recovery results are listed in Table 3 and
Table 4, respectively. Here negative values indicate that this sample belongs to “False” class
and positive or zero values indicate “True” class. The impact of fault for samples shown
in Table 3 does not impact the classification. Results shown in Table 4 for CoverType [26]
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Table 3 Fault impact on the classifier output

Fault-free Classifier Faulty Classifier
Sample Number ~ Estimation Function ~ Detector Output ~ Estimation Function ~ Detector Output  Actual Class
1 -1.0675 False -0.8485 False False
2 -1.0645 False -0.8472 False False
3 -1.0019 False -0.7211 False False
4 -0.8932 False -0.6180 False True
5 -1.0126 False -0.7939 False False

Table 4 Fault recovery for Covertype[26] data set compared to 75.68% Fault-free Classifier’s
Accuracy

Number of Faulty PEs  Faulty Classifier’s Accuracy  Recovered Classifier’s Accuracy

1 69.12% 75.19%
2 59.09% 73.24%
3 58.09% 73.02%
4 52.26% 72.83%
5 50.24% 69.12%

dataset demonstrate that the proposed method is able to recover a faulty SVM classifier
with only 50.24% classification accuracy to 69.12% accuracy whereas the original fault-
free classifier had a 75.68% accuracy. Such graceful degradation can be acceptable, or
even desirable in many image pattern recognition tasks, especially when low-power and
survivability objectives are to be sustained simultaneously.

Fig. 8 illustrates the effect of population sizes on convergence of a single objective
GA. A large population size is advantageous in terms of exploring the problem’s search
space as it is evident for population size of 30 as compared to a population size of 5
which needs far more number of generations of the GA to converge. Convergence required
approximately 160 generations for population size of 5, approximately 100 generations for
population size of 10, and about 30 generations for larger population sizes. However, it’s
worth mentioning that a large population size requires a longer duration to evaluate the
individuals for the purpose of estimating their fitness behavior. Thus, a large population
size may not necessarily correspond to faster convergence. Regardless of population size
selected, it is important to note that only single instance of hardware resources is used; the
population size represents only the number of entries in the data structure used to represent
the dynamic set of mapping permutations being explored by the GA.

A critical operation in GAs is crossover which combines attributes of two existing
individuals in the population to create a novel individual. Fig. 9 illustrates the impact of the
cross-over operation. In this experiment, a fixed population size of 25 is selected based on the
sufficiency of that population size indicated by the previous experiment. In this experiment
where 20% of the population undergoes crossover operation (i.e., fo = 0.2), the cost score
improves after 100 generations with elitism retaining the two best-performing individuals.
Thus, the guidance function is effective at escalating the computational resources as per
application needs. On the contrary, the cost score levels out only after 25 generations for an
excessive crossover fraction parameter (i.e., f, = 0.9). However, it is to be noted in the latter
case that the algorithm cannot further improve the best fitness value after generation 14,
because all the individuals in the population essentially become identical. Such an overly-
early convergence does not help to find the best individual in a fewer number of generations.
Thus, this case study illustrates the benefit of latency to converge the reconfiguration solution
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and the quality of the desired solution should be taken into account to determine the crossover
fraction parameter in practice.
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Fig. 10 depicts the effect of the choice of the mutation operation on the soft-
resilience search progression. As Fig. 10a reveals, a mere use of crossover without any
mutation improves the fitness behavior of the population to some initial level. However,
a local minimum solution is reached and no further improvement is observed beyond 20
generations. Further GA operations without mutation are seen to not improve the average
nor best-performing objective score. On the other hand, using a mutation operation only as in
Fig. 10b, the random changes applied by the algorithm exploit the diversity in solutions and
hence a better solution is eventually realized, although after a larger number of generations
than use of crossover and mutation together with suitable occurrence probabilities.

To analyze the effect of elitism, a fixed population size of 25 is used with a crossover
fraction of 0.5 in Fig. 11. A lower number of elite count, such as 2, maintains the opportunity
of realizing diverse individuals through the rest of the population. On the other hand, a very
high number of elite count can result in slower progression towards convergence when poor
average behavior occurs as those elite members become the dominating individuals and
prevent more diverse exploration of the search space.

Fig. 12 shows the pareto set of solutions for the multi-objective evolution problem. The
health metric degradation is specified in terms of degradation in measure of confidence on
a normalized-to-maximum value scale. Similarly, the other objective cost to minimize, i.e.,
power consumption, is described on a normalized scale. For an example, if a throughput
degradation of 40% is acceptable, it reduces power consumption to 30%. A further
throughput degradation to an extent of 60% allows degraded operation at only 15% power
consumption of the maximum power budget.

Thus, the measure of confidence results obtained with the SVM core demonstrate the
applicability of health metric based multi-objective online evolution approach to realize self-
recovery. The effect of GA parameters on the convergence properties of evolving hardware
at runtime is also investigated. By carefully choosing a set of parameters, the designer can
tradeoff various objective metrics such as power consumption, quality in terms of measure
of confidence, throughput degradation of the SVM core during the recovery phase, latency

140
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degradation in classification confidence, e.g. 0.1 degradation, is seen to require roughly half
the power budget.

of fault-recovery, and the reconfiguration controller overhead. Furthermore, these diverse
objectives are achieved using a single cohesive strategy.

4.3 An Image/Video Processing Case-Study: Discrete Cosine Transform

Another case-study, DCT, is used to evaluate the health metric based multi-objective
online evolution scheme to recover from hard-faults within the DCT core. In the hardware
arrangement, PSNR is employed as a health metric to guide the architectural adaptations
needed for fault-mitigation. It is demonstrated that PSNR based fault-detection and fault-
recovery together with the proposed online multi-objective hardware evolution framework
is a low-overhead technique to realize a fault-tolerant, self-healing, and low-power version
of the DCT core.

To analyze the quality degradation of a faulty DCT core during the fault-handling
process, the H.263 video encoder application is executed on the on-chip PowerPC processor
of a Virtex-4 FPGA provided on a Xilinx ML-410 development board. The DCT module is
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Figure 13: Floorplan of DCT module for Virtex-4 device

implemented in hardware. A 256MB memory module is used to hold the executable code
(.elf file) of the video encoder as well as providing the data memory required to hold the
images. Namely, the data from the first stage of the DCT is not overwritten, rather it is kept
in its own span of the frame buffer. Xilinx PlanAhead is used for Partial Reconfiguration
(PR) flow while the software and hardware system is built using Xilinx Platform Studio.
Various Partial Reconfiguration Regions (PRRs) are defined where each PRR corresponds
to a PE of the DCT core. The Xilinx Internal Configuration Access Port (ICAP) is used for
downloading the partial bitstreams from external compact flash. The Xilinx System ACE is a
controller to manage configuration data. It provides an interface between CompactFlash and
the FPGA. This controller is connected in slave mode over the PLB bus and the embedded
processor can read the bitstreams stored on the Compact Flash. The combined ACE file
consisting of full system reconfiguration file (.bit) and the executable file (.e1f) can be
stored on Compact Flash. The FPGA chip is configured with the stored ACE file upon a
power-ON event.

The floorplan of the DCT hardware is shown in Fig. 13. There are 9 reconfigurable
PEs shown, each PE communicates to the static logic through the Bus Macros. The static
modules of the design include PowerPC, DCT controller, Frame Buffer, Digital Clock
Manager, DDR SDRAM controller, CompactFlash controller, and GPIO cores. The RS
is reserved at design time to provide redundancy needed for fault-handling. Initially, the
RS is configured with a blank bitstream. After fault-detection, iterative reconfiguration of
the slack is performed to identify faulty PEs in the throughput datapath. If a faulty PE is
identified in the datapath, the RS is configured with its functionality and introduced into
the datapath thereby completing the recovery process.

In H.263 video encoders, PSNR is possibly maintained by fixing the QP while allowing
the bitrate of the encoded bitstream output to vary. In an experiment to evaluate the
quality-oriented health metrics, variable bitrate mode is selected for video encoder. In
addition to scene’s high activity, a failure in Motion Estimation (ME) processing due to
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Figure 14: Fault injection results for container.qcif video sequence

hardware faults can also be causal in increasing the bitrate of encoded video stream, thereby
degrading overall compression efficiency. The PSNR and bitrate of encoded bitstream for
the container.qgcif input video sequence for various fault-scenarios are shown in
Figure 14a and Figure 14b, respectively, in which d corresponds to number of faulty PEs.
As it is evident, an increase in the number of defective PEs results in quality degradation
of the compressed video stream in terms of both PSNR and Bitrate.

In order to demonstrate fault recovery capability of the proposed MOOE resource
escalating approach, throughput degradation is described in terms of PSNR-degradation.
To demonstrate the energy-saving capability of the proposed adaptive methodology, power
consumption is reported as an evaluation metric. Fig. 15 shows the qualitative and
quantitative results of fault-tolerant DCT module. In this evaluation scenario, no availability
of a slack PE is considered, i.e, Ny = 0. Thus, fault recovery is realized by the successive
re-mappings of DCT functions on the reconfigurable fabric. As the PSNR results show,
the proposed soft-computing framework can realize near-healthy quality objective by
architectural adaptations. For example, a PSNR of 32.86dB is achieved with the power
consumption of 119mW after fault-recovery when the faulty-DCT provided a PSNR of
28.21dB at 142mW power consumption. This quality recovery is reasonably comparable
to the fault-free DCT’s output which was 33.04dB. The reduction in power consumption
becomes feasible due to the feasibility of blanking least priority PE whose output was not
a significant contributing factor in terms of the PSNR. In this way, the PSNR-based multi-
objective online evolution explores the search space by the architectural re-mappings and
their corresponding effect on output quality.

5 Comparison of Proposed Approach with Conventional Fault-Handling
Techniques

5.1 Modular Redundancy

Comparing the proposed technique to the conventional approaches used in the fault-
tolerance domain, there are several criteria of improvement. For example, TMR will require
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24 modules for 8x8 DCT computations and the fault capacity would be limited to errors in
only one voting path. However, the proposed approach allows additional modules during
normal operations, and can handle even the case when 6 out of 8 modules are faulty. Thus,
compared to the TMR scheme, the area and power requirements are about one third, yet
fault tolerance is improved. Moreover, fault-handling can be adjusted by the DSP circuit
designer based upon the tradeoff desired between detection latency and the area overhead
incurred. In addition to fault-capacity, TMR power consumption is significantly higher. On
the other hand, the proposed health metric based multi-objective online evolution strategy
achieves power and quality objective at uniplex area cost and significantly reduced power
consumption especially for the majority portion of the mission lifetime which is fault-free.

5.2 BIST-based Evaluation

An exhaustive test vector strategy would require 2°° vectors (8 values of 12 bit precision) to
exercise all the logic inside a module computing a DCT function, which is computationally
intractable. However, the proposed scheme evaluates the modules when subjected to their
actual inputs. Given the contained faulty resources do not interfere with the desired
functionality, a PE can be continued to be deployed in the circuit. In the DCT core, each
PE spans one Partial Reconfiguration Region (PRR) and each PRR consists of 1152 LUTs.
In addition, there are other resources like FF, BRAM, and DSP48 blocks. In a BIST-based
resource testing scheme [28], these resources need to be tested exhaustively, at all times
even without occurrence of a failure. This affects throughput as well as power consumption.
However, in the proposed approach, the fault isolation phase is initiated only after a fault
is detected as significant. Here, the PRR is treated as a black box in terms of the contained
resources to check its health. Thus, a health metric based multi-objective online evolution
offers a promising soft-resilience technique which tackles operationally significant faults
rather than innocuous faults. Meanwhile, it covers both quality and power optimization
using the same cohesive strategy.

6 Conclusions and Future Directions

A throughput-driven runtime resource configuring scheme to realize soft-resiliency in self-
repairing computational platforms for signal processing is presented. A health metric-based
feedback method is used by the multi-objective online evolution to dynamically adapt
the processing blocks to achieve the desired levels of power and quality. The scheme is
validated by implementation on a commercial off-the-shelf Xilinx Virtex FPGA to validate
the feasibility of a fault-tolerant and energy-efficient design. Moreover, the scheme is
not dependent upon the technology model of a specific device. Nonetheless, a dynamic
reconfiguration capability of the devices is essential to implement the proposed fault
handling flow.

The fault coverage provided includes logic resources as well as routing resources as their
performance is intrinsic to the observed quality metric. The malfunctioning of any of them
will result in the utilizing PE to be flagged as faulty, and then its assigned function is moved
to another area in the chip only if it is found to exhibit a sufficient operational priority on the
output quality. This self-organizing hardware architecture maintains energy efficiency and
quality under various operating conditions by sacrificing non-critical computations based on
input signal characteristics and escalating critical tasks to healthy computational resources.
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Overall, an autonomous soft-resilience approach can be advantageous to the tradeoffs
of accuracy and energy efficiency. A multi-objective GA approach is promising in solving
such large search space problems using the proposed guidance function along the pareto
front. The proposed scheme performs well for a synthetic node case study as well as SVM
and DCT computations. The recovery results demonstrate self-healing capability, as well
as power efficient circuits with provision of the adaptive resource escalation approach.
For example, the PSNR of a faulty DCT module is successfully recovered from 25.2dB
to 34.1dB along with a power saving of 16.2%. An interesting future direction would be
to develop a scheme for priority estimation at runtime for other applications where task
priority information is not known a-priori.
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