
Research Article
Distance-Ranked Fault Identification of Reconfigurable
Hardware Bitstreams via Functional Input

Naveed Imran and Ronald F. DeMara

Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA

Correspondence should be addressed to Naveed Imran; naveed@knights.ucf.edu

Received 29 September 2013; Revised 26 December 2013; Accepted 9 January 2014; Published 17 March 2014

Academic Editor: Walter Stechele

Copyright © 2014 N. Imran and R. F. DeMara. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Distance-Ranked Fault Identification (DRFI) is a dynamic reconfiguration technique which employs runtime inputs to conduct
online functional testing of fielded FPGA logic and interconnect resources without test vectors. At design time, a diverse set
of functionally identical bitstream configurations are created which utilize alternate hardware resources in the FPGA fabric. An
ordering is imposed on the configuration pool as updated by the PageRank indexing precedence. The configurations which utilize
permanently damaged resources and hence manifest discrepant outputs, receive lower rank are thus less preferred for instantiation
on the FPGA. Results indicate accurate identification of fault-free configurations in a pool of pregenerated bitstreams with a low
number of reconfigurations and input evaluations. For MCNC benchmark circuits, the observed reduction in input evaluations
is up to 75% when comparing the DRFI technique to unguided evaluation. The DRFI diagnosis method is seen to isolate all 14
healthy configurations from a pool of 100 pregenerated configurations, and thereby offering a 100% isolation accuracy provided the
fault-free configurations exist in the design pool. When a complete recovery is not feasible, graceful degradation may be realized
which is demonstrated by the PSNR improvement of images processed in a video encoder case study.

1. Introduction

The self-reconfiguration capability of FPGAs has been identi-
fied as a useful feature for realizing designs which are resilient
to local permanent faults as well asmitigating transistor aging
degradations [1]. Recovery from local permanent damage
in FPGA-based designs can be realized by reconfigurations
to utilize fault-free logic resources at runtime. Given some
faulty resources in a particular region on an FPGA chip, the
lost functionality can be refurbished by utilizing a pristine
area of the chip. Conversely, if a circuit realized by a par-
ticular bitstream manifests an observable fault, then an
alternate bitstream utilizing only fault-free resources can be
downloaded into a reconfigurable region.

A Concurrent Error Detection (CED) scheme [2] is a
well-established low-latency spatial-redundancy approach to
fault detection. Such circuits are instantiated with a single
replicated module to realize a Duplex Modular Redundancy
(DMR) arrangement. When a discrepancy is observed in

the output, it reveals the faulty nature of at least one of the
instances of the duplex arrangement. If autonomous recovery
capability is desired, then after fault detection, an efficient
fault recovery technique is sought which is the subject of this
paper.

A previous technique which uses a diverse pool of FPGA
configurations for recovery from local permanent damage
in online FPGAs is the Consensus-Based Evaluation (CBE)
[3] method. CBE generates a diverse population of circuit
configurations utilizing alternative device resources. When
discrepancies are detected, the configurations in the pool
are evaluated using online inputs in a duplex arrangement.
Each configuration has an associatedDiscrepancy Value (DV)
metric which is increased based upon the discrepancy history
of that configuration. This evaluation process increases the
DV of configuration pairs which exhibit discrepant behavior
to identical inputs in a given Evaluation Period. Thus, those
configurations utilizing faulty resources accumulate a higher
DV than those which utilize fault-free resources. CBE used

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2014, Article ID 279673, 21 pages
http://dx.doi.org/10.1155/2014/279673

http://dx.doi.org/10.1155/2014/279673

2 International Journal of Reconfigurable Computing

statistical clustering of DV values to identify outliers. A
consensus is formed and the fitness of an individual configu-
ration relative to the consensus value differentiates the faulty
configuration in order to initiate repair. In the current work,
our primary goal is to rapidly identify the operationally cor-
rect circuits out of a population of permanent fault-affected
circuits using a search-driven ranking scheme. Secondary
goals are recovery from for multiple permanent faults, while
realizing graceful degradation.

There is a body of research dealing with the problem
of identifying faulty components by employing system diag-
nosis theory. A pioneering work in diagnosis theory is by
Preparata et al. [4] in which the problem of identifying faulty
nodes in a digital system is formulated as a connection assign-
ment procedure. Various components of a digital system are
represented by nodes in a graph described by a connection
matrix. A given edge in the graph connects two nodes,
one being the node under test and the other being testing
node. The diagnosibility of digital systems containing faulty
modules has been studied by various researchers [5, 6]. In
the proposed scheme, the configuration bitstreams for recon-
figurable hardware fabric are conceptualized as nodes of the
graph which represents digital circuits undergoing diagnosis.

The novel diagnosis technique proposed herein offers
several benefits. It avoids the explicit step of faulty resource
isolation and does not take the device offline to enable
exhaustive or pseudo-exhaustive testing of all possible sets
of inputs. It does not require testing the device resources
individually which may contribute to unobservable faults.
Instead, the actual throughput inputs are utilized for the
evaluation of an online FPGA device. Various design con-
figurations are evaluated in pairs. The pairs are selected
from a pool of designs which are functionally identical
and yet utilize alternate hardware resources. Ideally, some
circuit throughput is maintained during the fault handling
process, and thereby providing the potential of partially
correct output during recovery for some applications such
as signal processing tasks. These techniques are developed
and evaluated herein to mitigate local permanent damage
by functionally evaluating the Circuit Under Test (CUT). A
unique hardware configuration of a CUT corresponds to a set
of logic and interconnect resources allocated to realize each
CUT in the proposed approach.

The remainder of the paper is organized as follows. In
Section 2, relatedwork on fault handling in live FPGAdevices
is presented. Section 3 describes the design flow of generating
a diverse pool of configurations. Section 4 defines the online
fault-handling process in terms of two subphases consisting
of fault detection and fault diagnosis. Section 5 describes the
DRFI fault-handling flow in detail. Here, an analogy between
online ranking of a pool of configurations according to their
runtime fitness is provided in the context of online search
techniques. Section 6 includes the fault recovery results for
two classes of case studies: MCNC benchmark circuits and
DCT cores. Section 7 compares the proposed scheme with a
traditional TMR technique as well as describing the overhead
involved in DRFI over a uniplex design. Finally, Section 8
concludes the paper while also identifying useful future
directions.

2. Related Work

In order to mitigate local permanent damage, Fault-handling
(FH) systems typically employ a sequence of handling phases
including Fault Detection, Fault Diagnosis, and Fault Recov-
ery. By employing these phases at runtime, a fault-resilient
system can continue its operation in the presence of failures,
sometimes in a degraded mode with partially restored func-
tionality [7] if the full restoration of functionality is infeasible.
The systems reliability and availability are measured in terms
of service continuity and operational availability in presence
of adverse events, respectively [8]. In this paper, an increase
in reliability is sought by employing reconfigurable hardware
in the fault-handling flow, whereas increased availability is
sought by instantiating the preferred configurations in the
throughput datapath.

Redundancy-based fault detection methods are widely
used in fault-handling systems although incur costs of area
and power overhead. In the Comparison Diagnosis Model
[4, 9], a module pair is evaluated subjected to the inputs to
check for any discrepancy. For example, a CED arrangement
employs either two replicas of a design or a diverse duplex
design to reduce common mode faults [2]. Its advantage
is a very low fault detection latency. A Triple Modular
Redundancy (TMR) system [10–12] utilizes three instances of
a throughput module. The outputs of these three instances
are passed through a majority voter circuit, which in turn
provides the main output of the system. In this way, in addi-
tion to fault detection capability, the system is able to mask
its faults in the output if distinguishable faults occur within
one of three modules. However, this arrangement incurs
an increased area and power overhead to accommodate the
replicated datapaths. It will be shown that these overheads can
be significantly reduced by employing reconfiguration.

The Fault Diagnosis phase consists of identifying properly
functioning computational resources in some larger set of
Suspect resources. Traditionally, in many fault tolerant digital
circuits, the resources are diagnosed by evaluating their
behavior under a set of test inputs. This test vector strategy
can isolate faults while requiring only a small area overhead
and yet incurs the cost of evaluating an extensive number of
test vectors to diagnose the functional blocks as they increase
exponentially according to the number of inputs. The DRFI
runtime reconfiguration approach combines the benefits of
redundancy with only twice the computational requirement
while significantlymaintaining the throughput in presence of
hardware failures.

While reconfiguration and redundancy are fundamental
components of a fault recovery process, both the choice
of reconfiguration scheduling policy and the relative fitness
of computational modules affect the availability during the
recovery phase and quality of recovery, after fault handling.
Here, it is possible tomaintain reasonable levels of availability
by instantiating preferred configurations during the fault-
handling phase and by promoting the relatively higher-
ranked configurations after fault recovery.

Reliability of FPGA-based designs [13] can be achieved
in various ways. TMR is popular in FPGA-based reliable
designs for protection against permanent as well as transient

International Journal of Reconfigurable Computing 3

faults. For instance, a vendor’s tool XTMR is available to
triplicate the user logic in Xilinx devices [10]. The TMR’s
fault recovery capability is limited to the faults which impact
one module. This limitation of TMR can be overcome using
self-repair [14, 15] approaches to increase sustainability, such
as refurbishing the failed instance using jiggling [16] tech-
nique of faults mitigation. Other active recovery techniques
incorporate control schemes which realize intelligent actions
to cope with permanent failures. Keymeulen et al. [17]
proposed an evolutionary approach to circumvent the faults
in reconfigurable digital and analog circuits. They proposed
genetic algorithms to evolve the population of fault tolerant
circuits by applying genetic operators such as mutation and
crossover over the circuit’s bitstream representation. Other
self-repair techniques by Garvie and Thompson [16] are
based upon direct bitstream manipulation by evolutionary
algorithms to recover from faults. Many evolvable hardware
techniques have been presented in the literature that rely on
intricate details of the FPGA device structure and routing.
Their recovery times may be extensive as the design tools
must be invoked at runtime to generate new alternatives
or in some cases nonconvergent based on the stochastic
nature of genetic algorithm based search. In addition, a
fitness evaluation function must be defined in advance to
select the best individuals in a population, which may in
turn necessitate complete knowledge of the input-output
truth table for fault-free behavior. DRFI avoids both of
these complications. Altogether, DRFI is able to utilize
actual inputs, instead of exhaustive or pseudo-exhaustive test
vectors, on any commercial off-the-shelf FPGA with partial
reconfiguration capability without runtime invocation of the
design tools.

One approach to reducing overheads associated with
TMR is to employ the Comparison Diagnosis Model with a
pair of modules in an adaptable CED arrangement subjected
to the same inputs. For example, the Competitive Runtime
Reconfiguration (CRR) [18] scheme uses an initial population
of functionally identical (same input output behavior), yet
physically distinct (alternative design or place-and-route
realization), FPGA configurations which are produced at
design time. At runtime, these individuals compete for
selection to a CED arrangement based on a fitness function
favoring fault-free behavior. Hence, any physical resource
exhibiting an operationally significant fault decreases the
fitness of those configurations which use it.Through runtime
competition, the presence of the fault becomes occluded from
the visibility in subsequent operations.

Other runtime testing methods, such as online Built-in
Self-Test (BIST) techniques [19], offer the advantages of a
roving test, which checks a subset of the chip’s resources while
retaining the remaining nontested resources in operation.
Resource testing typically involves pseudo-exhaustive input-
space testing of the FPGA resources to identify faults, while
functional testing methods check the correctness of the dat-
apath functions [20]. In [21], a pair of blocks configured with
identical operating modes are subjected to resource-oriented
test patterns.This Self-Testing AReas (STARs) approachmain-
tains a relatively small area of the reconfigurable fabric offline
which is under test, while the remainder of the reconfigurable

fabric is online and continues its operation. STARs compare
the output of each Programmable Logic Block (PLB) to that
of an identically configured PLB. This utilizes the property
that a discrepancy between the outputs alerts the PLB to be
suspected as outlined by Dutt et al.’s Roving Tester (ROTE)
technique [20]. Gericota et al.’s active replication technique
[22] concurrently creates replicas ofConfigurable Logic Blocks
(CLBs). In the STARs approach, each block under test is suc-
cessively evaluated in multiple reconfiguration modes, and
when a block is completely tested, the testing area is advanced
to the next block in the device. To facilitate reconfigurability
to relocate the system logic, there is a provision to tem-
porarily halt the system operation by controlling the system
clock. The recovery in STARs is achieved by remapping lost
functionality to logic and interconnect resources which were
diagnosed as healthy. The heterogeneous nature of FPGA
resources, for example, LUTs, FFs, BRAMS, multipliers, DSP
Blocks, and processor cores, can make it challenging to
achieve a generic testing methodology based on a roving
approach. Moreover, the scalability of resource-based testing
techniques with the significant growth of on-chip resources
is also a concern. Therefore, functional testing can offer an
appealing alternative to resource-based testing and thus it
is embraced herein. In this paper, we concentrate on a live
FPGA testing scenario. Nonetheless, backend testing with the
proposed technique is also possible, although BIST schemes
are generally preferred in such situations due to their fine-
grained resolution which is beneficial for backend testing.

3. Generating a Diverse Pool of
Configurations by Design Relocation

A diverse population of configurations which randomly
employ different resources within the FPGA fabric is rela-
tively straightforward to generate at design time [23]. For this
purpose, the seed design, which is a post-placed-and-routed
circuit, is relocated to alternate areas in a chip. Modifying
the User Constraints File (.ucf) can constrain the place-
and-route tool to generate alternate configurations. Each
distinct .ucf file in Xilinx ISE environment corresponds
to a diverse physical configuration, and thus the generated
configuration bitstream (.bit) file is unique. The process is
described in detail below.

As shown in Figure 1(a), the circuit is specified using Ver-
ilog HDL and mapped to a Xilinx FPGA chip by the vendor-
provided synthesis tool. The location of the design compo-
nents mapped over corresponding logic resources is deter-
mined by the synthesis and implementation toolset itself.
The Xilinx Integrated Software Environment (ISE) placement
tool automatically places the design components considering
the area and timing optimizations. The post-place-and-route
simulation model is considered as a seed design here. The
chip area is divided into various Reconfigurable Tiles (RT)
where each tile may contain multiple Partial Reconfiguration
Regions (PRRs) [24]. The distinction between RT and PRR
allows changing the granularity of fault handling during
runtime. The design is partitioned into basic Logic Cells. The
initial locations of all Logic Cells are obtained from the seed

4 International Journal of Reconfigurable Computing

Utilized primitive
instances

of utilized resources: Post-place-and-route design with
default physical location of instances

Alternate configuration

Xilinx ISE place-and-route tool

modify the UCF file
Physical resource permutation:

Placement and routing:

Seed design:

(verilog file)
HDL description of CUT

Postmap simulation model .v file

Repeat the process

configurationsDiverse population:

Design synthesis:

Placement and routing:
Xilinx ISE place-and-route tool

Xilinx ISE synthesis, translate, and
map tools to map the design over

the Xilinx primitive libraries

Identification

MATLAB-code for
verilog parsing

N configuration files (bit)

N times to generate
N diverse

(a) Relocation algorithm mapped over the tool flow

Various
reconfigurable

tiles in a chip

A functional
cell of the

implemented
design

Two cells
relocated

to
alternate

tiles

(b) A sample relocated design

Figure 1: Generating various configurations by design relocation.

design. For assigning alternate Reconfigurable Tiles to the
logic cells, theUser Constraints File (UCF) file [25] ismodified
to relocate the circuit components and then the circuit
is reinstantiated. This results in an alternate configuration
utilizing unused tiles of the chip as shown in Figure 1(b). In
thismanner, a diverse set of configurations is generatedwhich
utilize alternate logic resources in the chip. In the current
design tool suite fromXilinx, the termPRRhas been renamed
to Reconfigurable Partition and the requirement to insert bus
macros has been voided by proxy-LUTs [26, 27]. Our design
relocation flow supports current versions of Xilinx design
suites ISE, for example, ISE 14.7, and Vivado.

4. Online Fault Handling by
Dynamic Reconfiguration

4.1. Fault Detection. A pair of configuration bitstreams is
randomly selected to instantiate a CED arrangement in the
FPGA device. Only those configuration pairs can be instan-
tiated which utilize mutually exclusive device resources.

Mutual exclusion can be ensured by virtually dividing the
chip into two distinct regions, one for each CED instance.
An instantiated pair provides the desired DMR which can be
used for error detection as illustrated in Figure 2. In the fol-
lowing discussion, the configurations in a DMR arrangement
are referred to as the active CUT and RS corresponding to
Reconfigurable Slack, respectively.

A discrepancy between the outputs of the two instances
in DMR arrangement reveals the faulty nature of at least
one of those configurations. Afterwards when a discrepancy
in the outputs occurs, a fault detection condition is asserted
and the proposed fault-handling methodology is initiated.
The problem of identifying healthy configurations out of
suspected configurations is then formulated as a system-level
diagnosis problem.

4.2. System-Level Diagnosis of Hardware Configurations. The
fault(s) occurring in an FPGA chip may impact multiple
circuit implementations in the configuration pool.Thus, after
fault detection, the health of all of the configurations is

International Journal of Reconfigurable Computing 5

Functional

Functional input

A physical instantiation
of another configuration
mapped over a mutually
exclusive resources of the

reconfigurable fabric

isolated by
busmacros

Functional output
isolated by
busmacros

Multiplexer
and

Discr

Reconfigurable
fabric

0: {Healthy}
1: {Faulty, suspect}

comparator

1- bit
2- bit

configurations
storage memory N- bit

· · ·

A physical instantiation
of a unique

mapped over the
reconfigurable fabric

Instance2Instance1

Instance2

configuration

Figure 2: A CED arrangement of a functional element.

Suspect. The objective becomes identifying correct config-
urations which utilize pristine resources. Formally, given a
pool of 𝑁 configurations out of which 𝑁𝑓 configurations
are faulty, the objective is to identify 𝑁ℎ = 𝑁 − 𝑁𝑓 fault-
free configurations that utilize pristine resources. At least
two healthy configurations are necessary to maintain a DMR
arrangement after fault recovery.

Figure 3 outlines the scope, diagnosis approaches, and
metrics used below. The diagnosability formulation for iden-
tifying faulty nodes is developed herein using a syndrome
function. The three diagnosis algorithms of Exhaustive Eval-
uation approach, the State Transitions approach, and the
DRFI approach employing PageRank technique developed are
described in Sections 4.2.1, 4.2.2, and 5, respectively. Section 6
reports experimental results for MCNC benchmark circuits
and H.263 video encoder’s DCT hardware core.

The same diagnosis formulation applies to each of the
three algorithms developed and is described first here. Given
an undirected graph G(V,E) of vertex set V and edges set
E, the diagnosis objective is to identify faulty nodes. The
nodes of G correspond to configurations to be compared
in a CED arrangement. The diagnosis process is described
in terms of CED comparisons to identify discrepancies.
However, the formulation is not restricted to a pair-wise
comparison. Instead, the fault diagnosis process can uti-
lize N-Modular Redundancy (NMR) in accordance with
availability of resources. NMR is a generalization of TMR
where 𝑁 ≥ 2 modules provide 𝑁 − 1 redundant instances,
which has found applicability in adaptive fault handling
[28, 29].

An element (𝑢, V) in the edge set E indicates the feasibility
that the output from corresponding configurations can be
compared. Let the actual fitness states of nodes be represented
by vector Φ and the fitness states estimated based upon
the fault-diagnosis process by vector Φ̂. We define the
Connectivity Matrix C to show the comparison performed
between two nodes in G. Thus, an entry 𝑐𝑖𝑗 = 1 denotes that

a comparison between node 𝑖 and node 𝑗 is performed, where
each node depicts a distinct configuration:

C =

[
[
[
[

[

0 𝑐12 ⋅ ⋅ ⋅ 𝑐1𝑁

𝑐21 0 ⋅ ⋅ ⋅ 𝑐2𝑁
...

... d
...

𝑐𝑁1 𝑐𝑁2 ⋅ ⋅ ⋅ 0

]
]
]
]

]

. (1)

Syndrome Matrix Ψ indicates the outcome of com-
parisons. An entry 𝜓𝑖𝑗 of this matrix denotes comparison
outcome corresponding to the outputs of node 𝑖 and node 𝑗.
Both of these matrices are symmetric about the diagonal due
to commutativity of pairwise comparison for discrepancy:

Ψ =

[
[
[
[

[

0 𝜓12 ⋅ ⋅ ⋅ 𝜓1𝑁

𝜓21 0 ⋅ ⋅ ⋅ 𝜓2𝑁
...

... d
...

𝜓𝑁1 𝜓𝑁2 ⋅ ⋅ ⋅ 0

]
]
]
]

]

. (2)

Entries where 𝜓𝑖𝑗 = 1 indicate that the output from
nodes 𝑖 and 𝑗 is discrepant for the same input, and 𝜓𝑖𝑗 = 0

indicates their agreement. Meanwhile 𝜓𝑖𝑗 = 𝑥 stands for the
case when no comparison has been performed between the
corresponding nodes. A 𝜓𝑖𝑖 = 0 on the diagonal corresponds
to the comparison outcome for a node 𝑖 with itself. It is
worthwhile to highlight thatwe consider a pair to be healthy if
and only if no discrepancy had occurred during the lifetime
of comparison evaluation. In other words, a value 𝜓𝑖𝑗 = 1

renders all future comparisons between node 𝑖 and node 𝑗 to
retain its constant value 1.

The Syndrome Matrix Ψ can be used to estimate the
fitness states of nodes in G under certain condition as we
will discuss 3 diagnosis methods in further sections. Thus,
faulty nodes can be identified based upon the Syndrome
Matrix values. After fault detection, all the entries ofΨ except
those on the diagonal are initialized with 𝑥 implying that the
health of all the PEs is Suspect. The following identifies the

6 International Journal of Reconfigurable Computing

Approach Emphasis Challenges
Baseline arrangement:

TMR Fault masking Area, power,
and resiliency
 Algorithm 1: exhaustive

evaluation
Quality of
recovery

Diagnosis
latency

Algorithm 2: SFH state
transitions

Reduced
diagnosis
latency by
employing
evaluation

history

Quality of
recovery due to
false negatives

Algorithm 3: DRFI

Availability
by

maintaining
throughput

during
recovery

Diagnosis
latency and

recovery quality
tradeoff

Case studies
Evaluation metrics

MCNC circuit
benchmarks

DCT core

∙ Online functional diagnosis

∙ Graceful degradation

∙ Quality of recovery

∙ Survivability despite hard faults

Figure 3: Online fault diagnosis strategies evaluated herein to availability, throughput degradation, and latency tradeoffs.

Require:𝑁
Ensure: Φ̂
(1) Starting from the first configuration

Initialize CUT = 1
(2) while CUT < 𝑁 do
(3) Choose the next configuration from the configurations pool as slack

Designate the CUT as active configuration, and RS = CUT + 1 as slack.
Then, the pair under test is given by: 𝑉CED = {CUT, RS}

(4) Exhaustive evaluation method involves applying all the points in the input space of circuit
Perform concurrent comparison to the same inputs for various edges of the graph represented by connectivity matrix C

(5) Evaluate all the possible configurations pair to complete the syndrome matrix
Update the Syndrome MatrixΨ based upon comparisons outcome of all possible inputs

(6) CUT = CUT + 1
(7) end while
(8)This method involves exploration of the entire input-space and thus exposes all the operationally manifested faults

GivenΨ, isolate the faulty nodes:
𝜙𝑖 ← 0 and 𝜙𝑗 ← 0, if 𝑐𝑖𝑗 = 1, and 𝜓𝑖𝑗 = 0
𝜙𝑖 ← 1 if 𝜙𝑗 = 0, 𝑐𝑖𝑗 = 1, and 𝜓𝑖𝑗 = 1

Algorithm 1: Exhaustive evaluation of configurations for fault diagnosis.

condition for healthiness, with the estimated fitness vector
being updated accordingly.

Condition.𝜓(𝑖, 𝑗) = 0 for any 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑁, where
𝑖 ̸= 𝑗 and 𝑐𝑖𝑗 = 1.

Update. 𝜙𝑖 = 0.

4.2.1. Exhaustive Evaluation. To address the identification of
faults without loss of generality, it is assumed that no correct-
ness information is known priori for the functionality of the
bitstreams in the configuration pool. In particular, there are
no configurations that are known to be fault free or resilient to
faults. For purposes of operation, the DRFI implementation
and the device reconfigurationmechanism are assumed to be
reliable which can be encouraged by minimizing device area
relative to that of the throughput fabric. Such components
have been referred to in the literature as golden elements [16].
Golden elements are subcircuits which are assumed to remain

fault free throughout the duration of the mission. As there
are no golden configurations needed to examine the fitness of
other Suspect configurations, one straightforward approach
is to exhaustively evaluate all the configuration pairs in a
mutual checking paradigm as given by Algorithm 1. Given
a configuration pair instantiated in a CED manner, a com-
plete agreement in their output throughout all the possible
inputs would affirm their healthy status. In practice, only
nonexhaustive input evaluation is feasible which motivates
the proposed DRFI technique described later.

Assume that an 𝐼-input circuit is instantiated in duplex
manner. The cardinality of the input set is 2𝐼 and all distinct
combinations of input samples need to be applied to evaluate
the behavior of the circuit to the entire input space. If the
number of defective configurations is not known priori, an
upper bound on diagnosis time in terms of number of input
evaluations can be derived as given in the following: the
number of ways in which 𝑘 objects can be chosen out of a set
of𝑁 objects is given by Binomial Coefficient [30]. To realize

International Journal of Reconfigurable Computing 7

Require:𝑁
Ensure: Φ̂
(1) Initialize CUT = 1
(2) while (𝑉ℎ == 𝜙) and (CUT < 𝑁) do
(3) The configurations under test in SFH method are selected in a round-robin manner

Designate the CUT as active configuration, and RS as slack. Then, the pair under test is given by: 𝑉CED = {CUT, RS}
(4) Perform concurrent comparison to the same inputs for various edges of the graph represented by connectivity

matrix C
(5) The comparison outcome in SFH method is binary. A 1 corresponds to discrepant behavior while a 0 corresponds

to healthy configurations
Update the Syndrome MatrixΨ based upon comparisons outcome during an evaluation interval

(6) Increment the reload number 𝑛𝑟 = 𝑛𝑟 + 1
(7) GivenΨ, isolate the faulty nodes:

𝜙𝑖 ← 0 and 𝜙𝑗 ← 0, if 𝑐𝑖𝑗 = 1, and 𝜓𝑖𝑗 = 0
𝜙𝑖 ← 1 if 𝜙𝑗 = 0, 𝑐𝑖𝑗 = 1, and 𝜓𝑖𝑗 = 1

(8) end while
(9) A healthy configuration can check the health of other configuration when instantiated concurrently for discrepancy check.

Use a healthy identified configuration to test all other configurations

Algorithm 2: SFH state transition algorithm for functional diagnosis of configurations.

a CED pair, two configurations are selected out of the pool.
Thus,

number of all possible configurations pairings = (𝑁2),

total number of input evaluations required to test all
configuration-pairs = (𝑁2) 2

𝐼.

Figure 4 shows the upper bound on number of reconfig-
urations required to identify faulty configurations by duplex
evaluations for various configuration pool sizes.

4.2.2.The SFH Fitness States Transitions DiagramMethod. As
a competing approach to the DRFI technique, we consider
a state transition diagram method based upon the Suspect,
Faulty, and Healthy (SFH) fitness transitions of the config-
uration bitstreams. An individual configuration undergoes
different transitions in its fitness state throughout the life
of a circuit. After fault detection, the fitness state of every
configuration is Suspect. If two configurations show complete
agreement in a given Evaluation Period, E, both are declared
as Presumed Healthy. However, if a Suspect configuration
exhibits discrepancywith a healthy one, it ismarked as Faulty.
The state transition diagram is illustrated in Figure 5. The
objective of the state transitions flow is to identify healthy
configurations in a pool of Suspect configurations which, in
turn, helps to identify faulty items. The problem is similar
to the counterfeit coin identification problem [31] with a
restriction that only two coins can be tested at a time.

The SFHmethod is evaluated usingMonte-Carlo simula-
tion of the configurations’ behavior. Let 𝑢𝑖 represent configu-
ration labels for all 1 ≤ 𝑖 ≤ 𝑁 for a configurations pool 𝑉 of
size𝑁.The number of healthy configurations is𝑁ℎ = 𝑁−𝑁𝑓,
and we identify them using discrepancy information. For this
purpose, a configuration pair {CUT,RS} is randomly chosen
to be instantiated on the chip, where {CUT,RS} ∈ 𝑉. The
CUT and RS correspond to active and slack configurations of

a CED pair, respectively. Once a discrepancy is detected, the
fitness state of all of the configurations is suspected; that is,

𝑢𝑖 ⋅ FS = Suspect; ∀1 ≤ 𝑖 ≤ 𝑁. (3)

As the knowledge about fitness of those configurations is
not available initially, the estimated number of healthy config-
urations is 𝑁̂ℎ = 0. Afterwards, another pair of configurations
is randomly selected for instantiation while incrementing
a variable Reload Number, 𝑛𝑟, as listed in Algorithm 2. If
two configurations completely agree in terms of their output
throughout their instantiation period, their fitness state is
updated to fault free while incrementing number of Presumed
Healthy configuration, 𝑁̂ℎ, by 2 as follows:

VCUT,RS ⋅ FS = Healthy, 𝑁̂ℎ = 𝑁̂ℎ + 2. (4)

To reduce the number of configurations reloads, as it
costs reconfiguration latency which, in turn, would affect the
throughput, awithout-replacement policy is also evaluated. In
this strategy, an identified healthy pair is never reinstantiated
during the diagnosis process under SFH approach.

Figure 6 shows history of knowledge about various con-
figurations while they are instantiated for evaluation. The 𝑦-
axis of the plot shows percentage of total number of Presumed
Healthy configurations correctly identified using the discrep-
ancy information, that is, 𝑁̂ℎ/(𝑁 − 𝑁𝑓). We can see from
the plot that the required number of configuration reloads
increases with increased number of defective configurations,
𝑁𝑓.Moreover, thewithout-replacement policy provides better
results than the with-replacement policy given no additional
faults occur upon initiation of the fault diagnosis phase. In
the following, we provide some probability analysis of the
problem. The diagnosis problem of configuration bitstreams
can be formulated as given below.

Given a collection containing a mix of defective and
nondefective items, what is the probability that two items

8 International Journal of Reconfigurable Computing

0 20 40 60 80 100 120 140 160
0

2000

4000

6000

8000

10000

12000

14000

U
pp

er
 b

ou
nd

 o
n

nu
m

be
r o

f p
ai

r e
va

lu
at

io
ns

For a total of 100
configurations, 4950
configuration pairs need to
be evaluated given the number
of defectives are unknown.

X: 100
Y: 4950

Number of configurations, N

(a) Upper bound on number of reconfigurations required to isolate faulty
bitstreams

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

U
pp

er
 b

ou
nd

 o
n

nu
m

be
r o

f i
np

ut
 v

al
sa

lu
at

io
ns

Number of configurations, N

I = 6

I = 7

I = 8

I = 9

(in
 m

ill
io

ns
)

(b) Upper bound on number of input evaluations required to isolate faulty
bitstreams

Figure 4: Evaluation Cost of Fault diagnosis by exhaustive evalua-
tion of configuration pairs.

Suspect

Fault detection asserted

Presumed
Healthy

Faulty

discr = 1 for discr = 0 for
= healthy = healthy

discr = 1 for
= healthyUj·FS

Uj·FS Uj·FS

Figure 5: Fitness states of a design configuration during a circuit’s
lifetime.

0

20

40

60

80

100

120

A
ge

 o
f t

ot
al

 co
rr

ec
tly

 id
en

tifi
ed

0 50 100 150 200 250 300
Reload number

he
al

th
y

co
nfi

gu
ra

tio
ns

 (%
)

Nf = 5

Nf = 15

Nf = 25

(a) With replacement

0 50 100 150 200
0

20

40

60

80

100

120

Reload number

A
ge

 o
f t

ot
al

 co
rr

ec
tly

 id
en

tifi
ed

he

al
th

y
co

nfi
gu

ra
tio

ns
 (%

)

Nf = 5

Nf = 15

Nf = 25

(b) Without replacement

Figure 6: Identifying healthy configurations in a Suspect pool.

selected at random are nondefective [30]? To analyze this
problem, first suppose 𝑝(ℎ) is the probability of selecting a
single nondefective (healthy) item and 𝑝(𝑓) is the probability
of selecting a defective (faulty) item. Using the notation
introduced in the previous section, 𝑝(ℎ) = 𝑁ℎ/𝑁 and 𝑝(𝑓) =
𝑁𝑓/𝑁. Thus, the probability of selecting a nondefective pair
is given by 𝑝(ℎℎ) = 𝑝(ℎ) ∗ 𝑝(ℎ | ℎ) where 𝑝(ℎ | ℎ) is
the probability that the second item is nondefective given the
first item was nondefective. The experiment of instantiating
and evaluating a configuration pair is a Bernoulli trial whose
outcome is either success when a healthy pair is selected or a
failure when at least one of the configurations is faulty. The
probability of 𝑘 successes in the outcome of 𝑛 Bernoulli trials

International Journal of Reconfigurable Computing 9

with replacement strategy is given by binomial probability
law [30]:

𝑝 (𝑘) = (
𝑛

𝑘
)𝑝
𝑘
(1 − 𝑝)

𝑛−𝑘
, (5)

where 𝑝 is the probability of success of a Bernoulli trial.
As each trial consists of picking a pair of items instead of a

single item, the probability mass function (pmf) [30] becomes

pmf (𝑘) = (𝑛
𝑘
)𝑝(ℎℎ)

𝑘
(1 − 𝑝 (ℎℎ))

𝑛−𝑘
. (6)

The cumulative distribution function (cdf) of a random
variable 𝑋 provides the probability that the event will be
found with value less than or equal to 𝑘 [30]; that is,

cdf (𝑘) = 𝑃 [𝑋 ≤ 𝑘] . (7)

The probability of finding nondefective items in a batch
of 100 items with various numbers of trials is shown in
Figure 7. Out of one hundred items, 5 items are assumed to
be defective. The pmf and cdf depend on 𝑝, 𝑘, and 𝑛. For
example, the pmf for 𝑛 = 100 trials shows that the probability
of choosing exact 𝑘 = 91 nondefective pairs is only 0.1331.
In addition, the cdf plot shows that probability of success of
selecting 𝑘 ≤ 91 healthy pairs in 𝑛 = 100 trials is 0.6549.

To relate the probability analysis with the results from
the Monte-Carlo simulation in Figure 6, assume that we are
interested in finding the probability of success greater than
𝑘 given 𝑛 trials. This measure relates to probability that each
healthy configuration is selected at least once paired with a
healthy other configuration, in a certain number of loadings
of configuration bitstreams of pairs.The cdf in Figure 7 shows
that probability of successes 𝑘 ≤ 95 is approximately 0.1 given
110 trials, implying that probability of successes, 𝑘 > 95, is 0.9;
that is, 𝑝(𝑘 > 95) = (1.0 − 0.1). Thus, we can expect that 90%
of the trials would be successful in terms of selecting 𝑘 > 95

nondefective pairs in 𝑛 = 110 trials. It is evident fromFigure 6
that roughly 90% of nondefective items are isolated in 110
iterations under SFH transitions method of input evaluations
of various pairs.

It is essential to note our assumption here that if two
configurations are loaded for a given evaluation period, they
will exhibit discrepancy at least once if at least one of them
is faulty. This assumption may not be true in many cases as
we discuss in the next section. This is acceptable since SFH
is just providing a baseline for comparison to the proposed
DRFI approach.

5. The DRFI Approach

The DRFI technique of fault diagnosis using a functional
testing paradigm fully exploits the dynamic reconfiguration
capability of contemporary FPGAs. This technique utilizes
the information about difference in output values of the
duplex arrangement, in addition to discrepancy information.
The diagnosis process begins with constructing a Circuit
Similarity Graph and then applying the PageRank algorithm
to compute the rank score of each node in the graph.The top

70 75 80 85 90 95 100 105 110
0

0.2

0.4

0.6

0.8

1

1.2

X: 82
Y: 0.6659

X: 91
Y: 0.6549

X: 100
Y: 0.6453

Number of successes, k

Cu
m

m
ul

at
iv

e d
ist

rib
ut

io
n

fu
nc

tio
n,

 cd
f(k

)

n = 90

n = 100

n = 110

Figure 7: Probability of success for various trials with replacement.

𝜇 configurations, having a score greater than the average score
of a pool, are assumed to be fault free and hence can be used
by the system. However, if no healthy configuration exists,
then the pool is sorted in ascending order according to the
scores and higher score configurations are preferred.

An online method to prioritize alternative configurations
for instantiation is needed. The PageRank algorithm, which
originated to rank the pages in theWorldWideWeb, has also
been effective on non-web-based applications and has been
found to be fast, scalable, and robust [32]. In the following,
some background of the PageRank algorithm is provided
to give some intuition of the analogy to the ranking of
bitstreams.

Page et al. [33] developed the PageRank algorithm to
rank the webpages on World Wide Web according to their
importance. This algorithm is successfully being employed
by the Google search engine. The basic motivation is that the
webpages which are more important should be given higher
PageRank value. The importance of a webpage is based on a
factor determined by the number of references made to it by
other pages, and hence it is determined recursively [33].

We make an analogy with the problem at hand, that is,
bringing out some fault-free configurations from a pool of
configurations.The configurations which use faulty resources
lack consistent behavior with other configurations. However,
the hardware realizations which utilize pristine resources
would exhibit consistent behavior, when evaluated in duplex
manner with the other realizations. The configurations
showing consistent behavior are marked as important and
mined from the pool using the PageRank algorithm. Table 1
identifies the analogies among various applications in which
PageRank algorithm is being deployed. In Web Search
applications, there are multiple content terms used on a
webpage that determine its search relevance. Similarly, there
are multiple resources in the FPGA fabric that determine its
testing relevance.

Therefore, in this problem, the PageRank algorithm is
utilized to analyze the relationship among different hardware

10 International Journal of Reconfigurable Computing

Table 1: Analogy of FPGA testing characteristics with ranking.

Context Ranked element Ranking metric Dynamic coverage
Web search Webpage content Page views Yes
Bioinformatics Metabolic and protein interaction network databases Biochemical reactions No
FPGA failure testing FPGA configuration Output discrepancy distance Yes

realizations. It assigns a score to each configuration depend-
ing on its relative significance in the pool of designs. The
higher the score of a configuration is, the more consistent its
behavior will be in the population of designs. After a fault is
detected, a Circuit Similarity Graph (CSG) of configurations
is constructed. In the CSG, an edge between two nodes
represents the similarity between two circuits in terms of their
output. If a realized circuit’s output is consistently matched
with the other circuits, it is considered more important than
others and a higher rank is assigned to it. The fault handling
flow is elaborated below.

Algorithm 3 lists various steps in the DRFI technique
of functional diagnosis to rank hardware configurations in
a reconfigurable, fault-resilient hardware platform. Fitness
and throughput heuristics can be customized by considering
the throughput quality during diagnosis phase and fault
detection latency tradeoffs.

Building the Circuit Similarity Graph. The CSG is a graphG =

(V,E,W), where V is the vertex set, E is the set of edges, and
W is the weight adjacency matrix associated with the graph.
This is similar representation used for image features in a
feature similarity graph of [34]. Each entry of W represents
the degree of match between the corresponding circuits in
terms of their output.

For constructing the weight adjacency matrix W, each
entry in the corresponding pair of the configurations forming
a CED arrangement is evaluated during an evaluation period.
While a binary assignment to a comparison-based diagnosis
outcome is sufficient to relate the configurations under test
to their relevant pool {𝐻𝑒𝑎𝑙𝑡ℎ𝑦, 𝐹𝑎𝑢𝑙𝑡𝑦, and 𝑆𝑢𝑠𝑝𝑒𝑐𝑡}, a
quantification of their discrepant behavior further provides
a relative ranking within each pool. Thus, a configuration
whose output is relatively more incorrect in terms of its
number of discrepant output bits becomes ranked low and
is thus less preferred. Here, a Hamming distance measure
can quantify number of discrepant bits in the pair-under-test
evaluation.This distance measure is utilized to assign relative
weights to the comparison outcome which quantify the
partial functionality of configuration bitstreams.As discussed
later, such a ranking scheme is beneficial in utilizing the
partially functional circuits in signal processing applications
where inexact behavior may be acceptable to some extent
in terms of signal quality. However, the Euclidean distance
between the outputs 𝑥𝑖 and 𝑥𝑗 represents the dissimilarity of
the two circuits for online inputs. In general, the Euclidean
distance𝑑 between two points x and y in 𝑛-dimensional space
is defined as [35]

𝑑 (x, y) = √
𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2
, (8)

where 𝑛 refers to the number of inputs in an evaluation
interval.Then, the distance is normalized so that the measure
becomes the matching score of the two circuits. For this pur-
pose, Gaussian kernel is used to compute the matrix entries
𝑤𝑖𝑗 that represent the pair-wise similarity of corresponding
indices [36]:

𝑤𝑖𝑗 (𝑥𝑖, 𝑥𝑗) = 𝑒
−‖𝑥𝑖−𝑥𝑗‖

2/2𝜎2
, (9)

where 𝜎2 represents the variance of the Gaussian kernel [37].
Thus, the weight adjacency matrix can be computed using
the output variation between two Suspect configurations
operating a CED manner.

A pair having consistently matched outputs with each
other for a whole range of inputs will get higher score as
compared to the configurations differing in their outputs.
In addition, the configurations completing agreeing during
evaluation window are rewarded by subtracting a Reward
Score from their associated 𝐷𝑉. Consequently, a sparse
matrixW is obtained for the configurations pool by randomly
selecting different configuration pairs.

The size of the CSG seems a significant concern of
the proposed method. It grows rapidly as the number of
configurations increases.The size of CSG is directly impacted
by the number of configurations created at design time
and is determined by the extent to which fault tolerance is
desired. A large number of configurations at design time
imply requirement of large storage memory and increased
fault-handling latency due to evaluation time. However, an
improved fault coverage due to increased diversity of resource
usage can be provided by a large number of configurations.

Ranking via PageRank. Given the CSG, we are interested in
assigning score to each node where each node represents
a particular circuit configuration. The idea is to give more
score to the circuit whose output is consistently matched
with the other circuits. Faults injected at random locations
affect the different circuit configurations in different ways,
and hence the circuits behave inconsistently to the inputs
when evaluated in pairs with the other circuits. The CSG
may be thought of as a graph similar to that of all linked
webpages. The webpage which gets many votes or gets vote
from high ranked pages receives higher rank. Therefore, to
rank the pages according to their importance we apply the
PageRank algorithm, which is demonstrated in Section 6. For
web, the rank vector is computed for 𝑛webpages by observing
the hyperlinks coming to and leaving from the webpages. For
𝑛 circuit configurations, the rank vector 𝑃𝑟 is 1 × 𝑛 vector
where each value of 𝑃𝑟 represents the PageRank score of the
corresponding configuration.

International Journal of Reconfigurable Computing 11

Require:𝑁
Ensure: Φ̂
(1) while (1) do
(2) DRFI is integrated fault detection, isolation, and recovery technique thereby keeping the system online during these phases.

Select CUT by using the fitness and throughput heuristic
(3) Select two configurations from the configurations pool Designate the CUT as active configuration, and RS as slack. Then,

the pair under test is given by: 𝑉CED = {CUT, RS}
(4) Perform concurrent comparison to the same inputs for various edges of the graph represented by connectivity matrix C

given in (1)
(5) DRFI employs error information between the outputs of two distinct reconfigurations as compared to Algorithms 1 and 2

which solely rely on a binary decision on the presumed fitness of configurations under test
Compute the Syndrome matrix employing the distance information between two reconfigurations using (8)

(6) Update the weight adjacency matrixW based upon comparisons outcome during an evaluation interval using (9)
(7) Build the Circuit Similarity Graph fromW and C
(8) Use PageRank Algorithm to rank the configuration pool according to the fitness assessment.
(9) end while

Algorithm 3: DRFI algorithm of ranking the functional configurations.

The PageRank of a page 𝐴 is computed by [38]

PR (𝐴) = (1 − 𝑑) + 𝑑(
PR (𝑇1)
𝑐 (𝑇1)

+ ⋅ ⋅ ⋅ +
PR (𝑇𝑛)
𝑐 (𝑇𝑛)

) , (10)

where PR(𝐴) = PageRank of a page 𝐴, 𝑇1 ⋅ ⋅ ⋅ 𝑇𝑛 = the pages
which refer to page 𝐴, 𝑐(𝐴) = number of links going out of
page 𝐴, and 𝑑 = Damping Factor, empirically set to 0.85.

The PageRank is a probability distribution over all the
linkedwebpages, and a random reference occurs to awebpage
with a probability given by its PageRank value PR(𝐴) [38].

Considering a random surfer model defined for the
original PageRank algorithm [33], the PageRank can be
conceptualized as a distribution based on a Markov chain. In
a graph represented by the adjacencymatrix, the surfer travels
along the directed path with some transition probabilities. If
at a given instant 𝑘 the surfer is located at node 𝑖, then the
node traversed at the next step 𝑘 + 1 can be any neighbor 𝑗
of 𝑖. Thus, nodes can be considered to constitute 𝑛 states of
a Markov chain with a transition matrix 𝑃. An analysis of a
randomwalk in a PageRankMarkov chain is provided in [39].
It has been shown [40] that if the distribution of probabilities
at a node 𝑖 at instant 𝑘 is given by 𝑝(𝑘), then the probability to
encounter node 𝑗 at next step is given by

𝑝
(𝑘+1)

= 𝑃
𝑇
𝑝
(𝑘)
. (11)

The PageRank vector is a stationary point of the above
transformation as follows:

𝑝 = 𝐴𝑝; 𝐴 = 𝑃
𝑇
. (12)

The PageRank can be computed for a graph represented
by an adjacency matrix by using various methods such as
Arnoldi iteration, Gauss-Seidel iterations, power iterations,
linear system formulations, and approximate formulations
[41].We used a linear system formulation of PageRank in this
work.

An example of the configuration ranking process after
evaluating multiple reconfigurations is shown in Figure 8.

A pool of six design-time generated configurations are
represented by the nodes in the graph. After multiple recon-
figurations of the CED pair, the resultant connectivity matrix
is given by

C =

[
[
[
[
[
[
[

[

0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

]
]
]
]
]
]
]

]

. (13)

The SyndromeMatrix employing the comparison-output
information after computing the distances via (8) is given
below. The 𝑋 values represent unknown distances between
nodes which have not yet been compared by a discrepancy
check:

Ψ =

[
[
[
[
[
[
[

[

𝑋 𝑋 −1.20 𝑋 𝑋 𝑋

𝑋 𝑋 −0.22 𝑋 𝑋 𝑋

−1.20 −0.22 𝑋 −0.92 𝑋 𝑋

𝑋 𝑋 −0.92 𝑋 −2.30 −2.30

𝑋 𝑋 𝑋 −2.30 𝑋 𝑋

𝑋 𝑋 𝑋 −2.30 𝑋 𝑋

]
]
]
]
]
]
]

]

. (14)

The similarity of these configurations in terms of their
output is given by the weight adjacency matrix, which repre-
sents the weights of edges between nodes. Figure 8(b) shows
theweight adjacencymatrix for𝜎2 = 0.5.The PageRank value
of the nodes is given below the node labels. As it is evident that
configuration label 3’s similarity measure is higher among
other configurations, therefore, it is ranked higher by the
algorithm and thus preferred for fault recovery as described
in the following section.

6. Fault Recovery Results

The fault model used in the experimental work to evaluate
the proposed fault-handling scheme is a Stuck-At (SA)model

12 International Journal of Reconfigurable Computing

Before Fault Injection:

wire DONE OBUF 4985;

X SFF #(

.INIT (1 󸀠 b0))

DONE 3 (

.CLK(CLK BUFGP),

.I(\count[6] DONE Select 14 o),

.SRST(RST START OR 1 o),

.O(DONE OBUF 4985),

.CE(VCC),

.SET(GND),

.RST(GND),

.SSET(GND)

);

X LUT2 #(

.INIT (4 󸀠 h8))

Mmux DOUT1111 (

.ADR0(DONE OBUF 4985),

.ADR1(aes dout[84]),

.O(DOUT 84 OBUF 5035)

);

After Fault Injection:

wire DONE OBUF 4985;

wire DONE OBUF 4985 tmp;

assign DONE OBUF 4985 tmp=1; //Stuck-At ‘1’ fault
X SFF #(

.INIT (1 󸀠 b0))

DONE 3 (

.CLK(CLK BUFGP),

.I(\count[6] DONE Select 14 o),

.SRST(RST START OR 1 o),

.O(DONE OBUF 4985),

.CE(VCC),

.SET(GND),

.RST(GND),

.SSET(GND)

);

X LUT2 #(

.INIT (4 󸀠 h8))

Mmux DOUT1111 (

.ADR0(DONE OBUF 4985 tmp),

.ADR1(aes dout[84]),

.O(DOUT 84 OBUF 5035)

);

Algorithm 4: An example of fault injection into the simulation model of the circuit.

in which such fault can occur at any of the LUT inputs used
by a configuration. The SA model reasonably models the
permanent effect of aging-degradation and radiation hazards
on an FPGA device in a space environment. In addition, the
DRFI technique deals with the faults at a higher level, that is,
by functional evaluation of the overall circuit, and therefore,
it should be capable of handling awide variety of faultmodels.
SA faults are injected in the simulation model of circuit
generated by the Xilinx tool flow. We utilized our previously
developed Fault Injection and Analysis Toolkit (FIAT) which
invokes various commands of the Xilinx flow to study fault

behavior. An example of injecting SA fault to one of the LUT-
inputs is shown in Algorithm 4.

6.1. Experiment 1: MCNC Benchmark Circuits. To evaluate
theDRFI technique,MCNC [42] benchmark circuit misex is
analyzed in detail first, and then recovery of other circuits in
the MCNC benchmark is assessed. The benchmark circuits
are implemented targeting a Virtex-4 device. We used the
MATLAB implementation of the PageRank algorithm by
Gleich et al. [39, 41].The ISim simulator output is an interface
to a MATLAB script which issues commands to the ISE.

International Journal of Reconfigurable Computing 13

1 2

3

4 5

0.3
0.8

0.4

0.1

0.09 0.20

0.39

0.20 0.05

6

0 .1
0.05

(a) A pool of 6 configuration bitstreams represented
by a graph with similarity measure on edges and 𝑃𝑟 in
black

The similarity
measure between

1.0 0.0 0.3 0.0 0.0 0.0

0.0 1.0 0.8 0.0 0.0 0.0

0.3 0.8 1.0 0.4 0.0 0.0

0.0 0.0 0.4 1.0 0.1 0.1

0.0 0.0 0.0 0.1 1.0 0.0

0.0 0.0 0.0 0.1 0.0 1.0

C6 and C4

(b) Weight adjacency matrix,W

Figure 8: An example of configurations ranking.

The selection of the number of functional configurations
is lower bounded by the amount of diversity required to
mitigate faults while upper bounded by the tractability to
handle the CSG. In this experiment, a total of 100 diverse
configurations for the misex circuit are generated at
design time. Then faults were randomly injected into the
post-place-and-route simulation model affecting 86 circuit
configurations and thereby leaving only 14 designs fully
functional. The healthy configuration labels are listed here
(3,5,11,19,25,45,51,54,55,57,72,76,77,90). The
CSG is built by evaluating a pair of circuits to a subset of
random inputs. The cardinality of the subset affects the
fault-diagnosis quality. The evaluation interval 𝜏 is shown in
Figure 9 as the percentage of the number of inputs applied to
CUT from the overall input space. A sliding window of size
20 with an overlap of 10 is selected to evaluate the circuits
in subpools. Instead of evaluating all exhaustive pairs with
all exhaustive sets of inputs, the similarity matrix is built
using a smaller set and thereby resulting in a sparse CSG.
After computing the PageRank for the resulting graph, the
results are shown in Figure 9 in which the PageRank value of
each circuit implementation identified by its configuration
label is plotted. The Cumulative Discrepancy Value (CDV) is
defined as

CDV =

𝜏

∑

𝑖=1

DV𝑖, (15)

where 𝜏 denotes the evaluation interval as the number
of inputs applied. CDV is used to build the CSG,

10 20 30 40 50 60 70 80 90 100
0

2000
4000
6000
8000

10000

Cu
m

m
ul

at
iv

e D
V

10 20 30 40 50 60 70 80 90 100
0

0.005
0.01

0.015
0.02

0.025

Configuration label

Pa
ge

Ra
nk

Configuration label

(a) Evaluation interval, 𝜏 = 5%

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

Cu
m

m
ul

at
iv

e D
V

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

Confguration label

Confguration label

Pa
ge

Ra
nk

(b) Evaluation interval, 𝜏 = 10%

Figure 9: CDV and PR of various configurations (a) and (b).

and then PageRank is computed given the CSG of the
reconfigurable design. As seen in Figure 9(a) for Cumu-
lative DV, the CDV of various configurations cannot
assist much in differentiating the healthy configurations
from faulty configurations. However, the corresponding
PageRank values clearly distinguish the healthy and faulty
groups in the plot for PageRank shown in Figure 9(a)
which has 14 peaks corresponding to each of the 14
unaffected configurations having configuration numbers,
(3,5,11,19,25,45,51,54,55,57,72,76,77,90). In
addition, Figure 9(a) shows that a sufficiently long evaluation
interval should be chosen to confidently isolate healthy
configurations in the configuration pool. Figure 9 shows that
all the healthy configurations are identified without any false
positives in the plot of PageRank results.

Analyzing the circuits with relatively high score in
Figure 9, we observe that they utilize fault-free resources. It
is, however, worth noting here that as few as two configu-
rations are needed at any given time for the circuit to

14 International Journal of Reconfigurable Computing

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration number

C
on

se
ns

us
 si

m
ila

rit
y

va
lu

e

C1

C2

C3

C4

C5

C6
C7

C8

C9

C10

Figure 10: The discrepancy history of various configurations of the
circuit.

produce validated output, although we have identified much
more successfully.The cumulativeConsensus Similarity Value
history of first 10 configurations is plotted in Figure 10. It is
evident that the CSV of𝐶3 and𝐶5 increases with time as they
both utilize fault-free resources.

As compared to the exhaustive testing method which
involves evaluating all possible pairs with all possible set of
inputs, DRFI achieved considerable improvement, as evident
by Figure 11 which shows the results for other benchmarks.
The observed reduction in input evaluations is up to 75%
when using this approach for misex1 benchmark circuit.
For example, for the misex1 benchmark results shown in
Figure 11, the number of evaluations is reduced from 48640
in an exhaustive approach to 13260 when using the DRFI
technique for a configuration pool size of 20 bitstreams.

The operation of the circuit in a duplex manner is
simulated in Figure 12.TheDVbetween outputs of the duplex
circuit in each evaluation window is shown. During the
normal operation period of the circuit, when no fault is
present, the discrepancy value is zero. After one or more
faults occur, the difference in output increases. During the
repair process, different pairs of configurations are loaded
and evaluated using random inputs. After a sparse similarity
matrix is built, the PageRank algorithm is executed. Once the
configurations are ranked and identified correctly, the normal
operation of the circuit is recovered. It should be noted that
Figure 12 is only for the illustration of the system’s operation
and not scaled by actual time, which depends on the time
complexity of the controller and the CUT as identified later.

The method presented in this paper does not require
explicit fault isolation phase, while the configurations are
only generated at design time thereby not necessitating any
synthesis or implementation tools at runtime. Fault handling

60000

50000

40000

30000

20000

10000

0

Exhaustive search
DRFI

Benchmark circuit

SFH transitions method

N
um

be
r o

f e
va

lu
at

io
ns

 re
qu

ire
d

z4ml 5xp1 misex1

Figure 11: A comparison of fault-diagnosis methods for various
MCNC benchmarks.

is accomplished by promoting the hardware configurations
which utilize fault-free resources [43]. DRFI is a system-level
fault-diagnosis technique bywhich healthy configurations are
identified in a configuration pool, while the instantiation of
two healthy configurations in a duplex manner completes the
fault-recovery process. The area overhead of DRFI technique
over a baseline design is a replica of the original circuit
plus the reconfiguration controller. Thus, it turns out to be
rather comparable to CED as the reconfiguration controller
hardware is already provided in Xilinx devices facilitating
dynamic reconfiguration. The software for reconfiguration
can be executed on the on-chip processor, soft core, or LUT
realization.

6.2. Experiment 2: DCT Core. A DCT core was selected due
to its popularity in deep space, earth satellites, unmanned
vehicles, and other applications utilizing signal processing
where human intervention may not be feasible. Here due to
signal processing applications’ inherent tolerance for noise
and thus faults, it may not be necessary to triplicate modules
in a TMRmanner. Instead, we demonstrate how to exploit the
quantifiable characteristics such as SNR and relative priority
of the DCT coefficients to realize resilience, thereby reducing
area resources, and energy while increasing sustainability for
multiple faults.

The DRFI scheme is validated using the H.263 video
encoder’s 1-dimensional DCT block implemented on FPGA
fabric using Xilinx ISE and PlanAhead for partial reconfigu-
ration flow. There are 8 Processing Elements (PEs) computing
the DCT coefficients [44, 45] of a row of pixels in 8 × 8
macroblock. Each PE’s function is to compute one coefficient
of the DCT function. For example, PE0 computes the DC-
coefficient, PE1 computes the AC0 coefficient, and so on.The
2D DCT is computed by using the 1-D DCT twice.

International Journal of Reconfigurable Computing 15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
10
20
30
40
50
60
70
80
90

100

Evaluations

O
ut

pu
t d

isc
re

pa
nc

y

After the
recovery
process

Diagnosis
phase

Normal
operation

Recovery
phase

×104

−10

Figure 12: An operational example of a circuit on a ×104 evaluations scale.

In a prototype to evaluate DRFI approach, we used the
platform developed in [46] in which the video encoder
application is run on the on-chip processor. All the subblocks
except the DCT block are implemented in software, the later
being implemented in hardware. The image data of video
sequences is written by the processor to the frame buffer.
In order to facilitate 2D DCT operation, the frame buffer
also serves as transposition memory and is implemented
by Virtex-4 dual port Block-RAM. Upon completion of the
DCT operation, it is read back from the frame buffer to
the PowerPC through the Xilinx General Purpose Input-
Output (GPIO) core. By the pipeline design of the DCT
core, the effective throughput of the DCT core is one pixel
per clock. Internally, the PEs utilize DSP48 blocks available
in Virtex-4 FPGAs. A 100MHz core operation can provide
maximum throughput 100M-pixels per secondwhile in order
to meet the real-time throughput requirement for 176 ×

144 resolution video frames at 30 frames per second, the
minimum computational rate should be 760K pixels per
second.

Table 2 lists the resource utilization generated by the
Xilinx tools for the DCT core interfaced with the on-chip
PowerPC processor [47] which illustrates a significant reduc-
tion in reconfigurable resources when embedded multipliers
are used.

Figure 13 shows qualitative results of the fault identifica-
tion scheme. A frame in the video encoder’s frame memory
is shown in Figure 13(a). A total of 10 alternate configurations
are generated at design timewhich utilize various PRRs in the
chip. The DCT core is instantiated in CED mode to provide
error detection capability. Figure 13(b) shows an intraframe
after a fault injected in the PE0 of the DCT core. The system
is recovered by instantiating a pregenerated configuration
which uses fault-free resources, as given in Figure 13(c).

In many signal processing applications, the underlying
algorithms are inherently robust and a complete recovery is
not necessary. While the latency of fault diagnosis may be
excessive to achieve diminishing returns, sometimes it may
barely improve the overall healthmetric of the system.On the
other hand, a partial recovery can be quick and sufficient for
certain applications. In a broad sense, provision of resilience
in reconfigurable architectures for signal processing can take

advantage of a shift from a conventional accurate computing
model towards an approximate computing model [48–51].
This significance-driven model provides support for opera-
tional performance which is compatible with the concepts of
signal quality and noise.

If all of the configurations become faulty, then in the
current scheme a complete recovery is not possible. However,
we are interested in at least those configurations whose
behavior exhibitsmore correct outputs than the others for the
relevant online input subspace. In cases where no individual
configuration in the design pool is operational due to the
faults affecting all the configurations, it is preferable to
assign higher scores to those circuits which are relatively
better. Figure 14 shows results of a simulation in which all
the pregenerated configurations are affected by faults. The
discrepancy check is made on the DC and AC0-coefficients
output values which contain most of the information about
the image content. Figure 14(a) shows a case in which faults
are injected in PE1. As can be seen, the image in Figure 14(c)
is visually better than that in Figure 14(a), the former is an
output of a configuration which utilizes a fault-free PE1.
Although the recovered systemutilizes a faulty PE3, a graceful
degradation ismade by the proposed recovery solution.Thus,
the image quality in the frame buffer reflects the benefit of
such partial recovery.

7. Comparisons and Tradeoffs

Figure 15 illustrates an operational comparison of two fault-
handing techniques to mitigate local permanent damage,
namely, TMR and DRFI, respectively. While the benefit
of TMR is instantaneous fault-masking capability, its fault-
handling capacity is limited to failure of only a single instance
in the triplicated arrangement. On the other hand, DRFI’s
diagnosis and recovery phase involves multiple reconfigu-
rations, and thus the fault-handling latency is significantly
longer than that of TMR. On the positive side, DRFI can
sustain multiple failures in the design. After fault detection,
the diagnosis and repair mechanism are triggered which
selects configurations from the pool and healthy resources
are promoted to higher preference which results in improved

16 International Journal of Reconfigurable Computing

Table 2: Resource utilization summary of the DCT core.

Logic resource Used by the static region Used by a PRR Used by a PRR employing
multipliers

Number of slices 4516 169 62
Number of slice flip flops 5961 79 44
Number of 4 input LUTs 6155 312 100
Number of FIFO16/RAMB16s 45 0 0
Number of DCM ADVs 1 0 0
Number of DSP48 blocks 0 0 1

(a) Fault-free system (b) Faulty system

(c) Recovered system

Figure 13: An image in the frame memory of video encoder.

throughput quality. Our results show that the recovery
latency is 1.2 sec for the video encoder case study. If the
mission cannot tolerate recovery delay of this interval then
TMR is preferable for the first fault; however, multiple faults
impacting distinct TMR modules lead to an indeterminate
result.

Figure 15 illustrates the operational differences of TMR
and DRFI techniques to mitigate local permanent damage.
Although DRFI incurs a recovery latency of approximately
1 second, it can sustain recovery after second, third, or even
subsequent faults while TMR is only able to recover from a
single fault per module over the entire mission. If the mission
cannot tolerate a recovery delay of this duration, then TMR
is preferable for the first fault and yet DRFI may be preferred
for handling multiple faults and for provision of graceful
degradation. However, an important insight is that TMR and

DRFI need not be mutually exclusive. If device area is not at
a premium, then each configuration could be realized in a
TMRarrangement for low-latency initial fault recovery, along
with DRFI being applied to a pool of TMR configurations
at the next higher layer. Thus, DRFI need not necessarily be
exclusive of TMR but orthogonal to it if sustainability and
graceful degradation are also sought.

In order to assess the resource overhead of TMR and
DRFI over a uniplex scheme, we implemented DCT core
on Virtex-4 FPGAs in two different arrangements. The
TMR arrangement involves a triplicated design while the
DRFI arrangement involves duplicated design along with
the configuration memory required to store multiple bit-
streams in order to mitigate hardware faults. While a simplex
arrangement incurs only a 33% of the area of TMR, the DRFI
technique incurs approximately 67% of the area of TMR

International Journal of Reconfigurable Computing 17

(a) Faulty system (PSNR = 28.38 dB) (b) Error of faulty system

(c) Recovered system (PSNR = 30.75 dB) (d) Error of recovered system

Figure 14: Partial recovery results of the scheme.

when considering the logic resource count. In addition, DRFI
contains provision of reconfiguration and thereby utilizes a
reconfiguration controller and peripherals which are already
resident on the chip.

For DRFI, configuration ranking is invoked to lever-
age the priority inherent in the computation to mitigate
performance-impacting phenomena such as Extrinsic Fault
Sources, Aging-induced Degradations, or manufacturing
Process Variations. Such reconfigurations are only initiated
periodically, for example, when adverse events such as dis-
crepancies occur. Fault recovery is performed by fetching
alternative partial Configuration Bitstreams which are stored
in aCompact Flash externalmemory device. AConfiguration
Port, such as the Internal Configuration Access Port (ICAP)
on Xilinx FPGAs, provides an interface for the Reconfigu-
ration Controller to reconfigure the alternative bitstreams.
The input data used by the PEs, such as input video frames,
resides in a DRAM Data Memory that is also accessible
to the On-chip Processor Core. Together these components
support the reconfiguration flows needed to realize a runtime
adaptive approach to fault-handling architectures. However,
it is worth mentioning here that the reconfiguration related
components are not on the critical throughput datapath and
can be triggered only when needed. That is, only after a fault
is detected in the CED pair. Their reliability only impacts the
recovery capability but not the correctness of the throughput
datapath itself as would a Stuck-At fault in the voter output

in a TMR design. Although based on equiprobable fault
distribution dictated by relative area of the voter and module
datapaths, it is a relatively remote possibility.

Table 3 lists the configuration bitstream sizes for various
PEs in DCT core which can be used to assess the configura-
tionmemory size requirement.The listed factors are involved
in the reconfiguration flow and hence add to the overhead of
the diagnostic provision in DRFI approach.

In addition to the abovementioned components required
by the DRFI approach, bus-macros and unoccupied resources
also add to the overhead of theDRFI adaptive reconfiguration
scheme. A distributed realization of the PRRs needed to cre-
ate diverse configurations pool may result in consuming an
increased count of the above resources. In order to minimize
the bus-macros as well as simplifying the reconfiguration
scheme, we have partitioned the chip into an exclusive set of
resources, right and left halves. Thus, an MCNC benchmark
circuit is fit into one half of the device while the other half
contains its replica. This results in the mapping of many
unoccupied resources into a defined PRR. However, given
that the capacity of contemporary FPGAs keeps increasing,
area overhead is not a significant concern especially when
survivability and adaptability of the mission are primary
concerns.

In a Virtex-4 device, the minimum PRR height that can
be defined is 16 CLBs [26] while the maximum height can
span an entire column in the chip. To effectively utilize

18 International Journal of Reconfigurable Computing

0 2 4 6 8 10 12 14 16

0
20
40
60
80

100
TMR

O
ut

pu
t d

isc
re

pa
nc

y

0
20
40
60
80

100
DRFI

Time (s)

0 2 4 6 8 10 12 14 16
Time (s)

System sustainable after

Normal

First

After

failure
triggered

First
failure

triggered

Second
failure

triggered

Second
failure

triggered

DRFI’s
diagnosis

and recovery

Fault
masking by

TMR

Third fault
sustained
and so on .

Beyond TMR’s fault capacity
O

ut
pu

t d
isc

re
pa

nc
y

operation

recoveryreccovery

Normal
operation

Figure 15: A comparison of DRFI with TMR in terms of system’s capability to sustain multiple failures.

Table 3: Configuration bitstreams storage requirement for DCT core.

Function PRR location Bit size
𝑓DC SLICE X54Y224:SLICE X71Y255 32KB
𝑓AC 0 SLICE X54Y192:SLICE X71Y223 35KB
𝑓AC 1 SLICE X54Y160:SLICE X71Y191 34KB
𝑓AC 2 SLICE X54Y128:SLICE X71Y159 35KB
𝑓AC 3 SLICE X54Y96:SLICE X71Y127 34KB
𝑓AC 4 SLICE X54Y64:SLICE X71Y95 36KB
𝑓AC 5 SLICE X54Y32:SLICE X71Y63 37KB
𝑓AC 6 SLICE X54Y0:SLICE X71Y31 34KB

the PRR capacity, the resource utilization of the mapped
function should also be considered when choosing the PRR
size. For example, each PRR should have a sufficient number
of LUTs, FFs, and DSP multipliers to implement a DCT-
coefficient computation function in the DCT core. While the
PE design we have considered in the DCT core consumes
fewer resources than the capacity of a PRR, we choose the
same as the minimum PRR size constrained by the ven-
dor’s tool and FPGA device under consideration. To reduce
the memory size required in order to store configuration
bistreams, a compression technique significantly reducing the
storage space requirements of alternative partial bitstreams is
presented in [52] and can be employed in future work.

While partial reconfiguration is not a requirement for
the DRFI scheme and the scheme is applicable to static
designs as well, Partial Reconfiguration helps apportion
large designs into independent testing domains. This would
facilitate throughput of nonaffected regions of a device while
recovery occurs in the fault-affected areas. This can hide the
latency of recovery in designs where the FPGA is performing
decoupled independent operations. Examples would include
a single FPGA device with a DCT core and an indepen-
dent encryption core. If the encryption core is involved in

transmission of information unrelated to the DCT core, its
operation is unaffected during reconfiguration utilized for
DRFI-based recovery. Moreover, even with a faulty design,
partial functionality of the DCT core at runtime for a
signal processing application during the fault-handling phase
may provide graceful degradation and thus maintain some
system functionality, although with a degraded quality of
throughout. Demonstration of partial online functionality to
help maintain signal quality to some extent during the fault-
handling phase is demonstrated in [46] for non-distance-
ranked approaches.

8. Conclusion

An approach for fault handling in FPGA-based systems is
presented. In this method, a pool of hardware configurations
for a reconfigurable platform is generated at design time
utilizing a distinct set of hardware resources. Once faults
affect circuit realizations, the PageRank algorithm is used to
identify the most functional realizations. The experiments
indicate that the approach is effective at identifying the cor-
rect configuration in a fraction of the comparisons needed by

International Journal of Reconfigurable Computing 19

unguided search and thereby offering considerably improved
throughput. In addition, graceful degradation is realized by
prioritizing the bitstreams in situations where all configu-
rations are impacted by a fault. It may be noted that the
method concentrates on local permanent damage rather than
soft errors which can be effectively mitigated by Scrubbing
[53–55]. Scrubbing can be effective for SEUs/soft errors in
the configuration memory; however, it cannot accommodate
local permanent damage due to Stuck-At faults, Electromi-
gration, and Bias Temperature Instability (BTI) aging effects
which require an alternate configuration to avoid the faulty
resources. For future work, an interesting direction can be
analyzing the effect of varying the granularity of diagnosis by
using the PR model developed in [56]. Alternative ranking
algorithms popular in web search in addition to PageRank,
such as HITS [57] and SALSA [58], would explore interesting
tradeoffs such as completeness of recovery and the recovery
time.

Notation

G(V,E): An undirected graph, where V is the set of
all nodes and E is the set of edges

C: Connectivity matrix
𝑐𝑖𝑗: An element of C corresponding to an

output comparison of node 𝑖 and node 𝑗
Ψ: Syndrome Matrix
Φ: Fitness State Vector
𝑉ℎ: Set of healthy nodes
𝑉CED: Set for Concurrent Error Detection (CED)

checking
𝑁: Total number of nodes
𝑁𝑓: Number of faulty nodes
𝑁ℎ: Number of healthy nodes
𝑛𝑟: Reload number or testing arrangement

instance
𝜏: Evaluation interval.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] E. Stott and P. Y. K. Cheung, “Improving FPGA reliability with
wear-levelling,” in Proceedings of the 21st International Confer-
ence on Field Programmable Logic and Applications (FPL ’11), pp.
323–328, September 2011.

[2] S. Mitra and E. McCluskey, “Which concurrent error detection
scheme to choose?” in Proceedings of the International Test Con-
ference, pp. 985–994, 2000.

[3] K. Zhang, R. F. DeMara, and C. A. Sharma, “Consensusbased
evaluation for fault isolation and on-line evolutionary regenera-
tion,” in Proceedings of the International Conference in Evolvable
Systems (ICES ’05), pp. 12–24, 2005.

[4] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection
assignment problemof diagnosable systems,” IEEETransactions
on Electronic Computers, vol. 16, pp. 848–854, 1967.

[5] J. D. Russell andC. R. Kime, “System fault diagnosis: closure and
diagnosability with repair,” IEEE Transactions on Computers,
vol. C-24, no. 11, pp. 1078–1089, 1975.

[6] A.D. Friedman andL. Simoncini, “System-level fault diagnosis,”
Computer, vol. 13, no. 3, pp. 47–53, 1980.

[7] G.W. Greenwood, “On the practicality of using intrinsic recon-
figuration for fault recovery,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 4, pp. 398–405, 2005.

[8] J. C. Laprie, “Dependable computing and fault tolerance : con-
cepts and terminology,” in Proceedings of the 25th Interna-
tional Symposium on Fault-Tolerant Computing-Highlights from
Twenty-Five Years, June 1995.

[9] M. Malek, “A comparison connection assignment for diagnosis
of multiprocessor systems,” in Proceedings of the 7th annual
symposium on Computer Architecture (ISCA ’80), pp. 31–36,
ACM, New York, NY, USA, 1980.

[10] C. Carmichael, “Triple module redundancy design techniques
for virtex FPGAs,” Xilinx Application Note, Virtex Series
XAPP197 (v1. 0. 1), 2006.

[11] F. Lima Kastensmidt, L. Sterpone, L. Carro, and M. Sonza
Reorda, “On the optimal design of triple modular redundancy
logic for SRAM-based FPGAs,” in Proceedings of the Design,
Automation and Test in Europe (DATE ’05), pp. 1290–1295,
March 2005.

[12] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin,
“Improving FPGA design robustness with partial TMR,” in Pro-
ceedings of the 44thAnnual IEEE International Reliability Physics
Symposium (IRPS ’06), pp. 226–232, March 2006.

[13] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi, “A numerical
optimization-based methodology for application robustifica-
tion: transforming applications for error tolerance,” in Proceed-
ings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’10), pp. 161–170, July 2010.

[14] M. Gao, H.-M. Chang, P. Lisherness, and K.-T. Cheng, “Time-
multiplexed online checking,” IEEE Transactions on Computers,
vol. 60, no. 9, pp. 1300–1312, 2011.

[15] E. Stott, P. Sedcole, and P. Y. K. Cheung, “Fault tolerantmethods
for reliability in FPGAs,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL
’08), pp. 415–420, September 2008.

[16] M. Garvie and A. Thompson, “Scrubbing away transients and
Jiggling around the permanent: Long survival of FPGA systems
through evolutionary self-repair,” inProceedings of the 10th IEEE
International On-Line Testing Symposium (IOLTS ’04), pp. 155–
160, July 2004.

[17] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, “Fault-toler-
ant evolvable hardware using field-programmable transistor
arrays,” IEEE Transactions on Reliability, vol. 49, no. 3, pp. 305–
316, 2000.

[18] R. F. Demara, K. Zhang, and C. A. Sharma, “Autonomic fault-
handling and refurbishment using throughput-driven assess-
ment,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 1588–
1599, 2011.

[19] J. M. Emmert, C. E. Stroud, and M. Abramovici, “Online fault
tolerance for FPGA logic blocks,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, no. 2, pp. 216–
226, 2007.

[20] S. Dutt, V. Verma, and V. Suthar, “Built-in-self-test of FPGAs
with provable diagnosabilities and high diagnostic coverage
with application to online testing,” IEEE Transactions on Com-
puter-AidedDesign of Integrated Circuits and Systems, vol. 27, no.
2, pp. 309–326, 2008.

20 International Journal of Reconfigurable Computing

[21] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online BIST
and BIST-based diagnosis of FPGA logic blocks,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 12, pp. 1284–1294, 2004.

[22] M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Ferreira,
“Reliability and availability in reconfigurable computing: a basis
for a common solution,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 11, pp. 1545–1558, 2008.

[23] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J.
McCluskey, “Reconfigurable architecture for autonomous self-
repair,” IEEE Design and Test of Computers, vol. 21, no. 3, pp.
228–240, 2004.

[24] Xilinx, Planahead 10. 1 User Guide, 2008.
[25] Xilinx, Virtex-4 FPGA Configuration User Guide (Ug071), 2009,

http://www.xilinx.com/support/documentation/user guides/
ug071.pdf.

[26] Xilinx, Partial ReconfigurationUser Guide, UG702 (v14. 3), 2012.
[27] Xilinx, Planahead User Guide, UG632 (v14. 3), 2012.
[28] E. P. Kim and N. R. Shanbhag, “Soft N-modular redundancy,”

IEEE Transactions on Computers, vol. 61, no. 3, pp. 323–336,
2012.

[29] I. Koren and S. Y. H. Su, “Reliability analysis of n-modular
redundancy systems with intermittent and permanent faults,”
IEEE Transactions on Computers, vol. C-28, no. 7, pp. 514–520,
1979.

[30] A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineering, Pearson/Prentice Hall, 2008.

[31] C. A. B. Smith, “The counterfeit coin problem,”TheMathemat-
ical Gazette, vol. 31, no. 293, pp. 31–39, 1947.

[32] G. Iván and V. Grolmusz, “When the web meets the cell:
using personalized PageRank for analyzing protein interaction
networks,” Bioinformatics, vol. 27, no. 3, Article ID btq680, pp.
405–407, 2011.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: bringing order to the web,” Technical Report
1999-66, Stanford InfoLab, 1999.

[34] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from
videos in the Wild,” in Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
Workshops (CVPRWorkshops ’09), pp. 1996–2003, June 2009.

[35] M. M. Deza and E. Deza, Encyclopedia of Distances, Springer,
2009.

[36] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, “Diffu-
sion maps, spectral clustering and eigenfunctions of Fokker-
Planck operators,” inAdvances in Neural Information Processing
Systems, vol. 18, pp. 955–962, MIT Press, 2005.

[37] U. von Luxburg, “A tutorial on spectral clustering,” Technical
Report TR-149,Max Planck Institute for Biological Cybernetics,
2007.

[38] S. Brin, “The anatomy of a large-scale hypertextual Web search
engine 1,” Computer Networks, vol. 30, no. 1–7, pp. 107–117, 1998.

[39] D. Gleich, P. Glynn, G. H. Golub, and C. Greif, “Three results on
the PageRank vector: eigenstructure, sensitivity and the deriva-
tive,” in Proceedings of the Dagstuhl conference in Web retrieval
and numerical linear algebra algorithms, A. Frommer, M.
Mahoney, and D. Szyld, Eds., Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Dagstuhl, Germany, 2007 2007.

[40] P. Berkhin, “A survey on PageRank computing,” Internet Math-
ematics, vol. 2, no. 1, pp. 73–120, 2005.

[41] D. Gleich, “pagerank at mathworks.com,” 2006, https://www
.cs.purdue.edu/homes/dgleich/.

[42] S. Yang, “Logic synthesis and optimization benchmarks version
3,” Tech. Rep., Microelectronics Center of North Carolina, 1991.

[43] N. Imran and R. F. DeMara, “A fault-handling methodology
by promoting hardware configurations via pagerank,” in Pro-
ceedings of the ReSpace/MAPLD Conference, Albuquerque, New
Mexico, 2011.

[44] R. C. Gonzalez and R. E.Woods,Digital Image Processing, Pren-
tice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2008.

[45] J. Huang and J. Lee, “Reconfigurable architecture for ZQDCT
using computational complexity prediction and bitstream relo-
cation,” IEEE Embedded Systems Letters, vol. 3, no. 1, pp. 1–4,
2011.

[46] N. Imran, J. Lee, and R. F. DeMara, “Fault demotion using
reconfigurable slack (FaDReS),” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1364–
1368, 2013.

[47] Xilinx, Embedded System Tools Reference Manual, 2008, http://
www.xilinx.com/support/documentation/sw manuals/edk10
est rm.pdf.

[48] K. V. Palem, L. N. B. Chakrapani, Z. M. Kedem, A. Lingamneni,
and K. K. Muntimadugu, “Sustaining Moore’s law in embed-
ded computing through probabilistic and approximate design:
retrospects and prospects,” in Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embed-
ded Systems (CASES ’09), pp. 1–10, ACM, New York, NY, USA,
October 2009.

[49] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and
S. T. Chakradhar, “Scalable effort hardware design: exploiting
algorithmic resilience for energy efficiency,” in Proceedings of
the 47th Design Automation Conference (DAC ’10), pp. 555–560,
June 2010.

[50] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance
driven computation: a voltage-scalable, variation-aware, qual-
ity-tuning motion estimator,” in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design
(ISLPED ’09), pp. 195–200, ACM, New York, NY, USA, August
2009.

[51] G. Karakonstantis, N. Banerjee, and K. Roy, “Process-variation
resilient and voltage-scalable dct architecture for robust low-
power computing,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 18, no. 10, pp. 1461–1470, 2010.

[52] A. Vavousis, A. Apostolakis, and M. Psarakis, “A fault tolerant
approach for FPGA embedded processors based on runtime
partial reconfiguration,” Journal of Electronic Testing, vol. 29, no.
6, pp. 805–823, 2013.

[53] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou et al., “SRAM FPGA
reliability analysis for harsh radiation environments,” IEEE
Transactions on Nuclear Science, vol. 56, no. 6, pp. 3519–3526,
2009.

[54] N. Imran, R. Ashraf, and R. F. DeMara, “On-demand fault
scrubbing using adaptive modular redundancy,” in Proceedings
of the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA ’13), pp. 22–25, Las Vegas, Nev,
USA, July 2013.

[55] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP
controller for high-reliable internal scrubbing,” in Proceedings
of the IEEE Aerospace Conference (AC ’28), March 2008.

[56] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of
partial reconfiguration in FPGA systems: a survey and a cost

International Journal of Reconfigurable Computing 21

model,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 4, pp. 36:1–36:24, 2011.

[57] J. M. Kleinberg, “Authoritative sources in a hyperlinked envi-
ronment,” Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[58] R. Lempel and S. Moran, “SALSA: the stochastic approach for
link-structure analysis,” ACM Transactions on Information Sys-
tems, vol. 19, no. 2, pp. 131–160, 2002.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Journal of 

Sensors

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Active and Passive
Electronic Components

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
Observation

 International Journal of

