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Abstract

In this work, Field Programmable Gate Array (FPGA) reconfigurability is exploited to realize autonomous fault

recovery in mission-critical applications at runtime. The proposed Netlist Driven Evolutionary Refurbishment (NDER)

technique utilizes design-time information from the circuit netlist to constrain the search space of the algorithm

by up to 98.1% in terms of the chromosome length representing reconfigurable logic elements. This facilitates

refurbishment of relatively large-sized FPGA circuits as compared to previous works. Hence, the scalability issue

associated with Evolvable Hardware based refurbishment is addressed and improved. Experiments are conducted with

multiple circuits from the MCNC benchmark suite to validate the approach and assess its benefits and limitations.

Successful refurbishment of the apex4 circuit having a total of 1252 LUTs with 10% spares is achieved in as

few as 633 generations on average when subjected to simulated randomly-injected single stuck-at faults. Moreover,

the use of design-time information about the circuit undergoing refurbishment is validated as means to increase the

tractability of dynamic evolvable hardware techniques.

Index Terms

Evolvable Hardware, SRAM-based FPGAs, Scalability of Genetic Algorithms, Hard/Permanent Fault Refurbish-

ment, Self-Healing, Survivability, Search Space Pruning, Selective Mutation

I. INTRODUCTION

Evolvable Hardware (EH) is an approach characterized by the use of Evolutionary Algorithm based techniques

in conjunction with Reconfigurable Hardware devices. It has the benefits of providing a self-adapting architecture

and/or behavior on the fly to meet varying mission objectives and/or changing environmental conditions. The focus

of this work is to extend EH to mitigate hard faults incurred due to the effect of device aging [1], [2], [3].

Time Dependent Dielectric Breakdown (TDDB) and Electromigration (EM) due to aging phenomenon are major

exposures to permanent or non-recoverable faults [4], [5]. Further, future trends in VLSI devices such as process

scaling and lower operating voltages for power savings increasingly impact the reliability of systems employing
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such devices [6], [7]. The goal of the future application developer will be to employ fault resilient techniques

at various abstraction layers e.g. circuit-level, architecture-level, or system-level to meet end-user requirements,

essentially providing a reliable application utilizing unreliable devices [8], [9], [10]. EH provides the potential for

this to be realized as an autonomous self-healing capability within the trend of semiconductor process scaling.

Static Random Access Memory (SRAM) based Field Programmable Gate Arrays (FPGAs) are the most commonly

used reprogrammable logic platform for EH due to their dynamic reconfiguration capability [11] as opposed to one-

time-programmable FPGAs. The basic architecture of an FPGA is composed of an array of logic blocks for digital

logic implementation and interconnect resources for connecting the logic blocks. The main components of a logic

block are a k-input Lookup Table (LUT) and a Flip-Flop (FF). A typical FPGA is comprised of millions of Logic

Blocks in conjunction with Input/Output Blocks (IOBs). All of the logic and interconnect resources are SRAM-

based, providing it with extensive reconfigurable properties. Whereas the LUTs implement a Boolean logic function

of k inputs, the FFs realize sequential or memory capabilities. In this work, combinational circuits are considered,

although the proposed technique can be extended to sequential circuits by decomposing them into pipelined stages

of combinational logic and memory elements, and then applying the developed methods individually to each stage.

A survey of the objectives and techniques handling hard faults in SRAM-based FPGAs is presented in [12].

Genetic Algorithm (GA) based fault handling schemes have been successfully employed as a reconfiguration

mechanism for autonomous self-adaptive EH systems [11], [13], [14]. The GA is utilized to devise a functional

configuration for the FPGA in the presence of faults with the benefit of operating without the information of

location and nature of faults. This technique mimicking the natural phenomenon of evolution, utilizes multiple

candidate solutions (Population) to meet the desired objective(s). A fitness score is assigned to each candidate

solution, hereafter referred to as an Individual, which is based on an objective function. In every generation,

genetic operators such as mutation and crossover modify the selected individuals to form the new population which

is utilized in the next generation. The process is repeated for a maximum number of generations or until a suitable

individual has been found in the population. In this work, the widely established concern of scalability associated

with the GA-based refurbishment technique is addressed [11], [15], [16], [17]. Namely, with increasing sizes of

the configurations/applications to be regenerated on the FPGA, the search space also increases resulting in an

intractable problem for the GA to solve. The goal of this work is to extend the feasibility of using EH techniques

by constraining the search.

Aging induced degradation due to TDDB, EM, Negative-Bias Temperature Instability (NBTI) and Hot Carrier

Injection (HCI) increases the probability of failure within 3-5 years of operation as indicated by results obtained by

modeling a 65-nm technology FPGA device [4]. Similar results obtained via accelerated life testing using elevated

temperature and voltage on a 45-nm FPGA in [5] demonstrate a reduction of up to 15% in maximum operating

frequency over a period of 75 days. Furthermore, aging aggravates fabrication-induced process variation, which is

destined to become worse with continued scaling of technology nodes [18], [19]. Experiments conducted in [18]

to determine the effect of process variation alone with 15 Xilinx Virtex-II Pro FPGA devices based on 130-nm

technology demonstrate considerable intra-die and die-to-die variations. Thus, there is a growing need to address
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these issues in the context of aging.

A design-time approach which caters to aging-induced faults is to incorporate worst case delays as predicted for

the duration of the mission. However, this results in performance penalties as different components undergo varying

stress levels in the field [6]. Moreover, the use of static design margins may not be sufficient to accommodate

successive faults, thus a means of refurbishment using real-time adaptation is sought herein. One previous real-

time approach to logic-level aging was to implement sensors on the critical paths of the design to monitor timing

performance. For instance, an FPGA-based implementation is realized in [20] to detect faults in real-time. Even

though it primarily addressed fault detection, it can be augmented with other fault handling techniques such as

those proposed herein and those which are contrasted in Section II.

In this paper, a real-time approach to refurbish reconfigurable circuits is developed using only selected design-time

information. The Netlist Driven Evolutionary Refurbishment (NDER) technique isolates the functioning outputs of

the FPGA configuration from unwanted evolutionary modification. This allows the EH technique to focus exclusively

on the discrepant outputs. Thus, the genetic operators which modify the design to avoid faulty resources are only

applied to selected elements of the FPGA configuration which are suspected of corrupting the current output.

Suspect resource assessment is performed at runtime using design netlist information to form the pool of suspect

resources. This significantly decreases the search space for the GA leading to more tractable refurbishment times.

In summary, the innovations introduced as a result of this work are listed as below:

(a) a Fault-Handling approach to which the EH paradigm is tractable,

(b) refurbishment of functionality on-the-fly for configurations using failed components,

(c) a fault pruning method which can be employed by other recovery schemes, and

(d) a framework for GAs to cater for dynamic encoding of individuals.

Research Approaches: Having presented the research problem, the following approaches are adopted:

(i) Research Approach I (RA-I) Attain Reduced Search Space: enables refurbishment in fewer generations of

GA.

(ii) Research Approach II (RA-II) Partition the LUTs into suspect and non-suspect subsets: the non-suspect

subsets do not get inadvertently modified by the GA during recovery.

The remainder of the paper is structured as follows: Section II describes the previous research efforts on

evolutionary and non-evolutionary refurbishment techniques exploiting the reconfigurability of reprogrammable

hardware devices. It establishes the motivation to focus on the reconfiguration algorithms employed for autonomous

self-healing systems. Section III highlights the ability of the proposed methodology to prune the search space

of the genetic algorithm responsible for fault recovery/reconfiguration as illustrated by a motivating example.

Section IV introduces the proposed architecture of the overall autonomous system composed of the computing

units and reconfiguration controller. Section V gives details of the refurbishment algorithm. Section VI discusses

the experimental setup and results to establish the effectiveness of the proposed fault recovery algorithm with circuits

from the MCNC benchmark suite. Finally, section VII draws some conclusions on the proposed methodology of
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TABLE I

COMPARISON OF PROPOSED WORK WITH EVOLUTIONARY ALGORITHM BASED FAULT-HANDLING SCHEMES FOR FPGAS

Approach/ Size of Circuit Pruning of Modular Assumption of

Previous Work used for Experiment GA Search Space Redundancy Fault-free Fitness Evaluation

Vigander et al. [23] 4x4 Multiplier No Triple Yes

Garvie et al. [1] MCNC benchmark circuit No Triple Yes

cm42a having 10 LUTs

CRR [24] 3x3 Multiplier; No Dual No

MCNC benchmark circuits

having < 20 LUTs [13]

RARS [2] Edge-Detector Circuit No Triple/Dual (Dynamic) Yes

Salvador et al. [14] Image Filtering Circuit No Not Addressed Not Addressed

NDER Proposed Herein MCNC benchmark circuits Yes Triple/Dual (Dynamic) Yes

having up to 1252 LUTs

employing evolutionary algorithm based reconfiguration engines for achieving autonomous self-adaptive resilience.

II. RELATED WORK

Many techniques have been explored to maximize lifetime in the presence of circuit aging with the aim of

increasing period prior to initial failure [4], [6], [21]. For example in [6], different ASIC parameters such as supply

voltage, operating clock frequency and cooling power are tuned using optimization algorithms to achieve power

efficiency over lifetime as compared to traditional approach of incorporating worst case delays. In other efforts for

FPGAs, the in-field reconfigurability and uniformity of available resources is exploited. For example, [4] employs

periodic replacement of same configuration and rerouting interconnects with high switching activities (based on

design-time estimates) so as to age components of FPGA in a uniform manner. Similarly, wear-leveling strategies

for FPGAs such as alternative placements to form multiple configurations at design-time are introduced in [21]. A

process variation and NBTI aware placement strategy for FPGAs is introduced in [18]. While, these failure handling

techniques rely on technology specific parameters such as aging models and power consumption models to optimize

circuit parameters or placement of components in reconfigurable devices, the proposed technique is technology

independent. There has also been extensive research on techniques to alleviate radiation induced transient faults

in SRAM-based FPGAs which are effective, such as scrubbing Single Event Upsets (SEUs) [22], smaller feature

sizes can bring aging induced failures to become prominent in multi-year missions. Thus, the reconfigurability of

FPGAs is exploited dynamically for the notion of survivable systems.

A. Genetic Algorithm-based Refurbishment of Reconfigurable Hardware

Previous works establish the successful use of Evolutionary Algorithms for adaptive self-recovery of hardware

systems based on reconfigurable logic, especially FPGAs [12], [13], [25], [26] and [23]. In [12], a survey of

techniques ranging from passive to dynamic in classification are presented to tackle hard faults in SRAM-based
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FPGAs for small circuit case studies. For example, modular redundancy is exploited in [23] for achieving fault

recovery of a 4-bit x 4-bit multiplier. Experiments are conducted utilizing a Triple Modular Redundancy (TMR)

arrangement, where three modules perform the same computation and the final output is produced via majority

voting. Faults are assumed in all three modules indicating a worst-case scenario, and the GA is used as a tool

to partially refurbish all three modules assuming the existence of a fault-free output used for fitness calculation.

Successful recovery of the overall majority output is achieved, based on the hypothesis that different modules fail

in different manner. Alternatively, a (1+1) Evolutionary Strategy is proposed for implementation in hardware to

self-recover hard faults in [1]. This work also utilizes a TMR arrangement and based on the assumption of a single

module failure, evolves the faulty module to find a fault-free configuration without the requirement of an external

fitness assessment scheme as the output status of the healthy modules is used to evaluate its fitness. To reduce

power and area overheads of TMR, the Competitive Runtime Reconfiguration (CRR) technique introduced in [24]

utilizes a fitness assessment scheme based on pairwise discrepancy detection between competing configurations

without the requirement of additional test vectors. Thus, it replaces absolute fitness calculation with comparison to

consensus behavior of the current population. In [26], a genetic representation is presented for evolutionary fault

recovery in Xilinx Virtex FPGAs and a quadrature decoder having 16 LUTs is successfully evolved in the presence

of a stuck-at fault. There has also been work to reduce the overall evolution run time by operating directly on the

bitstream used to configure the reconfigurable device, e.g. [27] demonstrate self-recovery of a 4-bit x 4-bit adder

on a Xilinx Virtex II Pro FPGA device in as low as 0.4 µseconds.

A complete implementation of an EH system on a Xilinx Virtex-5 FPGA chip is demonstrated in [14]; composed

of a 2D array of 16 Processing Elements (PEs) for computation on the reconfigurable logic and the evolutionary

algorithm as a tool for self-recovery on the embedded microprocessor with the ability to internally reconfigure the

PEs through Internal Configuration Access Port (ICAP) [28]. Fault tolerance experiments with an image filtering

application indicates recovery time from hard failure, of less than a minute on this platform. The evolutionary

algorithm has the ability to reconfigure the functionality of the PEs with a pre-defined set of functions and the

inputs to the PEs, which makes it application dependent and limited in scope. In contrast, our work utilizes the

evolutionary algorithm to reconfigure the logical functions of LUTs and the inputs to the LUTs, thus recovery

granularity is more fine-grained. Further, the proposed technique has wide applicability as demonstrated through

experiments on circuits from the MCNC benchmark suite. Table I lists a comparison of proposed work with other

GA-based fault-handling schemes for reconfigurable logic devices.

In summary, the existing tools and platforms demonstrate that self-healing EH systems are practically viable. Yet,

there is a need to propose modifications to the evolutionary algorithm utilized for self-recovery to become suitable

for larger circuits and systems. This is addressed herein using properties of the failure syndrome to considerably

prune the search space while attaining complete quality of recovery.
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B. Other Techniques for Refurbishment of Reconfigurable Hardware

The flexibility of FPGAs due to their dynamic reconfigurability, has propelled many research efforts to develop

fault recovery techniques. Here, techniques having deterministic behavior are presented, as opposed to those based

on evolutionary algorithms which may have indefinite recovery times due to their stochastic nature. For example,

techniques based on online Built-in Self Test (BIST) [29] and those based on utilization of design-time generated

alternate configurations with spare resources [30]. In [29], the entire FPGA resources are tested for correctness while

maintaining the application online. The fault detection takes place via the exchange of testing area with the functional

area on the fly. In this manner, the testing area roves the entire chip checking for logic and interconnect faults. Faults

are avoided by utilizing configurations which have design-time allocated spare resources. It has been suggested to

use this technique after detection, to avoid excessive power consumption due to unlimited reconfigurations even

when there is no failure. Also the fault detection latency can be high as noted in [12].

Alternate configurations with spares allocated at fine or coarse grain levels and compiled at design-time or

runtime are also used to tolerate faults [30], [31]. Functional partitioning of the application is done in [31] to

relocate diagnosed faulty function to spare resources using design-time alternative configurations. Fine-grained

fault isolation is utilized in [30] to reconfigure affected blocks with pre-compiled functionally equivalent blocks

that avoid the faulty resources. The design-time generated configurations have the advantage of meeting timing

requirements of the design and minimizing post-fault detection system downtime. However, there is a significant

overhead to cover all fault possibilities and only a limited number of failures can be tolerated. An alternative is to

recompute the mapping and placement & routing operations on the affected partial FPGA configuration in the field

via CAD algorithms [32], but this is a computationally expensive operation. On the other hand, the reconfiguration

algorithm proposed herein is readily implementable with low area overhead in custom hardware or on an embedded

microprocessor [14], [33]. For example, [33] reports logic utilization of just 13% and memory utilization of only

1% on a relatively small Virtex II-Pro FPGA device and achieves around 5.16x speedup over analogous software

implementation.

An algorithm is proposed in [34] which can be utilized to classify hard faults occurring in SRAM-based FPGAs.

The algorithm is implemented in a controller, which successfully classifies all the reported failure scenarios. The

controller can be employed to trigger appropriate fault handling strategy based on the nature of the failure.

III. FAULT ISOLATION VIA BACK TRACING

First, a set of heuristics are presented to prune the search space for Evolutionary Algorithms utilized for self-

healing in EH. Generally, fault diagnosis in the form of knowing the location and nature of faults is not a requirement

for such algorithms, which is often considered as one of the strengths of this technique [11], but to address the

issue of scalable refurbishment of EH systems, it can be leveraged to increase scalability as demonstrated through

the presented work. The pruning of the search space is achieved by selecting a subset of resources from the entire

pool of resources based on both runtime and design-time information. This selection is done based on implication
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Fig. 1. Motivating Example of Marking of LUTs using Netlist Information

by only the discrepant primary output lines which are implied to be generated by corrupt logic and/or interconnect

resources.

The candidate heuristics to identify the set of suspect resources in a given corrupt FPGA configuration are best

explained through a motivating example. Let’s consider the FPGA configuration with six Primary Inputs (PIs) and

four Primary Outputs (POs) as shown in Figure 1. The PIs are represented through letters a, b, c, d, e and f whereas

the POs are represented with out1, out2, out3 and out4. The LUTs are represented with capital letters {A,B, ..., O}

which is the complete set of resources. Each LUT is tagged with the index(es) of the PO(s), on which datapath(s) it

is used. This information can be obtained by back-tracing from each PO of the circuit and tagging the LUT(s) which

are in its datapath. The process is recursively continued from each LUT input until PI is reached. This process is

analogous to traversing a tree structure starting from the leaf node, which is the PO in this case, until the root is

encountered. For example, LUT D contributes to the generation of both POs out1 and out4, whereas LUT K is

only responsible for out4. To illustrate different scenarios in which the suspect resources are selected, two distinct

failure cases are presented as shown in Figure 1. This selection procedure will also be referred to as the process

of “Marking of LUTs”. The resources identified using one of the candidate heuristics as presented below are to be

utilized during the execution of the evolutionary refurbishment algorithm:

A. Aggressive Pruning Heuristic (HA)

An aggressive pruning heuristic is adopted in this case where all those LUTs with output set containing any of

the non-corrupt outputs are not marked. Let’s consider the Failure Case 1 as shown in Figure 1, when only a single

output line of the circuit {out4} is identified as corrupt at runtime. Then LUTs {K,L,M,N,O} are marked in
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TABLE II

LISTING OF LUTS MARKED THROUGH PRESENTED HEURISTIC APPROACHES FOR THE TWO FAILURE CASES IN THE MOTIVATING

EXAMPLE

Failure Case 1 Failure Case 2

Pruning Reduction Pruning Reduction

Heuristic Iteration Marked LUTs % Non-Marked LUTs Iteration Marked LUTs % Non-Marked LUTs

HA 1 K,L,M,N,O 66.7 1 H 93.3

2 F,I 80.0

3 G,J,K,L,M,N,O 33.3

HE 1 D,E,F,H,I,K,L,M,N,O 33.3 1 D,E,F,G,H,I,J,K,L,M,N,O 20.0

HAE 1 K,L,M,N,O 66.7 1 H 93.3

2 D,E,F,H,I 33.3 2 F,I 80.0

3 G,J,K,L,M,N,O 33.3

4 D,E 20.0

HD 1 K,L,M,N,O 66.7 1 H 93.3

2 D,E,F,H,I 33.3 2 F,I 80.0

3 A,B,C 13.3 3 G,J,K,L,M,N,O 33.3

4 G 6.7 4 D,E 20.0

5 J 0.0 5 A,B,C 0.0

the fault diagnosis phase by considering the aggressive pruning heuristic of not marking LUTs which contribute to

non-corrupt outputs. For example, LUT I is not selected because it is responsible for POs {out3, out4} and out3

is not identified as corrupt. In Failure Case 2 as shown in Figure 1, multiple circuit output lines are identified as

corrupt, which considers an interesting scenario, where initially, only the LUT(s) with output set “equal” to the set

of corrupt POs is(are) selected. For example, if {out2, out3, out4} forms the set of corrupt POs, then only LUT {H}

is marked as it is the only LUT with maximal output set cardinality of 3 and has matching elements. Based on the

demand of the refurbishment algorithm, if more LUTs need to be marked to potentially increase the size of the search

space, the next choice is to find all LUTs with output set equal to any of the possible combinations of subsets of

cardinality 2 from the set of corrupt POs, i.e. {out2, out3} or {out2, out4} or {out3, out4}. Thus, the set of marked

LUTs at this iteration is {H,F, I}. Yet, another iteration of marking is achieved by finding all LUTs with output

set equal to {out2} or {out3} or {out4}. Thus, the final set of marked LUTs is {H,F, I,G, J,K,L,M,N,O}.

The size of the set of marked LUTs is not increased further based on the selected pruning heuristic.

B. Exhaustive Pruning Heuristic (HE)

This heuristic is based on marking all those LUTs with an output set having elements of any of the corrupt

outputs. For Failure Case 1, all LUTs with output set containing out4 are marked as shown in Table II. Similarly,

for Failure Case 2, all LUTs with output set containing any of the outputs out2, out3, or out4 are marked. The

drawback of this intuitive heuristic is that more number of LUTs tend to be selected as compared to other presented

heuristics. On the positive side, the algorithmic realization based on this heuristic is less complex.

August 23, 2013 DRAFT



THE FOLLOWING VERSION OF THE PAPER IS FORMATTED BY THE AUTHORS. A FINAL VERSION OF THE PAPER APPEARS IN IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013 9

C. Hybrid Pruning Heuristic (HAE)

The selection based on this heuristic is an extension of HA. An additional iteration over HA is used to mark all

the remaining LUTs with output set having elements of any of the corrupt outputs which have not been marked in

the previous iterations. The LUTs marked in Failure Cases 1 and 2 for HAE are shown in Table II.

D. Dynamic Pruning Heuristic (HD)

The selection based on this heuristic is an extension of HAE . The additional iterations of marking are based on

observing the status of corrupt POs during the fault recovery process. New potential markings only take place if

the cardinality of set of corrupt PO(s) increases from its initial value. Thus, iterations 3, 4 and 5 shown for Failure

Case 1 in Table II can take place in any order. Note, only LUTs with fan-out of one are marked in these additional

iterations. For instance, if {out2} is added to the set of corrupt POs, then LUT {G} will be added to the set of

marked LUTs. For this particular example, all the LUTs are selected by the end of all iterations for both the failure

cases. However, this will not be the case with much bigger circuits with large number of outputs. The execution

complexity of HD is higher than HAE and others. In summary, the heuristics in decreasing order of complexities

are listed as: HD, HAE , HA, HE .

E. Evaluating the Diagnostic Performance

The efficacy of the presented heuristics for fault diagnosis is evaluated through experimentation on circuits

selected from the MCNC benchmark suite [35]. The experiments are setup with a single Stuck At-fault which is

randomly injected at the input of the LUTs in the FPGA circuit. It is to be determined whether the LUTs marked

by the heuristics as presented above contain the LUT with the fault. Table III lists the observed coverage of faults

for multiple experimental runs with benchmark circuits using the first iteration of Heuristic HA. The number of

experimental runs as indicated by “# of Runs” column, which actually articulates the fault are variable for each

circuit as the results are sampled from a total of 700 runs with cases where faults lie on a spare LUT. The percentage

of runs with corrupt set having cardinality greater than one ranged from 5.8% to 66.9% according to characteristics

of benchmark circuits. The breakdown of marked LUTs in terms of the percentage having fan-out equal to one

and fan-out greater than one is also given with more LUTs being marked with fan-out equal to one. The former

markings takes place when a single PO is identified as corrupt. In contrast, LUTs having fan-out greater than one

are marked as a result of multiple POs being corrupt. The size of the set of marked LUTs can often be reduced

in the latter case, although dynamically changed as required. Majority of experimental runs demonstrate successful

inclusion of faulty LUT into the set of marked LUTs by Heuristic HA in as soon as the first iteration as indicated by

“Coverage Faulty LUT” column. The subsequent iterations of Heuristic HA or subsequent application of Heuristic

HE provides 100% coverage for cases where the actual faulty LUT is not marked in the first iteration. Thus, full

coverage can be attained by using Heuristic HAE with a good tradeoff of search space size as compared to HE as

concluded from earlier discussion. Up to 98.1% of the FPGA resources are not marked during the initial phase of

fault diagnosis using Heuristic HA for all the experiments.
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TABLE III

PERCENTAGE OF LUTS MARKED AND THE PROBABILITY OF COVERING FAULTY LUT IN THE 1st ITERATION OF HEURISTIC HA

Total # of Runs % Runs Corrupt Marked LUTs on Avg. Avg. Pruning Reduction Coverage Faulty Avg. Correctness / Max. Fitness

Benchmark LUTs Outputs > 1 Fan-out = 1 Fan-out > 1 Non-Marked LUTs LUT Exhaustive Evaluation

alu2 185 483 66.9 2.54% 18.98% 78.5% 100% 6086 / 6144

5xp1 49 462 6.5 16.20% 0.27% 83.6% 100% 1265 / 1280

apex4 1252 553 7.4 4.84% 0.01% 95.2% 99.1% 9713 / 9728

bw 68 501 5.8 2.94% 0.09% 97.0% 100% 891 / 896

ex5 352 481 17.3 1.82% 0.07% 98.1% 96.5% 16102 / 16128
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Fig. 2. RARS architecture [2] as utilized herein

IV. ARCHITECTURE SUPPORTING NDER

The Reconfigurable Adaptive Redundancy System (RARS) architecture [2] provides a flexible arrangement to

investigate and improve EH scalability for self-recoverable autonomous systems. As shown in Figure 2, redundancy

can be reconfigured dynamically in a RARS arrangement according to changing mission requirements; the system

can be operating in uniplex mode for non-critical portion of the mission, duplex mode for fault detection, or TMR

mode for fault masking. The resources which are dynamically vacated by the adaptive redundancy mechanism can

be utilized by other application tasks via FPGA partial reconfiguration. Three Functional Elements (FEs) which

constitute the main computational part of the application are shown in Figure 2. The input to the individual FEs

can be selected from the functional input or the test pattern generator’s output. The test patterns are applied to the

FEs during the refurbishment phase as described below. The Discrepancy Sensor is used to detect a failure and

identify the faulty FE. Whereas, Voting Logic does majority voting to mask the faulty output and is enabled upon

the activation of TMR mode. The Reconfiguration Manager activates different redundancy states of the system and

is used for reconfiguration by the GA Engine during the refurbishment phase. The Output Actuator is used to select

one of the outputs of the FEs based on reports from the Reconfiguration Manager and Voting Logic.
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Fig. 3. Algorithmic Flow Chart describing the Netlist Driven Evolutionary Refurbishment

Now, the fault handling scenario is presented assuming the system is running in duplex mode for conservation

of power. The following steps are taken when an error is detected by the Discrepancy Sensor:

1) The third FE is also brought online (TMR) to identify the faulty FE.

2) The faulty FE and another known healthy (golden) FE are taken offline for recovery, whilst the system continues

to provide functional output in uniplex mode.

The fault-free FE serves to evaluate the fitness of the faulty FE. This alleviates the requirement of a golden fitness

evaluation method as opposed to other schemes [23] and is referred to as the model-free fitness evaluation [2]. The

fitness scores are reported to the GA engine. Upon successful refurbishment operation, the system can return to

duplex mode or stay in uniplex mode, as required by mission objectives.

V. NDER TECHNIQUE

An Evolutionary Algorithm based regeneration technique utilizing the proposed diagnosis methodology is de-

scribed using a top-down approach. It is utilized after a fault has been detected, and the faulty module has been

isolated for refurbishment as described in Section IV. The overall flow of the algorithm also referred to as the

Netlist Driven Evolutionary Refurbishment (NDER) technique is shown in Figure 3 with the nomenclature listed in

Table IV. The corresponding algorithmic formulation based on [36] is also presented in Algorithm 1.

Initially, multiple FPGA configurations are utilized to form a population for the GA. This population could be

formed with the single under-refurbishment configuration replicated to form a uniform pool, or with functionally

equivalent though physically distinct configurations generated at design-time to form a diverse pool as utilized in

[13]. Various techniques can be utilized to form diverse individuals at design time, e.g. an adder can be implemented

using alternative approaches such as ripple-carry, carry-lookahead, carry-select, etc. Furthermore, additional designs
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TABLE IV

NOMENCLATURE

Symbol Description

P Representation of the Population

l Number of LUTs in the FPGA Configuration

n Number of Primary Inputs of the Circuit

m Number of Primary Outputs of the Circuit

pc Crossover Rate

pm Mutation Rate

Ik Representation of the kth Individual in the Population

ak,x Logical content of a LUTx ∈ Individual k having a 16-bit unsigned binary value, ∀x ∈ {1, ..., l}
ck,y Connection of a LUTx ∈ Individual k having an integer value ∈ {1, ..., n, n+ 1, ...n+ l}, ∀x ∈ {1, ..., l} & y ∈ {1, ..., l ∗ 4}
outk,i Primary Output i ∈ Individual k having an integer value ∈ {1, ..., n, n+ 1, ...n+ l}, ∀i ∈ {1, ...,m}
Ωk,i Corrupt Output Flag corresponding to Primary Output i ∈ Individual k having a binary value ∈ {1, 0}, ∀i ∈ {1, ...,m}
λk,i Primary Inputs i ∈ Individual k having a binary value ∈ {1, 0}, ∀i ∈ {1, ..., n}
Mk,x Marking of a LUTx ∈ Individual k having a binary value ∈ {1, 0}, ∀x ∈ {1, ..., l}
levelk Iteration of Marking of LUTs for an Individual k

Xk,x Datapath usage corresponding to m Primary Outputs for a LUTx ∈ Individual k having a m-bit vector, ∀x ∈ {1, ..., l}

can be generated by modifying the placement and routing constraints of each configuration. However, diverse

designs do not necessarily avoid the faulty resources, and in that situation a technique to deal with this is desirable.

Herein, a uniform population seed is utilized as it requires less storage and reduced design time effort compared

to generating fault-insensitive designs with sufficient coverage. Once synthesized, these configurations are suitable

for storage in a fault-resilient non-volatile memory.

The FPGA configurations are mapped into Individuals, represented by Ik(t), where k uniquely identifies an

individual in the population and t represents the time instance, e.g. 0 identifies initial formation time of the

population. The fitness of the individuals in the population is evaluated by using the fitness function ϕ(Ik(t)). During

the initial fitness evaluation, the corrupt output line(s) is(are) also identified and Ω⃗k is updated with the relevant

information for an individual Ik. This is done via bit-by-bit comparison of the POs of the under-refurbishment

module with the known healthy module (golden) by application of adequate test vectors. These modules had

been taken offline during the fault isolation phase without affecting the system throughput as described earlier in

Section IV. The under-refurbishment module is configured with the individuals from the population as dictated by

the algorithm.

The index(es) of the corrupt PO(s) and design netlist information contained in X⃗k is used to mark LUTs for

the individuals of the population. Here, the netlist information corresponds to the contribution of each LUT to

the datapath of PO(s) as described earlier in Section III. Then, the information about all the marked LUTs for

an individual Ik is updated in M⃗k. The set of marked LUTs is then utilized to form the subset of PIs whose

corresponding test patterns need to be generated for fitness evaluation. The evolutionary loop begins with the
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Algorithm 1 The Netlist Driven Evolutionary Refurbishment Algorithm
t := 0;

Initialize P (0) = {I1(0), ..., I|P |(0)} ∈ I|P |;

Evaluate P (0) : {{Φ(I1(0)), ...,Φ(I|P |(0))}, {Ω⃗1, ..., Ω⃗|P |}}, where Φ(Ik(0)) is the fitness of an individual Ik with a value ∈ Zm∗2n ;

levelk := CountOnes(Ω⃗k), ∀k ∈ {1, ..., |P |};

Mark {M⃗k(0), level
′
k} := Mark LUTs(Ω⃗k, X⃗k, levelk), ∀k ∈ {1, ..., |P |};

λ⃗k := Select PIs(M⃗k(0)), ∀k ∈ {1, ..., |P |};

while Exit Criteria (P (t)) ̸= true do

for k = 1 to |P | do

Crossover {a⃗′k(t), c⃗′k(t), ⃗out′k(t)} := r′{pc}
(P (t));

Mutate {a⃗′′k(t), c⃗′′k(t), ⃗out′′k(t)} := m′
{pm}(a⃗

′
k(t), c⃗′k(t), ⃗out′k(t));

end for

Evaluate P ′′(t) : {Φ(I′′1(t)), ...,Φ(I′′|P |(t))};

for k = 1 to |P | do

if Φ(I′′k(t)) < Φ(Ik(t)) ∗ level threshold && level′k > 0 then

level′k = level′k − 1;

Mark {M⃗ ′′
k(t), level

′′
k} := Mark LUTs(Ω⃗k, X⃗k, level

′
k);

λ⃗′′
k := Select PIs(M⃗ ′′

k(t));

else

M⃗ ′′
k(t) := M⃗k(t);

level′′k = level′k;

end if

end for

Select P (t+ 1) := s{τ}(P
′′(t)), where τ is the tournament size;

t := t+ 1;

end while

return: Refurbished Individual Ifinal = (⃗a, c⃗, o⃗ut) having Φ(Ifinal) == m ∗ 2n OR max{Φ(I1(t)), ...,Φ(I|P |(t))};

application of GA operations of crossover and mutation to the individuals in the population based on user-defined

rates pc and pm respectively, and evaluating the fitness of the resulting off-spring population. Then, an off-spring

I′′k will undergo the process of marking of LUTs if and only if its fitness is less than a user-defined percentage

(level threshold) of the fitness of its corresponding genetically unaltered individual Ik. New LUTs may be marked

for individuals according to adopted heuristic during each invocation as dictated by its current iteration or level.

Finally, selection phase is used to form the population which is to be utilized in the next generation. This work

employs Tournament-based selection [36]. The loop is terminated when user-defined criterion is met.

A. Representation

An individual I denoting an FPGA configuration is encoded by the following: a⃗, c⃗, o⃗ut , Ω⃗, λ⃗, M⃗ , level and X⃗ .

The vector a⃗ is composed of l 16-bit binary numbers representing the logical contents of l LUTs. The connection

vector c⃗ has 4l integer elements each ∈ {1, ..., n, n+1, ...n+ l} such that each represents the connection of a LUT

input with either one of the n PIs or one of the outputs of l LUTs. It has a cardinality of 4l as a maximum of

4 inputs are assumed for each LUT. The output vector o⃗ut has m integer elements corresponding to m POs each
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Fig. 4. Example FPGA Configuration with Encoding

∈ {1, ..., n, n + 1, ...n + l} with the same definition as for c⃗. The health of each PO is maintained in vector Ω⃗

containing multiple(m) single bit values with 1 denoting corruption. The subset of PIs used for fitness evaluation

is updated in λ⃗ which has a cardinality of n and 1 indicates the corresponding PI is a part of the subset. The

markings of all(l) LUTs is maintained in vector M⃗ containing single bit values with a 1 indicating a marked LUT.

The datapath usage for all the LUTs is stored in vector X⃗ with each member having m-bit binary values to indicate

the m POs. A bit is set for a particular PO, if and only if the corresponding LUT is part of its datapath. Figure 4

demonstrates the proposed representation with an example of a simple FPGA circuit. The configuration for an

FPGA is constructed directly through a⃗, c⃗ and o⃗ut, which undergo GA operations such as mutation and crossover.

Other variables are not evolved and are modified deterministically. For instance, Ω⃗, M⃗ and level are set at time of

the failure, whereas X⃗ is set at design-time.

B. Marking of LUTs

Heuristic HAE is selected for Marking of LUTs in this work due to the prime reason of constraining the search

space for the evolutionary algorithm to meet Research Approach-I (RA-I). Based on results from Table III, it will

be able to achieve 100% coverage. However, the evolutionary refurbishment algorithm can be adopted for any of

the heuristics presented in Section III.

Figure 5 describes the algorithmic flow where Aggressive Pruning is done first (Heuristic HA) and then increased

search space is adapted for GA via Exhaustive Pruning (Heuristic HE) only if convergence is not achieved. The

interested reader is encouraged to consult [37] for details on the implementation of this algorithm. The output set

of each LUT is compared with the set of corrupt PO(s) to evaluate a possible marking according to the adopted

heuristic. According to HA, a LUT with a non-corrupt PO in it’s output set is not marked. A marking in this case

takes place only if the output set of a LUT has matching elements from the set of corrupt PO(s) and it’s fan-out is

equal to level. The last iteration of marking (level == 0) takes place according to HE , where a LUT is marked
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Fig. 5. Flow Chart describing the Marking of LUTs

if it’s output set has any element from the set of corrupt PO(s). Afterwards, spare LUTs allocated at design-time,

are also marked such that the feed-forward condition for the FPGA configuration is not violated.

C. Fitness Evaluation

Genetic Algorithms need a method to assign positive real values to individuals of the population, for the selection

mechanism to work. The elite individual with the highest fitness value in the current population is retained for the

following generation to ensure monotonically increasing performance. Fitness value is assigned to an individual

via bit-by-bit functional output comparison with the known correct output, which is obtained from the isolated

fault-free module as described in Section IV. Same input test vectors are applied to both the fault-free module

and the module under refurbishment. Bit-by-bit comparisons are done for all (m) POs, to establish the fitness of

the module under refurbishment as well as the index(es) of the corrupt PO(s), i.e. ∀index ∈ {1, ...,m} , where

POs do not match for a particular test vector, assign Ωk,index = 1 ∈ I. The maximum value of fitness for an

individual, achieved via exhaustive evaluation is 2n ∗ m, where n and m are the number of PIs and POs of the

circuit respectively. The fitness value is incremented by one for each matching output corresponding to application

of 2n input test vectors with each case having a maximum score of m. Other fitness measurement criteria are also

possible as an alternative to the adopted method, e.g. normalized difference between the functional outputs of the

under refurbishment module and fault-free module. However, the bit-by-bit comparison fitness evaluation scheme

is adopted due to its simplicity in hardware implementation.

A smaller subset of test patterns can be used for fitness evaluation from the set of all possible input test

combinations, once the set of marked LUTs has been determined. This is possible when some PI(s) are connected

only to the non-marked LUTs and thus would not effect the corrupt POs of the circuit. All the required PI(s) can
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be determined by back-tracing from each input of all the marked LUTs. The final set is determined by taking the

union of each of these input subsets and this information is updated in λ⃗ by assigning a 1 for corresponding selected

PI(s). This process referred to as Select PIs in Algorithm 1 and needs to be repeated for every new addition to

the pool of marked LUTs. The test patterns can be generated by providing all possible combinations to only these

PI(s) while other(s) can be considered to be Don’t Care conditions. The fitness score needs to be adjusted to have a

maximum value of 2n ∗m for checking the exit criteria as described later. Alternatively, runtime inputs can also be

utilized as proposed in [13] which demonstrates viable and robust performance for self-adaption using evaluation

of actual inputs, rather than exhaustive test vectors. This utilizes a confidence interval during which the runtime

inputs are monitored based on the premise that not all input combinations need to appear within a given interval.

D. Mutation Operation

Mutation is a unary operation, where an individual I from the population undergoes mutation according to the

probability of mutation pm ∈ {0, 1}, which is usually small to ensure that the mutated individual does not differ

significantly in behavior from its ancestor. The proposed approach is different as compared to standard mutation

operation in genetic algorithms due to the selective nature of mutation adopted as described below.

Mutation is performed on the logical functions and connections of “marked” LUTs belonging to a selected

individual, i.e. a⃗ & c⃗. It is worth noting that mutation does not take place if a non-marked LUT is selected, thus the

effective mutation probability could be lower than the user-defined value pm. Similarly, mutation also takes place

to select the node(s) of the corrupt PO(s).

The function of a selected LUT is mutated (Fucntion Mutation) by inverting a randomly selected bit from

the 16-bit logical content. Whereas, its connection is mutated (Connection Mutation) by randomly assigning an

integer c′j such that it belongs to {1, ..., n+i−1}, where i is used to ensure that only preceding LUTs ({n+1, ..., n+

i−1}) in the circuit are connected to the ith LUT and {1, ..., n} represents the n PIs. Note, connection mutation takes

place, if and only if, connection is made to a marked LUT OR a PI, i.e. (c′j > n & Mc′j−n == 1) OR (c′j ≤ n),

otherwise the connection is left unaltered. Similarly, the corrupt PO as determined by the condition (Ωi == 1)

being true is selected for mutation (OutputLine Mutation) and is randomly assigned an integer ∈ {1, ..., n+ l},

where again 1 through n represents connection to one of the n PIs and n+ 1 through n+ l represents connection

to one of the l LUTs. Again, it is ensured that the connection is only made to a marked LUT.

E. Single-point Crossover Operation

Crossover is a binary operation, where two individuals Iα and Iβ (parents) are selected from the population

with a probability pc and recombined to form a new individual I′. In Single-point Crossover, a point χ is chosen

randomly such that χ ∈ {1, ..., l − 1}, i.e. within the range of LUTs. Then, the offspring individual is formed by

LUTs with their logical contents, interconnects and associated markings up till χ from Iα and the remaining l−χ

LUTs from Iβ , e.g. the logical content vector a⃗′ = (aα,1, ..., aα,χ−1, aα,χ, aβ,χ+1, ..., aβ,l) ∈ I′. The individuals

selected for crossover operation might have distinct or similar markings of LUTs. In case of similar markings, the
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Fig. 6. Single-Point Crossover Operation in Case of Parents with Similar Markings of LUTs
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Fig. 7. Single-Point Crossover Operation in Case of Parents with Dissimilar Markings of LUTs

offspring individual will have no difference in markings from the parents as shown in Figure 6. Otherwise, it will

have markings of LUTs which is distinct from both the parents as shown in Figure 7.

F. Exit Criteria

The criterion for recovery is checked at the start of every GA iteration. During this procedure, it is to be

determined whether any Individual Ik in the population has a fitness value Φ(Ik) ≥ recovery threshold∗2n ∗m.

The recovery threshold is a user-defined value which indicates the required fitness level, e.g. a system meeting

mission requirements at 95% of maximum fitness will have recovery threshold = 0.95. GAs usually show a

significant gain in fitness in a few generations, thus the recovery threshold can also be set by the user according

to the desired recovery rate. If an individual meeting the above requirement is found, then a successful recovery is

achieved and the refurbishment algorithm terminates. At the same time, it is checked whether maximum allocated

time tmax in terms of number of generations has elapsed or not. The determination of maximum allocated time is

dependent on the use of the application circuit and recovery time constraints that would violate mission requirements.

The exit criterion can be utilized in case the evolutionary repair is not making progress in terms of improving the
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Fig. 8. Distribution of LUTs having Fan-out Equal to One and Greater than One, and Spare LUTs
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fitness value. This may then be resolved by adjusting the GA parameter settings such as raising the mutation

rate [17]. If the time constraint elapses, the refurbishment algorithm returns the individual with the maximum

fitness achieved thus far. Then it can subsequently be restarted utilizing this individual as a seed.

VI. EXPERIMENTS & RESULTS

Experiments were devised to gauge the efficacy of heuristic-based fault diagnosis in reducing the search space

for evolutionary refurbishment of FPGA-based EH systems. Further, scalability in terms of the size of circuits

refurbished by NDER is assessed. Experiments are also conducted with Conventional GA refurbishment technique

for a comparison in terms of the fitness and recovery times achieved. In Conventional Evolutionary Refurbishment

(CER), the GA implementation involves no marking of LUTs to limit the search space and standard GA operators.

The goal of conducted experiments was to attain 100% fault recovery as it represents the most demanding case.

Benchmark circuits with various number of output lines and sizes in terms of the number of LUTs are selected

from the MCNC benchmark suite [35]. The largest sized circuit is apex4, which has 1252 LUTs. Whereas,

ex5 has the highest number of output lines, i.e. 63. The I/O characteristics of the circuits are listed within the

parenthesis having inputs first as follows: alu2(10, 6), 5xp1(7, 10), apex4(9, 19), bw(5, 28) and ex5(8, 63).

The circuits are synthesized and mapped using the open source ABC tool [38]. Then, Xilinx ISE 9.2i is utilized for

technology mapping, placement and routing on a Xilinx Virtex-4 FPGA device. The placement process is constrained

through the User Constraints File with the post-place and route model generated to randomly allocate spare LUTs

(having a fan-out of zero) which are approximately 10% of the total LUTs as shown in Figure 8. In addition,

redundancy is also exploited at unutilized inputs of LUTs by allocating valid nets as illustrated in Figure 9. This

redundancy can also be exploited by the GA to recycle a faulty LUT by appropriately altering its logical content.

In this work, single Stuck-At fault model is adopted to model Local Permanent Damage [1]. It covers most hard

faults occurring in SRAM-based FPGAs due to phenomenon as described earlier. The fault is randomly injected

by asserting a 1 or 0 at one of randomly chosen inputs of a LUT in the post-place and route model of the
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circuit. Afterwards, the GA individuals are encoded for both NDER and CER techniques. The GA refurbishment

experiments are conducted using these designs on a simulator able to evaluate the functionality of LUT-based FPGA

circuits. Further, both the conventional and proposed GAs are implemented in software.

A finite population standard GA is utilized for both NDER and CER. A population size of 10 is maintained

for all the experiments. The crossover rate and tournament size are fixed at 0.6 and 4 respectively. The NDER

parameter level threshold varies from 0.96 to 0.99. Mutation rates vary from 0.07 to 0.09 for the experiments with

no mutation being performed on the selection of LUTs or PIs which are responsible for the generation of POs, i.e.

o⃗ut is not altered in the NDER setup. These GA settings are based on similar previous works [2], [27] and validated

through experiment. This parameter set produced the best tradeoff in GA performance and memory requirements

to store the individuals of the population. Additionally, to achieve 100% recovery, the recovery threshold is set

to 1.0.

A. NDER Recovery Performance

The results obtained for refurbishment of faulty FPGA configurations describing the selected MCNC benchmark

circuits via NDER as well as CER are presented in Table V. The “Post-Fault Fitness” column indicates the fitness

of the FPGA configuration after the assertion of a random fault at time 0. Similarly, “Gen. for 100% recovery” or

“Gen. for partial recovery” columns indicates the number of generations required to attain an FPGA configuration

with fitness value reported in “Max. Fitness in Last Gen.” column. The “Avg. Fitness in Last Gen.” column indicates

the average fitness of individuals in last generation over the population size |P |. All results are reported with the

corresponding average, minimum, maximum, and standard deviation over the indicated number of experimental

runs.

The results in Table V indicate that NDER is able to evolve configurations with 100% correctness for all circuits.

In particular, the average value of maximum fitness in the last generation is equal to the maximum possible fitness

value for respective circuits. Conventional evolution was unable to realize useful recovery even when up to 100-

fold more generations are allowed. In fact, the performance of the population as a whole as indicated by the last

generation’s average fitness degrades to as low as 32.5% when compared to average post-fault fitness value for

experimental runs of the apex4 circuit. Typical performance plots in terms of fitness with respect to time for both

NDER and CER are illustrated in Figure 10. This overall behavior of conventional GA may be attributed to the

I/O characteristics and the sizes of the chosen circuits, as compared to the ones used in previous works [12], [14],

[23], [27], [39], [40]. For instance, it is shown in [40] that the recovery time increases with increasing number of

output lines.

In addition, another set of CER experiments is conducted to find the application of evolutionary operators on

components which would not have been marked by NDER. It is revealed that 84.7% of mutations for 5xp1 to

98.2% of mutations for ex5 are undesirable. Thus, NDER achieves Research Approach RA-II by design since only

marked LUTs are selected for application of evolutionary operators and the working components are preserved

resulting in a much more tractable technique for online evolutionary recovery.
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TABLE V

FITNESS AND NUMBER OF GENERATIONS FOR RECOVERY VIA CONVENTIONAL AND NETLIST DRIVEN GA REFURBISHMENT

Conventional GA Refurbishment Netlist Driven GA Refurbishment

Post-Fault Gen. for Partial Avg. Fitness Max. Fitness Post-Fault Gen. for 100% Avg. Fitness Max. Fitness

Fitness Recovery in Last Gen. in Last Gen. Fitness Recovery in Last Gen. in Last Gen.

alu2 # of runs 7 21

Average 6084 25000 4902 6084 6041 1426 6073 6144

[Min.,Max.] [5896,6131] [25000,25000] [4677,5019] [5896,6131] [5632,6136] [6,11778] [5901,6134] [6144,6144]

Std. Dev. 84 0 109 84 143 2829 84 0

5xp1 # of runs 20 52

Average 1272 250000 1101 1273 1265 1784 1269 1280

[Min.,Max.] [1249,1279] [250000,250000] [997,1179] [1249,1279] [1216,1279] [3,4939] [1228,1279] [1280,1280]

Std. Dev. 8 0 55 7 19 1457 9 0

apex4 # of runs 5 20

Average 9620 25000 6493 9620 9722 633 9724 9728

[Min.,Max.] [9271,9727] [25000,25000] [6327,6709] [9271,9727] [9712,9727] [2,8250] [9718,9727] [9728,9728]

Std. Dev. 197 0 169 197 4 1822 3 0

bw # of runs 45 172

Average 891 250000 784 891 891 619 894 896

[Min.,Max.] [883,895] [250000,250000] [707,841] [883,895] [882,895] [4,2498] [887,895] [896,896]

Std. Dev. 4 0 34 4 3 669 1 0

ex5 # of runs 29 38

Average 16091 20000 13714 16091 16114 784 16120 16128

[Min.,Max.] [15966,16127] [20000,20000] [12743,14802] [15966,16127] [16015,16127] [10,3752] [16085,16127] [16128,16128]

Std. Dev. 53 0 468 53 19 997 8 0

TABLE VI

SPEEDUP IN RECOVERY TIME ACHIEVED VIA NDER

Speedup

Benchmark tCER/tNDER

alu2 ≥ 17.5

5xp1 ≥ 140.1

apex4 ≥ 39.5

bw ≥ 404.1

ex5 ≥ 25.5

The recovery of ex5 benchmark having a total of 352 LUTs and 63 output lines is achieved in as few as 784

generations on average over 38 experimental runs. Further, the recovery of largest sized benchmark circuit, i.e.

apex4 with 19 POs is achieved in as few as 633 generations on average over 20 experimental runs. Thus, the

scalability of the proposed approach is established as successful refurbishment is achieved for circuits with various

sizes and with varying number of output lines.

The speedups achieved in refurbishment times with NDER as compared to CER for the selected benchmarks are
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Fig. 10. 5xp1 Benchmark Circuit Fitness versus Generations (Averaged over 15 Experimental Runs)

reported in Table VI. It is obtained by the ratio of time taken by CER (tCER) and time taken by NDER (tNDER).

The results are significant as the recovery times for CER did not achieve useful recovery and indicate it likely

requires significantly more generations corresponding to increased speedups.

B. Discussion of NDER Results

1) Utilization of Spare LUTs and Power Overheads: An observation of the circuits recovered with the NDER

technique indicates that refurbishment is possible either with or without spare LUTs. In the majority of cases, no

spare LUTs were required. In such cases, refurbishment is achieved by configuring the functionality of existing

LUTs. This may also be possible by exploiting design-time redundancy at the LUT level as discussed earlier. In

other cases, the utilization of spare LUTs is dependent on the benchmark circuit. For experimental runs of the alu2

benchmark, at most a single spare LUT was utilized. For experimental runs of the 5xp1 benchmark, a maximum of

3 spare LUTs were utilized. For this benchmark, some instances of a single spare LUT were utilized. For apex4, a

maximum of 6 spare LUTs and a minimum of single spare LUTs were utilized. For the bw benchmark, a maximum
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TABLE VII

UTILIZATION OF SPARE LUTS FOR 100% RECOVERY VIA NDER

Spare LUTs required (% utilization) % Increase

Benchmark Minimum Maximum Active Logic

alu2 0(0%) 1(4.3%) 0.6%

5xp1 0(0%) 3(30%) 7.1%

apex4 0(0%) 6(4.8%) 0.5%

bw 0(0%) 2(20%) 3.4%

ex5 0(0%) 4(10%) 1.3%

of 2 spare LUTs and a minimum of single spare LUT were utilized. Lastly, for ex5 benchmark, a maximum of 4

spare LUTs and a minimum of single spare LUTs were utilized. Table VII summarizes the maximum and minimum

utilization of spare LUTs for all the benchmark circuits.

Use of spare LUTs, however, does not increase the critical path delay by an amount significant enough to

impact the circuits operation. This can be demonstrated via contradiction. Namely, it could not have violated timing

constraints by virtue of the fact that the configuration was evaluated as discrepancy-free during fitness evaluation.

Meanwhile, the energy consumption of the repaired circuit in such cases can also be increased slightly due to

spare LUTs included in the datapath. However, such an increase is negligible owing to the small percentage of

spare LUTs as compared to the overall original active circuit area as noted in Table VII. Further, this increase in

component count can be considered to be small when compared to full-time TMR approaches.

Another component of power consumption in NDER occurs during reconfiguration during the refurbishment

phase. However, this component is small as compared to the mission lifetime power consumption of the application

itself. Furthermore, as described in [41], partial reconfiguration as opposed to full reconfiguration reduces this

component further through utilization of an internal reconfiguration port such as ICAP.

2) Difficult-to-Recover Circuit Characteristics: The NDER experiments conducted indicate some circuit charac-

teristics listed below which make them difficult to recover:

(a) Circuits with small number of Primary Outputs: This results in large percentage of overall LUTs to be selected

for evolution in most cases. For example, alu2 and 5xp1 benchmarks take relatively large average number

of generations to refurbish.

(b) Circuits synthesized with large resource sharing: This can result in observation of common failure signatures at

the primary outputs. Hence, it is difficult to limit the pool of marked LUTs. This may be catered by adequate

circuit synthesis at design-time. For example, this scenario is observed with the alu2 benchmark, which has

a large number of LUTs with output set containing POs 2 and 5 (1 is the LSB).

(c) Circuits with large number of LUTs with fanout equal to one for some or all Primary Outputs: This will

result in a large pool of marked LUTs whenever a single primary output is diagnosed as corrupt. This can also

be improved by adequate circuit synthesis at design-time. On a small scale, this was observed for the 5xp1
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TABLE VIII

PERFORMANCE FOR 100% RECOVERY VIA NETLIST DRIVEN GA REFURBISHMENT WITH SINGLE VS. MULTIPLE CORRUPT OUTPUT LINES

Single Corrupt Primary Output Multiple Corrupt Primary Outputs

Post-Fault Gen. for 100% Avg. Fitness Post-Fault Gen. for 100% Avg. Fitness

Fitness Recovery in Last Gen. Fitness Recovery in Last Gen.

alu2 # of runs 9 12

Average 6074 3147 6099 6015 134 6054

[Min.,Max.] [5632,6136] [73,11778] [6027,6134] [5874,6128] [6,373] [5901,6131]

Std. Dev. 166 3762 35 125 131 104

apex4 # of runs 9 11

Average 9725 1294 9726 9720 92 9723

[Min.,Max.] [9721,9727] [4,8250] [9721,9727] [9712,9725] [2,306] [9718,9727]

Std. Dev. 2 2642 2 4 104 4

bw # of runs 158 14

Average 891 668 894 891 65 893

[Min.,Max.] [882,895] [4,2498] [887,895] [886,894] [10,152] [889,895]

Std. Dev. 3 677 1 2 48 2

ex5 # of runs 23 15

Average 16114 1008 16119 16114 441 16121

[Min.,Max.] [16015,16127] [10,3752] [16085,16127] [16082,16124] [43,2379] [16111,16126]

Std. Dev. 24 1143 10 10 604 5

TABLE IX

MULTIPLE OUTPUT DISCREPANCIES REDUCES RECOVERY TIME

Single Corrupt Multiple Corrupt

Benchmark PO (msecs) POs (msecs)

alu2 983 42

apex4 1765 126

bw 46 5

ex5 396 173

benchmark as it has the highest percentage of LUTs with unary fanout as shown in Figure 8. Similarly, on a

large scale, this was also observed for the apex4 benchmark, which has large number of LUTs with unary

fanout for some POs.

3) Impact of Multiple Corrupt POs: The NDER results from Table V are analyzed to specific cases of single

corrupt PO and multiple corrupt POs in Table VIII. The recovery times reported in Table IX are calculated, where

the fitness evaluation is the main time consuming part of the evolutionary refurbishment process as pointed out in

[15]. If the time to download a configuration onto the FPGA for evaluating the fitness of an individual is denoted

by td and the time to do the fitness evaluation itself is denoted by tf . Further, assume g generations are required

to find a refurbished FPGA configuration according to the user criterion. Then, the total reconfiguration time Tr

consumed by the evolutionary algorithm with a population size of |P | is given by Tr = g|P |(td + tf ), which can
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Fig. 11. Probability Distributions of the size of subset of PI(s) required for Evaluation over 500 random faults

be approximately considered equal to the recovery time [15].

The population size |P | is usually fixed at design-time. The time to download a partial configuration onto the

reconfigurable logic depends upon the size of the benchmark circuit (FE) and the reconfiguration interface utilized.

An evolvable hardware system developed in [14] utilizes an on-board processor to implement the evolutionary

algorithm and reconfigures the FPGA using the Internal Configuration Access Port (ICAP) interface. The ICAP

interface in Xilinx Virtex FPGA devices can provide configuration bandwidths up to 3.2Gbps [28]. Thus, the times

to download the partial configurations for the selected circuits onto a Xilinx Virtex-4 FPGA device are utilized in

the calculation of reported recovery times and range from 5 µseconds to 130 µseconds. Additionally, the fitness

evaluation time tf depends on a test pattern generator operating at 100 MHz and it ranges from 0.5 µseconds to

10 µseconds for these experiments assuming the worst case.

In most cases, the recovery times are greater for the cases when the fault affects a single corrupt PO, which is

due to the increased number of suspect resources. Whereas, the heuristic may limit the number of marked LUTs to

as low as one in some cases due to the unique signature of failure. Thus, the proposed scheme can be effectively

utilized to reduce the search space of the genetic algorithm to a tractable size when a fault results in multiple

corrupt output lines.

C. Scalability of Evaluation

Recovery time has a direct correspondence with the number of test patterns utilized during the fitness evaluation

of a candidate solution. NDER attempts to reduce the required number of test patterns by pruning circuit elements to

form its pool of marked LUTs. In particular, NDER assessment would at its worst perform identical to a conventional

GA whereby all PIs have been marked for evaluation. The conventional GA approach requires repair evaluation

having the maximal cardinality of 2n tests. On the other hand, Figure 11 shows the expected value of this same

metric for the NDER technique. Here the benchmark-specific probability distribution of the number of PIs expected

for fitness evaluation is based on a combinatorial analysis of each circuit output line. For example, the probability of
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NDER incurring exhaustive evaluation for the alu2 benchmark is only 0.55, even if fault location is equiprobable

among the resource pool. Furthermore, the outcome that the cardinality of test pattern set is 27 has probability 0.27.

In other words, Figure 11 quantifies the expectation of reduced evaluation time for NDER based on the structure

of the circuit at hand and its fanout. In particular, it shows the trend that the probability of exhaustive evaluation

decreases as the fanout of the circuit under test is increased, thus improving refurbishment scalability for circuits

with larger fanout.

VII. CONCLUSION

NDER leverages circuit characteristics to realize self-healing capability that can accommodate to larger circuits

than those feasible with conventional EH techniques. It takes into account the output discrepancy conditions,

formulated as spanning from exhaustive down through aggressive pruning heuristics, to reduce the search space and

maintain the functionality of viable components in the subsystems which use them. For instance, the failure syndrome

expressed as the bitwise output discrepancy is utilized to form a concise set of suspect resources at failure-time.

Thus, the individuals comprising the population of the GA are dynamically determined, which balances the metrics

of fault coverage, size of the search space, and implementation complexity. The hybrid heuristic HAE is shown

to achieve significant pruning while achieving complete fault recovery. Its capability to preserve pristine LUTs

promotes gainful search independent of the underlying device technology characteristics and failure mechanisms.

Significant speedup in recovery times exceeding 400-fold as compared to conventional evolutionary refurbishment

are readily achievable via NDER. This estimate is conservative considering that conventional EH was unable to

achieve recovery in the benchmarks under test. Finally, high fan-out of suspect resources has been shown to be

useful to reduce recovery times achieved via NDER. This effect can be observed due to the intersection of the failed

components effects on the overall circuit correctness. In particular, failures resulting from multiple disagreements

were shown to decrease recovery times up to 23.4-fold. Future work includes recovering pipelined sequential circuits

through the piecewise use of NDER. Currently, we are investigating the characteristics of alternative recovery

approaches for the Motion Estimation module in a H.264 video encoder.
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