
Data-Partitioning using the Hilbert Space
Filling Curves: Effect on the Speed of

Convergence of Fuzzy ARTMAP for Large
Database Problems

José Castro
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816–2786

jcastro@pegasus.cc.ucf.edu

Michael Georgiopoulos
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816–2786
michaelg@mail.ucf.edu

Avelino Gonzalez
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816–2786

gonzalez@pegasus.cc.ucf.edu

Ronald Demara
Dep. of Electrical and
Computer Engineering

University of Central Florida
Orlando, FL 32816–2786

demara@pegasus.cc.ucf.edu

Reprint requests to: Michael Georgiopoulos, Electrical and Computer Engineering Department,
University of Central Florida, 4000 Central Florida Blvd. Engineering Building 1, Suite 407, Orlando,
Florida, 32816–2786

Running title: Hilbert space–filling Curves FS-FAM

ACKNOWLEDGMENT

The authors would like to thank the Institute of Simulation and Training and the Link Foundation
Fellowship program for partially funding this project. This work was also supported in part by the
National Science Foundation under grant # CRCD:0203446 and by the National Science Foundation,
under grant # CCLI 0341601

1

Abstract

The Fuzzy ARTMAP algorithm has been proven to be one of the premier neural network architectures

for classification problems. One of the properties of Fuzzy ARTMAP, which can be both an asset and a

liability, is its capacity to produce new nodes (templates) on demand to represent classification categories.

This property allows Fuzzy ARTMAP to automatically adapt to the database without having to a-priori

specify its network size. On the other hand, it has the undesirable side effect that large databases might

produce a large network size that can dramatically slow down the training speed of the algorithm. To

address the slow convergence speed of Fuzzy ARTMAP for large database problems, we propose the use

of space–filling curves, specifically the Hilbert space–filling curves (HSFC). Hilbert space filling curves

allow us to divide the problem into smaller sub-problems, each focusing on a smaller than the original

data-set. For learning each partition of data, a different Fuzzy ARTMAP network is used. Through

this divide-and-conquer approach we are avoiding the node proliferation problem, and consequently we

speed-up Fuzzy ARTMAP’s training. Results have been produced for a 2-class, 16-dimensional Gaussian

data, and on the Forrest database, available at the UCI repository. Our results indicate that the Hilbert

space–filling curve approach reduces the time that it takes to train Fuzzy ARTMAP without affecting

the generalization performance attained by Fuzzy ARTMAP trained on the original large data-set. Given

that the resulting smaller data-sets that the HSFC approach produces can independently be learned by

different Fuzzy ARTMAP networks, we have also implemented and tested a parallel implementation of

this approach on a Beowulf cluster of workstations that further speeds up the time that it takes to train

and test Fuzzy ARTMAP on large database problems.

keywords: Fuzzy–ARTMAP, Hilbert space–filling Curve, Data Mining, Data Partitioning.

2

Symbol Definition
ρ̄a baseline vigilance, ρ̄a ∈ [0, 1].
α choice parameter, α > 0.
ε small positive constant.

w,wj weights in the neural network.
T (I,w, α) activation of the FS-FAM node with template w.
ρ(I,w) vigilance ratio.

Γ repeat factor of matchtracking.
κ compression ratio.

T sequential sequential time of FS-FAM.
T

sequential
p (Partitions = p) sequential time of FS-FAM with p partitions.
T

parallel
p (Partitions = p) parallel time of FS-FAM with p partitions.

Ma dimensionality of the input patterns.
m order of approximation of a space–filling curve.
N number of bits in a derived key of a Hibert index.
r an N–Bit binary Hilbert derived–key.
γi

j a binary digit in r.
γi ith binary byte in r.
aj a coordinate in dimension j of the point (a1, a2, · · · , aj , · · · , aMa

).
αi

j a binary digit in a coordinate aj

αi a concatenation of all the ith entries of the aj’s.

3

I. INTRODUCTION

Neural Networks have been used extensively and successfully to tackle a wide variety of problems. As

computing capacity and electronic databases grow, there is an increasing need to process considerably

larger databases. In this context, the algorithms of choice tend to be ad–hoc algorithms (Agrawal &

Srikant, 1994) or tree based algorithms such as CART (King, Feng, & Shutherland, 1995) and C4.5

(Quinlan, 1993). Variations of these tree learning algorithms, such as SPRINT (Shafer, Agrawal, &

Mehta, 1996)) and SLIQ (Mehta, Agrawal, & Rissanen, 1996) have been successfully adapted to handle

very large data sets.

Neural network algorithms can have a prohibitively slow convergence to a solution, especially when

they are trained on large databases. Even one of the fastest (in terms of training speed) neural network

algorithms, the Fuzzy ARTMAP algorithm ((Carpenter, Grossberg, & Reynolds, 1991) and (Carpenter,

Grossberg, Markuzon, Reynolds, & Rosen, 1992)), and its faster variations ((Kasuba, 1993), (Taghi,

Baghmisheh, & Pavesic, 2003)) tend to converge slowly to a solution as the size of the network increases.

The performance of Fuzzy ARTMAP and its variants has been documented extensively in the literature.

Some of these references favor Fuzzy ARTMAP some of them do not, as compared to other neural

network classifiers or other classifiers in general. For example, Joshi, et al. (see (Joshi, Ramakrishman,

Houstis, & Rice, 1997)), compared more than 20 classifiers on 7 different machine-learning problems.

The conclusion of this study was that Fuzzy Min–Max (Simpson, 1992), a network that shares a lot of

similariries with the Fuzzy ARTMAP neural network, gives the best or the second best classification

accuracy over all the other algorithms on these machine learning problems. Also, in Heinke and Hamker

(Heinke & Hamker, 1995) the authors compare the performance of Fuzzy ARTMAP and three other

neural network classifiers, that is Growing Neural Gas (GNG), Growing Cell Structures (GCS) and the

multi-layer perceptron (MLP) on a number of benchmark datasets. The conclusion of their study is that

Fuzzy ARTMAP performance (classification accuracy) is inferior to the performance of all the other

4

neural networks. Nevertheless, Fuzzy ARTMAP required lesser amount of time to converge to a solution,

and it created smaller size neural network architectures.

Some of the advantages that Fuzzy ARTMAP has, compared to other neural network classifiers: that it

learns the required task fast (especially its faster variants, such as the Fast Simplified Fuzzy ARTMAP), it

has the capability to do on-line learning, and its learning structure allows the explanation of the answers

that the neural network produces. One of the disadvantages of Fuzzy ARTMAP is its tendency to create

large size networks, especially when the data presented to Fuzzy ARTMAP are of noisy and/or overlapping

nature. This Fuzzy ARTMAP shortcoming has been coined as ”the category proliferation” problem. Quite

often, the category proliferation problem, observed in Fuzzy ARTMAP architectures, is connected with

the issue of over-training in Fuzzy ARTMAP. Over-training happens when Fuzzy ARTMAP is trying to

learn the training data perfectly at the expense of degraded generalization performance (i.e., classification

accuracy on unseen data) and also at the expense of creating many categories to represent the training

data. A number of authors have tried to address the category proliferation/over-training problem in Fuzzy

ARTMAP. Amongst them we refer to the work by Mariott and Harrisson (Marriott & Harrison, 1995),

where the authors eliminate the match tracking mechanism of Fuzzy ARTMAP when dealing with noisy

data, the work by Charlampidis, et al., (Charalampidis, Kasparis, & Georgiopoulos, 2001), where the

Fuzzy ARTMAP equations are appropriately modified to compensate for noisy data, the work by Verzi,

et al., (Verzi, Heileman, Georgiopoulos, & Healy, 2001), Anagnostopoulos, et al., (Anagnostopoulos,

Bharadwaj, Georgiopoulos, Verzi, & Heileman, 2003), and Gomez-Sanchez, et al., (Gomez-Sanchez,

Dimitriadis, Cano-Izquierdo, & Lopez-Coronado, 2002), where different ways are introduced of allowing

the Fuzzy ARTMAP categories to encode patterns that are not necessarily mapped to the same label,

provided that the percentage of patterns corresponding to the majority label exceeds a certain threshold,

the work by Koufakou, et al., (Koufakou, Georgiopoulos, Anagnostopoulos, & Kasparis, 2001), where

cross-validation is employed to avoid the overtraining/category proliferation problem in Fuzzy ARTMAP,

and the work by Carpenter (Carpenter & B. L. Milenova, 1998), Williamson (Williamson, 1997), Parrado-

5

Hernandez, et al., (Parrado-Hernandez, Gomez-Sanchez, & Dimitriadis, 2003), where the ART structure

is changed from a winner-take-all to a distributed version and simultaneously slow learning is employed

with the intent of creating fewer ART categories and reducing the detrimental effects of noisy patterns.

In this paper our focus is to improve the convergence speed of ART-like structures through a training

data partitioning approach. In order to connect our work with previous work on Fuzzy ARTMAP it

is worth emphasizing again the work by Kasuba (Kasuba, 1993), where a simplified Fuzzy ARTMAP

structure (simplified Fuzzy ARTMAP) is introduced that is simpler and faster than the original Fuzzy

ARTMAP structure, and functionally equivalent with Fuzzy ARTMAP for classification problems.

Furthermore, Taghi, et al., in (Taghi et al., 2003), describe variants of simplified Fuzzy ARTMAP, called

Fast Simplified Fuzzy ARTMAP, that reduce some of the redundancies of Simplified Fuzzy ARTMAP

and speed up its convergence to a solution, even further. One of the Fuzzy ARTMAP fast algorithmic

variants presented in (Taghi et al., 2003) is called, SFAM2.0 and it has the same functionality as Fuzzy

ARTMAP (Carpenter et al., 1992) for classification problems. From now we will refer to this variant

of Fuzzy ARTMAP as FS-FAM (Fast Simplified Fuzzy ARTMAP). The focus of our paper is FS-FAM.

Note that FS-FAM is faster than Fuzzy ARTMAP because it eliminated some of the redundancies of

the original Fuzzy ARTMAP that are not necessary when classification problems are considered. Since

the functionality of Fuzzy ARTMAP (Carpenter et al., 1992) and FS-FAM (Taghi et al., 2003) are the

same for classification problems we will occasionally refer to FS-FAM as Fuzzy ARTMAP. We chose to

demonstrate the effectiveness of our proposed data-partitioning approach on the performance of FS-FAM

since, if we demonstrate its effectiveness for Fuzzy ARTMAP, its extension to other ART structures can

be accomplished without a lot of effort. This is due to the fact that the other ART structures share a lot

of similarities with Fuzzy ARTMAP, and as a result, the advantages of the proposed data-partitioning

approach can be readily extended to other ART variants (for instance some of the ART variants, mentioned

above, that address the category proliferation/over-training issue in Fuzzy ARTMAP).

One of the properties of Fuzzy ARTMAP, which can be both an asset and a liability, is its capacity to

6

produce new neurons (templates) on demand to represent classification categories. This property allows

Fuzzy ARTMAP to automatically adapt to the database without having to arbitrarily specify its network

size. On the other hand though, this same property of Fuzzy ARTMAP has the undesirable effect that

on large databases it can produce a large network size that can dramatically slow down its convergence

speed. It would be desirable to be able to train Fuzzy ARTMAP on large databases, while keeping Fuzzy

ARTMAP’s convergence speed reasonable. To address this problem we propose the use of space–filling

curves. A space–filling curve is by definition a continuous mapping from a unit hypercube [0, 1]n to

the unit interval [0,1]. Skopal et al. (Skopal, Krátký, & Snás̆el, 2002) analyze different space–filling

curves, amongst them the Peano curve, Z curve and the Hilbert curve, and also provides measures for

their appropriateness. Moon et al. (Moon, Jagadish, Faloutsos, & Saltz, 2001) argues and proves that the

Hilbert space–filling curve (HSFC) is the mapping that provides the least number of splits of compact

sets from [0, 1]n to [0,1]. This can be interpreted as stating that points that are close on the mapping will

also be close on the n–dimensional hypercube. Lawder (Lawder & King, 2000) has taken advantage of

this property of HSFCs and used them to develop a multi–dimensional indexing technique.

In this paper we use Hilbert space–filling curves to partition the training data, prior to their presentation

to FS-FAM. Through the training set partitioning that the HSFC produces we can train many Fuzzy

ARTMAP networks, each one of them with one of the partitions of the training set that the HSFC

generates. Through this divide-and-conquer approach, facilitated by the Hilbert space–filling curves, our

research has shown that we can dramatically reduce the convergence speed of a single FS-FAM trained

on the entire (large) training set. Our experimentation also demonstrates that the many FS-FAMs trained

on the smaller training sets cumulatively produce a combined Fuzzy ARTMAP structure, referred to as

hFS-FAM (Hilbert Fast Simplified Fuzzy ARTMAP), whose size is comparable to the size of the single

FS-FAM trained on the large dataset. Furthermore, our experiments show that hFS-FAM’s generalization

performance is as good as, and at times better, than the single FS-FAM’s performance.

It is worth mentioning that our literature review did not produce any papers that addressed the issue

7

of convergence speed in Fuzzy ARTMAP for large databases through data partitioning approaches. But

data partitioning approaches have been applied to other neural network architectures with success. For

instance, Kerstetter, et al., (Kerstetter, 1998) have used a data partitioning (clustering) approach that

divides the data into smaller datasets in an effort to effectively train a multi-layer feedforward neural

network for a target recognition application. The clustering approach utilized in their paper was tailored

for the multi-layer feedforward neural network and its associated learning algorithm (back-propagation).

Another neural network architecture for which data partitioning (clustering) has been very beneficial is

the probabilistic neural network developed by Specht (Specht, 1990). One of the major issues with the

probabilistic neural network is that it uses too many exemplars (templates) to represent the patterns in the

training set, resulting in unecessary long computations in order to respond with a predicted classification

for new patterns that it has never seen before. Radial basis function neural networks (Moody & Darken,

1989) suffer from a similar type of defficiency. Clustering (data partitioning) approaches to remedy this

problem for the PNN and RBF neural networks have been proposed in the literature. For example,

in (Burrascano, 1991) Kohonen’s learning vector quantizazion (LVQ) has been successfully used to find

representative exemplars to be used with the PNN. In a similar fashion, Traven (Traven, 1991) reduces the

number of templates needed by the PNN by replacing groups of training patterns with exemplar patterns

using an approach that estimates the probability density functions needed in the PNN with Gaussian

functions of appropriate mean and covariances. Our intent in this paper was similar with the intent in

the aforementioned papers, where data-partitioning was applied. We wanted to reduce the number of

templates that Fuzzy ARTMAP had to consider during its training phase. So, instead of training Fuzzy

ARTMAP on all the available data we partitioned the data in smaller sets, and we trained many Fuzzy

ARTMAPs, in an effort to reduce the training time required by a single Fuzzy ARTMAP. We used

the HSFC (Hilbert Space Filling Curve) approach to partition the data because it is very fast (it takes

Nlog2(N) operations to partition a dataset containing N points), and as a result it is expected to provide

significant savings in the required computations that Fuzzy ARTMAP needs to solve a ”large dataset”

8

problem. In our paper, we demonstrate that the performance of Fuzzy ARTMAP (generalization and size)

is not affected by the data-partitioning (clustering) that the HSFC enforces.

This paper is organized as follows: First we review the FS-FAM architecture and its functionality. Then

we examine the computational complexity of FS-FAM and analyze how and why a partitioning approach

can considerably reduce the algorithm’s training time. Subsequently, we discuss space–filling curves in

general and the Hilbert space–filling curve in particular; furthermore, we discuss of why this curve can

be instrumental in improving FS-FAM’s convergence time. Also, experimental results are presented on a

sequential machine and on a Beowulf cluster of workstations that illustrate the merit of our approach. The

datasets that we have used in our experiments to demonstrate the effectiveness of hFS-FAM, compared

to FS-FAM are (i) a two-class, sixteen-dimensional Gaussianly distributed dataset, and (ii) the Forrest

database that resides at the UCI repository (University of California, Irvine, 2003). We close the paper

with a summary of the findings and suggestions for further research.

II. THE FS-FAM ARCHITECTURE

The Fuzzy ARTMAP neural network and its associated architecture was introduced by Carpenter and

Grossberg in their seminal paper (Carpenter et al., 1992). Since its introduction, a number of Fuzzy

ARTMAP variations and associated successful applications of this ART family of neural networks have

appeared in the literature (for instance, ARTEMAP (Carpenter & Ross, 1995), ARTMAP-IC (Carpenter &

Markuzon, 1998), Ellisoid-ART/ARTMAP (Anagnostopoulos & Georgiopoulos, 2001), Fuzzy Min-Max

(Simpson, 1992), LAPART2 (Caudell & Healy, 1999), and σ-FLNMAP (Petridis, Kaburlasos, Fragkou, &

Kehagais, 2001), to mention only a few. For the purposes of the discussion that follows in this section it is

worth mentioning again the work by Kasuba (Kasuba, 1993) and Taghi, Baghmisheh, and Pavesic (Taghi

et al., 2003). In his paper, Kasuba introduces a simpler Fuzzy ARTMAP architecture, called Simplified

Fuzzy ARTMAP. Kasuba’s simpler Fuzzy ARTMAP architecture is valid only for classification problems.

Taghi, et al., (Taghi et al., 2003) have eliminitated some of the unnecessary computations involved in

9

Kasuba’s Simplified Fuzzy ARTMAP, and introduced two faster variants of Simplified Fuzzy ARTMAP,

called SFAM2.0 and SFAM2.1. Kasuba’s simpler Fuzzy ARTMAP variants were denoted as SFAM 1.0

and 1.1 in Taghi’s paper. In order to connect the version of Fuzzy ARTMAP, implemented in this paper,

with Carpenter’s and Grossberg’s Fuzzy ARTMAP, Kasuba’s simplified Fuzzy ARTMAP (SFAM1.0) and

Taghi’s simplified Fuzzy ARTMAP versions, such as SFAM 1.1, SFAM2.0 and SFAM2.1, it is worth

mentioning that in our paper we have implemented the Fuzzy ARTMAP version, called SFAM2.0 in

Taghi’s paper. As, we have mentioned in the introduction, we refer to this Fuzzy ARTMAP variant

as FS-FAM. Once more, FS-FAM is algorithically equivalent with Fuzzy ARTMAP for classification

problems. Classification problems are the only focus in our paper.

The block diagram of FS-FAM is shown in Figure 1. Notice that this block diagram is different than

the block diagram of Fuzzy ARTMAP mentioned in (Carpenter et al., 1991), but very similar to the block

diagram depicted in Kasuba’s work (see (Kasuba, 1993)). The Fuzzy ARTMAP architecture of the block

diagram of Figure 1 has three major layers. The input layer (F a
1) where the input patterns (designated

by I) are presented, the category representation layer (F a
2), where compressed respresentations of these

input patterns are formed (designated as w
a
j , and called templates), and the output layer (F b

2)that holds

the labels of the categories formed in the category representation layer. Another layer, shown in Figure

1 and designated by F a
0 is a pre-procesing layer and its functionality is to pre-process the input patterns,

prior to their presentation to FS-FAM. This pre-processing operation (called complementary coding is

described in more detail below).

Fuzzy ARTMAP can operate in two distinct phases: the training phase and the performance phase. The

training phase of Fuzzy ARTMAP can be described as follows: Given a set of inputs and associated labels

pairs,
{

(I1, label(I1)), . . . , (Ir, label(Ir)), . . . , (IPT , label(IPT))
}

, we want to train Fuzzy ARTMAP to

map every input pattern of the training set to its corresponding label. To achieve the aforementioned goal

we present the training set to the Fuzzy ARTMAP architecture repeatedly. That is, we present I
1 to F a

1 ,

label(I1) to F b
2 , I

2 to F a
1 , label(I2) to F b

2 , and finally I
PT to F a

1 , and label(OPT) to F b
2 . We present

10

the training set to Fuzzy ARTMAP as many times as it is necessary for Fuzzy ARTMAP to correctly

classify all these input patterns. The task is considered accomplished (i.e., the learning is complete)

when the weights do not change during a training set presentation. The aforementioned training scenario

is called off-line learning. There is another training scenario, the one considered in this paper, that is

called on-line training, where each one of the input/label pairs are presented to Fuzzy ARTMAP only

once. The performance phase of Fuzzy ARTMAP works as follows: Given a set of input patterns, such

as Ĩ
1, Ĩ2, . . . , ĨPS , we want to find the Fuzzy ARTMAP output (label) produced when each one of the

aforementioned test patterns is presented at its F a
1 layer. In order to achieve the aforementioned goal we

present the test set to the trained Fuzzy ARTMAP architecture and we observe the network’s output.

The training process in FS-FAM is succinctly described in Taghi’s et al., paper (Taghi et al., 2003).

We repeat it here to give the reader a good, well-explained overview of the operations involved in its

training phase.

1) Find the nearest category in the category representation layer of Fuzzy ARTMAP that ”resonates”

with the input pattern.

2) If the labels of the chosen category and the input pattern match, update the chosen category to be

closer to the input pattern.

3) Otherwise, reset the winner, temporarily increase the resonance threshold (called vigilance param-

eter), and try the next winner.

4) If the winner is uncommitted, create a new category (assign the representative of the category to

be equal to the input pattern, and designate the label of the new category to be equal to the label

of the input pattern).

The nearest category to an input pattern I
r presented to FS-FAM is determined by finding the category

that maximizes the function:

11

T a
j (Ir,wa

j , α) =
|Ir ∧w

a
j |

α + |wa
j |

(1)

The above function is called the bottom-up input (or choice function) pertaining to the F a
2 node j

with category representation (template) equal to the vector w
a
j , due to the presentation of input pattern

I
r. This function obviously depends on an FS-FAM network parameter α, called choice parameter, that

assumes values in the interval (0,∞). In most simulations of Fuzzy ARTMAP the useful range of α is

the interval (0, 10]. Larger values of α create more category nodes in the category representation layer

of FS-FAM.

The resonance of a category is determined by examining if the function, called vigilance ratio, and

defined below

ρ(Ir,wa
j) =

|Ir ∧w
a
j |

|Ir|
(2)

satisfies the following condition:

ρ(Ir,wa
j) ≥ ρa (3)

If the above equation is satisfied we say that resonance is achieved. The parameter ρa appearing in the

above equation is called vigilance parameter and assumes values in the interval [0, 1]. As the vigilance

parameter increases, more category nodes are created in the category representation layer (F a
2) of Fuzzy

ARTMAP. If the label of the input pattern (Ir) is the same as the label of the resonating category, then

the category’s template (wa
j) is updated to incorporate the features of this new input pattern (Ir). The

update of a category’s template (wa
j) is performed as depicted below:

w
a
j = w

a
j ∧ I

r (4)

12

The update of templates, illustrated by the above equation, has been called fast-learning in Fuzzy

ARTMAP. Our paper is concerned only with the fast learning Fuzzy ARTMAP.

If the category j is chosen as the winner and it resonates, but the label of this category w
a
j is different

than the label of the input pattern I
r, then this category is reset and the vigilance parameter ρa is increased

to the level:

|Ir ∧w
a
j |

|Ir|
+ ε (5)

The parameter ε assumes very small values. Increasing the value of vigilance barely above the level of

vigilance ratio of the category that is reset guarantees that after this input/label-of-input pair is learned by

FS-FAM, immediate presentation of this input to FS-FAM will result in correct recognition of its label by

Fuzzy ARTMAP. It is difficult to correctly set the value of ε so that you can guarantee that after category

resets no legitimate categories are missed by FS-FAM. Nevertheless, in practice, typical values of the

parameter ε are taken from the interval [0.00001, 0.001]. In our experiments we took ε = 0.0001. After

the reset of category j, other categories are searched that maximize the bottom-up input and they satisfy

the vigilance (resonate). This process continues until a category is found that maximizes the bottom-up

input, satisfies the vigilance and has the same label as the input pattern presented to FS-FAM. Once this

happens, update of the category’s template as indicated by equation (4) ensues. If through this search

process an uncommitted category (an uncommitted category is a category that has not encoded any input

pattern before) is chosen, it will pass the vigilance, its label will be set to be equal to the label of the

presented input pattern, and the update of the category’s template will create a template that is equal to

the presented input pattern.

In all of the above equations (equations (1)-(5)) there is specific operand involved, called fuzzy min

operand, and designated by the symbol ∧. Actually, the fuzzy min operation of two vectors x, and y,

designated as x ∧ y, is a vector whose components are equal to the minimum of components of x and

13

y. Another specific operand involved in these equations is designated by the symbol | · |. In particular,

|x| is the size of a vector x and is defined to be the sum of its components.

It is worth mentioning that an input pattern I presented at the input layer (F a
1) of FS-FAM has the

following form:

I = (a,ac) = (a1, a2, . . . , aMa
, ac

1, a
c
2, . . . , a

c
Ma

) (6)

where,

ac
i = 1− ai; ∀i ∈ {1, 2, . . . , Ma} (7)

The assumption here is that the input vector a is such that each one of its components lies in the

interval [0, 1]. Any input pattern can be, through appropriate normalization, be represented by the input

vector a, where Ma stands for the dimensionality of this input pattern. The above operation that creates I

from a is called complementary coding and it is required for the successful operation of Fuzzy ARTMAP.

The number of nodes (templates) created in the F a
2 layer of FS-FAM (category representation layer) is

designated by Na, and it is not a parameter that need to be defined by the user before training commences;

Na is parameter, whose value is dictated by the needs of the problem that FS-FAM is trained with and the

setting of the choice parameter (α) and baseline vigilance parameter ρ̄a. The baseline vigilance parameter

is a parameter set by the user as a value in the interval [0, 1]. The vigilance parameter ρa, mentioned

earlier (see equation (3)), is related with the baseline vigilance ρ̄a since at the beginning of training with

a new input/label pattern pair, the vigilance parameter is set equal to the baseline vigilance parameter;

during training with this input/label pattern pair the vigilance parameter could be raised above the baseline

vigilance parameter (see equation (5)), only to be reset back the baseline vigilance parameter value once

a new input/label pattern pair appears.

Prior to initiating the training phase of FS-FAM the user has to set the values for the choice parameter

14

α (chosen as a value in the interval [0, 10]), baseline vigilance parameter value ρ̄a (chosen as a value in

the interval [0, 1]).

In the performance phase of FS-FAM, a test input is presented to FS-FAM and the category node in

F a
2 of FS-FAM that has the maximum bottom-up input is chosen. The label of the chosen F a

2 category is

the label that FS-FAM predicts for this test input. By knowing the correct labels of test inputs belonging

to a test set allows us, in this manner, to calculate the classification error of FS-FAM for this test set.

II.-A. FS-FAM pseudocode

In this paper, we primarily focus on one-epoch FS-FAM training, or as it was referred before the

”on-line training FS-FAM”. Whatever speed-up we achieve for the ”on-line training FS-FAM” it will

also be applicable to the ”off-line training FS-FAM”, since the ”off-line training FS-FAM” is an ”on-line

training FS-FAM”, where after an on-line training cycle is completed, another cycle starts with the same

set of training input patterns/label pairs; these on-line training FS-FAM cycles are repeated for as long

as it is necessary for the FS-FAM network to learn the required mapping. The following pseudocode

pertains to the ”on-line training FS-FAM”.

FAM-TRAINING-PHASE(Patterns, ρ̄a, α, ε)
1 templates← {}
2 for each I

r in Patterns

3 do ρ← ρ̄a

4 repeat
5 Tmax ←

Ma

2Ma+α

6 status← FoundNone

7 for each w
a
j in templates

8 do if ρ(Ir,wa
j) ≥ ρ and T (Ir,wa

j , α) > Tmax

9 then
10 Tmax ← T (Ir,wa

j , α)
11 jmax ← j

12 status← FoundOne

13 if status = FoundOne

14 then if label(Ir) = label(wa
jmax

)
15 then status← Allocated

16 else status← TryAgain

17 ρ← ρ(Ir,wa
jmax

) + ε

18 until status 6= TryAgain

15

19 if status = Allocated

20 then
21 w

a
jmax

← w
a
jmax

∧ I
r

22 else
23 templates← templates ∪ {Ir}
24
25 return templates

The step-by-step procedure of the training phase of FS-FAM (considered in this paper, and outlined

above in terms of its associated pseudo-code) is described in every detail in (Taghi et al., 2003). It is

only repeated here, in less detail, to assure completeness of the manuscript.

II.-B. On-Line FS-FAM complexity analysis

We can see from the pseudo-code that the algorithm tests every input pattern I in the training set

against each template w
a
j at least once. Let us call Γ the average number of times that the repeat loop

in the pseudo-code is executed for each input pattern. Notice that this Γ parameter is not specified as a

numerical value but it is introduced as an unspecified constant to help us produce an analytical formula that

describes the complexity of the on-line training FS-FAM. Our experiments with many datasets indicate

that this parameter is small compared to the number of templates that FS-FAM creates during its training

phase. As a result, the number of times that a given input pattern I passes through the code will be:

Time(I) = O(Γ× |templates|) (8)

Also, under the unrealistic condition that the number of templates does not change during training it

is easy to see that the time complexity of the algorithm is:

Time(FS − FAM) = O(Γ× PT × |templates|) (9)

Usually for a fixed database the FS-FAM algorithm achieves a certain compression ratio. This means

that the number of templates created is actually a fraction of the number of patterns PT in the training

16

set:

|templates| = κPT (10)

and

Time(FS − FAM) = O (ΓPTκPT) = O(κΓPT 2) (11)

Note that the parameter κ is also an unspecified numerical value. As it was the case with Γ, the

introduction of κ as an unspecified constant helps us in deriving an analytical formula for the on-line

complexity of FS-FAM. The actual value of the parameter κ, defined in the above equation, depends on

ρ̄a, α and obviously on the training set that is presented to FS-FAM. Assuming that ρ̄a and α are kept

fixed, the value of κ decreases the more redundant data the training set contains. For a fixed training set,

the value of κ increases as α, or ρ̄a, or both increase.

Now if we divide the training set into p partitions this will reduce the number of patterns in each

partition to PT
p

and the number of templates in each partition to κPT
p

, on the average. On a sequential

machine the speedup obtained by partitioning the training set into p subsets will be proportional to:

T sequential

T
sequential
p (Partitions = p)

(12)

which using our assumptions above simplifies to:

T sequential

T
sequential
p (Partitions = p)

=
κΓPT 2

pΓκPT
p

PT
p

= p (13)

and on a parallel machine with p processors the speedup will be proportional to:

17

T sequential

T
parallel
p (Partitions = p)

(14)

and again with our assumptions above simplifies to:

T sequential

T
parallel
p (Partitions = p)

=
κΓPT 2

ΓκPT
p

PT
p

= p2 (15)

The previous speed-up (i.e., equations (13) and (15)) still hold even if we do not assume that the

number of times that the repeat loop is executed (i.e., the parameter Γ) is fixed. In that case we expect Γ

to get smaller as the number of templates that a pattern has to go through decreases. So we expect the Γ

in the numerator of equations (13) and (15) to be larger than the Γ in the denominator of these equations;

thus resulting in higher than the p|p2 speed-up that equations (13) and (15) predict. Furthermore, we also

assumed that the parameter κ is fixed. In reality, it is expected that the parameter κ will become smaller

as the size PT and the number of templates is reduced. So it is reasonable to expect speedups greater

than p for p partitions run in sequence, or p2 for p partitions run in parallel.

Furthermore, additional assumptions that were needed to make the speed-up equations valid are as

follows:

1) The partitioning scheme is well balanced and distributes the learning task fairly amongst the

different partitions.

2) The partitioning scheme is not computationally expensive so as to outweigh its benefits.

II.-C. Partitioned FS-FAM versus non-Partitioned FS-FAM

It is worth mentioning how the data partitioning works: Whatever approach is used to partition the

data in the training set will lead us into a collection of smaller training sets. Each one of these sets will

be used to independently train a different FS-FAM network. The resulting collection of trained FS-FAM

partitions is what we refer to as hFS-FAM for reasons that will become apparent in the next section.

18

In the performance phase, a test input is presented to hFS-FAM and this test input activates only the

templates of the partition to which the input pattern belongs. This is accomplished by finding the Hilbert

space index of the test pattern and then matching it with the Hilbert space filling curve indices of the

training patterns associated with one of the trained FS-FAMs in the hFS-FAM collection. Hence a test

input pattern is presented only to one of the trained FAMs in the hFS-FAM collection. The most active

category that passes the vigilance criterion will produce the predicted label of the input pattern. It is

apparent from the above statements, that the hFS-FAM and the single FS-FAM trained on the original

dataset are two distinct methods for solving the same classification problem. Our intent, with hFS-FAM,

in addition to achieving convergence speed-up compared to FS-FAM, is to create a trained hFS-FAM

whose size is not larger than the size of FAM, and whose generalization performance is comparable to

the generalization performance of FS-FAM.

III. SPACE–FILLING CURVES

A space–filling curve is a mapping from a unit hypercube [0, 1]Ma to the unit interval [0,1]. Mokbel

and Aref (Mokbel & Aref, 2001) describe them as a “thread that goes through all the points in a

space but visiting every point only once.” We will talk about a space filling curve SMa

m as an mth–order

approximation of the space–filling curve S in the Ma–dimensional space. Every mth–order space–filling

curve approximation has a finite number of segments and connects a finite number of points in the

multidimensional space. The grid size N of a space–filling curve will be the number of divisions into

which each dimension is split.

There are many space–filling curves available, amongst them we have the Peano curve, the Z curve,

the Hilbert curve, the sweep, the scan and the gray curves. An Ma–dimensional space–filling curve with

grid size N connects NMa points and has NMa − 1 segments. Figure 2 shows the Sweep and Peano

space–filling curves respectively. The grid size in these examples is 4, the number of dimensions Ma = 2,

the number of points that they connect is 42 = 16, and the number of segments is 15.

19

A curve S is space–filling iff:

S
def
= lim

m→∞

SMa

m = [0, 1]Ma (16)

The above equation states that a space-filling curve is such that, as its order becomes larger and larger,

it ends up connecting more and more points in the space (of dimensionality Ma) that it is trying to

represent, and eventually in the limit (as m → ∞) it connects all the points in the Ma dimensional

space. IS THE ABOVE STATEMENT A CORRECT INTERPRETATION OF WHAT THE CURVE IS

ALL ABOUT???... THE 1st REVIEWER WAS ASKING US TO CLARIFY... Peano was the first to

use space–filling curves, and Hilbert generalized the definition to arbitrary number of dimensions. To be

able to characterize their properties (Mokbel & Aref, 2001) concentrates on the nature of the segments

that connect adjacent points in the space–filling curve by cataloging them as either a jump, contiguity,

reverse, forward or still. Different applications will require different space–filling curves. If, for example,

we wanted to access a database by an index in which the order is relevant then a space–filling curve that

preserves the order of the dimension will probably be best (low reverse, i.e. the Peano curve).

III.-A. The Hilbert Space–Filling Curve

Moon et al. (Moon et al., 2001) concentrates on the Hilbert space–filling curve (HSFC) and show

that for range queries the HSFC curve produces the least number of splits in an index. This result is a

consequence of the property that the HSFC does not have any jumps, it is continuous, and that it does

not have a bias towards any dimension.

We will denote the mth–order approximation of the Ma–dimensional Hilbert space–filling curve as

HMa

m . Examples of the first 4 approximations of the 2–dimensional Hilbert space–filling curve can be

seen in figures 3 and 4. The mth–order approximation HMa

m of the HSFC has a grid size of N = 2m.

In practice HMa

m divides the Ma–dimensional space into 2mMa boxes and orders them in a contiguous

sequence. For a more detailed exposition of the clustering properties of this curve we refer the reader to

(Moon et al., 2001).

20

III.-B. The Hilbert Space Filling Curve index calculation

There are various algorithms for calculating the Hilbert index of a given Ma–dimensional data point.

The one we present here is based on (Lawder, 2000) which is a modification of an iterative algorithm

originally found in (Butz, 1971). This is a table driven algorithm. It assumes that we are mapping

binary numbers into binary numbers, and the precision of the mapping is limited by the order of the

approximation m. Any precision can be achieved by increasing the approximation order m. Also this

algorithm assumes that the number of bits in the full representation of the Ma–dimensional data point

is the same as the number of bits in the resulting key r ∈ [0, 1). All operations are fully reversible, and

as a result, the HSFC is a one–to–one mapping.

The algorithm requires the following definitions.

• Ma : number of dimensions
• m : the order of approximation
• N : the number of bits in a derived–key, N = mMa

• r : an N–Bit binary Hilbert derived–key expressed as a real number in the range [0, 1).
• byte : a word containing Ma bits
• γi

j : i ∈ {1, . . . , m}, j ∈ {1, . . . , Ma} a binary digit in r such that

r = 0.γ1
1γ1

2 · · · γ
1
Ma

γ2
1γ2

2 · · · γ
2
Ma

γ3
1 · · · γ

m
Ma

• γi : ith binary byte in r, γi = γi
1γ

i
2 · · · γ

i
j · · · γ

i
Ma

• aj : a coordinate in dimension j of the point

(a1, a2, · · · , aj , · · · , aMa
)

whose derived–key is r, (each aj ∈ [0, 1))
• αi

j : a binary digit in a coordinate aj

aj = 0.α1
jα

2
j · · ·α

i
j · · ·α

m
j

• αi : a concatenation of all the ith entries of the aj’s

αi = αi
1α

i
2 · · ·α

i
Ma

• principal position: The least significant position of a byte that is different from the last position of
the byte. If all positions are equal then the principal position is Ma (the first or most significant bit
is bit 1).

• parity: number of bits in a byte that are equal to 1.

21

Given these definitions we can succinctly state the HSFC mapping as

HMa

m (a1, a2, · · · , aMa
) = 0.γ1γ2 · · · γm

Where the γi’s are calculated using the following algorithm:

HILBERT((a1, a2, · · · , aMa
), m)

1 ω0 ← (0, 0, · · · , 0)
2 τ̃0 ← (0, 0, · · · , 0)
3 for i ∈ {1, 2, . . . , m}
4 do
5 ωi ← ωi−1 ⊕ τ̃ i−1

6 σ̃i ← αi ⊕ ωi

7 σi ← shift σ̃i left circular Σi−1

k=1
(Jk − 1) times

8 γi ← (γi
1 = σi

1, γi
2 = σi

2 ⊕ γi
1, · · · , γi

Ma

= σi
Ma

⊕ γi
Ma−1

)
9 Ji ← principal position of γi

10 τ i ← a byte of Ma bits obtained by complementing σi in the M th
a position

11 and iff it is of odd parity then complement it in the principal position
12 τ̃ i ← shift τ i left circular Σi−1

k=1
(Jk − 1) times

13 return 0.γ1γ2 · · · γm

Here ⊕ is taken to mean the bitwise Exclusive–Or (XOR) operation. Notice that all operations can be

performed in constant time, and if we fix the order of approximation m we can safely state that HMa
m (·)

is a constant time operation. In practice, the efficiency of the XOR operation makes the time spent in the

calculation of the Hilbert index negligible even for large databases.

III.-C. The Hilbert space–Filling Curve for data partitioning in FS-FAM

The FS-FAM algorithm is a distance based algorithm in which all dimensions are treated equally. Fuzzy

ART (unsupervised learning), on which FS-FAM is based, is a clustering algorithm that uses the distance

function as a means of selecting its templates. Our interest in providing a data partitioning method for

the FS-FAM algorithm made us contemplate different options. Naı̈vely dividing the space into hyper-

boxes has the disadvantage of having to decide which dimension to select. Using all dimensions is not

viable in high dimensional spaces, since the amount of partitions would be at least 2Ma where Ma is the

number of dimensions. The entropy measure used in decision trees can be used here to select dimensions

22

and split points (Quinlan, 1993) per dimension. However, this approach, which gives priority to some

dimensions over others, runs counter to FS-FAM’s learning process in which, using an L1 distance

function, all dimensions are treated impartially. On the other hand, the Hilbert space filling curve has

been successfully used by Lawder (Lawder, 2000) for distance queries. Moon et al. (Moon et al., 2001)

prove that the Hilbert space–filling curve does not have a bias towards any dimension. We concentrate

on the HSFC because its properties make it more compatible with the characteristics of the FS-FAM

algorithm. Our claim is that the Ma–dimensional distance function is best preserved by a space–filling

curve like the HSFC. Points that are close in the index will be close in the Ma–dimensional space (the

converse is not necessarily true, though).

Our approach is as follows: we take the set of training pairs (Ir,Or), apply the Hilbert index r =

HMa

m (a), where a is the non-complement coded part of I = (a,ac). The resulting values are added to

an index file and sorted. Once sorted, the index is split into p contiguous and equally sized partitions,

each partition is processed independently. The complexity of the partitioning operation is equal to the

complexity of the sorting algorithm used. For any reasonable sorting algorithm this is O(PT log(PT))

and therefore does not add to the complexity of the FS-FAM learning process itself (which was found

to be at least O(PT 2)). In our paper we used the quicksort sorting algorithm.

The p partitions obtained will be completely balanced in the number of patterns they process, although

they may have different number of templates depending on the complexity of the classification task in

each partition. On the experimental level we found that the calculation of a 5th order Hilbert index for

581,012 patterns of dimensionality 12 of the Forest Covertype database (see experiments) took about 2

seconds. This is a negligible amount of time compared to the training time of the FS-FAM algorithm on

the same data.

23

IV. DESIGN OF EXPERIMENTS

Experiments were conducted on 3 databases: 1 real–world database (Forrest Covertype) and 2

artificially–generated databases (16-dimensional, 2-class Gaussianly distributed data with 5% and 15%

overlap between classes).

In particular, the first database used for testing hFS-FAM versus FS-FAM was the Forest CoverType

database provided by Blackard (Blackard, 1999), and donated to the UCI Machine Learning Repository

(University of California, Irvine, 2003). The database consists of a total of 581,012 patterns each one

associated with 1 of 7 different forest tree cover types. The number of attributes of each pattern is 54,

but this number is misleading since attributes 11 to 14 are actually a binary tabulation of the attribute

Wilderness-Area, and attributes 15 to 54 (40 of them) are a binary tabulation of the attribute

Soil-Type. The original database values are not normalized to fit in the unit hypercube. Thus, we

transformed the data to achieve this. There are no omitted values in the data. For the purpose of generating

the Hilbert index the binary attributes, Wilderness-Area and Soil-Type were re–packed and the

database was treated as if it consisted of only 12 real valued attributes. In the FS-FAM training the input

patterns had their original dimension of 54. Patterns 1 through 512,000 were used for training. The test

set for all trials were patterns 561,001 to 581,000. A visualization of the first 3 dimensions of the Forest

Covertype database can be seen in figure 5. Different tones correspond to different classes. As it can

be seen from the figure the class boundaries are quite complex. Classification performance of different

machine learning algorithms for this database has been reported in the range of 75%. JOSE ADD THE

REFERENCES HERE WHERE THIS PERFORMANCE WAS OBSERVED...

Furthermore, we tested the hFS-FAM versus FS-FAM for simulated data (Gaussianly distributed data).

The Gaussian data was artificially generated using the polar form of the Box–Muller transform with the

R250 random number generator by Kirkpatrick and Scholl (Kirkpatrick & Stoll, 1981). We generated

2-class, 16 dimensional data. All the dimensions are identically distributed with the same mean µ and

24

variance σ2 except one. The discriminating dimension has offset means so that the overlap between the

Gaussian curves is at 5% for one database and at 15% for the other. 532,000 patterns where generated

for each Gaussian database. 512,000 patterns were used for training; the remaining 20,000 patterns were

used for testing.

Training set sizes of 1000 × 2i, i ∈ {0, 1, . . . , 9}, that is 1,000 to 512,000 patterns were used for

the training of FS-FAM and hFS-FAM. The test set size was fixed at 20,000 patterns. The number of

partitions varied from p = 1 (FS-FAM) to p = 32 (hFS-FAM). Partition sizes were also increased in

powers of 2.

To avoid additional computational complexities in the the experiments (beyond the one that the size of

the training set brings along) the values of the FS-FAM network parameters ρ̄a, and α were fixed (i.e.,

the values chosen were ones that gave reasonable results for the database of focus). For each database

and for every combination of (p, PT) = (partition, training set size) values we conducted 32 independent

experiments (training and performance phases), corresponding to different orders of pattern presentations

within the training set. As a reminder FS-FAM’s performance depends on the values of the network

parameters ρ̄a, and α, as well as the order of pattern presentation within the training set.

All the tests where conducted on the SCEROLA Beowulf cluster of workstations (Micikevicius, 2003)

of the Institute for Simulation and Training. This cluster consists of 64 900MHz machines running with

250MBytes of RAM each. In the sequential implementation of hFS-FAM one of these machines was

used for the training of the p FS-FAMs. In the parallel implementation of hFS-FAM p of these machines

were used for the training of the p FS-FAMs (one machine for the training of one of the p FS-FAMs).

Obviously, one of these machines was used for the training of the FS-FAM (this FS-FAM was trained

on the entire training training set). Since there is no communication between processors for the parallel

implementation of the p FS-FAMs on p machines, the time required to train hFS-FAM on the parallel

(Beowulf cluster) machine was taken to be the the maximum time required to train any of the p FS-FAMs.

The metrics used to measure the performance of our Hilbert Space–Filling Curves partitioning approach

25

(hFS-FAM) were:

1) Classification performance of hFS-FAM compared with the classification performance of FS-FAM

(Higher classification performance is better).

2) Size of the trained hFS-FAM compared against the size of FS-FAM (smaller size is better).

3) Speedup of hFS-FAM versus FS-FAM, calculated experimentally for the sequential and parallel

implementations respectively.

To calculate the speedup we used 2 measures, the first one is total CPU time of each test and the second

one is the total number of iterations of the FS-FAM main loop (lines 8 to 17 of the pseudocode). This

approach allowed us to check how closely the wall clock speedup values are correlated with the number

of computations performed by the algorithm. A discrepancy between these measures would mean that

we might be obtaining speedup from other implementation dependent sources (like cache non–linearities

or operating system dependent issues).

V. EXPERIMENTAL RESULTS

The first set of results reports on the network sizes created by hFS-FAM and FS-FAM. Note that the

network size of hFS-FAM is the sum of the sizes of all the FS-FAM networks trained on the partitions

of the data produced by the HSFC data-partitioning technique. On the other hand, the size of FS-FAM

is the network size created by FS-FAM, when it is trained with all the data. In figure 6 we show a bar

graph of the number of templates on the Z axis, the training set size on the X axis increasing from left

to right (in thousands of patterns), and the number of partitions of the training dataset on the Y axis

increasing from front to back. All the following graphs, unless otherwise stated, have this format with

the measured variable of interest in the Z dimension and the controlled variables training set size and

number of partitions in the X and Y dimensions, respectively. It is evident from this graph that the number

of data partitions up to the quantity tested does not significantly affect the size of hFS-FAM. In other

words we see that the ratio of the number of templates (representing the size of the ART architecture) in

26

hFS-FAM versus the number of templates in FS-FAM is slightly higher than 1. Nevertheless, it is worth

noting that hFS-FAM consistently creates larger size ART architectures compared to the the sizes of the

architectures that FS-FAM creates. The fact that the number of data partitions has little effect on the size

of the hFS-FAM architecture created is also true for the Gaussian data, and confirmed in figure 7.

The generalization performance of the forest type database can be seen on figure 8. The classification

performance of hFS-FAM is very similar with the classification performance of FS-FAM. In fact, the

classification performance curve for the hFS-FAM is smoother than that of FS-FAM. Also the hFS-FAM

attained a slightly better classification than FS-FAM, reaching a peak of 76.63% for 32 data-partitions

and 512,000 patterns. The Tree Covertype database classification performance consistently improves up

to 512,000 patterns. This phenomenon clearly indicates that there is useful information in all of the

data-points of the Forrest Covertype database. Hence, training with more and more data-points from this

dataset consistently improves the trained network’s generalization performance on an independent test

set. This behavior is not observed with the Gaussian artificial data (5% or 15% data), whose classification

performance peaks at 32,000 patterns (figure 9). Beyond this number of training patterns the classification

performance graph is flat. Also classification improved considerably by partitioning regardless of the

amount of patterns used for training. This is a consequence of the artificial nature of the data since the

best split point for the classes coincides with the first split point obtained by Hilbert partitioning.

The turn-around time of the Forest Covertype data is presented in figure 10. We can compare this

graph with the graph counting the number of iterations in figure 11 and observe that their shape is

almost identical. Also the difference in training time for the algorithm with 512,000 patterns and 32

partitions (26 seconds) and FS-FAM (4 hrs 7 min) is very dramatic.

Figure 12 shows the speedup in turn–around time of hFS-FAM with p partitions running in parallel.

The best speedups obtained were in the order of 565. If we look at the table of this figure for the speedup

values when the database size is 512,000 we can see that the numbers seem to increase quadratically as

the number of partitions p is increased from 1 up to 16. At p = 32 there seems to be an anomaly and a

27

dip in the speedup. The speedup measured using number of iterations can be seen in figure 13, where the

best speedup is in the order of 100 and is not obviously quadratic. Nevertheless, we provide the log–log

graph of the same data on figure 14. This figure clearly shows a slope on the graph close to 2 for the

largest (and most representative for our purposes) training set size, which indicates that the speedup in

terms of the number of iterations is as predicted close to p2 for the parallel implementation. We speculate

that the difference in speedup obtained between these 2 measures is due to platform restrictions that slow

the sequential FS-FAM algorithm when the size of the database is too large.

The speedup measured in iterations for the same data using a sequential processing machine can be

seen in figure 15. We can see from this figure that the speedup for a single processor is in the order of

p. Again the speedup observed from 16 to 32 partitions does not follow the same progression for this

data.

VI. CONCLUSIONS

We observed that FS-FAM’s training time tends to slow considerably when FS-FAM is applied to

large classification problems. After analyzing the complexity of the algorithm, we conjectured that by

partitioning the data set we would theoretically be able to reach a speedup of p in the sequential machine

and p2 in an efficient parallel machine with sufficient number of processors. We proposed the use of

Hilbert space–filling curves to enforce some sort of data partitioning (the resulting scheme was called hFS-

FAM). Experimental results on 3 databases confirmed our expectations. The classification performance

of hFS-FAM is not affected, as compared to the classification performance of FS-FAM. The size of the

resulting hFS-FAM is slightly higher than the corresponding FS-FAM size. Finally, and most importantly,

the convergence time of hFS-FAM is improved linearly on the sequential machine and quadratically on

the parallel machine. Nevertheless there is still room for improvement. Analysis of the workload balance

in the parallel machine indicates that not all processes are being utilized to the maximum level. This

is because even though the number of patterns processed by each partition is the same, the number of

28

templates varies considerably from one processor to another depending on the complexity of the region it

has to classify. We believe that combining our data-partitioning approach with a networking partitioning

approach will help us achieve optimal workload balance in the parallel implementation of the algorithm.

This is one of the directions for our future research.

29

REFERENCES

Agrawal, R., & Srikant, R. (1994, 12–15). Fast algorithms for mining association rules in large

databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the Twentieth International

Conference on Very Large Databases (pp. 487–499). Santiago, Chile: Morgan Kaufmann.

Anagnostopoulos, G. C., Bharadwaj, M., Georgiopoulos, M., Verzi, S. J., & Heileman, G. L. (2003).

Exemplar–based pattern recognition via semi–supervised learning. In International Joint Conference

on Neural Networks (p. 2782-2787). Portland, Oregon: IEEE–INNS–ENNS.

Anagnostopoulos, G. C., & Georgiopoulos, M. (2001). Ellipsoid ART and ARTMAP for incremental

unsupervised and supervised learning. In Proceedings of the IEEE–INNS–ENNS (Vol. 2, pp. 1221–

1226). Washington DC: IEEE–INNS–ENNS.

Blackard, J. A. (1999). Comparison of neural networks and discriminant analysis in predicting forest

cover types. Unpublished doctoral dissertation, Department of Forest Sciences, Colorado State

University.

Burrascano, P. (1991). Learning vector quantization for the probabilistic neural network. IEEE

Transcations on Neural Networks, 2, 458-461.

Butz, A. R. (1971, April). Alternative algorithm for Hilbert’s Space–Filling Curve. IEEE Transactions

on Computers, 424–426.

Carpenter, G. A., & B. L. Milenova, B. W. N. (1998). Distributed ARTMAP: A neural network for fast

distributed supervised learning. Neural Networks, 11(2), 323–336.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B. (1992, September). Fuzzy

ARTMAP: A neural network architecture for incremental learning of analog multidimensional maps.

IEEE Transactions on Neural Networks, 3(5), 698–713.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). Fuzzy ART: An adaptive resonance algorithm

for rapid, stable classification of analog patterns. In International Joint Conference on Neural

30

Networks, IJCNN’91 (Vol. II, pp. 411–416). Seattle, Washington: IEEE–INNS–ENNS.

Carpenter, G. A., & Markuzon, N. (1998). ARTMAP–IC and medical diagnosys: Instance counting and

inconsistent cases. Neural Networks, 11, 793–813.

Carpenter, G. A., & Ross, W. D. (1995). ART–EMAP: A neural network architecture for object recognition

by evidence accumulation. IEEE Transactions on Neural Networks, 6(5), 805–818.

Caudell, T. P., & Healy, M. J. (1999). Studies of generalization for the LAPART–2 architecture. In

International Joint Conference on Neural Networks (Vol. 3, pp. 1979–1982). Washington D.C.:

IEEE–INNS–ENNS.

Charalampidis, D., Kasparis, T., & Georgiopoulos, M. (2001, September). Classification of noisy signals

using Fuzzy ARTMAP neural networks. IEEE Transactions on Neural Networks, 12(5), 1023-1036.

Gomez-Sanchez, E., Dimitriadis, Y. A., Cano-Izquierdo, J. M., & Lopez-Coronado, J. (2002, January).

µARTMAP: Use of mutual information for category reduction in fuzzy artmap. IEEE Transcations

on Neural Networks, 23(1), 58-69.

Heinke, D., & Hamker, F. H. (1995). Comparing neural networks: A benchmark on Growing Neural

Gas, Growing Cell Structures and Fuzzy ARTMAP. IEEE Transactions on Neural Networks, 9(6),

1279-1291.

Joshi, A., Ramakrishman, N., Houstis, E. N., & Rice, J. R. (1997, January). On neurobiological, neuro-

fuzzy, machine learning, and statistical pattern recognition techniques. IEEE Transaction on Neural

Networks, 8(1), 18–31.

Kasuba, T. (1993, November). Simplified Fuzzy ARTMAP. AI Expert, 18–25.

Kerstetter, T. (1998). Recursively partitioning neural networks for radar target recognition. In 1998 IEEE

World Congress on Computational Intelligence (p. 3208-3212). Anchorage, AL.

King, R., Feng, C., & Shutherland, A. (1995, May/June). STATLOG: comparison of classification

algorithms on large real-world problems. Applied Artificial Intelligence, 9(3), 259-287.

Kirkpatrick, S., & Stoll, E. (1981). A very fast shift–register sequence random number generator. Journal

31

of Computational Physics, 40, 517–526.

Koufakou, A., Georgiopoulos, M., Anagnostopoulos, G., & Kasparis, T. (2001). Cross-validation in

Fuzzy ARTMAP for large databases. Neural Networks, 14, 1279-1291.

Lawder, J. K. (2000). Calculation of mappings between one and n–dimensional values using the Hilbert

Space–Filling curve (Tech. Rep.). London, U.K.: School of CS and Information Systems, Brickwell

University, London, UK.

Lawder, J. K., & King, P. J. H. (2000). Using Space–Filling Curves for multi–dimensional indexing.

Lecture Notes in Computer Science, 1832.

Marriott, S., & Harrison, R. F. (1995). A modified Fuzzy ARTMAP architecture for the approximation

of noisy mappings. Neural Networks, 8(4), 619-641.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. In

Extending Database Technology (p. 18-32). Avignon, France: Springer.

Micikevicius, P. (2003). Scerola parallel cluster. http://www.cs.ucf.edu/courses/cda5110/scerola/guide-

scerola.html.

Mokbel, M. F., & Aref, W. G. (2001, November). Irregularity in multi–dimensional space–filling

curves with applications in multimedia databases. In International Conference on Information

and Knowledge Management. Atlanta, GA.: ACM.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural

Computation, 1, 281-294.

Moon, B., Jagadish, H., Faloutsos, C., & Saltz, J. H. (2001, January). Analysis of the clustering properties

of the Hilbert Space–Filling Curve. IEEE Transactions on Knowledge and Data Engineering, 13(1).

Parrado-Hernandez, E., Gomez-Sanchez, E., & Dimitriadis, Y. A. (2003). Study of distributed learning

as a solution to category proliferation in Fuzzy ARTMAP based neural systems. Neural Networks,

16, 1039-1057.

Petridis, V., Kaburlasos, V. G., Fragkou, V. G., & Kehagais, A. (2001). Text classification using the

32

σ–FLNMAP neural network. In Proceedings of the International Joint Conference on Neural

Networks (Vol. 2, pp. 1362–1367). Washington D.C.: IEEE–INNS–ENNS.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, California: Morgan Kaufmann.

Shafer, J. C., Agrawal, R., & Mehta, M. (1996, September). SPRINT: A scalable parallel classifier for

data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, & N. L. Sarda (Eds.), Proc. 22nd

Int. Conf. Very Large Databases, VLDB (pp. 544–555). Bombay, India: Morgan Kaufmann.

Simpson, P. K. (1992, September). Fuzzy Min-Max Neural Networks–Part 1:Classification. IEEE

Transactions on Neural Networks, 3(5), 776–786.

Skopal, T., Krátký, M., & Snás̆el, V. (2002). Properties of space filling curves and usage with UB–trees.

High Fatra, Slovakia.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109-118.

Taghi, M., Baghmisheh, V., & Pavesic, N. (2003). A Fast Simplified Fuzzy ARTMAP network. Neural

Processing Letters, 17, 273–316.

Traven, H. G. C. (1991). A neural network approach to statistical pattern classification by ”semipara-

metric” estimation of probability density functions. IEEE Transcations on Neural Networks, 2,

366-377.

University of California, Irvine. (2003). UCI Machine Learning Repository.

http://www.icf.uci.edu/mlearn/MLRepository.html.

Verzi, S. J., Heileman, G. L., Georgiopoulos, M., & Healy, M. H. (2001). Rademacher penalization applied

to Fuzzy ARTMAP and Boosted ARTMAP. In Proceedings of the ieee-inns-enns International Joint

Conference on Neural Networks (IJCNN01) (Vol. 2, p. 1191-1196). Washington, DC.

Williamson, J. R. (1997). A constructive, incremental-learning network for mixture modeling and

classification. Neural Computation, 9, 1517-1543.

a

6

Field F a
0

-

6

��
��

ρ

6
I = (a,ac)

Field F a
1

- ~ reset
node

@
@

@
@

@
@

@
@

@@I

w
a
jz

W
a
j

z
Field F a

2

W
ab
j

z
Field F b

2

Attentional Subsystem Orienting

Subsystem

Fig. 1. Block Diagram of the FS-FAM Architecture

Fig. 2. 2nd Order Sweep and Peano space–filling curves with a grid size of N = 4, 2N = 16 partitions and 2N − 1 = 15 line
segments each.

Fig. 3. 1st and 2nd order approximations of the 2-dimensional Hilbert space–filling curve.

Fig. 4. 3rd and 4th order approximations of the 2-dimensional Hilbert space–filling Curve.

Fig. 5. A random sample of 5,000 Forest Covertype datapoints out of the available 581,012 datapoints is shown. The datapoints
are projected to the first 3 dimensions of the database. Different Colors for the datapoints represent different class labels.

Fig. 6. Number of Templates in hFS-FAM and FS-FAM trained with the Covertype Data; X axis shows thousands of training patterns, Y axis shows number of partitions and
Z axis shows number of templates.

Fig. 7. Number of Templates in hFS-FAM and FS-FAM trained with the 5% overlap Gaussian data; X axis shows thousands of training patterns, Y axis shows number of
partitions and Z axis shows number of templates.

Fig. 8. Classification (Generalization) Performance of hFS-FAM and FS-FAM with the Forest Cover database; X axis shows thousands of training patterns, Y axis shows the %
of correctly classified patterns in the test set.

Fig. 9. Classification (Generalization) Performance of hFS-FAM and FS-FAM for the Gaussian 5% Overlap Data; X axis shows thousands of training patterns, Y axis shows
the % of correctly classified patterns in test set.

Fig. 10. hFS-FAM versus FS-FAM Parallel Partitioning absolute elapsed time in seconds for the Covertype Data; X axis shows thousands of training patterns, Y axis shows the
number of seconds.

Fig. 11. hFS-FAM versus FS-FAM Parallel Partitioning absolute number of iterations for the Covertype Data: X axis shows thousands of training patterns, Y axis shows the
number of iterations.

Fig. 12. hFS-FAM versus FS-FAM Parallel Partitioning Speedup on the Covertype Data using the elapsed time in seconds to calculate speedup; X axis shows thousands of
training patterns, Y axis shows number of partitions and Z axis shows the parallel speedup.

Fig. 13. hFS-FAM versus FS-FAM Parallel Partitioning Speedup on the Covertype Data using the number of iterations to calculate speedup; X axis shows thousands of training
patterns, Y axis shows number of partitions and Z axis shows the parallel speedup.

Fig. 14. hFS-FAM versus FS-FAM Parallel Partitioning Speedup on LOG–LOG graph using the number of iterations to calculate speedup for the Forest Covertype Database; X
axis shows the logarithm of the number of partitions, and Y axis shows the log

2
(speedup). Database sizes are represented as 1000 × 2i, i ∈ {0, 2, . . . , 9}

Fig. 15. hFS-FAM versus FS-FAM Sequential Partitioning Speedup on LOG–LOG graph using the number of iterations to calculate speed-up for the Forest Covertype Database;
X axis shows thousands of training patterns, Y axis shows the speedup.

This document is an author-formatted work. The definitive version for citation appears as:

J. Castro, M. Georgiopoulos, and R. F. DeMara, “Data Partitioning with Fuzzy ARTMAP using
the Hilbert Space Filling Curves: Effect on the Speed of Convergence of Fuzzy ARTMAP for
Large Database Problems,” revision pending to Neural Networks, revised and resubmitted on
November 21, 2004.

This work has been submitted to the Neural Networks for possible publication. Copyright may be
transferred without notice, after which this version may no longer be accessible.

