IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

1171

A Parallel Computational Model for Integrated
Speech and Natural Language Understanding

Sang-Hwa Chung, Member, IEEE, Dan 1. Moldovan, Senior Member, IEEE, and Ronald F. DeMara, Member, IEEE

Abstract— We present a parallel approach for integrating
speech and natural language understanding. The method empha-
sizes a hierarchically-structured knowledge base and memory-
based parsing techniques. Processing is carried out by passing
multiple markers in parallel through the knowledge base. Speech-
specific problems such as insertion, deletion, substitution, and
word boundary detection have been analyzed and their parallel
solutions are provided. Results on the SNAP-1 multiprocessor
show an 80% sentence recognition rate for the Air Traffic Control
(ATC) domain. Furthermore, speed-up of up to 15-fold is ob-
tained from the parallel platform which provides response times
of a few seconds per sentence for the ATC domain.

Index Terms— Speech understanding, parallel computational
model, marker-passing architecture, integrated speech and natu-
ral langnage understanding, memory-based parsing.

I. INTRODUCTION

KEY issue in spoken language processing is the integra-

tion of speech and natural language understanding. Their
effective integration offers higher potential recognition rates
than recognition using work-level knowledge alone. Without
higher-level knowledge, error rates for even the best currently
available systems are fairly large. For example, CMU’s Sphinx
system [11] is considered to be one of the best speaker-
independent continuous-speech recognition systems today. But
even the Sphinx system has a word recognition accuracy of
70.6% for speaker-independent, continuous-speech recognition
with a vocabulary of 1000 words, when recognizing individual
words without using syntax or semantic information [11]. With
a word recognition rate of only 70%, the overall sentence
recognition accuracy will be quite low.

Clearly, we need to apply high-level knowledge to bet-
ter understand continuous speech. The integration of speech
and natural language understanding resolves multiple am-
biguous hypotheses using syntactic, semantic and contextual
knowledge sources. Since this requires sizable computations
involving multiple levels of knowledge sources, speed perfor-
mance can degrade considerably on realistic knowledge bases
suitable for broad, complex domains. Therefore, an integrated
system implemented on uniprocessor environment will face

Manuscript received October 13, 1992; revised April 22, 1993. This
work was supported by the National Science Foundation under Grant MIP-
90/09109.

D. I. Moldovan is with the Department of Computer Science and Engineer-
ing, Southern Methodist University, Dallas, TX 75275-0122.

S. Chung and R. F. DeMara are with the Department of Electrical and
Computer Engineering, University of Central Florida, Orlando, Fl 32816-2450.

IEEE Log Number 9213759.

a scalability problem in the event that insufficient processing
power is available as the knowledge base size is increased.

In this paper, we describe how the scalability problem can
be addressed in an integrated Parallel Speech understanding
System called PASS. PASS employs a memory-based parsing
model and parallel marker-passing schemes to combine several
levels of knowledge sources. Within this paradigm, algorithms
are provided for major speech-specific problems such as
insertion, deletion, substitution, and word boundary detec-
tion through tightly-coupled interaction between low-level
phoneme sequences and higher-level concepts. Beyond simply
recognizing speech and converting it into text, PASS employs
the underlying meaning representation through parallel speech
understanding. We describe an operational implementation and
analyze its performance on a real parallel machine.

II. BACKGROUND

PASS uses a semantic network knowledge representation,
parallel marker-passing, and memory-based parsing to effec-
tively integrate speech and natural language understanding.

A. Semantic Networks

Semantic networks have been frequently used to represent
and process structural knowledge [5]. In PASS, the semantic
network representation is based on five knowledge representa-
tion elements: concept nodes, relation links, node colors, node
values, and link values. Each domain concept is represented by
a distinct node in the semantic network. Inter-concept relations
are represented by directed links between nodes. The node
color is used to indicate the node type. Values provide a
strength indicator for relations and nodes to serve as a measure
of belief during multiple hypotheses resolution.

B. Parallel Marker-Passing

A semantic network knowledge base is well suited to
inferencing mechanisms based on marker-passing [8]. Markers
are data patterns associated with each node and act as dynamic
agents of inference to exchange information. Markers are used
to represent properties of nodes, membership in different sets,
and reflect the state of a hypothesis as they travel in parallel
through the semantic network.

Whenever a marker encounters new nodes, it may change
the state of knowledge associated with these nodes. Complex
reasoning operations can be achieved by controlling the move-
ment of markers through the semantic network as determined
by propagation rules that are attached to each marker. Propa-

0018-9340/93$03.00 © 1993 IEEE

1172

gation rules allow markers to individually select which paths to
follow and those to avoid. To quantify properties, markers also
carry a floating-point weight that is used to evaluate alternative
hypotheses encountered during processing.

C. Memory-Based Parsing

Marker-passing techniques provide a reasoning mechanism
for memory-based parsing approach. Memory-based parsing
emphasizes a large case memory over sophisticated parsing
rules or grammars. Parsing is viewed as a memory-intensive
process which identifies patterns in the memory network to
provide an interpretation based on embedded syntactic and
semantic relations. Processing is performed using a large
number of markers which propagate concurrently through the
memory network. Due to the use of a large semantic network
and many markers, this approach is amenable to parallel
computer systems.

Memory-based parsing can be considered as an application
of memory-based reasoning [17] and case-based reasoning
[15] to language understanding. This view, however, differs
from the traditional idea of extensive rule application to
build up a meaning representation. Some models have been
proposed in this direction, such as direct memory access
parsing (DMAP) [16] and DMTRANS [19]. For arguments
concerning the advantages of memory-based parsing, see [10]
and [16].

D. Related Work

Previous research efforts have been made towards inte-
grating linguistic information with speech recognition using
various levels of knowledge sources. Paeseler [14] applied
chart-parsing algorithm to speech recognition. Seneff [18]
developed a probabilistic syntactic parser (TINA) for speech
understanding systems. Hayes ef al. [7] used a semantic case
frame approach for parsing spoken language. Young et al. [21]
proposed an integrated system (MINDS) in the context of a
problem solving dialogue. MINDS used a variety of pragmatic
knowledge sources to dynamically generate expectations of
what a user is likely to say. Kitano [10] applied memory-based
parsing in a Japanese-to-English dialog translation system.

The majority of research on parallel parsing emphasizes
written language, although some recent work has addressed
integrated speech understanding. Huang and Guthrie [9] pro-
posed a parallel model for natural language parsing based on a
combined syntax and semantics approach. Waltz and Pollack
[20] investigated parallel approaches under paradigms related
to the connectionist model.

Giachin and Rullent [6] implemented a parallel parser for
spoken natural language on a Transputer-based distributed
architecture. They used a case frame-based parsing scheme
and reported a sentence recognition accuracy of about 80%
from continuously-uttered sentences, on average 7 words long,
with a dictionary of 1000 words. While considerable progress
has been made in speech understanding, the state of the art
is still far from providing real-time speech understanding on
broader domains.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

Tsemence output PASS

Natural Language

Understanding

Module (NLU) \

-~ ! L Knowledge
predictions activations
Base
/
Speech /

Understanding

Module (SU)

phonetic codes

Phonetic Engine

T speech input

Fig. 1. The PASS environment.

III. INTEGRATED SPEECH AND NATURAL
LANGUAGE UNDERSTANDING

PASS understands speech using techniques based on parallel
processing.

A. System Overview

As shown in Fig. 1, PASS contains the natural language
understanding (NLU) module, the speech understanding (SU)
module, and the knowledge base. The inputs to PASS are
provided by the phonetic engine [12] manufactured by Speech
Systems Incorporated. The Phonetic Engine provides a stream
of input speech codes for processing. It can perform signal
processing on speaker-independent continuous speech in real-
time.

The input codes provided by the phonetic engine are

evaluated in the SU module to find the matching phoneme
sequences. The predictions provided by the NLU module allow
the SU module to handle multiple hypotheses efficiently. The
NLU module guides the scope of the search space. Word
candidates activated by the SU module are further evaluated
in the NLU module to construct meaning representations and
generate a sentence output. The predictions and activations are
performed in parallel by markers throughout the knowledge
base.

Fig. 2 shows a part of a knowledge base from the Air Traffic
Control (ATC) domain for training air traffic controllers [13].
“Tiger six sixteen, reduce speed to one
five zero” is atypical target sentence in the ATC domain.
We have adapted the ATC domain to support a vocabulary
of approximately 200 words using a hierarchical semantic
network of approximately 1400 nodes.

The knowledge base in Fig. 2 is organized hierarchically.
Each concept sequence represents the underlying meaning of a
possible phrase or sentence within a domain. In each concept
sequence, concept element nodes are connected by first, next,
and last links, such as the nodes in the sequence figer-616

CHUNG er al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

——p :ISALink

1173

Fig. 2. Hierarchical knowledge base including phoneme sequence level—ATC domain.

and reduce-speech-event as shown in Fig. 2. Similarly, in
each phoneme sequence, phonemes are connected by p-first,
p-next, and p-last links to form words such as tiger. More
general concept sequences are placed at higher levels, and
more specific concept sequences are placed at lower levels.
This type of memory network is called a concept sequence
hierarchy. Phoneme sequences, which are attached to the
corresponding concept nodes, reside at the lowest level of the
concept sequence hierarchy.

A layered structure makes it possible to process knowledge
from the phonetic level to the contextual level by representing
knowledge using a layered memory network. After phonemes
are processed and word hypotheses are formed, linguistic
analysis can be performed based on the syntactic, semantic
and contextual constraints embedded in the knowledge base.

B. Speech-Specific Problems in Phoneme
Sequence Recognition

Automated understanding of natural continuous speech
presents some unique problems in addition to those already
seen in written natural language.

* The influence of surrounding vowels, consonants and
stress patterns can lead to the insertion and deletion of
segments from the expected acoustical characteristics.
Input codes may even have substituted phonemes when
compared to an ideal transcription which contains only
expected phonemes. For example, some elements in the
sequence of input codes may be a spurious result of
incorrect segmentation (insertion). Also, some of the
expected phonemes may be missing as a result of in-
correct segmentation, or as a result of being omitted by
the speaker (deletion). In addition, a poorly articulated
segment can be identified as a different phoneme type
(substitution).

The strings of input codes contain word boundary prob-
lems. Often words are coarticulated such that their bound-

aries become merged and recognizable. The phrase, six
sixteen, is an example where the two words overlap
without a clear boundary.

C. The Alignment Scoring Model

An initial task to be performed in speech understanding is
finding the best correspondence of input codes to phoneme
sequences. To evaluate each match, a codebook is used that
was derived from automatically labelled speech data collected
from several speakers. The codes represent acoustic events
having some ambiguity with respect to phonemes. That is,
two or more successive phonemes may be time-aligned with
a single code and two or more successive codes may be
time-aligned with a single phoneme. Our system accepts 1644
different speech input codes generated by the phonetic engine
which map to 49 phonemes. Each input code is assigned by
an integer between 0 and 1643.

This can be described in terms of an alignment scoring
model [1]. A sequence S consists of separate input codes c(z)
and is denoted by S = {c(¢):7 = 0,---,N}. To find the
sentence that produced S, the memory network is searched for
a sentence transcription 7' = {p(j): k = 0,---, M} consisting
of phonemes, each labeled p(j). The correspondence of S to
T that maximizes the alignment score is chosen as output.

A subsequence of codes {c(i):i = 80,0}, 10 < fin,
can be time-aligned with a single phoneme p(j). Conversely,
a subsequence of phonemes {p(j): j = jo, -, 4n}> jo < jin,
can be time aligned with a single code, c(i). A possible
alignment is illustrated in Fig. 3. Here, c(0) is aligned with
p(0); p(1) is aligned with {c(1), ¢(2)}; ¢(3) is aligned with
{p(2), p(3), p(4)}; p(4) (the last phoneme of the previous
subsequence) is also aligned with c(4); c(4) (the last code
of the previous subsequence) is also aligned with p(5); and
finally, p(5) is also aligned with c(5).

To compute the alignment score between S and T, score
values are computed for the time-aligned subsequences of S

1174
p(0) p(D) p(2) p3) p(4) p(s)
<(0) (1) o2 o(3) c(4) ()
Fig. 3. A possible alignment between input codes and a target transcription.

and T'. The model accounts for: 1) each alignment between a
code and a phoneme, 2) the number of successive phonemes
aligned with the same code, and 3) the number of successive
codes aligned with the same phoneme. To express the score
of an alignment, three matrices are required.

* X(code, phonemey—each element z;; is the score to align
code i with phoneme j. The X matrix is generally known
as a confusion matrix.

* Y(code, #phoneme)—each element y;; is the score to
align code i with number (j) of successive phonemes.

* Z(phoneme, #code)—each element z;j is the score to
align phoneme i with number () of successive codes.

The score of an entire utterance is the sum of the scores of
the time-aligned subsequences in the utterance. For example,
the score for Fig. 3 is computed as

}

Score = {X (¢(0), p(0)) + Y (c(0), 1) + Z(p(0), 1)}
+{X(c(1), p(1)) + X (c(2), P(1)) + Y (c(1), 1)
+ Y(c(2), 1) + Z(p(1), 2)}
+{X(e(3), p(2)) + X(e(3), p(3)) + X (c(3), p(4))
+Y(c(3), 3) + Z(p(2), 1) + Z(p(3), 1)
+ Z(p(4), 2)}
+ {X(c(4), p(4)) + X (c(4), p(5))
+ Y(c(4), 2) + Z(p(5), 2)}
+{X(c(5), p(5)) + Y (c(5), 1)}

Each set of brackets indicates a sub-group of possible align-
ments. For instance, the first set of brackets indicates an
alignment between ¢(0) and p(0).

Insertion, deletion, and substitution can be handled in terms
of the alignment scoring model [1]. Specifically, insertion
problems are handled by the Z matrix; deletion problems are
handled by the Y matrix; substitution problems are handled
by the X matrix.

D. The Functional Structure of PASS

The system organization is shown in Fig. 4. Dark arrows
indicate execution flow and light arrows show information
flow. The SU module performs phoneme prediction, phoneme
activation, word boundary detection, insertion control, and
deletion control. The NLU module performs word predic-
tion, word activation, multiple hypotheses resolution, mean-
ing representation construction, and sentence generation. The
knowledge base containing concept sequences and phoneme
sequences is partitioned and distributed to several processing
elements. The scoring information including X, Y, and Z
matrices is maintained in a host machine or central controller.

The algorithm is based on a combination of top-down
prediction and bottom-up activation. Top-down prediction lo-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

sentence output

Sentence
Generation

Meanin§
/ (Representationyy,

Constructios
Multiple
Hypotheses]
. \Resolution 7 NLU
Word \\ / Word
Prediction \ / Activation
~ -

Concept
Sequences &
Instances

KB

I 1 " 1 .o
W N
Phoneme B ou?\glary Insertion
Sequences Detection Control
A 4
Phoneme Phoneme Deletion
Prediction Activation Control
g
X,Y,Z Matrices

phonetic codes
su

Scoring Information

’ Phonetic Engine

& speech input

Fig. 4. Modules within PASS.

cates candidates to be evaluated next. Bottom-up activa-
tion locates possible sets of phonemes from the given input
codes. As shown in Fig. 4, a circular path exists between
the NLU module and the SU module: word prediction —
phoneme prediction — phoneme activation — word bound-
ary detection — word activation — multiple hypotheses
resolution — word prediction. The operation starts in the
NLU module by predicting the first words in possible concept
sequences. This in turn impacts the prediction of the first
phonemes for these words. Next, the system accepts an input
code as speech input, and by consulting the X, Y, and Z
matrices all relevant phonemes are activated. The candidates
of predicted and activated phonemes trigger further phoneme
predictions. This process repeats until new word hypotheses
are formed. This coincides with the activation of corresponding
words, and the process moves to the NLU module. Here,
through a process similar to the one at the SU level, only
the coincidence of predicted and activated words triggers
further word predictions. Top-down prediction and bottom-up
activation are performed on this circular path until all input
codes are processed.

To implement the above algorithm using marker-passing,
we need approximately 20 different types of markers. Both
fat-markers and simple bit-markers are used. Fat-markers
carry scoring information as they move through the memory
network while bit-markers only convey the set membership
characteristics of nodes. Some important far-markers include
the following.

* P-markers—indicate the next possible nodes (or pho-
nemes) to be activated in the concept sequence (or
phoneme sequence). They are initially placed on the first
nodes of concept sequences and phoneme sequences, and
move through the next (or p-next) link.

CHUNG et al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

begin
Paralielism within Module

Word
Prediction

Phoneme] LSCTTION
Prediction k #|_Control
7

£, Cs

fpe CS +1ns + del

fle PN
te min{ £, + CS + ins + del, fi+ PN)

fi,« CS
‘Word i
f‘“.f‘w.cs
fr o fuae iy CS

Meamng
Representation
Construction

Sentence
Generation

end

Fig. 5. Program flow and parallelism in PASS.

* A-markers—indicate activated nodes. They propagate up-
ward through the concept sequence hierarchy.

* I-markers—indicate instantiations of activated nodes. Ac-
tivated concept nodes are finally identified by I-markers.

* C-markers—indicate canceled nodes. Because of mul-
tiple hypotheses, some I-markers may be canceled or
invalidated later on as their scores become inferior.

The motivation for a marker-passing approach is to exploit
the concurrency in the speech understanding algorithm. Fig.
5 shows the execution flow and parallelism obtained. The
amount of parallelism depends on the size of the knowledge
base and the degree of ambiguity in the input code sequence.
The key variables are listed in Table I. The knowledge
base size is described by CS which denotes the number
of concept sequences and PN which denotes the number
of phoneme nodes in the memory network. The parameters
ins and del correspond to extra operations introduced by
insertions and deletions, respectively. Finally, the various
fractional parameters in Table I correspond to each phase of the
algorithm. They represent the fraction of possible concurrent
operations that actually occur during each phase of Fig. 5 as
described next.

1) Word Prediction—P-markers are propagated to words
which can possibly appear next in the concept sequence
hierarchy. During word prediction, f;)p - CS nodes are
activated.

2) Phoneme Prediction—P-markers flow down the hierar-
chy to the phoneme sequence level. For the initial predic-
tion, the first phoneme in the phoneme sequence is pre-
dicted. As processing continues, subsequent phonemes
within the sequence become predicted. Thus the paral-
lelism is determined by the number of phonemes pre-
dicted (fgp CS) and the average number of operations

1175
TABLE 1
PARAMETERS AFFECTING CONCURRENCY
Parameter Description Observed
Value

cs total number of concept sequences 45

PN total number of phoneme nodes 957

ins average number of operations introduced by insertions per iteration 2.3

del average number of operations introduced by deletions per iteration 1.1
0< fi, < 1| fraction of concept sequences active during word prediction 0.22 (avg.)
0 < fua <1 fraction of concept sequences active during word activation 0.71 (avg.)
0< f}, <1 | fraction of phoneme sequences active during phoneme prediction | 0.37 (avg.)
0< f{ <1 | fraction of phonemes above threshold 0.39 (avg.)
0< f2 <1 | fraction of (predicted, activated) phonemes with PA-collision 0.67 (avg.)
0 < f7. <1 | fraction of candidates remaining after multiple hypo. resolution 0.65 (avg.)

3)

4

5)

6)

7)

introduced by insertions and deletions. The parallelism
is dominated by the number of concept sequences rather
than the number of phoneme sequences. In particular,
phoneme sequences attached to corresponding concept
words in each concept sequence cannot be evaluated
at the same time, and processing is guided by concept
sequences.

Phoneme Activation—For each input code, phoneme
types in the X matrix are compared with a pre-
determined threshold. This determines the phonemes to
be activated with A-markers. Initially, a large fraction
of them are be activated in parallel (f/ - PN), but
many are irrelevant and rapidly eliminated. Candidates
remaining are those that were predicted and activated
(PA-collision). Thus, the available concurrency will
approach the lesser of the number of predicted and
activated phonemes (min{f;,-CS+ins+del, f;-PN})
multiplied by f7 that is the fraction of phonemes with
PA-collisions.

Insertion/Deletion Control—The prediction window is
adjusted to handle insertions and deletions. The window
size is adjusted for phoneme sequence candidates
containing phonemes with PA-collisions. The inser-
tion/deletion control is performed along with phoneme
prediction and phoneme activation for the jth iteration
based on the codes received.

Word Boundary Detection—When P-markers reach the
last phonemes of phoneme sequence candidates, possible
word boundaries are detected. After the inner loop is
completed, processing returns to the word level with
the same degree of parallelism available as in word
prediction.

Word Activation—A-markers are propagated up through
p-last links to the corresponding concept sequence nodes.
An I-marker is placed on the concept sequence element
to indicate that the node is a possible instance and will
be canceled later if not selected. Words predicted but
not activated are eliminated. The fraction of predicted
and activated words, denoted by fi . remain as parallel
candidates.

Multiple Hypotheses Resolution— A-markers are propa-
gated up through the concept sequence hierarchy to the

1176

1000 T T T T T T T T T
& ‘l -
Sy
A
« 100f
=
£
£
=3
B
& PR T
S 8w ¥ P]
g S T TR
9] ° : -
4 © :
o El Phoneme Activation B Mult
° : .
e a .
5 K H I Hypo.
Z a LB
1

i an—]

62%
Execution flow [% of scqueatial steps]

4% |3%6|s—17%—|
Fig. 6. Parallelism for sample target sentence.

concept sequence roots and their subsuming concepts.
When multiple A-markers arrive at the same node, the
concept sequence candidate with best score is selected.
Steps 1-7 are once for each word activation. After the ith
iteration, the fraction of multiple candidates remaining
is fi,.

8) Meaning Representation Construction/Sentence Genera-
tion—For the selected concept sequences, instances are
generated using the existing J-markers. The new concept
sequence instances record a particular occurrence of a
generic concept sequence, and together they form the
semantic meaning representation. A natural language
sentence is generated by analyzing the semantics of
all concept sequence instances. For details of meaning
representation, see [2].

Through experiment, we also measured the parallelism
available by counting the actual number of activations for
each type of marker. Results are shown in Fig. 6 and listed
in Table I. Data was collected for the algorithm on a phase-
by-phase basis for speech input codes corresponding to an
entire target sentence. The results are presented for the ATC
domain with C'S = 45 and PN ~ 1000. The vertical axis in
Fig. 6 indicates the average number of concurrent operations
available within each module over the sentence as a whole. An
average value is reported since many iterations of 7 and j are
required and the fractional parameters vary with each iteration.
The horizontal axis indicates the relative number of processing
steps required for each module, based on its critical path
of computation. For this small knowledge base, the average
parallelism ranged from 8 to 20 concurrent operations. A large
spike of over 300 operations occurs at the beginning of each
iteration of phoneme activation because many candidates are
initially active, but then quickly fail the PA-marker collision
test. Overall, about 62% of the execution flow is spent in
phoneme activation which has sustained parallelism of degree
14.

Larger knowledge bases provide proportionally more con-
currency. In particular, knowledge bases up to 7-fold larger
size (9000 nodes) had fractional parameters close to those
shown in Table I. If these parameters are relatively con-
stant then the available parallelism will be proportional to
the number of concept sequences and phoneme nodes. Thus
parallelism will increase along with knowledge base size as

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

=% =k
I concey
P(-1) P(O) P1) POMA P, Y P(-1)
LR e w 0
P(O) PaA
- -
........ L s e Ty SV N —
(a) (b)
through Through
PCD) PO PRA PO =y —
% 7 CXi r(-u»T P(O)
- I\ 1 N\
— e e b o VN RS S S—
(©))
‘fhrough Hhrough
ey oy
Pi-l) m 1) Kﬂ& A 1) 1)
B (100 A Pl SB2 p3 —
PO) POREA
—p /' -
00> G > e i aund
(e)
PCD) PO PCDAA B g 2
Pl TSR T pd PC-1p P P(l
- 1N s
C Rt i a®z> ey il
() (h)
e e P(0) : carreat P-Macker
P1 "Vp2 TV P3T : part of phoneme sequence PC-1): previoas P
R ey T + part of phosetic code input A: A-Marker

Fig. 7. Alignments including insertion and deletion problems. (a) Normal
alignment. (b) Normal alignment with word boundary problem. (c) Insertion.
(d) Insertion with word boundary problem. (¢) Deletion. (f) Deletion with
word boundary problem. (g) Insertion and deletion. (h) Insertion and deletion
with word boundary problem.

described by the equations in Fig. 5. In contrast with a
sequential implementation, the weaker activated candidates do
not need to be pruned early in the evaluation process. This can
further improve recognition accuracy by providing a chance to
recover from early expectations that may later turn out to be
incorrect. Through experiment, a compromise can be obtained
between the parallel resources required, execution speed, and
recognition accuracy.

E. Marker-passing Solutions for Insertion,
Deletion and Substitution Problems

Using the X, Y, and Z matrices of the alignment scoring
model, a sequence of input codes must be aligned with multiple
phoneme sequence transcriptions. However, multiple candi-
dates should be evaluated at the same time and subsequent
phoneme activations cannot be foreseen while the current input
code is being processed. Therefore, when we advance the
prediction markers based on the current scoring information,
we must consider how to recover from bad expectations in
some phoneme sequence candidates, without affecting the
good expectations in other candidates.

Various alignment examples are illustrated in Fig. 7. The
left-hand side describes the state before a new code is pro-
cessed, and the right-hand side describes the state right after
phoneme candidates have been activated by the input code.
Dual prediction markers, P(—1) and P(0), are used to keep
the previously used P-marker as well as the current P-marker.
Fig. 7(a) shows a normal alignment where the collision be-
tween P(0) and A exists. In this case, we can normally

CHUNG e al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

tiger-616

deletion

t < HA y g g< e r

721 | 11282/ |1368] (1327 | 93 R 967 | [1619 | [1066|} : a sequence of phonetic codes
insertion

Fig. 8. Handling insertion and deletion problems.

advance P(—1) and P(0) to phonemes p2 and p3 to predict
the next phoneme activations.

Dual predictions are required to handle the insertion prob-
lem. When there exists a strong activation (an activation
beyond a threshold) to a phoneme with P(—1), we regard
the current code input as oversegmented. Fig. 7(c) shows the
insertion problem. In this case, we cannot advance P(0) to
phoneme p3 because no collision exists between P(0) and A
in phoneme p2. However, a new P(0) will be sent to phoneme
p2 from phoneme p1 to reflect the newly calculated score by
adding the score of the A-marker.

An cxample of the deletion problem is shown in Fig.
7(e). Two consecutive phonemes, p2 and p3, are activated
together from code c2. But, phoneme p3 does not contain a
prediction marker. In this case, the code input is regarded as
undersegmented. The single code input covers phonemes p2
and p3. Therefore, P(—1) and P(0) can be advanced two steps
through p-next links to predict the next phoneme activations.

In Fig. 7(g), we show a complicated alignment where both
the insertion and deletion problems exist. Two consecutive
phonemes, pl and p2, are activated together from code c2.
First, we detect the insertion by the collision of P(-1) and
A. When a new P(0) is sent to phoneme p2 to update the
score, we detect a deletion by the collision of P(0) and A.
The deletion implies that there exists no more insertion to
phoneme pl. Thus, we can advance P(-1) and P(0) one
step to cover the deleted phoneme p2, and predict the next
phoneme activations.

An example of handling insertion and deletion problems is
shown in Fig. 8, where only a part of the concept sequence
hierarchy is depicted. We illustrate the time alignment between
the subsequence of input codes: 721 1282 1368 1327
93 967 1619 1066, and the phoneme sequence for the
word tiger: t t <A’ y g g<e r.Assume that we have
processed the subsequence of codes: 721 1282 1368 1327
93. The remaining codes can be handled as follows.

1) Code 967 is now produced from the phonetic engine.

By consulting the X matrix, phoneme e is activated.
The scoring process is as follows: Score(P(0))
Previous_Score(P(0)) + Score(A), where Score(A)
X(967,e) + Y(967,1) + Z(e, 1). Then, P(0) is
propagated to phoneme 7 from phoneme e through the

1177

p-next link. Phoneme e also keeps P(—1) to prepare
against a possible insertion.

2) When code 1619 arrives, phoneme e is activated again,
instead of phoneme r so an insertion exists. The insertion
handling routine calculates the score of the A-marker:
Score(A) = X (1619, €) + Y (1619, 1) + Z(e, 2) where
the previous Z(e, 1) need not be canceled because
scores in the Y, Z matrices only contain offset values to
avoid unnecessary computations. After adding the score
of A to P(~1), a new P(0) is propagated again to
phoneme r.

3) When code 1066 arrives, phoneme e and phoneme r
are activated together. That is, both an insertion and
a deletion occur at the same time. By this, we can
assume that there exist no more insertions to phoneme
e. New, the score of the A-marker is calculated as:
Score(A) = X (1066, ¢)+Y (1066, 1)+ Z(e, 3). Again,
a new P(0) adding the score of A is propagated to
phoneme r. Here, a collision between P(0) and A exists,
and the scoring process for phoneme r begins. Because
phoneme 7 is the last phoneme activated in the phoneme
sequence, an A-marker propagates upward through the
concept sequence hierarchy, and finally a new P(0)
arrives at the first phoneme of the phoneme sequence
for concept six.

Substitution problems are not shown in Fig. 8. When
a substitution occurs, the score of the X matrix for the
substituted code-phoneme pair will be low or even below
a threshold. Thus, when a substitution problem occurs in a
phoneme sequence candidate, the score of the candidate is
decreased. This candidate may be rejected later when other
hypotheses get better scores.

F. Marker-passing Solution for the Word Boundary Problem

The word boundary problem occurs when the last phoneme
of a phoneme sequence is activated and the first phoneme
of the next phoneme sequence is predicted. When no coar-
ticulation exists between two consecutive words, it is the
same as either the normal alignment of insertion problem,
except that A& P Markers are moving through the concept
sequence hierarchy instead of just through the p-next link.
When a coarticulation exists between two consecutive words,
it contains deletion or combined deletion/insertion problems.
Some examples are shown in Fig. 7(b), (d), (f), and (h).

We handle the word boundary problem with the aid of high-
level information embedded in concept sequence hierarchy. An
example describing the coarticulated phrase six sixteen is
shown in Fig. 9. In this example, the last phoneme of concept
six and the first phoneme of concept sixteen are located
on the word boundary and represented by the same phoneme
type s. Let us assume that dual prediction markers P(-1) and
P(0) are located on the last two phonemes of concept six
respectively.

As shown in Fig. 9, when code 845 is evaluated, the two
phonemes on the boundary are activated together indicating a
deletion problem across the boundary. Because both phonemes
have P& A collisions, dual prediction markers are advanced

1178

Fig. 9. Word boundary problem.

twice, reflecting newly calculated scores. As a result, P(-1)
and P(0) are located on the first and second phonemes of
concept sixteen. The next input code 631 activates those
two phonemes on the boundary again as shown. However, only
the first phoneme of concept sixteen gets a P& A collision
indicating that the word boundary problem is resolved and the
alignment process for concept sixteen begins.

The last phoneme of each phoneme sequence contains an
L-marker indicating word boundary. During the alignment
process, a word boundary can be detected by a P& A& I, colli-
sion. When a word boundary is detected, A& P Markers need
to travel through the concept sequence hierarchy. In the case
of six sixteen, markers need to move through the p-last,
next, and p-first links. When a word boundary problem exists
across two different concept sequences, markers need to move
multiple steps up and down through the concept sequence
hierarchy depending on where those concept sequences are
located on the hierarchy.

G. Multiple Hypotheses Resolution

Multiple hypotheses are usually generated due to the sto-
chastic nature of phoneme recognition errors. Thus, a list
of candidates is hypothesized with different scores. Multiple
hypotheses cannot be completely resolved with the informa-
tion available at the phoneme sequence level. For example,
consider understanding the following sentences where [ACID]
denotes an arbitrary aircraft ID:

* “[ACID], continue
* “[ACID], continue
* “[ACID], continue
* “[ACID], continue
In this case, the words climbing and timing will produce
similar speech code sequences from the Phonetic Engine.
Once these words are accepted as candidates, then four multi-
ple hypotheses remain. Since those two candidates are key
words for the given sentences, the correct sentence under-
standing depends on how well the low-level ambiguities
are resolved using higher-level knowledge. Specifically, as
additional words are received, the range of words which are
semantically valid for last word in the sentence acts to guide
the resolution of the ambiguous speech data from climbing
and timing. When the last word is encountered, only the
score of the appropriate concept sequence will be increased.

climbing angle,”
climbing heading,”
timing bases,”
timing series.”

—

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

Fig. 10. Multiple hypotheses resolution.

The SU module activates multiple competing words, or the
same words repeatedly when insertion problems exist. When
A-markers are propagated up through the concept sequence
hierarchy at a word boundary, several candidates exist at
any merging point. A merging point exists where a concept
node contains multiple incoming last links, isa links, or next
links. A merging point also exists where a concept node has
multiple p-last links coming from multiple phoneme sequences
representing various pronunciations of the concept node.

When multiple candidates arrive at a merging point, the
concept node might have been either already activated from the
evaluations of the previous input codes or first visited this time.
To get the best candidate, the scores carried by the candidates’
A-markers are compared. If the concept node was activated
previously, the score of the J-marker is also compared with the
scores of the A-markers. The candidates with lower scores are
canceled by propagating C-markers down through the concept
sequence hierarchy. As a result, the concept node gets a new
I-marker containing the highest score.

In Fig. 10, the concept aircraft id was previously activated
by the hypothesis: tiger six ten, and the score of
the I-marker for the node is the value 425. Because this
hypothesis was not a correct one, the activation score was
poor. Although tiger six ten is apparently different
from tiger six sixteen, it is still possible to activate
this hypothesis with a low score. Basically, any phoneme with
the X matrix score greater than a threshold can be activated
from an input code regardless of its meaning. So, it is critical
to set the threshold for each level of the hierarchy through
experiment to prevent unnecessary activations without losing
meaningful information.

When a new hypothesis: tiger six sixteen arrives
at the node aircraft id with the score of the A-marker equal to
a value of 741, the previous hypothesis is rejected because of
its lower score value of 425. C-markers are simultaneously
propagated down through all possible links in the concept
sequence hierarchy except the link to the newly selected
hypothesis. When C-markers collide with /-markers during
the propagation, the 7-markers are canceled. To protect par-
tially evaluated hypotheses, a C-marker in each node stops its
propagation when the node does not contain an I-marker. For
example, thai air six seventeen is still in the middle

CHUNG e al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

Code Activations relevant to New predictions after processing

the current hypothesis current activations

(with score) P(-2) P(-1) P(0)
240 #(69) # t
721 t((16) t<(22) t < A
1282 A'(54) y(-40) A y g
1368 NI y(34) A y g
1327 y(88) g(18) Yy g B<
93 8(89) g<(66) 8 8< e
967 e(11) r(-34) e r s
1619 e(28) (75) e T s
1066 e(32) r0) e r s
845 s(14) 1(12) s 1 k
631 $(82) 1(-25) s 1 k
857 $(86) I(-19) H 1 k
989 1(95) k(-38) 1 k k<
239 k(104) k<(-37) k k< s
576 k<(25) k< s
834 k<(36) s(11) k< 5 E’

Fig. 11. Triple prediction window.

of evaluation as shown, while later, it may turn out to be the
hypothesis with the highest score. Thus, the I-markers on the
nodes thai, air, and six need to be retained.

After resolving multiple hypotheses, P-markers are prop-
agated to the concept nodes such as reduce, climb, and turn
through next links. From these nodes, P-markers are further
propagated down to the first phonemes of corresponding
phoneme sequences. The activation, cancellation, and predic-
tion operations are performed simultaneously for all possible
hypotheses.

H. Triple Prediction Window

As we discussed before, the insertion problem requires that
two consecutive phonemes in a phoneme sequence be pre-
dicted at the same time. We have realized that dual prediction
is insufficient when the deletion and insertion problems are
intertwined. For instance, Fig. 11 shows a new scenario for
Fig. 8.

When code 967 is processed, we observe that both phoneme
e and phoneme r are activated together. The activation of
phoneme r is very weak with the score of —34. This was
not shown in Fig. 8. Actual phoneme activations depend on
how we set the threshold value for the phoneme level of
the hierarchy. The deletion handling routine regards this as
a possible deletion problem and advances P-markers two
steps. However, when code 1619 is processed, we observe
that instead of phoneme s, the previous two phonemes e and
T are activated with strong scores. An insertion to the second
previous phoneme e exists and the deletion assumed before is
wrong. As shown in Fig. 11, a P(~—2) keeps the P-marker for
the second previous phoneme, and the system can recover from
the wrong expectation using the P(—2). By the prediction with

1179

Score of A-Marker After Activation New Prediction Window*

After Adjustment
Phoneme L Phoneme M Phoneme N Phoneme L | Phoneme M | Phoneme N
with P(-2) with P(-1) with P(0)
High** High High P(-1) P©) P(0)
High High Low** P(-1) P(0)
High Low High P(-1) P(0) P(0)
High Low Low P(-1) P(0)
Low High High P(-1) P(0)
Low High Low P(1) P(0)
Low Low High P0)
Low Low Low P(0)

* Prediction Window: P(-2) on Phoneme L, P(-1) on Phoneme M, P(0) on Phoneme N.
** Score(A): Low if Score(A) < 0, High if Score(A) >= 0

Fig. 12. Expectation adjustment based on the activation score by A-marker
(subphoneme sequence: L-M-N).

a window size of 3, the combined problem of deletion and
insertion can be handled elegantly.

1. Expectation Adjustment

Sometimes, activations do not conform to expectations.
Whenever a new code activates a set of phonemes in the
phoneme sequences, we need to adjust the previous expec-
tations based on the current activation scores. The expectation
adjustment table for the sub-phoneme sequence: L-M-N is
shown in Fig. 12. The activation scores are scaled into the
range of an 8-bit integer between —128 and 127. The score
of an A-marker is high if Score(A) > 0. When the activation
scores for the prediction window are {High, High, Low},
or {High, Low, Low}, we assume that the previous expec-
tation for a deletion was not correct, and adjust the prediction
window as shown. When both an insertion and a deletion occur
together with high scores like {High, High, High}, or
{High, Low, High}, neither one can be ignored. In this
case, we partition the prediction window and keep both
possibilities, as shown in Fig. 12. That is, we make two
separate prediction windows for the phonemes L& M and the
phoneme N in the same phoneme sequence. In most cases,
the inferior one will be eliminated after one or two more input
codes are processed.

IV. EXECUTION RESULTS

The PASS algorithm has been implemented on the SNAP-1
parallel machine and is operational. We describe below the
system configuration and analyze its performance.

A. SNAP-1 Multiprocessor

SNAP-1, is a parallel array processor designed for semantic
network processing with a reasoning mechanism based on
marker-passing [4]. As shown in Fig. 13, the SNAP-1 architec-
ture is based on a multiprocessing array and a dual-processor
array controller. The array stores a semantic network of up to
32K nodes and 320K links. The SNAP-1 array consists of 144
Texas Instruments TMS320C30 DSP microprocessors which

1180
Hardware Software Physical
Environment Environment Design
4 Program
Host evelopment SUN
Host using SNAP
Computer P ticn 41280
set

vm% Bus

SNAP-1 Coapiled
Controller Coatroller SNAP
code

Backplane
sNap1 [
Array 144 Knowledge basc
SNAP instruction 10 .
Arma)
o execution Eight 9U-size boards

Fig. 13. SNAP-1 parallel processing system.

act as processing elements (PE’s). The array is organized as
32 tightly-coupled clusters of 4 to 5 PE each.’ Each cluster
manages 1024 semantic network nodes.

The controller interfaces the array with a SUN4/280 host
where application programs are written and compiled in SNAP-
C using libraries provided for marker-passing. The parallel
operations are initiated through a global bus from the controller
which begins each propagation cycle by broadcasting marker
instructions to the array. The majority of computation is
performed locally though the propagation of markers within
the cluster. Several instructions and multiple propagations
can be performed simultaneously to explore multiple paths
in parallel.

B. System Performance

We analyzed the execution of PASS using the ATC domain
with various quantities of concept and phoneme sequences.
The basic ATC domain consists of 1357 semantic network
nodes with 5834 links. Results obtained demonstrate the
benefits of the integrated parallel model.

Recognition Accuracy: We tested 60 different continuously-
uttered sentences. Each sentence contained from 8 to 16 words
and was spoken by four untrained speakers. As shown in Fig.
14, a sentence recognition rate of about 80% was obtained
with performance decreasing slightly as the sentences became
longer and more complex. Although the overall sentence
recognition rate was only 72% for sentences with 16 words,
these longer sentences are encountered less frequently than
shorter ones which tend to occur more often.

Furthermore, Fig. 14 indicates that the majority of sentence-
level failures had nearly correct semantic meaning representa-
tions. The underlying semantics of the input sentence could
be determined successfully even for long sentences. Even
though one or two words may be incorrect, the speaker’s
intent is successfully determined according to the high-level
information in the knowledge base.

Response Time and Scale-up: We measured response time
as more knowledge is used. The knowledge base size was
increased by inserting additional concept and phoneme se-
quences. For each configuration, results for program running
time are reported according to the definitions in Fig. 15.

OPresently, 16 clusters are implemented in the full 5 PE configuration while
the remaining 16 clusters have 4 PE’s each, totaling 144 PE’s.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

09

08

07 1

& Semantic accuracy

06 T~ —& == Sentence recognition rate -

L) L L L L L
8 9 10 1 12 13 14 15 16
Target sentence length [words]

0.5

Fig. 14. Accuracy versus sentence length.

Seatence /
meaning
recognized

Speaker
begins
sentence

Speaker
finishes
sentence

= |
~— resp time —e=

ex ion time

input time

Fig. 15. Definition of execution time and response time.

Execution time indicates the time elapsed from when the
speaker first begins the sentence. Since the speech codes are
generated by the phonetic engine as the sentence is spoken,
PASS begins execution immediately when the first code is
generated. This means that the input and processing are
overlapped. Thus, the response time observed by the user is
only the time required to construct meaning representation and
generate an output sentence after the last input is received.

Fig. 16 shows response time as a function of the total
number of semantic network nodes. The dotted line is for a 16-
cluster SNAP-1 configuration operating at 25 MHz. Response
time for the basic ATC domain was 3.7 seconds with input
time of about 5 seconds. Thus, near real-time performance
can be obtained while extracting meaning representation and
generating a sentence output from untrained continuous-speech
input when using a knowledge base of this size. When more
nodes were added, response time increased linearly with a
small slope. Response time ranged from 3.7 seconds for 1.4K
nodes to 23 seconds for 9K nodes.

The solid line in Fig. 16 is for the identical algorithm
on a single TMS320C30 processor at 25 MHz. Response
time also increases linearly, but the user must wait over
30 seconds for a response, even when using the basic ATC
domain. The lines shown have been fitted to the measured
data with slopes computed as 0.0024 and 0.04 for parallel and
serial execution, respectively. Thus, while both curves increase
linearly, the proportionality constant for the uniprocessor is
17-times greater, and a 15-fold speed-up is obtained from the
parallel implementation for 9K nodes.

The rate at which processing time increases is primarily in-
fluenced by the critical path of marker propagation. The critical
path is determined by the structure of the knowledge base as
it grows. Consider an efficient parallel implementation for a
knowledge base that grows hierarchically. The critical path
corresponds to the maximum depth from the root to the leaves
of the hierarchy. Thus performance approaching logarithmic
time can be obtained up to the number of processors available

CHUNG et al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

6:00 T T T T T T T T

bl
8
T
L

»

W

(=
T

L

t=0.04N -1290

ec.]
W
g 8
T T
i 1

w
8
T
L

O Uniprocessor

Response time [min. : s
PN
g @
(=3
T T T
1 1

—

@

S
T

4 SNAP-1 7

.’87‘

0:30 t= 0.0024N -70 _

A A

-~ — k- — AT A
0:00 Lok raa— 474 -3 1

1000 2000 3000

1 L 1 1

7000 8000

4000 5000 6000
Knowledge base size {nodes]

Fig. 16. Response time.

[3]. However, a linguistic knowledge representation typically
introduces new nodes at predetermined levels for the concept
and phoneme sequences. Therefore, although the knowledge
base is organized hierarchically, it maintains a relatively fixed
depth while its breadth increases. The length of the critical
path is roughly fixed, and performance approaching constant
time can be obtained in terms of knowledge base size on a
parallel machine with sufficient resources. For increases in
knowledge base size which are large relative to the processing
resources available, execution time increases at a constant
rate so near linear performance will occur on an efficient
parallel machine. In PASS, the addition of new nodes does
not significantly change the knowledge base depth. Since
meaningful increments in knowledge base size exceed the
number of processors in the SNAP-1 array, linear performance
is obtained.

To understand the execution characteristics of the algorithm,
we also studied the number and type of instructions required
to process a typical target sentence. Fig. 17 shows the compo-
nents of execution time on SNAP-1. The dashed line is for all
26 types of SNAP instructions, including marker-propagation.
The dotted line shows that majority of processing time is spent
in the propagation phase. Only a small portion of the code is
serial and cannot be executed as SNAP array instructions. The
serial portion is about 10% for small knowledge bases and
less than 4% percent for larger knowledge bases. Since the
reasoning mechanisms are based on marker-propagation, the
serial processing time does not depend heavily on the size of
the knowledge base.

Processor Speed-Up: Fig. 18 shows the effect of varying
the number of processors while the size of the knowledge
base is held constant. Since the capacity of a single cluster is
limited to 1024 nodes, the basic ATC domain was used with 4
or more clusters. For each configuration, execution time was
measured for different sentences and the average processing
time was calculated. In general, the performance improves as
the number of processors is increased. The improvement levels

1181

T r Y T T T :
—8—— Totl
251
———&—= SNAP instructions
woF 7 ®- - Propagation i
g Serial code
8
Py
E1sfF J
g
2
gor geem NRTRERPSE x|
e XX
SE e XX o b
olset et —dye-e g e -+
1000 2000 3000 4000 5000 6000 7000 8000 9000
Knowledge base size [nodes]
Fig. 17. Execution time.
14 T T T T T T
12 7
gior
A
E .
5 gt
2 i
=1
1}
g 6
2 L
~ .
47 4
2 1 1 L i 1 1 1
2 4 6 8 10 12 14 16
Array size [clusters]
Fig. 18. Response time versus array size (knowledge base (KB) size: 1.4K

nodes).

off when a large number of clusters are used because each
cluster is only partially occupied and no longer fully utilized.!
However, if a proportionally larger knowledge base is used
then it is possible to take advantage of the parallelism and
higher speedups can be obtained. This effect is shown in Fig,
19 for a 16-cluster configuration. The speedup over a single
TMS320C30 for response time and execution time increase as
the knowledge base grows.

Input Size Performance: The effect of target sentence
length on response time is shown in Fig. 20 for the basic ATC
domain. Although each speaker generates a varying number of
speech codes, the performance is roughly proportional to the
number of phonemes in the target sentence. Each sentence has
an average of 11 words or about 50 phonemes long and takes
about 3 to 5 seconds until the meaning representation and
output sentence is generated. To further increase the speed
performance for larger knowledge bases, the full 32 cluster
configuration will be used when it becomes available.

With the 1.4K basic ATC domain, the average parallelism ranges from 8
to 20, while 40 PE’s are available in a 16 cluster configuration. Other 32 PE’s

are dedicated to program control, communication, etc. For details of cluster
design, see [4].

1182
19 T T T T ™ T T T
17 b
15
& 13
B
Q
=%
“2 11
9l
& —8—— Response
I's
(x/ ———&—— Execution |
o
5 1 1 1 1 1 | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000
Knowledge base size [nodes]
Fig. 19. Speed-up with increasing knowledge base size.
5 T T T T
45 7
g
9 35]
25 b
2 1 1 | 1 1 1 1 1 1 I 1

43 4 45 46 47 48 49 S0 sl 52 53 54 55

Sentence length (phonemes}

Fig. 20. Response time versus target sentence length on 16 clusters.

V. CONCLUSION

We have developed an integrated approach for speech
understanding from low-level speech input up through mean-
ing representation and sentence generation. Using marker-
passing techniques, we have presented parallel solutions to
insertion, deletion, substitution, and word boundary problems.
For limited domains, near real-time performance has been
obtained with a speed-up of up to 15-fold over a sequential
implementation. The meaning representations which are gener-
ated can be applied not only to generate an output sentence, but
also to provide information for applications such as high-level
inferencing and speech translation. The experimental results
demonstrate the benefits of the parallel computation model for
the integration of speech and natural language understanding.
We are now installing the Radiology domain? provided by
the Speech Systems Incorporated consisting of a vocabulary

2The radiology domain supports interactive document preparation for
radiologist when dictating reports based on examination of an X-ray.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 10, OCTOBER 1993

of approximately 2-K words and a network of approximately
10-K semantic nodes.

REFERENCES

[1) M. T. Anikst and D. J. Trawick, “Training continuous speech linguistic
decoding parameters as a single-layer perceptron. Proc. Int. Joint Conf.
on Neural Networks, vol. 2, pp. 237-240, 1990.

[2] M. Chung and D. I. Moldovan, “Memory-based parsing on SNAP:
Integrated syntactic and semantic analysis,” Tech. Report PKPL 91-10,
Dept. of Elect. Eng. Syst., Univ. of Southern California, Los Angeles,
1991.

[3] , “Modeling semantic networks on the connection machine,” J.
Parallel and Distributed Computing, vol. 17, pp. 152-163, Feb. 1993.

[4] R.F.DeMara and D. I. Moldovan, “The SNAP-1 parallel Al prototype,”

presented at the Proc. 18th Ann. Int. Symp. on Comput. Architecture,

Toronto, ON, Canada, 1991.

S. E. Fahlman, NETL: A System for Representing and Using Real-World

Knowledge. Cambridge, MA: MIT Press, 1979.

[6} E. P. Giachin and C. Rullent, “A parallel parser for spoken natural
language,” Proc. IJCAL, 1989, pp. 1537-1542.

[7] P.J. Hayes, A. G. Hauptmann, J. G. Carbonell, and M. Tomita, “Parsing
spoken language: A semantic caseframe approach,” Proc. COLING-86,
1986, pp. 587-592.

{8] J. A. Hendler, Integrating Marker-Passing and Problem Solving: A

Spreading Activation Approach to Improved Choice in Planning. Hills-

dale, NJ: Lawrence Erlbaum Associates, 1988,

X. Huang and L. Guthrie, “Parsing in parallel,” Proc. COLING-86, 1986,

pp. 140-145.

H. Kitano, “®DM-Dialog: A speech-to-speech dialogue translation

system,” Machine Translation, vol. 5, pp. 301-338, 1990.

K. F. Lee, “Large-vocabulary speaker-independent continuous speech

recognition: The sphinx system,” Techn. Rep. CMU-CS-88-148, Dept.

of Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1988.

W. S. Meisel, M. P. Fortunato, and W. D. Michalek, “A phonetically-

based speech recognition system,” Speech Technol., Apr./May 1989.

L. Olorenshaw, “Air traffic control training using continuous speech

recognition and the ATCOACH,” presented at Proc. Speech Tech '90,

1990.

A. Paeseler, “Modification of Earley’s algorithm for speech understand-

ing,” Recent Advances in Speech Understanding and Dialog Systems.

Berlin: Springer-Verlag, 1987.

C. K. Riesbeck and R. Schank, Inside Case-Based Reasoning. Hills-

dale, NJ: Lawrence Erlbaum Associates, 1989.

C. K. Riesbeck and C. E. Martin, “Direct memory access parsing,” Tech.

Rep. YALEU/DCS/RR #354, Dept. of Comput. Sci., Yale Univ., 1985.

C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Commun.

ACM, vol. 29, no. 12, Dec. 1986.

S. Seneff, “TIMA: A probabilistic syntactic parser for speech un-

derstanding systems,” Proc. DARPA Speech and Natural Language

Workshop, 1989, pp. 168-178.

H. Tomabechi, “Direct memory access translation,” Proc. IJCAI, 1987,

pp. 722-725.

D. L. Waltz and J. B. Pollack, “Massively parallel parsing: A strong

interactive model of natural language interpretation,” Cognitive Sci.,

vol. 9, pp. 51-74, 1985.

S. R. Young, A. G. Hauptmann, W. H. Ward, E. T. Smith, and P. Werner,

“High level knowledge sources in usable speech recognition systems,”

Commun. ACM, vol. 32, no. 2, pp. 183-193, Feb. 1989.

[5

[9

—

[10]
[t1]

[12)

(13]

[14]

[15]
[16]
[17]

(18]

(19]
[20]

[21

Sang-Hwa Chung (S°92) was born in Pusan, Korea.
He received the B.S. degree in electrical engineering
from Seoul National University in 1985, the M.S.
degree in computer engineering from lowa State
University in 1988, and the Ph.D. degree in com-
puter engineering from the University of Southern
California in 1993.

His research interests include parallel algorithms
and systems for artificial intelligence, speech un-
derstanding, and natural language processing. He is
presently an Assistant Professor in Electrical and
Computer Engineering Department, University of Central Florida, Orlando,
FL.

CHUNG et al.: PARALLEL COMPUTATIONAL MODEL FOR INTEGRATED SPEECH

Dan 1. Moldovan (S°79-M’78) was born in Sibiu,
Romania. He received the M.S. and Ph.D. degrees
in electrical engineering and computer science from
Columbia University, New York, NY, in 1974 and
1978, respectively.

He was a member of the Technical Staff at Bell
Laboratories from 1976 to 1979, after which, he
took on a position as an Assistant Professor of
Electrical Engineering at Colorado State University
from 1979 to 1981. He was a member of the
faculty of Computer Engineering at the University
of Southern California from 1981 to 1993. Presently, he is a Professor of
Computer Science and Engineerin and Director of the Parallel Computers
Research Laboratory at Southern Methodist University, Dallas, TX. He took
a one year sabbatical leave from 1987 through 1988 to work at the National
Science Foundation in Washington, DC, as Program Director for Experimental
Systems in the Division of Microelectronics and Information Processing
Systems. His primary research interests are in the fields of parallel processing
and artificial intelligence, in which he’s published over 100 papers.

Professor Moldavan is the author of the textbook, Parallel Processing: From
Applications to Systems (Morgan and Kaufmann, 1993).

1183

Ronald F. DeMara (S’87-M’93) received the B.S.
degree in electrical engineering from Lehigh Uni-
versity, Bethlehem, PA, in 1987 and the M.S. degree
in electrical engincering from the University of
Maryland, College Park, in 1989 and the Ph.D.
degree in computer engineering from the University
of Southern California, Los Angeles, in 1992.

From 1987 through 1989, he was an Associate
Engineer at IBM Corporation, in Manassas, Virginia
where he was involved in the design of embedded
and complex systems. He is currently an Assistant
Professor in the Electrical and Computer Engineering Department at Univer-
sity of Central Florida, Orlando, Florida. His research interests are in the areas
of parallel processing, artificial intelligence, and computer architecture.

This document is an author-formatted work. The definitive version for citation appears as:

S. H. Chung, D. I. Moldovan, and R. F. DeMara, “A Parallel Computational Model for Integrated Speech
and Natural Language Understanding,” IEEE Transactions on Computers, Vol. 42, No. 10, October, 1993,
pp. 1171 — 1183. Online: http://csdl.computer.org/dl/trans/tc/1993/10/t1171.pdf

