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The SNAP-1 Parallel Al Prototype

Ronald F. DeMara, Member, IEEE, and Dan 1. Moldovan, Senior Member, IEEE

Abstract— Semantic Network Array Processor (SNAP) is a
parallel architecture for knowledge representation and reasoning
using the marker-propagation paradigm. The primary appli-
cation areas of SNAP are Natural Language Understanding
and Speech Processing. A first-generation SNAP-1 system has
been designed and constructed using an array of 144 Digital
Signal Processors organized as 32 multiprocessing clusters with
dedicated communication units, a tiered synchronization scheme,
and multiported memory network. Issues in the design, perfor-
mance, and scalability of a marker-propagation architecture are
addressed.

Index Terms— Artificial intelligence, barrier synchronization,
marker-propagation, multiport memory, parallel processing, nat-
ural language understanding, SIMD/MIMD architectures.

I. INTRODUCTION

ARALLELISM which exists in Natural Language Under-

standing (NLU), Speech Processing, and other Artificial
Intelligence applications can be exploited to increase the
execution speed, domain size, and accuracy of the inferenc-
ing process. Based on these criteria, the SNAP-1 marker-
propagation prototype has been designed and constructed using
off-the-shelf components. This paper describes the design
decisions and tradeoffs made. Performance of SNAP-1 for
linguistic parsing is also shown.

A. Need for Parallel AI Architectures

Despite recent advances in computer technology, machines
remain unable to perform realistic, large-scale knowledge pro-
cessing applications. This is due in part to the complex nature
of Al, such as extensive ambiguities in natural languages.
However, part of the problem is that current supercomput-
ers are not well-suited for Al applications such as NLU,
machine translation, speech and image understanding. These
applications require very large knowledge bases and exten-
sive computational power. Yet, present Al systems employ
sequential computers almost exclusively.

In this paper, we argue that parallel processing can provide
important innovations to knowledge processing. Since the Al
field is broad, an effective approach to designing high perfor-
mance computers for Al is to first narrow down the knowledge
processing paradigm for a specific application. Then one is
faced with either mapping a clearly defined paradigm into
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a general-purpose machine or designing a novel architecture
for that model of computation. When the paradigm is well
understood, bottlenecks with mapping it into general-purpose
computers can be identified. It then becomes advantageous to
consider special-purpose architectures for the problem. This
was the situation with the SNAP project at University of
Southern California. We selected a paradigm called semantic
network marker propagation which proved to be quite viable
for written and spoken NLU. After programming certain
examples on the CM-2 and iPSC/2 hypercube, we concluded
that greater performance would be achieved by designing a
specialized architecture for marker-propagation.

The SNAP-1 prototype is capable of real-time NLU using a
vocabulary of a few thousand words. Furthermore, it provides
a testbed for an architecture which is being designed to handle
a one-million concept knowledge base.

B. Semantic Networks for Linguistic Processing

Semantic networks have frequently been used to represent
and process structural knowledge. They consist of nodes which
represent concepts within a domain, and links which show
relationships between nodes. Each node is also assigned a
color to indicate the type of concept or class which it belongs
to. This provides a flexible representation scheme. There are
many ways to encode the same knowledge depending upon the
choice of relations, granularity of the nodes used, the network
structure, and other criteria.

In the SNAP project, our goal was to construct a knowledge
base for linguistic processing [1]. The network was structured
hierarchically with more general or abstract concepts at the
upper levels and more specific concepts near the bottom. In
order to handle the complex and vast linguistic knowledge
within a domain, the knowledge base was organized into
several layers. The major ones are: 1) the lexical layer at the
bottom of the hierarchy, 2) semantic and syntactic constraints
in the middle, and 3) concept sequences at the highest layer
as shown in Fig. 1.

The lexical layer contains all the words in the vocabulary.
Each lexical node connects to one or many other nodes in
the layer above. For example, the word we connects to the
nodes animate and noun phrase in the syntax module
by an is-a or subsumption link. For each word, semantic
constraints are represented as links between the appropriate
nodes. Concept sequences denote basic linguistic patterns
which fit many possible utterances. Each concept sequence
has a root and elements. For example, the activity of “seeing
something” is encoded by the seeing-event root with
experiencer, see, and object elements. The experi-
encer must be animate and a noun phrase which are semantic
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Fig. 1.

and syntactic constraints, respectively. Optional constituents,
such as the time at which an event occurs, are represented
as auxiliary concept sequences. For instance, the time-
case concept sequence is combined with a seeing-event
basic concept sequence to indicate when it happened, e.g.,
yesterday.

In order to perform natural language understanding for
realistic applications, a very large knowledge base is needed.
As part of the SNAP project, a knowledge base consisting of a
10 000 word lexicon and over 20 000 nonlexical concepts was
developed. Roughly 15K nodes (75%) represent basic concept
sequences, 3K (15%) compose the concept-type hierarchy,
1K (5%) form syntactic patterns, and 1K (5%) are used for
auxiliary concept storage. A knowledge base of this size is
sufficient for encoding information about domains such as
“terrorism in Latin America.” Within this domain, we have
processed tens of pages of newswire text [12] by performing
inferencing operations on the semantic network.

C. Marker-Propagation Model

A semantic network knowledge base is only part of the
reasoning system. It can be regarded as a static infrastructure
which allows the transfer of information between concepts in
the domain. The dynamic agents of inference which move
knowledge around are implemented as markers [4], [5], [7].
Markers are data patterns associated with each node. They
represent properties of nodes, membership in different sets,
and reflect the state of hypotheses as they travel through the
semantic network.

Whenever a marker encounters new nodes, it may change
the state of knowledge associated with these nodes. Complex
reasoning operations can be achieved by controlling the move-
ment of markers through the semantic network as determined
by propagation rules which are attached to markers. Each
marker individually selects which paths to follow and those
to avoid. To quantify properties, markers are given a value
which serves as a measure of belief during inferencing, such
as the cost of accepting a particular concept sequence. They
also carry a lightweight arithmetic or logical operation which
is performed along each propagation step. This is executed to
update values or influence the status of other markers, as will
be shown in Section II.

Legend:

syc = syntactic
constraint

sec = semantic
constraint

is-a= subsumption

NP = Noun Phrase
VP= Verb Phrase
DO= Direct Object

Semantic network for NLU.

II. SYSTEM ARCHITECTURE

SNAP-1 is an implementation of the marker-propagation
model. The main difference between marker-propagation and
message-passing is the absence of destination addresses for
markers, unlike in message-passing systems. To create an
architecture for marker-propagation, a set of design goals and
several architectural features were developed for the major
aspects of the paradigm.

A. System Overview

As shown in Fig. 2, the SNAP-1 system consists of an array
of 144 processing elements (PE’s) to store and process the
semantic network, a controller which manages the array, and a
Sun host for the user-interface. Application programs are writ-
ten and compiled on the host using C language and high-level
SNAP instructions for marker-passing. To avoid a bottleneck
with the VME bus, the object code for an entire application is
downloaded to the controller before execution. The controller
manages the execution flow in the application and broadcasts
SNAP instructions to the processing array for execution. The
array is organized as 32 tightly-coupled clusters of four to
five PE’s each.! Communication occurs over a high-speed
backplane which provides separate interconnection networks
for instruction broadcast, message transfer, and performance
gathering.

The semantic network is stored as a distributed knowledge
base. A partitioning function is applied to divide the network
into regions. Each region is allocated to a cluster which
processes all of its concepts, relations, and markers. The
mapping function is variable with up to 1024 nodes per
cluster using sequential, round-robin, or semantically-based
allocation.

Although operations are initiated by the controller, most
of the processing is performed within each cluster. As input
words are read from a natural language sentence, the controller
broadcasts instructions to set markers on the corresponding
lexical nodes. Markers are then propagated upward through
the semantic and syntactic layers. As the markers move they
perform constraint checks and activate the suitable concept
sequences. Markers are propagated in parallel by the PE’s

Presently, 16 clusters are implemented in the full five PE configuration
while the remaining 16 clusters have four PE’s each, totaling 144 PE’s.
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Fig. 3. SNAP-1 array board and Sun host.

within each cluster. When propagation terminates, the con-
troller retrieves the parsing result by collecting the names of
all nodes with the required markers and weights.

As shown in Fig. 3, the design physically consists of
several large (9U-size) circuit boards. The VME interface and
controller reside on a single board. It contains a program
control processor (PCP) to manage the execution-flow of the
application code and a sequence control processor (SCP) to
regulate processing in the array. Each of the eight identical
array boards contain the processors, local memory, shared
memory, and interconnection interface for four clusters.

B. Design Goals

The design requirements and constraints for SNAP-1 are
listed in Table I. The primary objective was to provide real-
time NLU while supporting a vocabulary of a few thousand
words.

Functionality: The requirements of the architecture were
validated through functional simulation. First, a preliminary
instruction set for marker-propagation was defined and an
instruction-level simulator was constructed [10]. NLU [8],
concept classification [6], and property inheritance [13] ap-

DESIGN OBJECTIVES

provide an Al development
platform for coding, executing
and analyzing marker-passing

Functionality applications

implement the complete set of 20
SNAP instructions

store a 32K node semantic
network knowledge base

Requirements

Capacity provide 10 relations, 128 markers
and floating-point registers per

semantic network node

achieve real-time (subsecond)

Performance NLU parsing per sentence

support performance experiments

Instrumentation to conduct design tradeoffs

Hardware use only off-the-shelf components

construct an interconnection
network within pin limitations of
9U-size backplane

Constraints Connectivity

maintain a low part count to

Complexity reduce development time

plications were coded with these instructions. Instruction pro-
files, propagation patterns, and communication overhead were
analyzed to formalize 20 high-level instructions for marker-
passing [13].

As shown in Table II, node maintenance instructions load
the knowledge base by specifying each source-node, re-
lation, weight, and end-node comprising the semantic
network. Once the knowledge base is created, search opera-
tions initialize a marker with a given value at a specified
node, relation, or color. Movement of markers is
initiated by propagation instructions. They send marker-
2 from nodes with marker-1 along a path defined by
the propagation rule. Propagation rules have the format of
rule-type(rl,r2). The pre-defined or custom rule-
type guides the flow of markers. It specifies a traversal
strategy for passing through relations r1 and r2. For example,
the propagation rule spread(rl,r2) sends markers along
a chain of r1 links until a link of type r2 is encountered at
which time they switch to r2. Along each relation traversed,
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TABLE 11
INSTRUCTION SET FOR MARKER-PROPAGATION [13]
Type Instruction Operands
CREATE source-node, relation, weight, end-node
Node .
. DELETE source-node, relation, end-node
maintenance
SET-COLOR node, color
SEARCH-NODE node, marker, value
Search SEARCH-RELATION relation, marker, value
SEARCH-COLOR color, marker, value
Propagation PROPAGATE marker-1, marker-2, rule-type(rl,r2), function
Marker MARKER-CREATE marker, forward-relation, end-node, reverse-relation
node MARKER-DELETE marker, forward-relation, end-node, reverse-relation
maintenance MARKER-SET-COLOR marker, color
AND-MARKER marker-1, marker-2, marker-3, function
OR-MARKER marker-1, marker-2, marker-3, function
Boolean
NOT-MARKER marker-1, marker-2
TEST-MARKER marker-1, marker-2, value, condition
SET-MARKER marker, value
Set/clear CLEAR-MARKER marker
FUNC-MARKER marker, function
COLLECT-MARKER marker
Retrieval COLLECT-RELATION marker, relation
COLLECT-COLOR marker

an arithmetic or logical function updates the value of
marker-2.

After propagation, boolean operations are performed glob-
ally over the semantic network by evaluating marker-1
and marker-2 to set or reset each instance of marker-
3. Set/clear operations also update markers at all nodes.
However, marker status is changed directly without testing
its present state. Marker node maintenance instructions bind
together concepts which have been marked. Nodes with the
specified marker are linked to an end-node by creating
a forward-relation or reverse-relation between
them. Results are coliected by retrieval operations which
return to the controller the ID’s of nodes with a specific
marker, relation, or color. Since the functions are
high-level, it is relatively straightforward to initiate parallel
operations within the machine. The programmer deals with
logical data structures such as markers, relations, and nodes.
Their physical allocation remains transparent, regardless of the
number of PE’s or the size of semantic network used.

Capacity: An extensive semantic network is required for
realistic NLU applications. However, 32K semantic network
nodes were selected as a compromise between knowledge base
size and machine cost. To expedite retrieval while storing
information as compactly as possible, we organized this data
into three tables. As shown in Fig. 4, the tables are partitioned
and stored within each cluster. The size of each field is based
on binary encoding and 32-bit floating-point values while the
numbers in parentheses indicate the capacity provided.

The node table stores the permanent and dynamic properties
associated with each of the N = 32K nodes. A row in the
table is indexed by a physical node-ID number. It contains an
arithmetic/logic function for propagation and one of the 256
colors to distinguish the node type. Marker registers contain

dynamic information. Two types of markers were designed
to reduce the amount of storage required. Complex markers
provide a 32-bit floating-point value for cost calculation along
with a 15-bit source address of the origin node for binding.
Binary markers indicate membership in a set or hypothesis.
Relatively sophisticated NLU algorithms can be programmed
with approximately M = 64 complex markers and Mp = 64
binary markers at each semantic network node.

The marker status table holds the active/inactive state of the
marker. It is packed into rows of status words for both complex
and binary markers. Each row contains N/W words where W
denotes the word length of the CPU in bits. A bit in the status
word indicates if the marker is set at the corresponding node.
Thus when the table is updated, the status of markers from W
nodes are processed simultaneously by each PE.

The relation table contains the relation type, destination
node ID, and floating-point weight for links at each node.
Many link types are needed for the wide variety of relation-
ships between concepts in a domain, so B = 64K distinct
relation types are supported. Up to 16 outgoing relations can
be held in the slots provided for each node. This is adequate
for representing most concepts in a linguistic knowledge base.
Nodes with fanout greater than 16 are divided into subnodes
by a pre-processor when the knowledge base is created.
The destination node ID provides fields for the local node
number and cluster where it is physically stored. Since the
relation table is indexed by node-ID, the retrieval time during
propagation is small.

Performance: Parsing within a few seconds or less is
sufficient for applications such as bulk text understanding or
speech-to-speech translation. Thus the performance objective
was to be able to understand input sentences in real-time.
Execution time grows as the size of the semantic network is
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/* propagate markers to identify concept sequences in the proper context */ PROPAGATE(17.0%) COMM_END({0.5%)
parbegin SEARCH(6.0%)
/* set marker m1 on the node NP */ COMM_END(17 4%) BOOLEAN({1.6%)
Ll: SEARCH-NODE (NP, m1, 0.0); CREATE/DEL wM(7.
/* set marker m2 on VP and DO */ CREATE/DEL(3.2%)
L2: °  SEARCHE-NODE (VP, m2, 1.0); SEARCH(5 4%
L3: SEARCH-NODE (D0, m2, 1.0); BOOLEAM(S 5%) SETICLEAR(13.0%)
parend
parbegin CRE/DEL wM(1.9%)
/* propagate new marker m3 from all nodes which have m2 */ CREATE/DEL(2.7%)
L4: PROPAGATE (m2, m3, spread(is-a,next), NOP); . COLLECT(6.8%)
/* propagate m4 from nodes with m1 */ SET/CLEAR(42.2%) PROPAGATE(64.5%)
L5: PROPAGATE (1, m4, spread(is-a,last), ADD); . - . . .
parend Fig. 6. Relative instruction frequency and execution time.
/* set m5 on nodes with both m3 and m4 */
L6: AND-MARKER (m3, m4, m5)
* i * .
1 éofflElZf_;];eD:aa?)?f nodes with 16 set */ Markers travel through the semantic network to other nodes
during the propagation phase in L4 and L5. While initiated

Fig. 5. Marker-propagation program for Fig. 1.

increased, and inferences requiring a large domain can become
intractable. However, numerous markers can be propagated
simultaneously to evaluate hypotheses in parallel. To quantify
performance, we have developed an integrated measurement
system for evaluating marker-propagation algorithms, parti-
tioning functions, communication traffic, and synchronization
protocols.

C. Architectural Features

The architecture was developed by analyzing several
marker-propagation programs. Some typical program code is
shown in Fig. 5 for the knowledge base in Fig. 1. Specific
processing requirements are described below.

Levels of Parallelism: Parallelism in the architecture cor-
responds to three phases in marker-propagation algorithms:
configuration, propagation, and accumulation phase. The con-
figuration phase sets initial conditions throughout the semantic
network. It consists of statements L1—-L3 in Fig. 5. These
statements locate origin nodes to activate the initial markers
in parallel using a distributed search capability. PE’s with NP,
VP, and DO will set m1 or m2 in the marker status table and
then initialize values in the node table to activate these nodes.

on a global basis, markers are propagated under local control
only. For example, when L5 is executed, all PE’s check if they
have any nodes with m1 set. If so then they propagate m4 along
a path dictated by the spread(is-a;last) propagation
rule. Each PE evaluates the rule individually by searching the
relation table for is-a and last links. At every propagation
step, the weight of the link is added to the value of m4. The
accumulation phase, in L6 and L7, occurs after propagation
terminates by comparing markers and then retrieving them.
For instance, L6 performs a global set intersection. Each PE
inspects its portion of the semantic network to update m5 on
nodes which have both m3 and m4. When L7 is executed,
nodes with m5 are collected in parallel by each cluster for use
in the primary application thread.

Instruction profiles were measured for NLU applications
on a single processor to determine frequency of use and
relative execution time. Fig. 6 shows that while the number of
PROPAGATE operations is only 17.0% of the total instructions
executed, they consume 64.5% of the overall processing time.
Thus propagation should be optimized since it dominates
execution time.

SNAP-1 reduces propagation time by exploiting two types
of parallelism. Intra-propagation parallelism, or a.-parallelism,
is derived from searching relation links and transmitting mark-
ers within a single PROPAGATE statement. Let « denote the
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number of nodes activated simultaneously by a propagate
instruction. For example, when L4 is executed m3 must be
propagated from VP and DO because m2 is set on both
nodes. They are active in a data-parallel manner so array
processing is effective. Concurrently, each PE in the array
propagates markers between its active nodes. Inter-propagation
parallelism, or F-parallelism, exists between L4 and L5 since
there are no data dependencies in the markers used. Let 3
denote the number of overlapped propagation statements.

Parallelism was analyzed in two marker-propagation algo-
rithms. The PASS speech understanding program had 8., =
2.8 and fBmax = 6 while the DMSNAP [8] NLU program
had slightly less inter-instruction parallelism with G, = 2.3
and Bmax = 5. For both applications, a-parallelism was
highly variable during execution, ranging between 10 and
1000 depending on the length and breadth of the propagation
path through the knowledge base. While /3 is a function of
the algorithm, o typically grows as the size of the semantic
network is increased.

SIN. D/MIMD Processing: To control the execution of « and
0 parallelism, aspects of both SIMD and MIMD processing are
employed. During SIMD mode, a central controller broadcasts
one or more SNAP instructions over a global bus to all PE’s.
This utilizes a-parallelism by providing simultaneous access
to many nodes to set initial conditions and collect results.
Yet each PE retains some autonomy for deciding how to
react to input conditions and which procedures to execute.
Thus after broadcast, propagation occurs asynchronously in
MIMD mode using only local control. Moreover, utilization
is increased by overlapping several PROPAGATE statements to
capture (-parallelism.

Barrier Synchronization: As shown in Fig. 7, the data
dependencies of propagation must be respected. Before L6
can be executed, the PE’s which are propagating markers
need to be synchronized because of the data dependency
with {L4, L5}. However, it is not known a priori how many
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80 T
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3.d. =10.56
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S0 b
g
i |
g
<
0 | :
» |
10

1500
Synchronization Point

0 500 1000 2000 2500 3000

Fig. 8. Marker traffic during execution.

propagations take place or which PE’s are involved. Thus
hardware support is desirable to minimize the synchronization
overhead time, tgync.

One solution is to implement a wired-logic AND-gate from
each processor to detect an idle state. However, one may wish
to synchronize on a per marker basis. SNAP-1 uses a tree of
AND-gates and counters to report marker creation/termination
counts from each processor and maintain a centralized total.
The synchronization requirement is that the total number
of markers produced equals the total number of markers
consumed by all PE’s. For example, in Fig. 7, the first level
of propagation is executed at time ¢,. PE’s with VP, DO, and
NP propagate m3 and m4 between their local nodes and also
send out markers to PE4, PE7, and PEy, respectively. Markers
reach terminal nodes at time ¢4. Completion of propagation is
detected by comparing the total number of messages produced
and consumed between PE’s.

Interprocessor Communication: On average, roughly 100
to 200 marker propagations occur in parallel over a 32K
node knowledge base. Since simulation indicated that marker-
propagation was the bottleneck, resources were shared by
organizing a commensurate number of PE’s into tightly-
coupled clusters of two or more marker units. The clustered
topology accommodates the 288-pin limitation of 9U-sized
backplanes. In particular, network complexity is reduced since
only messages between clusters have to be routed through
the interconnection network. A total of 32 clusters provide 80
marker units to match the available parallelism while setting
granularity at 1K nodes per cluster. Simulation of NLU, speech
processing, and knowledge classification programs showed
that this provides a good balance between PE utilization and
communication overhead [10}.

The network capacity is based upon the time distribution of
marker traffic. As shown in Fig. 8, parsing generates bursts
of marker activation. The vertical axis represents the number
of marker activation messages which occurred at each barrier
synchronization in the program as indicated on the horizontal
axis. While on average 11.49 messages are transmitted per
synchronization point, bursts of over 30 messages are typical.
When a burst occurs, the interconnection network must be
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able to absorb it, otherwise the sending processor will be
blocked. Since the critical path of execution is marker flow,
transmission latency needs to be minimized.

A cost-effective approach is to interconnect PE’s with mul-
tiport memories. Within a cluster they implement concurrent-
read-exclusive-write (CREW) access between functional units.
Externally, multiport memories provide a large buffering ca-
pacity. Latency is reduced by using DMA between multiported
memory regions.

III. HARDWARE DESIGN

A microprocessor-based design was selected to reduce de-
velopment time and risk .over custom VLSI while allowing
features such as propagation rules to be implemented in
software. The design of the processing array, interconnection
network, and central controller are described below.

A. Processing Array

The SNAP-1 array consists of 32 clusters of functional units
for instruction control, marker processing, and external com-
munication. Each functional unit is implemented as a Digital
Signal Processing (DSP) microprocessor chip to provide the
required MIMD capability described earlier.

Functional Elements: A block diagram of the SNAP-1
cluster is shown in Fig. 9. The functional elements consist
of a processing unit (PU), up to three marker units (MU’s),
and a communication unit (CU). Each functional unit has local

memory and accesses multiported memory regions for input,
output, and common data using the hardware design shown
in Fig. 10. The functional units execute three stages of SNAP
instruction processing.

The PU decodes instructions and acts as the master of
the cluster. First, an instruction which was broadcasted by
the controller is dequeued from the dual-port memory. As
shown in Fig. 10, Busy/Access control signals are exchanged
with the 2K x 32 dual-port to control opcode and operand
flow. The PU decomposes each instruction based on the
opcode type according to the emulation microcode in its
256K local memory. Marker-propagation tasks corresponding
to each instruction are placed in the marker processing memory
which is the primary shared-memory within the cluster. CREW
multiport memory control is provided by programmable array
logic. The PU continues processing until any of the following
occur: a COLLECT-NODE opcode is received, a COMM-END
barrier synchronization is requested, or the queue is full. The
PU then uses point-to-point control to serialize MU processing.
Each PU maintains its own circular instruction queue so up
to 64 instructions can be overlapped based on the workload
within each cluster. Tasks which the PU has enqueued in the
marker processing memory are then executed asynchronously
by one of the available MU’s.

The role of the MU is to process markers and search the
knowledge base. It maintains the knowledge base tables in
the marker processing memory and local SRAM as shown
in Fig. 10. Each MU performs global operations, such as
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Fig. 10. Functional unit design.

boolean and set/clear instructions, for 32 nodes at a time by
manipulating the marker status table. For example, when AND-
MARKER (m2,m3,m5) is executed, the rows corresponding
to m2 and m3 are fetched. A logical AND of these words
updates the status of m5 at the 32 nodes which correspond
to each bit. The MU executes PROPAGATE in a breadth-first
pattern by first retrieving entries in the marker status table
that correspond to the source marker. If a word is nonzero
then node ID’s are computed for all bits which are set. Each
node number provides an index into the relation table which
is searched for links as specified in the propagation rule in
local memory. If the destination node is within the cluster,
the MU proceeds to set the bit in the marker status table.
For each arithmetic or thresholding operation, the floating-
point value in the node table corresponding to that marker is
updated. If a destination node is outside the cluster then an
activation message is placed in the marker activation memory
for transmission by the CU.

The CU provides an interface between clusters and can also
task the MU’s with jobs. The CU transmits messages from
the local marker activation memory to other clusters via a
4-ary hypercube interconnection using independent primary
and secondary buses as shown in Fig. 10 to allow DMA

between the marker activation memory and interconnection
network (ICN) four-port memories: ICN-L, ICN-X, and ICN-
Y. Incoming messages are disassembled and relayed to the
destination cluster where they are enqueued in the marker
activation memory for execution by one of the MU’s.
Processor Selection: The choice of microprocessor was
based on requirements for emulating the SNAP instruction
set. In particular, single-cycle execution was needed because
data movement and bitwise logical operations comprised the
majority of the instruction count as shown in Fig. 6. Speech
and NLU applications also required high-speed floating-point
arithmetic to compute strength values of competing hypothe-
ses. As shown in Fig. 10, the Texas Instruments TMS320C30
DSP was selected to provide single-cycle 32-bit logical and
multiplication instructions along with on-chip support for
performance gathering and arbitration of multiport memories.
Intra-cluster Communication: As shown in Fig. 9, each
functional unit has access to multiported memories. They
eliminate bus contention problems while minimizing design
complexity and cost, but have the drawback of small capac-
ities. Thus two separate memory regions have been provided
for marker processing and activation. Integrated Device Tech-
nology’s four-port memories are used to provide simultaneous
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access from four independent ports without read contention
[11]. This creates a significant potential for parallelism, but
introduces the need for controlled memory write access within
the cluster. Three types of memory traffic must be regulated:

* Type-1 traffic consisting of variables shared within the
cluster such as bit-markers and locks within the marker
processing memory,

* Type-2 traffic consisting of microinstructions forwarded
by the PU to the MU’s and processing results returned by
the MU’s to the PU via the marker processing memory,
and . :

* Type-3 traffic consisting of information forwarded be-
tween clusters which is off-loaded from the MU’s to the
CU via the marker activation memory.

Multiport Access Control: A coherent access protocol must
be provided for each type of traffic. Since multiport memo-
ries allow concurrent reading of the same location, the read
portions of read-modify-write instructions may be executed
simultaneously. During access to a semaphore, each competing
process will claim ownership. Thus traditional operations such
as test-and-set are insufficient for critical sections required for
type-1 traffic.

The cluster arbiter in Fig. 10 resolves the problem by
assuring mutually ,exclusive access to a semaphore table.
Assume the PE using port #1 holds the semaphore. Before
the PE from port #2 can enter the critical section, it asserts
the arbitration request line shown in Fig. 10. The interlock
unit then delays execution of PE #2 until a grant is returned.
The arbiter serves asynchronous requests from each port,
assigning one grant at a time on a first-come-first-served basis.
If multiple requests occur simultaneously, then priority is
randomly assigned. Once processor #2 gains exclusive access
to the semaphore table, it tests and updates the in-use flag
for the desired critical section, and then relinquishes access to
the table. Memory references outside a critical section do not
involve the arbiter and are executed in parallel from all ports
without delay. This is the case with type-2 and type-3 traffic
by dividing the memory into separate queue areas and using
a single writer with single reader protocol.

B. Interconnection Network

SNAP-1 uses three independent networks to increase band-
width while handling synchronization and control require-
ments. Broadcast of SNAP instructions, transmission of marker
messages between PE’s, and gathering performance data occur
in parallel.

Global Bus: The global bus is used for broadcast and
collection between the controller and all clusters in the array.
As shown in Fig. 10, 32-bit data and 16-bit address lines are
provided from the SCP to the dual-port memories on each
array card. The upper address bits either select the destination
cluster or are masked out using a broadcast-control signal
asserted by the SCP. When broadcast is disabled, the memory
interface is bidirectional between the SCP and a single cluster
to allow both broadcast and retrieval from the array.

4-ary Hypercube Network: Messages between clusters are
routed through a 4-ary hypercube network. The CU’s are
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Fig. 11.

4-ary hypercube interconnection network.

interconnected by three different four-port memories as shown
in Fig. 11. The four clusters on each board communicate using
the L-memory which is dedicated to messages that are local
to that board. The other four-port memories, the X-memory
and Y-memory, are dedicated to off-board communication in
the z-dimension (horizontally in Fig. 11) and y-dimension
(vertically). High-output buffers are used to- drive memory
buses over the custom backplane at full speed. Because the
ICN memories are mapped into the address space of the
CU, their physical location is transparent including memories
on remote boards. The topology is similar to a spanning-
bus hypercube with spanning buses replaced by multiport
memories. Since each memory port is dedicated to a single
CU, there is no bus contention.

Routing is performed using the address of the destination
cluster. The 5-b address for each of the 32 clusters is paired to
form modulo-4 fields. For example, the CU of cluster number

Xk |
23 has address 23,0 = 1 01 11 ; and communicates
with all CU’s which vary by exactly one 2-b field, either X,
Y, or L. The number of transfers required is [log, N| =
O(log N). Thus 32 clusters can be accommodated with at

.most three intermediate hops.

The hypercube network supports 8-b parallel message-
passing in 80-ns from port to port. Messages are written
into mailboxes for the CU’s connected to each ICN memory.
The length of the message is 64 b and includes the marker,
value, function, destination address, first origin address, and
propagation rule. Since the microcode table of propagation
rules is downloaded at compile-time, each marker only needs
to carry a single-byte token indicating the function to be
performed. Thus, fixed-sized messages are used regardless of
the complexity of the propagation rule.

Performance Collection Network: A separate network is
desirable for gathering performance data at minimal lev-
els of perturbation. Otherwise, transmission over a primary
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ICN will degrade communication bandwidth. An independent
performance collection network is provided as part of the
instrumentation system. Each PE sends performance data to the
central collection board via 2-Mby/s serial links. When triggered
by a monitoring event, the PE under observation writes an 8-
b event code and 24-b status word to its serial-port register.
It then resumes execution without delay while the serial-port
controller shifts out the data to the network. When the data is
received at the central collection board, it is stored in a FIFO
queue along with an event timestamp for analysis or transfer
to mass storage.

C. Central Controller

Host overhead can significantly impact execution time when
semantic networks are processed on parallel machines [2], [3].
On SNAP-1, a dual-processor controller is used to offload
control functions from the host.

Program Flow Control: Instruction execution is pipelined
as shown in Fig. 12. The first two stages overlap control
with marker processing. The program control processor (PCP)
executes the application code to handle the loop and branch
flow in the application program. The SNAP instruction stream
is passed to the next stage via a FIFO queue implemented
by a dual-port RAM. The sequence control processor (SCP)
is responsible for instantiating operands in each SNAP in-
struction. It sequences and broadcasts the instructions for
parallel execution in the array. When the pipeline is empty,
housekeeping is performed including node management and
garbage collection.

Tiered Synchronization Scheme: The problem with synchro-
nization in a MIMD environment is the lack of a global
view of processor activity. The controller can provide this
perspective by monitoring utilization to detect if the system
is idle. However, processing migrates between PE’s as the
markers propagate. Thus the controller needs to determine
whether or not 1) all PE’s are idle and 2) any markers are in
transit in the ICN. Without requiring an acknowledgment, it is

Mukoerqum sach
clustor maintaine own MMC

Next i

ruction

Fig. 13. Synchronization protocol.

not possible to determine if the receiving MU has processed
the propagation. Thus a tiered algorithm is used to report
message production and synchronization data to the controller.

Each PE maintains message creation/termination counts at
runtime. The flowchart for the protocol is shown in Fig. 13.
Tiered process creation information is added to prevent false
detection while reducing message overhead by distinguishing
the levels of propagation. For example, the global sum of first-
level propagations created must be equal to the number of
first-level propagations consumed. SNAP-1 employs this tiered
protocol using the hardware support shown in Fig. 14. The
AND-tree provides a synchronization interlock signal (SIGI) to
the SCP when processors are idle using the general purpose
I/O (GP 1/O) lines from the CPU. The processors maintain a
marker message counter for each level to indicate if messages
are in transit. It is initialized to zero and is incremented upon
each process creation and decremented after each process
termination. If the processors are idle and the counters sum
to zero, then the propagation has terminated and the barrier
is complete.
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TABLE HI
InpuT TEXT FROM MUC-4 Corrus [15]

Input Text

S1: POLICE HAVE REPORTED THAT TERRORISTS TONIGHT
BOMBED THE EMBASSIES OF THE PRC AND THE
SOVIET UNION.

S2: THE BOMBS CAUSED DAMAGE BUT NO INJURIES.

S3: A CAR BOMB EXPLODED IN FRONT OF THE PRC
EMBASSY, WHICH IS IN THE LIMA RESIDENTIAL
DISTRICT OF SAN ISIDRO.

S4: MEANWHILE, TWO BOMBS WERE THROWN AT A USSR
EMBASSY VEHICLE THAT WAS PARKED IN FRONT OF
THE EMBASSY LOCATED IN ORRANTIA DISTRICT,
NEAR SAN ISIDRO.

IV. PERFORMANCE EVALUATION

Results from several large Al applications indicate that
SNAP-1 is able to exploit parallelism to reduce execution time
and slope of the scalability curve for the inferencing process.
Unless otherwise noted, experiments described below were
performed using a 16 cluster (72 processor) array with a 32
MHz controller and 25 MHz array PE clock speed.

Processing Time: A large NLU parsing and information
extraction application has been implemented on SNAP-1 [12].
It accepts newswire text as input and generates the meaning
of the sentence as output. Parsing is performed by passing
markers through a knowledge base about terrorism in Latin
America. The knowledge base contains approximately 12 000
semantic network nodes and 48 000 links. Results for parsing
time for the sentences in Table III are shown in Table IV.
Real-time performance is obtained and sentences can be parsed
more quickly than a human can read them.

Most sentences can be processed with around 400-900
SNAP instructions. Each instruction varies in execution time
from 50 ps for SET/CLEAR operations to several hundred
microseconds for PROPAGATE, depending on the length of
the path traversed. The maximum distances of any path of
individual propagations ranged from 10 to 15 steps. These
occurred during propagations along any of two different re-
lations. Parsing time has been broken down into time for
the phrasal parser (P.P. time) and the memory based parser
(M.B. time). The phrasal parser is a serial program that
executes on the controller and thus its processing time is
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TABLE IV
ExecutioN TiMES FOR MUC-4

SNAP  dmax P.P. 5K node M.B. 9K node M.B.

Input Instr. Prop.  Time (s) Time (s) Time (s)
S1 473 14 0.355 0.353 0.574
S2 384 10 0.324 0.325 0.327
S3 527 15 0.524 0.479 0.765
54 716 15 0.431 0.578 0.671
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Fig. 15. Results for continutiy 2-D mesh.

relatively independent of knowledge base size. The role of
the phrasal parser is to break down the input sentence into
subparts which can be handled by the memory-based parser.
Parsing times for the memory based parser are shown for two
knowledge base sizes (SK nodes and 9K nodes). The parsing
time increases gradually as more knowledge is added. The
overall execution time is roughly proportional to the sentence
length in words.

Performance was also measured for some basic inferencing
operations such as inheritance of attributes from concepts in
the knowledge base hierarchy [2]. As shown in Fig. 15, the
advantage of parallel propagation becomes more evident as
the size of the knowledge base is increased. Execution time
for CM-2 is less than 10 s [2] and SNAP-1 less than 1 s for
inheritance from root to leaf for up to a 6.4K node knowledge
base. The low execution time on SNAP-1 was due to the
MIMD capability to perform selective propagation whereas
CM-2 had to iterate between the controller and array after
each propagation step on the critical path. However, the slope
of the increase is higher for SNAP-1 than CM-2 and the lines
will cross when larger knowledge bases are used.

Processor Speedup: Speedup was measured under both
a-parallelism and [(-parallelism during propagation. Fig. 16
shows that to obtain speedup of 20-fold, a-parallelism on the
order of 100 source activations was required. For o = 1000,
nearly linear speedup was obtained up to the full processor
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configuration. Thus for typical values of , namely 128 <
a < 512, speedup ranges from 18-fold to 33-fold in a 72
processor configuration.

As opposed to a-parallelism, increasing the degree of -
parallelism above 16 had little impact on speedup as shown
in Fig. 17. These results demonstrate that, in general, accept-
able speedup rates can be obtained for marker-propagation
programs which have degrees of parallelism o,,e ~ 100 and
ﬂave ~ 5.

Instruction Analysis: The main technique used in SNAP-
1 processing is to utilize propagation parallelism to reduce
execution time. However, overhead must be controlled so that
the benefits of parallelism are not outweighed by an increase
in time for communication and synchronization operations.
Fig. 18 shows that propagation time was reduced by nearly
an order of magnitude by increasing the number of clusters
from 1 to 16. Even though some instructions took slightly
longer as the number of PE’s was increased, they contributed
only second-order effects since the amount of time required
for other operations was much smaller by comparison.

While Fig. 18 showed changes in the instruction profiles for
an increase in the number of processors, and Fig. 19 shows
the effect of increasing knowledge base size. It shows that in
general propagation dominates. Furthermore, the relative time
spent on nonpropagation instruction decreases slightly as the
knowledge base grows. Collection is the next most significant
operation in terms of running time and more improvement
could be made using interleaved memories at the controller.

However, there is some increase in the total number of
propagations required as shown in Fig. 20. This occurs because
more irrelevant candidates become activated which must be
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Fig. 17. Speedup obtained for 3-parallelism.

removed by propagating cancel markers during the multiple
hypotheses resolution phase. Since large knowledge bases will
add candidates which are not directly relevant, the number of
propagations is not expected to exceed much more than 5000.
Most other operations remained relatively constant with pro-
cessing dominated by marker set/clear (12 000 instructions),
boolean marker operations (11 000 instructions), and data
collection (1000 instructions).

Processing Overhead: The components of parallel over-
heads in a marker-propagation system can be grouped into
four categories:

1) instruction broadcast time incurred during the configu-

ration phase,

2) message communication time between PE’s required

during the propagation phase, '

3) barrier synchronization time during the transition from

the propagation phase to the accumulation phase, and

4) result collection time required during the accumulation

phase.

The influence of each component of parallel overhead is
shown in Fig. 21. Due to the global bus, the broadcast overhead
is small and constant. The overhead for message communica-
tion grows slowly, proportional to log, N for an array of N
clusters. The barrier synchronization overhead is proportional
to the number of processors, but the dependency is small so
the degradation is acceptable. The most expensive operation is
COLLECT-NODE which is proportional to the number of clusters
used. The principle reason for this is overhead incurred in
collecting data from separate dual-port memories within each
cluster. We are currently providing feedback to the algorithm
design to reduce the frequency of collection.



DEMARA AND MOLDOVAN: SNAP-1 PARALLEL Al PROTOTYPE 853
M 1 Cluster
1000000 2 Cluster
’g B 4Cluster
== 100000
g 8 Cluster
=
,§ 10000 B 16 Cluster
2 3
i
1000
100 [: 4 (-4 @ 2
R T I R
Eg 12 ‘a g .égagg |§8: ) l:, 22 ,g'
, 3,5,
Eggsgg .Egg's'gzggﬁlﬁggg‘gg,
EEEE IS H TR T
$E 3
SNAP-1 Opcode
Fig. 18. Components of execution time as PE’s increased.
e ATC Domain
o N =17988, L = 16592, Diam = 6 1600
e Input Sentence: “Tiger-Six Eighteen reduce speed to one-five-zero.” 4
1400 i
350 . . teol . . tpmp - thool D tw toreh 1200 Result Collection i .
y
— 3004 e
2 1000 o ~. ]
B 250 § e N
"‘g’ 200 :g; 800 /‘/ Message Communication
€ o & / /
e AN
5 100] / \ /
400
M504 Bariés Synchrorfization
o4 200 "
3000 4000 5000 6000 7000 8000 o i
Knowledge Base Size [nodes] o Instruction Broadcast
. 2 8
Fig. 19. Components of propagation and accumulation phases. 4 6 10 12 " 16
Array Size (Clusters)
000 Fig. 21. Overheads of parallelism in a marker-propagation architecture.
5500 [ 1 While we have obtained encouraging results for speech,

g &

8

Propagation [instructions)

000 1 1 1 2 1 L ‘ s
1000 2000 3000 4000 5000 6000 7000 8000 9000
Knowledge base size [nodes]

Fig. 20. Increase in number of propagate instructions.

V. CONCLUSION

Despite the complexity of Al applications, parallel process-
ing can be used to significantly improve the performance of
knowledge processing tasks. An effective approach is to begin
with a parallel model of reasoning such as marker-propagation.
Architectural features are then adapted to suit the processing
requirements of the paradigm.

NLU and other applications, marker-propagation is not ideal
for all Al applications, especially those requiring backtrack-
ing. Other limitations of our prototype include a single-user
operating system, a restricted knowledge base size, and the
need for parallel 1/0. These issues will be addressed in the
next generation machine which will provide multitasking array
controllers and virtual memory using parallel attached disks.

REFERENCES

[1] M. Chung and D. Moldovan, “Memory-based parsing with integrated
syntactic and semantic analysis,” Tech. Rep. PKP Lab 91-10, Dep.
EE-Systems, Univ. of Southern California, 1991.

[2] S. Chung and D. Moldovan, “Modeling semantic networks on the
Connection Machine,” J. Parallel and Distributed Comput., vol. 17,
no.1 and 2, Jan./Feb. 1993.

[3] M. Evett, J. Hendler, and L. Spector, “PARKA: Parallel knowledge
representation on the Connection Machine,” Tech. Rep. UMIACS-TR-
90-22, Univ. of Maryland, 1990.

[4] S. E. Fahlman, NETL: A System for Representing and Using Real-World
Knowledge. Cambridge, MA: MIT Press, 1979.

[5]1 3. A. Hendler, Integrating Marker-Passing and Problem Solving:
A Spreading Activation Approach to Improved Choice in Planning.
Lawrence Erlbaum Associates, 1988.



854

(6]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 8, AUGUST 1993

J. Kim and D. Moldovan, “Parallel classification for knowledge rep-
resentation on SNAP,” in Proc. 1990 Int. Conf. Parallel Processing,
1990.

Dan 1. Moldovan (5°76—M’78—-SM’91) was born
in Sibiu, Romania. He received the M.S. and Ph.D.
degrees in electrical engineering and computer sci-

[7] H. Kitano, “DM-Dialog: An experimental speech-to-speech dialog trans- ence from Columbia University, New York, NY, in
lation system,” IEEE Comput., vol. 24, no. 6, pp. 36—50, June 1991. 1974 and 1978, respectively.

[8] H. Kitano, D. Moldovan, and S. Cha, “High performance natural He was a member of the Technical Staff at Bell
language understanding on the semantic network array processor,” in Laboratories from 1976 to 1979, after which, he
Proc. 1991 Int. Joint Conf. Al, Aug. 1991. took on a position as an Assistant Professor of

[9] S. Kowalski, “The SNAP Simulator and Development Environment Electrical Engineering at Colorado State University
Version 6.2,” Tech. Rep. PKP Lab 92-5, Dep. EE-Syst., Univ. of from 1979 to 1981. He is currently at the University
Southern California, Oct. 1992, . ., of Southern California teaching and performing

[10] C. Lin and D. Moldovan, “SNAP Simulator Result” Tech. Rep. PKP  1egeqrch as an Associate Professor of Computer Engineering. He took a one
Lab 90-5, D“ep. EE-Syst., Univ. ,Of Southern Cahf(’))rma, 1990. year sabbatical leave from 1987 through 1988 to work at the National Science

(1] i\hll{zi 241;:]?"[ I'l‘ggg“c""“ to IDT’s FourPort RAM,” Application Note  Eoundation, Washington, DC, as Program Director for Experimental Systems

P : . - . . in the Division of Microelectronics and Information Processing Systems. His

[12] gcn]\q%:(s)::::’t i“ C:fa’s %A?’h:;sgt; ﬁ ii?id?(::rkiz'll}é f’l’mi;a;‘:osc' I;“(;‘::tll; primary research interests are in the fields of parallel processing and artificial

> > . 1 h h: hed 75 5
Message Understanding Conf. San Mateo, CA: Morgan Kaufmann, intelligence, in which he has published over 75 papers
1992.

(13] D. Moldovan, W. Lee, and C. Lin, “SNAP: A marker-passing archi-
tecture for knowledge processing,” Tech. Rep. PKP Lab 90-4, Dep.
EE-Syst., Univ. of Southern California, 1990.

[14] M. R. Quillian, “Semantic memory,” Ph.D. dissertation, Carnegie Insti-

tute of Technology (Carnegie Mellon University), 1966.

Ronald F. DeMara (S°87-M’93) received the B.S.
degree in electrical engineering from Lehigh Uni-
versity in 1987, the M.S. degree in electrical engi-
neering from the University of Maryland, College
Park, in 1989, and the Ph.D. degree in computer
engineering from the University of Southern Cali-
fornia in 1992.

From 1987 through 1989, he was an Associate
Engineer at IBM Corporation, Manassas, VA, where
he was involved in the design of embedded and
complex systems. He is currently an Assistant Pro-

fessor in the Department of Electrical and Computer Engineering, University
of Central Florida, Orlando. His research interests are in the areas of parallel
processing, artificial intelligence, and computer architecture.

a



This document is an author-formatted work. The definitive version for citation appears as:

R. F. DeMara and D. 1. Moldovan, “The SNAP-1 Parallel Al Prototype,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 4, No. 8, August, 1993, pp. 841 — 854. ISSN: 1045-9219
Reference Cited:14 CODEN: ITDSEO Inspec Accession Number: 4582736

Online:

http://ieeexplore.ieee.org/ield/71/6136/00238620.pdf?tp=&arnumber=238620&isnumber
=6136&arSt=841&ared=854&arAuthor=DeMara%2C+R.F.%3B+Moldovan%2C+D.1.%
3B




