
Improving Power-awareness of Pipelined Array Multipliers using 2-Dimensional
Pipeline Gating and its Application on FIR Design

Jia Di, J. S. Yuan and R. DeMara

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, Florida 32816, U.S.A.
jdi@pegasus.cc.ucf.edu, yuanj@mail.ucf.edu, demara@mail.ucf.edu

Abstract: Power-awareness indicates the scalability of the system energy with changing
conditions and quality requirements. Although Boolean multipliers have natural power
awareness to the changing of input precision, deeply pipelined designs do not have this
benefit. A 2-dimensional pipeline gating scheme is proposed in this paper to improve the
power awareness in these designs. This technique is to gate the clock to registers in both
vertical direction (data flow direction in pipeline) and horizontal direction (within each
pipeline stage). For signed multipliers using 2’s complement representation, sign
extension, which wastes power and causes longer delay, could be avoided by
implementing this technique. Very little additional area is needed so that the overhead is
hardly noticeable. Simulation results show that an average power saving of 65-66% and
latency reduction of 44-47% can be achieved for multipliers under equal input precision
probabilities. An application of power-aware multipliers on FIR design is also included.

Index terms – power-awareness, 2-dimensional pipeline gating, array multiplier

1. Introduction

Due to the trend of portable communication and computing devices and the dramatic

decrease of feature size, low power technique has long been a major interest of IC

designers. Many low power techniques have been developed to match different circuits

and conditions [1]. Bhardwaj et al., [2] introduced a new measurement, power-awareness,

to indicate the ability of the system power to scale with changing conditions and quality

requirements. Scalability is an important figure-of-merit since it allows the end user to

implement operational policy [2], just like the user of mobile multimedia equipment

needs to select between better quality and longer battery operation time. The examples

include that a well-designed system must gracefully degrade its quality and performance

as the available energy resources are depleted [3]. In such systems like digital camera,

mailto:jdi@pegasus.cc.ucf.edu
mailto:yuanj@mail.ucf.edu
mailto:demara@mail.ucf.edu

users are allowed to select certain parameters like resolution. After user selects a

resolution, there will be a short period of time to allow the system to set up. During this

period, the CPU will configure itself and set up the control to the whole system. Such

parameters will not change frequently. After each change, the new value will remain

stable for sometime. So for a power aware system in these applications, on-the-fly control

is not needed.

The power dissipation in CMOS circuit has three components: switching power,

short-circuit power, and leakage power. Among these components, switching power is

the dominant figure. When a node in circuit is switching, the load capacitance on this

node will dissipate power due to the charging/discharging operation. If the switching

activity could be reduced, the total power dissipation will be saved. For Boolean non-

pipelined multipliers, starting from reset-to-zero state, low input precision calculation

(like 0001×0001) dissipates much less power than high input precision calculation (like

1111×1111) because there are much less switching activities in internal nodes. Here the

input precision is defined as the number of useful input bits (without padded 0’s in high

order bits) during the calculation. For example, the input precision of 0101 is 3, while the

input precision of 1000 is 4. So Boolean non-pipelined multipliers are said to have

natural power awareness to the changing of input precisions.

Deeply pipelined multipliers are used in such systems that need either high

throughput or accurate timing control, like retimed FIR filters. In pipelined multipliers,

each pipeline stage contains a number of registers. Clock is connected to each register. In

each clock cycle, a transition will occur on the clock input node of each register. This

transition is independent of input data and will cause power dissipation even when the

current input data of the register is the same as the current data output. Since in deeply

pipelined designs, the number of registers is much larger than that of other elements,

these designs do not have the natural power awareness to the changing of input precision

due to the large portion of power dissipated on clock input nodes. The power dissipation

in deeply pipelined multipliers is nearly stable under different input precisions. Figure 1

shows the average power dissipation under different input precisions of a deeply

pipelined 16-bit unsigned array multiplier.

For signed multipliers using 2’s complement number representation, this problem is

even worse. The Baugh-Wooley algorithm for signed multiplication is used as an

example in this paper. The equation of Baugh-Wooley algorithm for an n×n

multiplication is shown in (1).

() ()

∑∑

∑∑
−

−+
−

−
−+

−

−
−

−−

−
+−

−−−−
−

⋅⋅+⋅⋅+

⋅+++⋅+++−=×

2

0

1
1

2

0

1
1

2

0

1
11

2

0

22
1111

12

22

2222

n
ni

in

n
ni

in

n
n

nn

n
ji

ji
n

nnnn
n

baab

babababaBA
 (1)

The tablet form of a 4×4 multiplication process using modified Baugh-Wooley

algorithm is shown in Fig. 2. X and Y are 4-bit operands with the first bit as sign bit, and

S is the 7-bit output. There are two major differences between Fig. 2 and 4×4 unsigned

multiplication process shown in Fig. 3. One is that there are six inversed partial products

in Fig. 2 but none in unsigned multiplication. The other is that there is an individual term

“1” to be added to produce S4 in Fig. 2 but none in Fig. 3.

These two differences bring reconfiguring problem for signed multipliers to operation

under different input precisions. In unsigned multiplier, if two operands with less

precision than the designed multiplier length to be multiplied, it will not cause any

problem. For example, if using a 4×4 unsigned multiplier to calculate 101×011, just do it

as 0101×0011. But in signed multiplier, there are some inversed terms inside. If these

terms are not the corresponding partial products that should be inversed, incorrect result

will occur. Also, the individual “1” also needs to appear on correct place. For example, if

using the signed multiplier to multiply two signed operands 101 and 011, calculating

them as 0101 and 0011 will cause wrong result. The reason is for a 3×3 signed

multiplication process, X2Y0, X2Y1, X1Y2, and X0Y2 should be inversed and the individual

“1” should appear in the column containing X2Y1. So unlike unsigned multiplier, signed

multiplier cannot be automatically reconfigured for different input precisions.

Commonly used method to solve this problem is sign extension. Sign extension is to

repeat the sign bit to fill the vacant high order bits in the operand until the length of the

operand matches the length of multiplier. For the example in last paragraph, instead of

0101×0011, 1101×0011 should be used. The problem of sign extension method is that the

extended sign bits are totally redundant and will cause more power and delay. When the

difference between the length of multiplier and the length of operands is large, for

example, calculating signed number 11×11 using a 16×16 multiplier, a lot of extended

bits are in logic high. These bits will cause significant redundant power dissipation. The

use of sign extension will also make the signed multiplier lose the natural power

awareness as that exists in unsigned multiplier.

To solve these problems and improve the power awareness of deeply pipelined

multipliers, a novel technique, 2-dimensional pipeline gating, is proposed in this paper.

This technique is to gate the clock to the registers in both vertical direction (data flow

direction in pipeline) and horizontal direction (within each pipeline stage). The additional

area cost to implement this technique to design array multipliers is very little and the

overhead is hardly noticeable. The effectiveness will increase with the growth of the

multiplication length. Simulation results show that an average power saving of 66% and

an average latency reduction of 47% can be achieved for 16-bit unsigned array multiplier

using 2-dimensional pipeline gating technique under equal input precision probabilities.

And these numbers are 65% and 44%, in terms of average power saving and latency

reduction, respectively, for 16-bit signed array multiplier. At the end of this paper, an

application of these power-aware multipliers on FIR design is also included.

2. Previous Work

Several techniques have been developed to reduce the power dissipation in

multipliers. Huang et al., [4] introduced a 2-dimensional signal gating method for low

power array multiplier design. This approach provides gating lines for both multiplicand

and multiplier operands. By deactivated different regions in the multiplier, power

dissipation could be reduced. This approach is for non-pipelined array multiplier and

cannot be extended to pipelined design because it cannot reduce the switching activities

in registers. Bhardwaj et al., [2] introduced a selective method to design power-aware

multiplier. This method is also for non-pipelined designs and brings high area cost. Meier

et al., [5] introduced a polarity-inversion technique for the adders in signed multiplier.

This technique does not solve the sign extension problem so that the multiplicands in

lower precision still cannot be processed directly. Lee et al, [6] introduced a reduced

architecture based on the redundancy of lower order bits in some DSP applications. This

technique is not for general use and does not solve the sign extension problem in signed

multiplier.

Kim et al., [7] introduced a clock gating method to design reconfigurable multiplier.

This method is to selectively disable pipeline stages by gating clocks and to select correct

results by multiplexers. Very little additional area cost is needed (only several AND2

gates and multiplexers) to implement this technique. Good power and latency saving can

be achieved due to the reduced switching activities of registers in corresponding pipeline

stages. The outputs of the multiplier are selected from different stages to ensure the

correctness and obtain latency reduction. The basic idea of this method is shown in Fig.

4. This technique can be seen as 1-dimensional pipeline gating because it only considers

gating clocks to unnecessary stages along data flow direction. As the computational

width of multiplier growing from 4-bit, 8-bit, to 32-bit and 64-bit, 1-dimensional pipeline

gating is far from enough.

As shown later in this paper, 2-dimensional pipeline gating is able to achieve much

more power saving thus greatly improves the power awareness in pipelined multipliers.

Also, 2-dimensional pipeline gating only needs the same additional hardware as 1-

dimensional technique, and has the same latency reduction. For a 16-bit pipelined array

multiplier, if the probabilities of all input precisions are assumed to be equal, 2-

dimensional pipeline gating can have 66% power saving over the original design, while

1-dimensional technique only has 25.7%. In the rest of the paper, 2-D pipeline gating is

used to represent 2-dimensional pipeline gating technique while 1-D pipeline gating is

used for 1-dimensional pipeline gating.

3. 2-Dimensional Pipeline Gating Technique

As stated before, 2-D pipeline gating is to gate clock to the registers in both vertical

direction (data flow direction in pipeline) and horizontal direction (within each pipeline

stage), while 1-D pipeline gating technique gates clock in vertical direction only. The

principle of 2-D pipeline gating technique is shown in Fig. 5.

In the 1-D pipeline gating scheme shown in Fig. 4, the system clock is gated by

different gating signals to generate sub-clocks. Each sub-clock is connected to one

pipeline stage and drives all registers in that stage. If under a certain case the results

could come directly from stage 3, then the Gating Signal 4 is set effective and Clock 4 is

disabled. The output of register 3 is then bypassed through a multiplexer, which is also

controlled by the clock gating signals, to the system output. Since the Clock 4 is disabled,

the total number of switching is reduced. Also, since the system output now comes from

stage 3 instead of stage 4, the pipeline latency is reduced.

In a real pipeline, the data going through a register in a certain pipeline stage is most

likely to correlate with the data going through the register in the previous stage. So if

under a certain case one pipeline stage could be disabled, some of the registers in its

previous stage may also be redundant and could be disabled too. This happens especially

in such pipelines in which only some data are processed in this stage, others are just

passed to the next stage. Computer arithmetic circuits like multipliers and adders always

contain such pipelines [8]. By applying 2-D pipeline gating technique to these circuits,

significant power saving can be achieved.

In the 2-D pipeline gating scheme shown in Fig. 5, when under a certain case pipeline

stage 4 could be disabled, some of the registers in previous stages (the first two registers

in stage 1, 2, and 3) could also be disabled if the data going through them was to be

processed only in stage 4 thus is no longer useful. These registers can be disabled by

using Clock 4 as their clock inputs. For the same reason, if stage 3 needs to be disabled,

the third and fourth registers in stage 1 and 2 could also be disabled. The total number of

transition is further reduced compared to that in 1-D pipeline gating system. As the

number of registers in each stage as well as the total number of stages in the pipeline

(pipeline depth) increase, this further benefit becomes more and more significant. As

shown later in this paper, the 16-bit unsigned multiplier using 2-D pipeline gating has

more than 54% power saving over the same multiplier using 1-D technique. And this

number is 55.6% for signed multiplier.

4. Power-aware Unsigned Array Multiplier Design

To design power-aware pipelined multiplier using 2-D pipeline gating technique,

firstly the multiplication process should be examined. The 4×4 unsigned multiplication

process is shown in Fig. 3.

In Fig. 3, X and Y are inputs while S is the output. When the input precision is 4, for

example, calculating 1111×1111, S is generated based on all inner partial products. If the

input precision is 3, for example, calculating 0111×0111, the partial products containing

X3 or Y3 are all zero (these products are enclosed by a circle in Fig. 3), and S only has six

digits instead of eight. From a reset-to-zero state, there is no need to let registers

propagate these zeros because the reset state of register is zero. So clocks connected to

these registers can be disabled. If the input precision is 2, for example, calculating

0011×0011, the partial products containing X2 or Y2 (the ones enclosed by a rectangular

in Fig. 3) can also be disabled. If the input precision is 1 as 0001×0001, the partial

products enclosed by an ellipse in Fig. 3 containing X1 or Y1 can be disabled. As the

length of output S decreases, the number of necessary pipeline stages is also reduced. The

circuit structure of a 4-bit pipelined unsigned array multiplier using 2-D pipeline gating

technique is shown in Fig. 6.

In Fig. 6, “HA” represents half adder; “FA” represents full adder; “Reg” represents

register; “n-1” represents n-to-1 multiplexer. Current input precision information is

provided through four gating signals from CPU. These signals are combined with system

clock to generate four sub-clocks, which are connected to the corresponding registers in

all pipeline stages. Under a certain input precision, one or more sub-clocks may be

disabled. The registers connected to these sub-clocks will not function during the

calculation. The multiplexers select correct outputs from corresponding stages. For

example, while performing 0001× 0001, only S0 has useful value. This value is selected

from the stage right after the AND matrix. Except for this register and the two registers in

the first stage for X0 and Y0, all other registers do not function because their clocks have

been disabled. The power dissipation is reduced significantly. The output S0 is from the

first stage after the AND matrix instead of the eighth one, thus the pipeline latency has

also been reduced by a factor of eight.

The detection of current input precision is a typical interrupt-response scheme for a

CPU. For example, when the user of digital camera pushes the button to reduce the

resolution, an interrupt is sent to the CPU. Then CPU reads the corresponding register

and sets up the clock gating signals based on the register value. So the additional area

cost is very low, just a few AND gates and some multiplexers are needed. The clock

gating signals are also used as the control signals of these multiplexers.

Based on the discussion above, a set of unsigned array multipliers were designed. The

computation lengths of these multipliers are 4-bit, 8-bit, and 16-bit, respectively. To

compare between different numbers of pipeline stages, the 16-bit multiplier was pipelined

into 8, 16, and 32 stages. Both 1-D and 2-D pipeline gating techniques have been applied

to each multiplier. These multipliers were synthesized by Synopsys Design Analyzer and

simulated in Powermill. During the simulation, the multipliers were given data in

different input precisions. The power dissipation were recorded and compared. The

simulation result comparisons are shown in Fig. 7 to 12.

In Fig. 7 to 12, “Original” represents the simulation data of the unchanged pipelined

designs; “1-D” and “2-D” represent the simulation data of the designs using 1-D and 2-D

pipeline gating techniques, respectively.

From these figures, several observations are made:

1. Among the three multipliers in each figure, the designs using 1-D and 2-D

pipeline gating techniques have lower power dissipations compared to the

original designs under different input precision.

2. Among all three multipliers, the designs using 2-D pipeline gating techniques

show significant power savings over the corresponding designs using 1-D

pipeline gating technique. This advantage is not large in 4-bit multiplier (14.3%

under equal input precision probability), but becomes much greater in 8-bit

multiplier (41.5% under equal input precision probability), and is quite

significant in 16-bit multiplier (54.4% under equal input precision probability

for 32-stage design). As shown in Fig. 7 to 12, the data of designs using 1-D

pipeline gating technique show convex curves while that of designs using 2-D

pipeline gating technique show concave curves. The reason for this difference is

that as the length of multiplier goes up, the number of registers in horizontal

direction as well as in vertical direction increases sharply. 1-D pipeline gating

technique only deals with the vertical pipeline stage increment, while 2-D

pipeline gating technique controls the registers in both directions. Actually, the

largest difference between these two techniques occurs when the current input

precision is half the designed precision. Under this case, there are lots of

registers in middle pipeline stages that are propagating redundant zeros. 1-D

technique cannot deal with them. But 2-D pipeline gating technique has the

ability to disable them accurately.

3. The overhead of implementing 1-D and 2-D techniques are the same. It is very

small (0.03% in 32-stage 16-bit multiplier).

4. Peak power dissipation affects the system reliability in operating under power

constraints. 1-D and 2-D pipeline gating techniques both have the ability to

reduce system peak power dissipation. But the same as average power

dissipation, 2-D technique has great advantage over 1-D technique under

different input precisions.

5. When the number of pipeline stages is reduced, the average power savings of 1-

D and 2-D pipeline gating designs are also reduced. The reason is that the

number of registers is reduced with the decrement of pipeline stages. The

number of redundant clock switching in the original design is also reduced. So

the power saving percentage becomes less. But from Fig. 11 and 12, 2-D designs

still show significant average power savings over the original designs and 1-D

designs.

6. In Fig. 12, the curve of 1-D design looks step-like by every two data. The reason

is for 8-stage pipelined array multiplier, each pipeline stage outputs four bits of

the final calculation result. So every input precision decrement by two will cause

one pipeline stage to be disabled. For example, 16×16 and 15×15 both need all 8

stages to give the final result; but 14×14 and 13×13 only need 7 stages. For 2-D

design in the same figure, with every decrement of input precision, there are

always some registers becoming redundant and are disabled. Although the

number of stages is the same as 1-D design, the actual number of registers

working within each stage is quite different. That’s why the curve of 2-D design

does not look step-like.

The pipeline latency reduction of the designs using 1-D and 2-D pipeline gating

techniques is the same. The comparison data of latency saving as well as other data are

shown in Table 1 and 2.

5. Application of 2-D Pipeline Gating Technique to Design Power-aware Signed

Array Multiplier

To avoid the sign extension problem, different research and methods have been

proposed. A selective method is used in this section to make the signed multiplier have

good power awareness. Several important analysis and modifications beside the 2-D

pipeline gating technique have to be made. The pipeline stage right after the AND matrix

stage of a 4×4 power-aware signed multiplier is shown in Fig. 13.

In Fig. 13 the partial products X3Y0, X3Y1, X3Y2, X0Y3, X1Y3, and X2Y3 are inversed by

connecting to NAND gates. Another input (not shown in Fig. 13) called const_in is added

to the proper adder as the individual “1”. Inner products X2Y1, X1Y2, X0Y2, X2Y1, X0Y1, and

X1Y0 are connected to 2-to-1 multiplexers with their inversions. These multiplexers are

controlled by different control signals indicating the current input precision. These

signals are just as the clock gating signals issued by CPU. The outputs of these

multiplexers along with all other outputs of AND/NAND gates are connected to the

registers forming next pipeline stage. These registers, just as designing power-aware

unsigned array multipliers, are connected to different gated clocks controlled by clock

gating signals based on current input precision.

When current input precision is 4×4, all multiplexers are switched to the non-inversed

data; all four types of clocks are enabled; the const_in bit is set to logic high. Then the

multiplier is able to perform 4×4 signed multiplication as shown in Fig. 2.

When current input precision is 3×3, the multiplexers for X2Y1, X1Y2, X0Y2, and X2Y1

are switched to their inversed data; CLK-3 is disabled; the const_in bit is set to logic low.

Note that the clock connected to the output of NAND gate whose input is X3Y0 is CLK-2,

not CLK-3. Since X3 and Y3 are all zero, this NAND gate will generate logic high. This

“1” becomes the individual “1” needed for 3×3 multiplication.

When current input precision is 2×2, the multiplexers are all switched to the inversed

data; both CLK-2 and CLK-3 are disabled; the const_in bit is still logic low. For the same

reason, the clock connected to the output of NAND gate whose input is X2Y0 is CLK-1,

not CLK-2. This bit becomes the individual “1” for 2×2 multiplication. Note, there is no

1×1 multiplication for signed multiplier because there has to be a sign bit.

By applying the modifications above, the 4×4 pipelined signed multiplier is able to

perform 3×3 and 2×2 multiplication without sign extension. During 3×3 and 2×2

multiplication process, the gated registers will not function, so that the power dissipation

is saved. Also, the redundant power dissipation caused by sign extension is avoided. The

same as in applying 1-D or 2-D technique on unsigned multipliers; the output bits can be

selected from different pipeline stages prior to the last stage. So the pipeline latency can

also be reduced.

Based on the technique described above, just as the testing scheme of unsigned

multiplier, nine pipelined signed array multipliers with lengths of 4-, 8-, and 16-bit are

designed as original architecture, the designs using 1-D pipeline gating technique, and the

power-aware designs using 2-D pipeline gating technique. All designs are also

synthesized by Synopsys Design Analyzer, and then simulated in Powermill. The results

comparisons are shown in Fig. 14 to 17.

From Fig. 14 to 17 several observations could be made:

1. The same as in unsigned multiplier results, the 2-D designs have great advantage

over the other two groups in terms of average and peak power dissipation. There

are two reasons for this difference: one is the same as in unsigned multiplier

design, which is, 2-D technique not only gates the redundant pipeline stages like

1-D technique does, but also disables the unused registers within the useful

pipeline stages. The other reason is the use of sign extension brings more

switching to 1-D designs. But the 2-D power-aware designs do not have this

problem. In 16-bit multiplier, the 2-D design has 55.6% average power saving

and 55.8% peak power saving over the design using 1-D technique.

2. The overheads of the 2-D designs are a little larger than that in unsigned

multiplier. But they are still very small, only 0.23% in 16-bit design.

The latency reductions of the 2-D designs are the same as those designs using 1-D

technique. The comparison in data form is shown in Table 3.

6. Application of Power-aware Multipliers on FIR Filter Design

As an application of power-aware multipliers, a high-throughput, power-aware FIR

filter design method is introduced in this section. FIR filters are essential elements in

DSP systems. There are different implementations of FIR filters. To shorten the critical

path in order to achieve high throughput, Data-Broadcast structure is used in this paper

[9]. A 3-tap Data-Broadcast FIR filter is shown in Fig. 18. There are three multipliers and

two adders. The input-output relationship is shown in (2).

() () () ()21 −⋅+−⋅+⋅= nxcnxbnxany (2)

The dashed line in Figure 18 shows the critical path. The length of this critical path is

, where TAM TT + M is the time taken for multiplication and TA is the time taken for

addition. The period of operating clock must be longer than this length. This results in a

very low clock rate. If this FIR is used in a real-time application, the sampling frequency,

fsample, must be less than the operating frequency of this FIR filter, that is

AM
sample TT

f
+

≤
1

 (3)

To improve the throughput of the FIR filter, one commonly used method is to

pipeline the multipliers. Since the multiplication time TM is usually much larger than the

addition time TA, much shorter critical path length can be achieved by carefully balancing

the pipeline stages. Figure 19 shows a pipelining scheme for FIR filter.

In Fig. 19, each multiplier in Fig. 18 is divided into two pipeline stages. A series of

registers is added between the two sub-multipliers. The time taken by each stage of the

multiplier is denoted by TM1 and TM2, respectively; and the delay time in the added

registers is denoted by TDR. If the pipeline is perfectly balanced so that

, the critical path shown as dashed line in Fig. 17 is much shorter

than that of Fig. 18.

AMDRM TTTT ++= 21

By pipelining multipliers can only achieve limited throughput improvement. Assume

the number of pipeline stages that the multipliers in Fig. 19 can be divided to approaches

infinity; the slowest stage will contain the adder and a very small part of multiplier. So

the length of critical path is approaching TA. When the word length of input data and

coefficients is short, TA is small enough for the FIR to operate in high sampling

frequency. In recent years, the word length of FIR filter has been growing from 8-bit, 16-

bit, up to 32-bit and 64-bit. Under long word length condition, addition also takes

significant time. Instead of pipelined multipliers, adders become bottleneck in these FIR

filters under such conditions.

To further improve throughput of FIR filters, the critical path in addition process

needs to be shortened too. So adders, as well as multipliers, need to be pipelined.

Pipelining one adder changes the timing relationship between the two inputs of the next

adder. Unlike pipelining multipliers, which doesn’t change the relative timing sequence

between adder inputs, pipelining adders just likes adding delay elements to the paths

between adders. So additional delay elements need to be added between next adder and

its corresponding multiplier. The goal is to maintain the timing difference between the

two inputs of the adder as one clock cycle. The revised FIR filter structure is shown in

Fig. 20.

For a balanced pipeline design, each pipeline stage takes almost the same calculation

time. By fine-grain pipelining multipliers and adders, very high throughput can be

achieved. For an N-tap FIR filter, if the multipliers are divided to M pipeline stages, and

the adders are divided to P pipeline stages, the FIR filter structure is shown in Fig. 21.

Along with the achieved high throughput, pipelining multipliers and adders also

causes two problems. Firstly the power dissipation will become larger because some

registers are added between the pipeline stages; secondly the total latency from the input

to output also becomes larger because the pipelined addition paths are longer. To solve

these problems, 2-D pipeline gating technique is used to design power-aware multipliers

and adders. These elements are able to scale their power and latency with the changing of

input precision. To maintain the correctness of the calculation, 2-D pipeline gating

technique needs also be implemented on the additional delay elements to select output

from the corresponding pipeline stage thus keep the timing relationship. Based on these

discussions, a set of 4-tap FIR were designed and tested. The word length of input data

and coefficients are all 16-bit. So the multipliers are 16×16 and the adders are 32×32.

These designs are synthesized by Synopsys Design Compiler and then simulated in

Powermill. The simulation results are shown in Fig. 22-24. Several discussions are listed

as below:

1. The throughput of the pipeline is determined by the slowest stage. Since

multipliers and adders are fine-grain pipelined, the delay in each pipeline stage

is very small. The technology used in synthesis process is 0.24µm static CMOS

logic. Simulation results show that the designed FIR filter is able to work under

1.25GHz clock rate. If using dynamic gate or transistors of smaller channel

length, even higher throughput is expected.

2. The same as in multipliers design, the average power dissipation as well as peak

power dissipation are significantly reduced by applying 2-D pipeline gating

technique. The power reduction rate of 2-D design is much better than that of 1-

D design.

3. On reducing pipeline latency, 1-D and 2-D gating techniques have the same rate

of advantage. By selecting the correct outputs from corresponding stages, the

total pipeline latency is significantly reduced.

7. Conclusion

A novel low power design technique, 2-dimensional pipeline gating, is proposed in

this paper. This technique is explained by designing both signed and unsigned power-

aware pipelined multipliers. For signed multipliers, it also avoids the sign extension

problem while processing low input precision multiplicands. The relation and difference

between this 2-D technique and existing 1-D technique are discussed. A set of array

multipliers is designed using both techniques. Simulation results show that 2-D pipeline

gating technique has great advantage over 1-D technique in terms of average and peak

power savings while maintaining the same latency reduction rate. 2-D pipeline technique

can be applied with very little additional area like applying 1-D technique so that the

overhead is hardly noticeable. An application of this technique on power-aware high-

throughput FIR filter design is also included.

REFERENCES

[1] Farid N. Najm, A Survey of Power Estimation Techniques in VLSI Circuits,
IEEE Transactions on VLSI Systems, Volume 2, Issue 4, Dec. 1994, pages 446-
455

[2] Manish Bhardwaj, R. Min, and A. P. Chandrakasan, Quantifying and Enhancing
Power Awareness of VLSI Systems. IEEE Transactions on VLSI Systems. 2001,
Volume 9, Issue 6, pages 757-772.

[3] S. H. Nawab, J. M. Winograd, Approximate signal processing, 1995 International
Conference on Acoustics, Speech, and Signal Processing, May 9-12, 1995,
Page(s): 2857 -2860 vol.5

[4] Z. Huang. M. D. Ercegovac, Two-dimensional signal gating for low-power array
multiplier design, IEEE International Symposium on Circuits and Systems, 2002,
Volume 1, pages 489-492

[5] P. C. H. Meier, R. A. Rutenber, L. R. Carley, Inverse polarity techniques for high-
speed/low-power multipliers, International Symposium on Low Power Electronics
and Design, pages 264-266, 1999

[6] K. H. Lee, C. S. Rim, A hardware reduced multiplier for low power design,
Proceedings of the second IEEE Asia-Pacific Conference on ASICs. Page: 331-
334, 2000

[7] S. Kim, M. C. Papaefthymiou, Reconfigurable low energy multiplier for
multimedia system design, Proceedings of IEEE Computer Society Workshop on
VLSI, 2000

[8] B. Parhami, Computer arithmetic – algorithms and hardware designs, Oxford
University Press, 1999

[9] K. K. Parhi, VLSI Digital Signal Processing Systems, John Willey & Sons Inc.,
1999

FIGURE AND TABLE CAPTIONS

Fig. 1 Power dissipation of a 16-bit pipelined array multiplier under different input

precisions

Fig. 2 4×4 signed multiplication process

Fig. 3 4×4 unsigned multiplication process

Fig. 4 1-Dimensional pipeline gating technique

Fig. 5 2-Dimensional pipeline gating technique

Fig. 6 A 4-bit pipelined unsigned array multiplier using 2-D pipeline gating technique

Fig. 7 Average power comparison of 4-bit unsigned multipliers

Fig. 8 Average power comparison of 8-bit unsigned multipliers

Fig. 9 Average power comparison of 16-bit unsigned multipliers

Fig. 10 Peak power comparison of 16-bit unsigned multipliers

Fig. 11. Average power comparison of 16-bit unsigned multipliers pipelined into 8 stages

Fig. 12. Average power comparison of 16-bit unsigned multipliers pipelined into 16

stages

Fig. 13 The first pipeline stage after AND matrix in 4×4 power-aware signed multiplier

Fig. 14 Average power comparison of 4-bit signed multipliers

Fig. 15 Average power comparison of 8-bit signed multipliers

Fig. 16 Average power comparison of 16-bit signed multipliers

Fig. 17 Peak power comparison of 16-bit signed multipliers

Fig. 18 Data-broadcast structure of FIR filter

Fig. 19 Improve the throughput of FIR by pipelining multipliers

Fig. 20 Revised adder pipelining scheme

Fig. 21 N-tap FIR filter structure by pipelining multipliers and adders

Fig. 22 Average power dissipation of the designed FIR filters

Fig. 23 Peak power dissipation of the designed FIR filters

Fig. 24 Normalized pipeline latency of the designed FIR filters

Table 1 Data comparison table of unsigned multipliers in different length

Table 2 Data comparison table of unsigned multipliers in different numbers of pipeline

stages

Table 2 Data comparison table of signed multipliers

0

5

10

15

20

25

30

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Input Precision

Po
w

er
 D

is
si

pa
tio

n
(m

W
)

16x16_pipe

Fig. 1

X X2 X1 X0

Y Y2 Y1 Y0

X2Y0 X1Y0 X0Y0

X2Y1 X1Y1 X0Y1

X2Y2 X1Y2 X0Y2

S0S1S2S3S4S5S

X3

Y3

X0Y3X1Y3X2Y3

X3Y0

X3Y1

X3Y2

X3Y3

S6

1

Fig. 2

X X2 X1 X0

Y Y2 Y1 Y0

X2Y0 X1Y0 X0Y0

X2Y1 X1Y1 X0Y1

X2Y2 X1Y2 X0Y2

S0S1S2S3S4S5S

X3

Y3

X0Y3X1Y3X2Y3

X3Y0

X3Y1

X3Y2

X3Y3

S6S7

Fig. 3

pipeline stage 1

pipeline stage 2

pipeline stage 3

pipeline stage 4

Data
Clock

Gating
Signal 1

Gating
Signal 2

Gating
Signal 3

Gating
Signal 4

Clock
1

Clock
2

Clock
3

Clock
4

Output

Mux

Functional Block

Functional Block

Functional Block

Fig. 4

Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

Clock

Gating Signal 1
Gating Signal 2
Gating Signal 3
Gating Signal 4

Data

Clock 1
Clock 2

Clock 2
Clock 3

Clock 3
Clock 4

Clock 3
Clock 4

Clock 4

Clock 4

Stage 1

Stage 2

Stage 3

Stage 4

Output

Mux

Functional Block

Functional Block

Functional Block

Fig. 5

Reg

HA
c s

HA
c s

Reg Reg RegReg Reg Reg Reg

X3 X2 X1 X0 Y3 Y2 Y1 Y0

Reg Reg Reg RegReg Reg Reg RegReg Reg Reg RegReg Reg Reg Reg

FA
c s

FA
c s

FA
c s

RegReg Reg Reg RegReg Reg Reg RegReg Reg Reg Reg

HA
c s

HA
c s

FA
c s

HA
c s

HA
c s

Reg Reg Reg RegReg Reg Reg RegReg Reg Reg Reg

HA
c s

Reg Reg Reg RegReg Reg Reg RegReg Reg Reg Reg

FA
c s

Reg Reg RegReg Reg Reg RegReg Reg Reg Reg

FA
c s

Reg RegReg Reg Reg RegReg Reg Reg Reg

FA
c s

RegReg Reg Reg RegReg Reg Reg Reg

HA
c s

Reg Reg Reg RegReg Reg Reg Reg

S7 S6 S5 S4 S3 S2 S1 S0

Clock
Gating Signal 1

Gating Signal 2

Gating Signal 3

Gating Signal 4

4-12-1 2-1 3-1 3-1 3-1

Clock 3

Clock 2

Clock 1

Clock 4

Fig. 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x2 3x3 4x4

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 8

0

5

10

15

20

25

30

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 9

0

20

40

60

80

100

120

140

160

180

200

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Input Precision

Pe
ak

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 10

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Precision

A
ve

ra
ge

 P
o
w
e
r

D
i
s
s
i
p
a
t
i
o
n

(
m
W
)

Original

1-D

2-D

Fig. 11

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Precision

A
ve

ra
ge

 P
o
w
e
r

D
i
s
s
i
p
a
t
i
o
n

(
m
W
)

Original

1-D

2-D

Fig. 12

X3 Y3 X3 Y2 X3 Y1 X3 Y0 X2 Y3 X2 Y2 X2 Y1 X2 Y0 X1 Y3 X1 Y2 X1 Y1 X1 Y0 X0 Y3 X0 Y2 X0 Y1 X0 Y0

Register CLK-3 CLK-3 CLK-3 CLK-2 CLK-3 CLK-2 CLK-2 CLK-1 CLK-3 CLK-2 CLK-1 CLK-1 CLK-3 CLK-2 CLK-1 CLK-0

C-2C-3 C-3 C-3 C-2 C-3

Fig. 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2x2 3x3 4x4

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2x2 3x3 4x4 5x5 6x6 7x7 8x8

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 15

0

5

10

15

20

25

30

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 16

0

20

40

60

80

100

120

140

160

180

200

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Input Precision

Pe
ak

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 17

D D

x(n)

c b a

y(n)

Fig. 18

D D

x(n)

m1

y(n)

D D D

m1 m1

m2 m2 m2

Fig. 19

D D

x(n)

c b a

y(n)
A11 A12 A21 A22

D

Fig. 20

D

x(n)

y(n)

D

D

D

D

M
stages

P
stages

P-1
stages

(N-2)(P-1)
stages

Fig. 21

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Precision

A
ve

ra
ge

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 22

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Precision

Pe
ak

 P
ow

er
 (m

W
)

Original
1-D
2-D

Fig. 23

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Precision

Pi
pe

lin
e

La
te

nc
y

Original
1-D & 2-D

Fig. 24

Multiplier length 4-bit 8-bit 16-bit

Average power saving

1-D vs. Original 29.5% 27.8% 25.7%

2-D vs. Original 39.6% 57.8% 66.2%

2-D vs. 1D 14.3% 41.5% 54.4%

Peak power saving

1-D vs. Original 31.0% 28.7% 26.1%

2-D vs. Original 43.4% 60.0% 67.3%

2-D vs. 1D 18.0% 43.9% 55.8%

Latency reduction

1-D vs. Original 36.1% 39.1% 44.1%

Under equal input
precision probability

2-D vs. Original 36.1% 39.1% 44.1%

1-D 0.01% 0.02% 0.03%
Overhead

2-D 0.01% 0.02% 0.03%

Table 1
Number of pipeline stages 8 16 32

Average power saving

1-D vs. Original 20.8% 21.0% 21.1%

2-D vs. Original 62.5% 64.0% 65.0%

Under equal input
precision

probability

2-D vs. 1D 52.6% 54.5% 55.6%

Table 2
Multiplier length 4-bit 8-bit 16-bit

Average power saving

1-D vs. Original 16.0% 19.4% 21.1%

2-D vs. Original 26.5% 55.3% 65.0%

2-D vs. 1D 12.5% 44.6% 55.6%

Peak power saving

1-D vs. Original 17.5% 20.6% 21.7%

2-D vs. Original 28.4% 55.6% 65.4%

2-D vs. 1D 13.1% 44.0% 55.8%

Latency reduction

1-D vs. Original 36.1% 39.1% 44.1%

Under equal input
precision probability

2-D vs. Original 36.1% 39.1% 44.1%

1-D 0.15% 0.03% 0.01%
Overhead

2-D 0.52% 0.10% 0.23%

Table 3

This document is an author-formatted work. The definitive version for citation appears as:

J. Di, J. S. Yuan, and R. F. DeMara, “Improving Power-awareness of Pipelined Array Multipliers using 2-
Dimensional Pipeline Gating and its Application to FIR Design,” Integration, the VLSI Journal, Vol. 38,
No. 3, February 2005, in-press. doi:10.1016/j.vlsi.2004.08.002

http://dx.doi.org/10.1016/j.vlsi.2004.08.002

