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Abstract: Power-awareness indicates the scalability of the system energy with changing 
conditions and quality requirements. Although Boolean multipliers have natural power 
awareness to the changing of input precision, deeply pipelined designs do not have this 
benefit. A 2-dimensional pipeline gating scheme is proposed in this paper to improve the 
power awareness in these designs. This technique is to gate the clock to registers in both 
vertical direction (data flow direction in pipeline) and horizontal direction (within each 
pipeline stage). For signed multipliers using 2’s complement representation, sign 
extension, which wastes power and causes longer delay, could be avoided by 
implementing this technique. Very little additional area is needed so that the overhead is 
hardly noticeable. Simulation results show that an average power saving of 65-66% and 
latency reduction of 44-47% can be achieved for multipliers under equal input precision 
probabilities. An application of power-aware multipliers on FIR design is also included. 
 
Index terms – power-awareness, 2-dimensional pipeline gating, array multiplier 
 

1. Introduction 

Due to the trend of portable communication and computing devices and the dramatic 

decrease of feature size, low power technique has long been a major interest of IC 

designers. Many low power techniques have been developed to match different circuits 

and conditions [1]. Bhardwaj et al., [2] introduced a new measurement, power-awareness, 

to indicate the ability of the system power to scale with changing conditions and quality 

requirements. Scalability is an important figure-of-merit since it allows the end user to 

implement operational policy [2], just like the user of mobile multimedia equipment 

needs to select between better quality and longer battery operation time. The examples 

include that a well-designed system must gracefully degrade its quality and performance 

as the available energy resources are depleted [3]. In such systems like digital camera, 
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users are allowed to select certain parameters like resolution. After user selects a 

resolution, there will be a short period of time to allow the system to set up. During this 

period, the CPU will configure itself and set up the control to the whole system. Such 

parameters will not change frequently. After each change, the new value will remain 

stable for sometime. So for a power aware system in these applications, on-the-fly control 

is not needed. 

The power dissipation in CMOS circuit has three components: switching power, 

short-circuit power, and leakage power. Among these components, switching power is 

the dominant figure. When a node in circuit is switching, the load capacitance on this 

node will dissipate power due to the charging/discharging operation. If the switching 

activity could be reduced, the total power dissipation will be saved. For Boolean non-

pipelined multipliers, starting from reset-to-zero state, low input precision calculation 

(like 0001×0001) dissipates much less power than high input precision calculation (like 

1111×1111) because there are much less switching activities in internal nodes. Here the 

input precision is defined as the number of useful input bits (without padded 0’s in high 

order bits) during the calculation. For example, the input precision of 0101 is 3, while the 

input precision of 1000 is 4. So Boolean non-pipelined multipliers are said to have 

natural power awareness to the changing of input precisions. 

Deeply pipelined multipliers are used in such systems that need either high 

throughput or accurate timing control, like retimed FIR filters. In pipelined multipliers, 

each pipeline stage contains a number of registers. Clock is connected to each register. In 

each clock cycle, a transition will occur on the clock input node of each register. This 

transition is independent of input data and will cause power dissipation even when the 



current input data of the register is the same as the current data output. Since in deeply 

pipelined designs, the number of registers is much larger than that of other elements, 

these designs do not have the natural power awareness to the changing of input precision 

due to the large portion of power dissipated on clock input nodes. The power dissipation 

in deeply pipelined multipliers is nearly stable under different input precisions. Figure 1 

shows the average power dissipation under different input precisions of a deeply 

pipelined 16-bit unsigned array multiplier. 

For signed multipliers using 2’s complement number representation, this problem is 

even worse. The Baugh-Wooley algorithm for signed multiplication is used as an 

example in this paper. The equation of Baugh-Wooley algorithm for an n×n 

multiplication is shown in (1). 
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The tablet form of a 4×4 multiplication process using modified Baugh-Wooley 

algorithm is shown in Fig. 2. X and Y are 4-bit operands with the first bit as sign bit, and 

S is the 7-bit output. There are two major differences between Fig. 2 and 4×4 unsigned 

multiplication process shown in Fig. 3. One is that there are six inversed partial products 

in Fig. 2 but none in unsigned multiplication. The other is that there is an individual term 

“1” to be added to produce S4 in Fig. 2 but none in Fig. 3. 

These two differences bring reconfiguring problem for signed multipliers to operation 

under different input precisions. In unsigned multiplier, if two operands with less 

precision than the designed multiplier length to be multiplied, it will not cause any 



problem. For example, if using a 4×4 unsigned multiplier to calculate 101×011, just do it 

as 0101×0011. But in signed multiplier, there are some inversed terms inside. If these 

terms are not the corresponding partial products that should be inversed, incorrect result 

will occur. Also, the individual “1” also needs to appear on correct place. For example, if 

using the signed multiplier to multiply two signed operands 101 and 011, calculating 

them as 0101 and 0011 will cause wrong result. The reason is for a 3×3 signed 

multiplication process, X2Y0, X2Y1, X1Y2, and X0Y2 should be inversed and the individual 

“1” should appear in the column containing X2Y1. So unlike unsigned multiplier, signed 

multiplier cannot be automatically reconfigured for different input precisions. 

Commonly used method to solve this problem is sign extension. Sign extension is to 

repeat the sign bit to fill the vacant high order bits in the operand until the length of the 

operand matches the length of multiplier. For the example in last paragraph, instead of 

0101×0011, 1101×0011 should be used. The problem of sign extension method is that the 

extended sign bits are totally redundant and will cause more power and delay. When the 

difference between the length of multiplier and the length of operands is large, for 

example, calculating signed number 11×11 using a 16×16 multiplier, a lot of extended 

bits are in logic high. These bits will cause significant redundant power dissipation. The 

use of sign extension will also make the signed multiplier lose the natural power 

awareness as that exists in unsigned multiplier. 

To solve these problems and improve the power awareness of deeply pipelined 

multipliers, a novel technique, 2-dimensional pipeline gating, is proposed in this paper. 

This technique is to gate the clock to the registers in both vertical direction (data flow 

direction in pipeline) and horizontal direction (within each pipeline stage). The additional 



area cost to implement this technique to design array multipliers is very little and the 

overhead is hardly noticeable. The effectiveness will increase with the growth of the 

multiplication length. Simulation results show that an average power saving of 66% and 

an average latency reduction of 47% can be achieved for 16-bit unsigned array multiplier 

using 2-dimensional pipeline gating technique under equal input precision probabilities. 

And these numbers are 65% and 44%, in terms of average power saving and latency 

reduction, respectively, for 16-bit signed array multiplier. At the end of this paper, an 

application of these power-aware multipliers on FIR design is also included. 

2. Previous Work 

Several techniques have been developed to reduce the power dissipation in 

multipliers. Huang et al., [4] introduced a 2-dimensional signal gating method for low 

power array multiplier design. This approach provides gating lines for both multiplicand 

and multiplier operands. By deactivated different regions in the multiplier, power 

dissipation could be reduced. This approach is for non-pipelined array multiplier and 

cannot be extended to pipelined design because it cannot reduce the switching activities 

in registers. Bhardwaj et al., [2] introduced a selective method to design power-aware 

multiplier. This method is also for non-pipelined designs and brings high area cost. Meier 

et al., [5] introduced a polarity-inversion technique for the adders in signed multiplier. 

This technique does not solve the sign extension problem so that the multiplicands in 

lower precision still cannot be processed directly. Lee et al, [6] introduced a reduced 

architecture based on the redundancy of lower order bits in some DSP applications. This 

technique is not for general use and does not solve the sign extension problem in signed 

multiplier. 



Kim et al., [7] introduced a clock gating method to design reconfigurable multiplier. 

This method is to selectively disable pipeline stages by gating clocks and to select correct 

results by multiplexers. Very little additional area cost is needed (only several AND2 

gates and multiplexers) to implement this technique. Good power and latency saving can 

be achieved due to the reduced switching activities of registers in corresponding pipeline 

stages. The outputs of the multiplier are selected from different stages to ensure the 

correctness and obtain latency reduction. The basic idea of this method is shown in Fig. 

4. This technique can be seen as 1-dimensional pipeline gating because it only considers 

gating clocks to unnecessary stages along data flow direction. As the computational 

width of multiplier growing from 4-bit, 8-bit, to 32-bit and 64-bit, 1-dimensional pipeline 

gating is far from enough.  

As shown later in this paper, 2-dimensional pipeline gating is able to achieve much 

more power saving thus greatly improves the power awareness in pipelined multipliers. 

Also, 2-dimensional pipeline gating only needs the same additional hardware as 1-

dimensional technique, and has the same latency reduction. For a 16-bit pipelined array 

multiplier, if the probabilities of all input precisions are assumed to be equal, 2-

dimensional pipeline gating can have 66% power saving over the original design, while 

1-dimensional technique only has 25.7%. In the rest of the paper, 2-D pipeline gating is 

used to represent 2-dimensional pipeline gating technique while 1-D pipeline gating is 

used for 1-dimensional pipeline gating. 

3. 2-Dimensional Pipeline Gating Technique 

As stated before, 2-D pipeline gating is to gate clock to the registers in both vertical 

direction (data flow direction in pipeline) and horizontal direction (within each pipeline 



stage), while 1-D pipeline gating technique gates clock in vertical direction only. The 

principle of 2-D pipeline gating technique is shown in Fig. 5. 

In the 1-D pipeline gating scheme shown in Fig. 4, the system clock is gated by 

different gating signals to generate sub-clocks. Each sub-clock is connected to one 

pipeline stage and drives all registers in that stage. If under a certain case the results 

could come directly from stage 3, then the Gating Signal 4 is set effective and Clock 4 is 

disabled. The output of register 3 is then bypassed through a multiplexer, which is also 

controlled by the clock gating signals, to the system output. Since the Clock 4 is disabled, 

the total number of switching is reduced. Also, since the system output now comes from 

stage 3 instead of stage 4, the pipeline latency is reduced. 

In a real pipeline, the data going through a register in a certain pipeline stage is most 

likely to correlate with the data going through the register in the previous stage. So if 

under a certain case one pipeline stage could be disabled, some of the registers in its 

previous stage may also be redundant and could be disabled too. This happens especially 

in such pipelines in which only some data are processed in this stage, others are just 

passed to the next stage. Computer arithmetic circuits like multipliers and adders always 

contain such pipelines [8]. By applying 2-D pipeline gating technique to these circuits, 

significant power saving can be achieved. 

In the 2-D pipeline gating scheme shown in Fig. 5, when under a certain case pipeline 

stage 4 could be disabled, some of the registers in previous stages (the first two registers 

in stage 1, 2, and 3) could also be disabled if the data going through them was to be 

processed only in stage 4 thus is no longer useful. These registers can be disabled by 

using Clock 4 as their clock inputs. For the same reason, if stage 3 needs to be disabled, 



the third and fourth registers in stage 1 and 2 could also be disabled. The total number of 

transition is further reduced compared to that in 1-D pipeline gating system. As the 

number of registers in each stage as well as the total number of stages in the pipeline 

(pipeline depth) increase, this further benefit becomes more and more significant. As 

shown later in this paper, the 16-bit unsigned multiplier using 2-D pipeline gating has 

more than 54% power saving over the same multiplier using 1-D technique. And this 

number is 55.6% for signed multiplier. 

4. Power-aware Unsigned Array Multiplier Design 

To design power-aware pipelined multiplier using 2-D pipeline gating technique, 

firstly the multiplication process should be examined. The 4×4 unsigned multiplication 

process is shown in Fig. 3. 

In Fig. 3, X and Y are inputs while S is the output. When the input precision is 4, for 

example, calculating 1111×1111, S is generated based on all inner partial products. If the 

input precision is 3, for example, calculating 0111×0111, the partial products containing 

X3 or Y3 are all zero (these products are enclosed by a circle in Fig. 3), and S only has six 

digits instead of eight. From a reset-to-zero state, there is no need to let registers 

propagate these zeros because the reset state of register is zero. So clocks connected to 

these registers can be disabled. If the input precision is 2, for example, calculating 

0011×0011, the partial products containing X2 or Y2 (the ones enclosed by a rectangular 

in Fig. 3) can also be disabled. If the input precision is 1 as 0001×0001, the partial 

products enclosed by an ellipse in Fig. 3 containing X1 or Y1 can be disabled. As the 

length of output S decreases, the number of necessary pipeline stages is also reduced. The 



circuit structure of a 4-bit pipelined unsigned array multiplier using 2-D pipeline gating 

technique is shown in Fig. 6. 

In Fig. 6, “HA” represents half adder; “FA” represents full adder; “Reg” represents 

register; “n-1” represents n-to-1 multiplexer. Current input precision information is 

provided through four gating signals from CPU. These signals are combined with system 

clock to generate four sub-clocks, which are connected to the corresponding registers in 

all pipeline stages. Under a certain input precision, one or more sub-clocks may be 

disabled. The registers connected to these sub-clocks will not function during the 

calculation. The multiplexers select correct outputs from corresponding stages. For 

example, while performing 0001× 0001, only S0 has useful value. This value is selected 

from the stage right after the AND matrix. Except for this register and the two registers in 

the first stage for X0 and Y0, all other registers do not function because their clocks have 

been disabled. The power dissipation is reduced significantly. The output S0 is from the 

first stage after the AND matrix instead of the eighth one, thus the pipeline latency has 

also been reduced by a factor of eight. 

The detection of current input precision is a typical interrupt-response scheme for a 

CPU. For example, when the user of digital camera pushes the button to reduce the 

resolution, an interrupt is sent to the CPU. Then CPU reads the corresponding register 

and sets up the clock gating signals based on the register value. So the additional area 

cost is very low, just a few AND gates and some multiplexers are needed. The clock 

gating signals are also used as the control signals of these multiplexers. 

Based on the discussion above, a set of unsigned array multipliers were designed. The 

computation lengths of these multipliers are 4-bit, 8-bit, and 16-bit, respectively. To 



compare between different numbers of pipeline stages, the 16-bit multiplier was pipelined 

into 8, 16, and 32 stages. Both 1-D and 2-D pipeline gating techniques have been applied 

to each multiplier. These multipliers were synthesized by Synopsys Design Analyzer and 

simulated in Powermill. During the simulation, the multipliers were given data in 

different input precisions. The power dissipation were recorded and compared. The 

simulation result comparisons are shown in Fig. 7 to 12. 

In Fig. 7 to 12, “Original” represents the simulation data of the unchanged pipelined 

designs; “1-D” and “2-D” represent the simulation data of the designs using 1-D and 2-D 

pipeline gating techniques, respectively. 

From these figures, several observations are made: 

1. Among the three multipliers in each figure, the designs using 1-D and 2-D 

pipeline gating techniques have lower power dissipations compared to the 

original designs under different input precision. 

2. Among all three multipliers, the designs using 2-D pipeline gating techniques 

show significant power savings over the corresponding designs using 1-D 

pipeline gating technique. This advantage is not large in 4-bit multiplier (14.3% 

under equal input precision probability), but becomes much greater in 8-bit 

multiplier (41.5% under equal input precision probability), and is quite 

significant in 16-bit multiplier (54.4% under equal input precision probability 

for 32-stage design). As shown in Fig. 7 to 12, the data of designs using 1-D 

pipeline gating technique show convex curves while that of designs using 2-D 

pipeline gating technique show concave curves. The reason for this difference is 

that as the length of multiplier goes up, the number of registers in horizontal 



direction as well as in vertical direction increases sharply. 1-D pipeline gating 

technique only deals with the vertical pipeline stage increment, while 2-D 

pipeline gating technique controls the registers in both directions. Actually, the 

largest difference between these two techniques occurs when the current input 

precision is half the designed precision. Under this case, there are lots of 

registers in middle pipeline stages that are propagating redundant zeros. 1-D 

technique cannot deal with them. But 2-D pipeline gating technique has the 

ability to disable them accurately. 

3. The overhead of implementing 1-D and 2-D techniques are the same. It is very 

small (0.03% in 32-stage 16-bit multiplier). 

4. Peak power dissipation affects the system reliability in operating under power 

constraints. 1-D and 2-D pipeline gating techniques both have the ability to 

reduce system peak power dissipation. But the same as average power 

dissipation, 2-D technique has great advantage over 1-D technique under 

different input precisions. 

5. When the number of pipeline stages is reduced, the average power savings of 1-

D and 2-D pipeline gating designs are also reduced. The reason is that the 

number of registers is reduced with the decrement of pipeline stages. The 

number of redundant clock switching in the original design is also reduced. So 

the power saving percentage becomes less. But from Fig. 11 and 12, 2-D designs 

still show significant average power savings over the original designs and 1-D 

designs. 



6. In Fig. 12, the curve of 1-D design looks step-like by every two data. The reason 

is for 8-stage pipelined array multiplier, each pipeline stage outputs four bits of 

the final calculation result. So every input precision decrement by two will cause 

one pipeline stage to be disabled. For example, 16×16 and 15×15 both need all 8 

stages to give the final result; but 14×14 and 13×13 only need 7 stages. For 2-D 

design in the same figure, with every decrement of input precision, there are 

always some registers becoming redundant and are disabled. Although the 

number of stages is the same as 1-D design, the actual number of registers 

working within each stage is quite different. That’s why the curve of 2-D design 

does not look step-like. 

The pipeline latency reduction of the designs using 1-D and 2-D pipeline gating 

techniques is the same. The comparison data of latency saving as well as other data are 

shown in Table 1 and 2. 

5. Application of 2-D Pipeline Gating Technique to Design Power-aware Signed 

Array Multiplier  

To avoid the sign extension problem, different research and methods have been 

proposed. A selective method is used in this section to make the signed multiplier have 

good power awareness. Several important analysis and modifications beside the 2-D 

pipeline gating technique have to be made. The pipeline stage right after the AND matrix 

stage of a 4×4 power-aware signed multiplier is shown in Fig. 13. 

In Fig. 13 the partial products X3Y0, X3Y1, X3Y2, X0Y3, X1Y3, and X2Y3 are inversed by 

connecting to NAND gates. Another input (not shown in Fig. 13) called const_in is added 

to the proper adder as the individual “1”. Inner products X2Y1, X1Y2, X0Y2, X2Y1, X0Y1, and 



X1Y0 are connected to 2-to-1 multiplexers with their inversions. These multiplexers are 

controlled by different control signals indicating the current input precision. These 

signals are just as the clock gating signals issued by CPU. The outputs of these 

multiplexers along with all other outputs of AND/NAND gates are connected to the 

registers forming next pipeline stage. These registers, just as designing power-aware 

unsigned array multipliers, are connected to different gated clocks controlled by clock 

gating signals based on current input precision. 

When current input precision is 4×4, all multiplexers are switched to the non-inversed 

data; all four types of clocks are enabled; the const_in bit is set to logic high. Then the 

multiplier is able to perform 4×4 signed multiplication as shown in Fig. 2. 

When current input precision is 3×3, the multiplexers for X2Y1, X1Y2, X0Y2, and X2Y1 

are switched to their inversed data; CLK-3 is disabled; the const_in bit is set to logic low. 

Note that the clock connected to the output of NAND gate whose input is X3Y0 is CLK-2, 

not CLK-3. Since X3 and Y3 are all zero, this NAND gate will generate logic high. This 

“1” becomes the individual “1” needed for 3×3 multiplication. 

When current input precision is 2×2, the multiplexers are all switched to the inversed 

data; both CLK-2 and CLK-3 are disabled; the const_in bit is still logic low. For the same 

reason, the clock connected to the output of NAND gate whose input is X2Y0 is CLK-1, 

not CLK-2. This bit becomes the individual “1” for 2×2 multiplication. Note, there is no 

1×1 multiplication for signed multiplier because there has to be a sign bit. 

By applying the modifications above, the 4×4 pipelined signed multiplier is able to 

perform 3×3 and 2×2 multiplication without sign extension. During 3×3 and 2×2 

multiplication process, the gated registers will not function, so that the power dissipation 



is saved. Also, the redundant power dissipation caused by sign extension is avoided. The 

same as in applying 1-D or 2-D technique on unsigned multipliers; the output bits can be 

selected from different pipeline stages prior to the last stage. So the pipeline latency can 

also be reduced. 

Based on the technique described above, just as the testing scheme of unsigned 

multiplier, nine pipelined signed array multipliers with lengths of 4-, 8-, and 16-bit are 

designed as original architecture, the designs using 1-D pipeline gating technique, and the 

power-aware designs using 2-D pipeline gating technique. All designs are also 

synthesized by Synopsys Design Analyzer, and then simulated in Powermill. The results 

comparisons are shown in Fig. 14 to 17. 

From Fig. 14 to 17 several observations could be made: 

1. The same as in unsigned multiplier results, the 2-D designs have great advantage 

over the other two groups in terms of average and peak power dissipation. There 

are two reasons for this difference: one is the same as in unsigned multiplier 

design, which is, 2-D technique not only gates the redundant pipeline stages like 

1-D technique does, but also disables the unused registers within the useful 

pipeline stages. The other reason is the use of sign extension brings more 

switching to 1-D designs. But the 2-D power-aware designs do not have this 

problem. In 16-bit multiplier, the 2-D design has 55.6% average power saving 

and 55.8% peak power saving over the design using 1-D technique. 

2. The overheads of the 2-D designs are a little larger than that in unsigned 

multiplier. But they are still very small, only 0.23% in 16-bit design. 



The latency reductions of the 2-D designs are the same as those designs using 1-D 

technique. The comparison in data form is shown in Table 3. 

6. Application of Power-aware Multipliers on FIR Filter Design 

As an application of power-aware multipliers, a high-throughput, power-aware FIR 

filter design method is introduced in this section. FIR filters are essential elements in 

DSP systems. There are different implementations of FIR filters. To shorten the critical 

path in order to achieve high throughput, Data-Broadcast structure is used in this paper 

[9]. A 3-tap Data-Broadcast FIR filter is shown in Fig. 18. There are three multipliers and 

two adders. The input-output relationship is shown in (2). 

( ) ( ) ( ) ( )21 −⋅+−⋅+⋅= nxcnxbnxany                                (2) 

The dashed line in Figure 18 shows the critical path. The length of this critical path is 

, where TAM TT + M is the time taken for multiplication and TA is the time taken for 

addition. The period of operating clock must be longer than this length. This results in a 

very low clock rate. If this FIR is used in a real-time application, the sampling frequency, 

fsample, must be less than the operating frequency of this FIR filter, that is 

AM
sample TT

f
+

≤
1

                                                 (3) 

To improve the throughput of the FIR filter, one commonly used method is to 

pipeline the multipliers. Since the multiplication time TM is usually much larger than the 

addition time TA, much shorter critical path length can be achieved by carefully balancing 

the pipeline stages. Figure 19 shows a pipelining scheme for FIR filter. 

In Fig. 19, each multiplier in Fig. 18 is divided into two pipeline stages. A series of 

registers is added between the two sub-multipliers. The time taken by each stage of the 



multiplier is denoted by TM1 and TM2, respectively; and the delay time in the added 

registers is denoted by TDR. If the pipeline is perfectly balanced so that 

, the critical path shown as dashed line in Fig. 17 is much shorter 

than that of Fig. 18. 

AMDRM TTTT ++= 21

By pipelining multipliers can only achieve limited throughput improvement. Assume 

the number of pipeline stages that the multipliers in Fig. 19 can be divided to approaches 

infinity; the slowest stage will contain the adder and a very small part of multiplier. So 

the length of critical path is approaching TA. When the word length of input data and 

coefficients is short, TA is small enough for the FIR to operate in high sampling 

frequency. In recent years, the word length of FIR filter has been growing from 8-bit, 16-

bit, up to 32-bit and 64-bit. Under long word length condition, addition also takes 

significant time. Instead of pipelined multipliers, adders become bottleneck in these FIR 

filters under such conditions. 

To further improve throughput of FIR filters, the critical path in addition process 

needs to be shortened too. So adders, as well as multipliers, need to be pipelined. 

Pipelining one adder changes the timing relationship between the two inputs of the next 

adder. Unlike pipelining multipliers, which doesn’t change the relative timing sequence 

between adder inputs, pipelining adders just likes adding delay elements to the paths 

between adders. So additional delay elements need to be added between next adder and 

its corresponding multiplier. The goal is to maintain the timing difference between the 

two inputs of the adder as one clock cycle. The revised FIR filter structure is shown in 

Fig. 20. 



For a balanced pipeline design, each pipeline stage takes almost the same calculation 

time. By fine-grain pipelining multipliers and adders, very high throughput can be 

achieved. For an N-tap FIR filter, if the multipliers are divided to M pipeline stages, and 

the adders are divided to P pipeline stages, the FIR filter structure is shown in Fig. 21. 

Along with the achieved high throughput, pipelining multipliers and adders also 

causes two problems. Firstly the power dissipation will become larger because some 

registers are added between the pipeline stages; secondly the total latency from the input 

to output also becomes larger because the pipelined addition paths are longer. To solve 

these problems, 2-D pipeline gating technique is used to design power-aware multipliers 

and adders. These elements are able to scale their power and latency with the changing of 

input precision. To maintain the correctness of the calculation, 2-D pipeline gating 

technique needs also be implemented on the additional delay elements to select output 

from the corresponding pipeline stage thus keep the timing relationship. Based on these 

discussions, a set of 4-tap FIR were designed and tested. The word length of input data 

and coefficients are all 16-bit. So the multipliers are 16×16 and the adders are 32×32. 

These designs are synthesized by Synopsys Design Compiler and then simulated in 

Powermill. The simulation results are shown in Fig. 22-24. Several discussions are listed 

as below: 

1. The throughput of the pipeline is determined by the slowest stage. Since 

multipliers and adders are fine-grain pipelined, the delay in each pipeline stage 

is very small. The technology used in synthesis process is 0.24µm static CMOS 

logic. Simulation results show that the designed FIR filter is able to work under 



1.25GHz clock rate. If using dynamic gate or transistors of smaller channel 

length, even higher throughput is expected. 

2. The same as in multipliers design, the average power dissipation as well as peak 

power dissipation are significantly reduced by applying 2-D pipeline gating 

technique. The power reduction rate of 2-D design is much better than that of 1-

D design. 

3. On reducing pipeline latency, 1-D and 2-D gating techniques have the same rate 

of advantage. By selecting the correct outputs from corresponding stages, the 

total pipeline latency is significantly reduced. 

7. Conclusion 

A novel low power design technique, 2-dimensional pipeline gating, is proposed in 

this paper. This technique is explained by designing both signed and unsigned power-

aware pipelined multipliers. For signed multipliers, it also avoids the sign extension 

problem while processing low input precision multiplicands. The relation and difference 

between this 2-D technique and existing 1-D technique are discussed. A set of array 

multipliers is designed using both techniques. Simulation results show that 2-D pipeline 

gating technique has great advantage over 1-D technique in terms of average and peak 

power savings while maintaining the same latency reduction rate. 2-D pipeline technique 

can be applied with very little additional area like applying 1-D technique so that the 

overhead is hardly noticeable. An application of this technique on power-aware high-

throughput FIR filter design is also included. 
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FIGURE AND TABLE CAPTIONS 

Fig. 1 Power dissipation of a 16-bit pipelined array multiplier under different input 

precisions 

Fig. 2 4×4 signed multiplication process 

Fig. 3 4×4 unsigned multiplication process 

Fig. 4 1-Dimensional pipeline gating technique 

Fig. 5 2-Dimensional pipeline gating technique 

Fig. 6 A 4-bit pipelined unsigned array multiplier using 2-D pipeline gating technique 

Fig. 7 Average power comparison of 4-bit unsigned multipliers 

Fig. 8 Average power comparison of 8-bit unsigned multipliers 

Fig. 9 Average power comparison of 16-bit unsigned multipliers 

Fig. 10 Peak power comparison of 16-bit unsigned multipliers 

Fig. 11. Average power comparison of 16-bit unsigned multipliers pipelined into 8 stages 

Fig. 12. Average power comparison of 16-bit unsigned multipliers pipelined into 16 

stages 

Fig. 13 The first pipeline stage after AND matrix in 4×4 power-aware signed multiplier 

Fig. 14 Average power comparison of 4-bit signed multipliers 

Fig. 15 Average power comparison of 8-bit signed multipliers 

Fig. 16 Average power comparison of 16-bit signed multipliers 

Fig. 17 Peak power comparison of 16-bit signed multipliers 

Fig. 18 Data-broadcast structure of FIR filter 

Fig. 19 Improve the throughput of FIR by pipelining multipliers 



Fig. 20 Revised adder pipelining scheme 

Fig. 21 N-tap FIR filter structure by pipelining multipliers and adders 

Fig. 22 Average power dissipation of the designed FIR filters 

Fig. 23 Peak power dissipation of the designed FIR filters 

Fig. 24 Normalized pipeline latency of the designed FIR filters 

 

Table 1 Data comparison table of unsigned multipliers in different length 

Table 2 Data comparison table of unsigned multipliers in different numbers of pipeline 

stages 

Table 2 Data comparison table of signed multipliers 
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Multiplier length 4-bit 8-bit 16-bit 

Average power saving 

1-D vs. Original 29.5% 27.8% 25.7% 

2-D vs. Original 39.6% 57.8% 66.2% 

2-D vs. 1D 14.3% 41.5% 54.4% 

Peak power saving 

1-D vs. Original 31.0% 28.7% 26.1% 

2-D vs. Original 43.4% 60.0% 67.3% 

2-D vs. 1D 18.0% 43.9% 55.8% 

Latency reduction 

1-D vs. Original 36.1% 39.1% 44.1% 

Under equal input 
precision probability 

2-D vs. Original 36.1% 39.1% 44.1% 

1-D 0.01% 0.02% 0.03% 
Overhead 

2-D 0.01% 0.02% 0.03% 

Table 1 
Number of pipeline stages 8 16 32 

Average power saving 

1-D vs. Original 20.8% 21.0% 21.1% 

2-D vs. Original 62.5% 64.0% 65.0% 

Under equal input 
precision 

probability 

2-D vs. 1D 52.6% 54.5% 55.6% 

Table 2 
Multiplier length 4-bit 8-bit 16-bit 

Average power saving 

1-D vs. Original 16.0% 19.4% 21.1% 

2-D vs. Original 26.5% 55.3% 65.0% 

2-D vs. 1D 12.5% 44.6% 55.6% 

Peak power saving 

1-D vs. Original 17.5% 20.6% 21.7% 

2-D vs. Original 28.4% 55.6% 65.4% 

2-D vs. 1D 13.1% 44.0% 55.8% 

Latency reduction 

1-D vs. Original 36.1% 39.1% 44.1% 

Under equal input 
precision probability 

2-D vs. Original 36.1% 39.1% 44.1% 

1-D 0.15% 0.03% 0.01% 
Overhead 

2-D 0.52% 0.10% 0.23% 

Table 3 
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