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Abstract- A Multilayer Runtime Reconfiguration Architecture 

(MRRA) is developed for Autonomous Runtime Partial 

Reconfiguration of Field Programmable Gate Array (FPGA) 

devices.  MRRA operations are partitioned into Logic, 

Translation, and Reconfiguration layers along with a standardized 

set of Application Programming Interfaces (APIs).  At each level, 

resource details are encapsulated and managed for efficiency and 

portability during operation.  In particular, FPGA configurations 

can be manipulated at runtime using on-chip resources.  A 

corresponding logic control flow is developed for a prototype 

MRRA system on a Xilinx Virtex II Pro platform.  The Virtex II 

Pro on-chip PowerPC core and block RAM are employed to 

manage control operations while multiple physical interfaces 

establish and supplement autonomous reconfiguration 

capabilities.  Evaluations of these prototypes on a number of 

benchmark and hashing algorithm case studies indicate the 

enhanced resource utilization and run-time performance of the 

developed approaches.  

 

Index Terms— FPGA Runtime Environments, Module-Based 

Partial Reconfiguration, Frame-Based Partial Reconfiguration, 

FPGA Area Management, Bitstream Manipulation.  

 

I. INTRODUCTION 

FPGAs have evolved from simple Programmable Logic 

Devices (PLDs) to fully integrated System on Chip (SOC) 

architectures containing microprocessors, embedded memory, 

and optimized datapaths connected to a high capacity, 

dynamically reconfigurable fabric. A unique aspect of 

flexibility provided by FPGAs is the capability for dynamic 

reconfiguration, which involves altering the programmed 

design within an SRAM-based FPGA at run-time [29].  

Although FPGA architectures have advanced significantly with 

respect to many characteristics, a considerable number of open 

research issues remain regarding the dynamic reconfiguration 

process flow.  Recently, applications benefiting from the use of 

a partial reconfiguration paradigm have emerged including 

mobile systems [14] [15], operating system frameworks [18] 

[19], and artificial intelligence applications [4].  Given the 

capability of partial reconfiguration from the device 

manufacturers [41] and availability of powerful on-chip CPU 

cores, new approaches enabling autonomous reconfiguration, 

which automates the partial reconfiguration and/or 

testing/verification process, have become feasible. 

In this paper, a layered framework named Multilayer Runtime 

 
 

Reconfiguration Architecture (MRRA) is proposed, which can 

utilize the On-Chip PowerPC core and user logic to realize 

reconfiguration either combined with an external host PC as a 

loosely-coupled structure or even autonomously in a standalone 

mode as a SOC structure.  A high-level data structure along with 

a standardized logic control flow is developed in the MRRA 

framework to enable flexible implementation of user 

applications and maximize the overall performance.  As 

described in this paper, direct bit-stream manipulation can also 

be extended for certain classes of circuits under MRRA logic 

control to achieve further performance optimization.  The 

layered MRRA design separates hardware details from 

high-level application logic considerations.  The benefits of this 

multi-layered approach include increased design productivity, 

portability, and resource utilization.  On the other hand, 

estimation and compensation techniques are also explored to 

deal with the additional hardware and software resource 

demands required to provide such advantages. 

II. RELATED RESEARCH 

With the appearance of partial reconfiguration technology in 

recent years, investigations into various tools and environments 

for dynamic reconfiguration have been initiated.  Currently, the 

most widely used FPGA chips with partial reconfiguration 

capability are from Xilinx in the Virtex, Virtex II, Virtex Pro, 

and Virtex-4 families [44].  Yet, there are no commercially 

available sophisticated toolsets supporting many of the diverse 

aspects of the partial reconfiguration paradigm.  As described 

below, JBits [34] provides dynamic reconfiguration 

capabilities, but has been made available only as a research tool.  

The Xilinx Partial Reconfiguration Toolkit (XPART) [5] has 

also been in development, but not fully released.  These works 

have established the significance of the partial reconfiguration 

paradigm and identified fundamental components and methods, 

yet significant challenges remain with creating an autonomous 

environment for dynamic reconfiguration as described below. 

Some representative research approaches are listed in 

Table I.  Early work by Mesquita et al. developed a set of tools 

for remote and partial reconfiguration for Virtex XCV300 

devices which identified many needed capabilities and some 

possible approaches [11].  However, important steps of the 

approach must be carried out manually and the described 

technique does not intrinsically support core relocation.  Later, 

Raghavan and Sutton’s tool called JPG was developed for 

Xilinx Virtex devices [1].  The JPG tool is based on the Xilinx 
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Java-based JBits API to instantiate a component, generate its 

corresponding bitstream, and download it to a reconfigurable 

device such as a Virtex FPGA.  Therefore JPG is able to 

generate partial bitstreams for Xilinx Virtex devices based on 

data extracted from the standard Xilinx CAD tool flow.  Due to 

associated Java interpretation overheads, there can be tool 

speed and scalability implications.  To avoid these issues and 

more fully encapsulate the higher layers from low-level device 

specifics, a two-layer framework for Virtex II devices had been 

separately suggested by Blodget et al., [6] and also Fong et al. 

[33].  These systems enable self-reconfiguration under software 

control through the reconfiguration hardware interface Internal 

Configuration Access Port (ICAP).  These reconfiguration 

subsystems have a 2-layer hardware and software architecture 

that permits a variety of different interfaces.  However, because 

of the operations of ICAP, the bitstream has to be processed 

directly as opposed to processing high-level netlists.  Egret [7] 

[23] is another related framework proposed by Williams et al.  

This framework focuses on a full SOC solution using ICAP and 

an embedded Linux system on a Xilinx Virtex II chip.  Currently 

available CPU core speed and RAM size can impact the 

complexity of the high-level applications that can be 

implemented into such solutions.  Bobda et al also presented a 

framework named Erlangen Slot Machine (ESM).  In this 

platform, each module can access its periphery independent 

from its location through a programmable crossbar, which gives 

the potential of unrestricted 1-dimensional relocation of 

modules on the device.  Different inter-module communication 

channels, including a bus macro, shared memory, 

reconfigurable multiple bus and crossbar have also been 

proposed.  As a variety of communication channels are 

available, multiple external control hardware and boards can be 

involved.  Communication and control overheads using such 

approaches may vary. 

 Regarding partial reconfiguration strategy research, Upegui 

and Sanchez [3] recently discussed possible methodologies to 

generate the partial reconfiguration bitstreams, including the 

standard module-based and difference-based flows suggested 

by Xilinx, along with techniques for low-level direct bitstream 

modification. Sedcole et al. [32] further these by presenting a 

new partial reconfiguration flow called the merge partial 

reconfiguration method.  It prepares modules to be allocated to 

arbitrary areas in the FPGA using a custom tool, which is 

required for the place and route process.  These modules can 

then be adapted at run-time thereby supporting partial 

reconfiguration.  A temporally-driven partitioning strategy is 

also demonstrated by Haubelt et al. [10], which explores the 

design space at the system-level and uses a slack-based list 

scheduler for time-multiplexed architectures.  Additional 

routing-related issues with partial reconfiguration are addressed 

by three types of specially designed communication buses for 

partial reconfiguration modules under research performed 

independently by Krasteva et al. [37], Bobda et al. [8], and 

Huebner et al. [27] to take the place of the bus macro suggested 

by Xilinx. 

Physical resource relocation is another issue that has been 

addressed both at a theoretical level and an implementation 

level by using inter-module communication macros [24], [31] 

and [37].  A recent framework developed by Kalte et al. [16] 

called REPLICA uses the SelectMAP interface to perform 

bitstream manipulation to carry out the relocation process.  An 

elementary block strategy based on a 2-dimensional placement 

methodology is also proposed by Huebner et al. [28], which 

uses the ICAP interface and a customized routing macro to 

perform similar functions as in REPLICA.  Other proposed 

strategies and tools for the partial reconfiguration flow are 

described in [12], [20], [33], and [23] etc.  

A more sophisticated partial reconfiguration framework 

would be useful to integrate and optimize existing 

reprogrammable technologies, as well as refine theories of 

operation in light of the feasibility of current and near-term 

hardware implementations.  Ideally, this approach would 

provide a standardized set of APIs and abstracted data 

structures for a variety of high-level applications.  It would 

facilitate algorithm mapping via uniform access to 

heterogeneous logic and communication resources.  Such an 

approach would also improve flexibility and enhance portability 

across hardware reconfiguration interfaces requirements, and 

enable more sophisticated applications based on autonomous 

reconfiguration. 

III.  DESIGN CONSIDERATIONS 

As mentioned in the previous sections, in order to 

accommodate the variety of reconfiguration processes required 

by different applications, a tiered framework called the 

Multilayer Runtime Reconfiguration Architecture (MRRA) has 

been designed which aims toward two major goals.  The first 

goal is the provision of a Hierarchical Framework for the 

following design considerations: 

• Autonomous Operation: Provide stand-alone 

reconfiguration capability on the FPGA device as well as a 

bi-directional communication channel with the embedded 

host PC to carry out the partial reconfiguration process and 

routing without manual intervention. 

• Task-level Modularity: Provide support at task-level 

TABLE I 

 RECENT TOOLS FOR PARTIAL RECONFIGURATIONS 
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Area 

Relocation 
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Virtex N N 
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Williams et 

al. 
Virtex II Y Y 

Large User 

application 

Kalte et al. Virtex E N Y 
Dynamic 
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Bobda et al. Virtex N N 
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granularity.  A task is defined as an arbitrary function 

synthesized to a module that can be dynamically 

downloaded into the reconfigurable device. 

• Runtime Scenario Support: Provide the ability to 

generate and reconfigure task bitstreams at runtime as well 

as design-time.  Runtime scenarios envisioned at 

design-time may not necessarily know in advance which 

tasks will arrive nor when they will arrive, and in selected 

cases, what some of their specific properties will be.  

In addition to the framework, the second element of the MRRA 

paradigm is a Logic Control Flow aimed at increasing capability 

towards the following attributes: 

• Flow Coverage: Both the design phase and the runtime 

phase are automated, so that the partitioning, placement, 

routing, bitstream generation, and configuration steps can 

be accommodated. 

• Encapsulation: Control logic of each layer is 

self-contained thus exposing only a fixed interface to other 

layers, so that modification made at one layer has minimal 

influence on other layers.  If new control algorithms are 

added or the device platform is changed, the system can be 

ported more readily. 

• Standardization: A standardized set of APIs is provided 

for uniform access to heterogeneous logic and 

communication resources. 

Effective provision of these capabilities in the MRRA design is 

able to accelerate reconfiguration speed, reduce resource 

inefficiencies, and realize a sophisticated range of applications. 

Currently multiple vendors offer devices with various partial 

reconfiguration abilities including Altera, Atmel, Lattice, and 

Xilinx.  The partial reconfiguration capability from Altera 

includes certain components such as the divider of its Phase 

Locked Loop [41]. The AT40K family from Atmel 

demonstrates some general partial reconfiguration performance 

with literature describing a 50K maximum gate-equivalent 

capacity [42]. In this paper, Xilinx FPGAs, which provide 

multi-million gate-equivalent capacity and partial 

reconfiguration support, are selected to design and prototype 

our architecture. They are one of the widely used commercial 

devices for partial reconfiguration. At the same time, due to the 

intrinsic advantage of MRRA's layered design, the approach can 

be more readily ported to other vendor's platforms whenever the 

fundamental hardware requirements for partial reconfiguration 

are met. 

IV. HIERARCHICAL DESIGN  

Figure 1 shows the MRRA layered design used to encapsulate 

partial reconfiguration capabilities into three tiers named Logic 

Layer, Translation Layer, and Reconfiguration Layer:  

A. Logic Layer 

The Logic Layer is the upper tier that supports general 

user-level applications, carrying out hardware-independent 

logic control on the tasks running on the FPGA platform.  In this 

layer, task routines are available for invocation by user 

applications.  Reconfiguration requests can be initiated from 

this level, based on the requirements of the 

hardware-independent user logic.  These reconfiguration 

requests, including possible new logic function modification 

and/or physical resources re-arrangements, are all described in a 

general logic format at this layer.  These are subsequently 

provided to the translation layer to generate the 

device-dependent reconfiguration data file.  

Figure 2 shows the detailed representation of this logic 

format.  The representation describes the hardware circuit at the 

Look Up Table (LUT) level.  For each LUT, the representation 

has two parts, the LUT Status Information and the Modification 

Request.  In the LUT Status Information, the LUT inputs and 

output are labeled.  The physical row and column position of the 

LUT in the FPGA and the logic function inside the LUT are also 

recorded.  The modification request can be a physical relocation 

request or a logic function adjustment or both.  Besides the 

details of request information, two modification request flags 

are also used in this section to advise the translation layer to 

interpret the request more efficiently.  All of the high level 

applications will only use and modify this device-independent 
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data structure to determine their current state and generate new 

reconfigurations requests.  The reconfiguration requests 

containing all the LUT information generated at the Logic Layer 

will generate the device-dependent reconfiguration data file at 

the Translation Layer.  Depending on the complexity of these 

high-level applications, these can run either in standalone mode 

on the on-chip CPU core inside the FPGA, or on an external 

host PC with the on-chip CPU core running simultaneously 

using a loosely-coupled structure.   

B. Translation Layer 

The middle tier is referred to as the Translation Layer.  In this 

layer, the general logic descriptions for a palette of tasks are 

translated into specific physical details as a reconfiguration data 

file by a hardware-dependent mapping engine.  After the partial 

reconfiguration tasks generation request is made by the user 

logic from the Logic Layer at runtime, the general information 

contained in these requests must be translated into a 

hardware-dependent configuration data file.  The original list of 

partial reconfiguration tasks may include the origin design 

netlist, physical area allocation, re-allocation and/or direct logic 

modification.  This translation enables the Reconfiguration 

Layer to execute the reconfiguration requests on the FPGA 

device.  The Translation Layer contains a mapping engine to 

interpret all of the general representations passed from the upper 

layer into an actual reconfiguration data file. 

Figure 3 shows the details of the translation process.  The 

Translation Layer always stays in the idle state until a new 

request is sent from the Logic Layer.  A new request is always 

accompanied by an LUT list.  Based on the modification request 

specified in the contents of each element of the LUT data 

structure, the status of each LUT is updated.  The modification 

request is then cleared and the corresponding translation engine 

indicator will be set if necessary.  Based on the two translation 

engine indicators, the corresponding area and logic translation 

engine will be called to map the general information into device 

related data.  The actions in the dashed boxes in Figure 3 will be 

processed only when the corresponding flags or indicators are 

set.   

Currently, in the prototype Translation Layer, both the 

one-dimensional (1D) and two-dimensional (2D) area 

management mapping processes still rely on the Xilinx toolset.  

The physical resource area management constraints are 

generated and modified directly by the upper layer logic, and 

then translated into standard text based constraint input by the 

translation engine in this layer.  After the new constraint file is 

generated, the Xilinx tools are invoked by the translation engine 

via a shell script.  This will automatically run the task in the 

background to perform the placement and routing for the 

module without manual input. 

On the other hand, logic modifications can be translated on 

either an available partial reconfiguration file or on the currently 

active configuration data in the device directly without 

involvement of the Xilinx tools.  When the partial 

reconfiguration file is processed, the Translation Layer will map 

the top-level logic request directly into the file and then send it 

to the Reconfiguration Layer to be downloaded to the device.  

This decouples the bottom layer’s hardware-specific 

considerations from the application’s user logic.  It also 

incorporates the online run-time spatial management 

information into the corresponding partial reconfiguration data 

file so that when multiple modules need to be reconfigured, the 

physical area can be reorganized and optimized.  With the 

existence of such a layer, adjustments for changes to the 

hardware devices or components can be accomplished by 

modifications of the mapping engine in the Translation Layer 

without influencing the top-level Logic Layer.  

C. Reconfiguration Layer 

This layer of the autonomous architecture includes the 

hardware platform and the low-level communication APIs. The 

typedef struct tagLUTinfo 

{ 

    /* LUT status information */ 

    unsigned short   source[3]; /* The 4 input of the LUT */ 

    unsigned char    iTruthTable[2];     /* Current output truth table */ 

    unsigned short   cRow;           /* Current row position */ 

    unsigned short   cColumn;              /* Current column position */ 

    unsigned short   destination[255];   /* The output of the LUT */ 

    char             GorFLUT;                    /* 0=G_LUT; 1=F_LUT */ 

 

    /* Modification request */ 

    unsigned short  cFutureRow;           /* Future Row */ 

    unsigned short  cFutureColumn;      /* Future Column */ 

    char         SwitchLUTFlag;    /*0= no change, 1= move 

                                               position between G and F LUT*/ 

    unsigned char   iFutureTable[2];    /* Future Truth Table */ 

    char         PositionFlag;              /* 0=no change; 1=update */ 

    char         TableFlag;                  /* 0=no change; 1=update */ 

} LUTInfo; 

 

Figure 2: LUT Representation at Logic Layer 
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configuration bitstream is downloaded to the targeted FPGA 

reconfigurable units from this layer’s hardware interfaces when 

either the initial configuration, or the run-time partial 

reconfiguration is carried out.  Input and output data for the 

FPGA can also be exchanged between the logic control and the 

lower-level FPGA reconfigurable units’ areas through this path 

for the functional throughput of the task routines during 

operation.  This layer supports the use of on-chip Block RAMs 

or External RAMs to hold configuration data to accelerate the 

transfer process through pipelining and buffering.  The 

Reconfiguration Layer includes the hardware platform and the 

low-level communication APIs. 

Figure 4 shows the detailed schematic view for the modular 

hardware platform of the MRRA architecture designed for 

Xilinx Virtex II/-Pro architecture.  This platform has been 

designed as a full on-chip hardware subsystem.  The hardware 

subsystem includes two subsets comprised of system resources 

and operational resources [17].  The system resources include 

an on-chip PowerPC core as the control element, the on-chip 

Block RAMs and all the external peripherals such as the SRAM, 

which acts as shared memory and can be accessed by both Host 

PC and on-chip PowerPC, and the RS232 interface.  The 

operational resources are the actual FPGA modules instantiated 

inside the FPGA.  It consists of a fixed resource subset that is 

held constant during the entire process and is used to control the 

on-chip data communications and on-board peripherals, as well 

as a reconfigurable resource subset that is used for the 

user-defined partial reconfiguration applications.  

There are three reconfiguration interfaces provided in this 

platform scheme, which are SelectMAP, JTAG, and ICAP.  The 

reconfiguration process through the SelectMAP interface will 

be carried out through the external SRAM, which is connected 

to the host PC via the PCI bus while the JTAG interface is a 

dedicated port directly connected to the FPGA device.  The 

ICAP is an internal reconfiguration interface integrated inside 

the FPGA device.  Using MRRA routines, the ICAP controller 

reads and writes configuration data directly from the device’s 

internal configuration memory.  

Partial reconfiguration can be carried out using any of the 

three interfaces with either a precompiled partial 

reconfiguration file or the current active configuration data in 

the device.  However when the current on-device configuration 

data is used, the ICAP interface is preferred due to speed 

considerations.  After receiving the representation scheme from 

the top tier, the data address is determined by the Translation 

Engine.  Based on the calculated address, ICAP is able to read 

back the stored values, which are dedicated to the 

corresponding logic.  The Mapping Engine continues 

interpreting the new logic information and loads it into the 

frame.  After this process, new data will be merged back into the 

running bitstream using ICAP.  Only selected positions of the 

bitstream that contain the updated user logic request are 

modified.  Therefore, configuration outside of the dedicated 

area is not affected.  With the use of ICAP, the bus macro is 

eliminated from the design, which can significantly simplify the 

design as opposed to the module-based flow. The operation of 

the Reconfiguration Layer components will be described in the 

context of case studies in Section VII. 

V. LOGIC CONTROL FLOW 

Figure 5 shows the logic control flow designed for the 

MRRA. This control flow has integrated a Module-based Flow 

adapted from the standard Xilinx [45] flow with area 

management ability and the direct bit management process, 

which we named as a Frame-based Flow. 

A. Adapted Module-based Partial Reconfiguration Flow 

As delineated by the dashed area in Figure 5, the 

Module-based Partial Reconfiguration Flow is primarily 

utilized at design time.  This flow allows different elements 

referred to as modules of a design to be independently 

developed and later merged into one FPGA design.  This allows 

the individual reconfiguration and modification of the modules 

at run-time.  Additionally, it provides the potential for full 

autonomy and flexibility using the translation engine from the 

lower layer without the need for GUI-based manual input. 
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As shown in Figure 5, the full hardware system is designed 

with a top to bottom approach and partitioned into modules.  

This generates the Top-level Design and Module-level Design.  

Meanwhile, One-Dimensional Area Management is performed 

on the full physical FPGA device by partitioning it into 1D 

column-based rectangles, in which the fixed and reconfigurable 

modules will be arranged based on the size of each module and 

the specified area constraints.  Tools, such as PlanAhead from 

Xilinx, are accommodated through this step.  Bus Macros [45] 

also need to be used to maintain correct connections between 

the modules by spanning the boundaries of these rectangular 

regions.  Next, the modules are implemented and verified 

individually to create the Module Implementation.  They are 

then optimized by additional Two-Dimensional Area Allocation 

placements inside each module to minimize the partial 

reconfiguration bitstream size.  To accelerate the process, the 

FloorPlanner from Xilinx can also be utilized for the 

arrangement.  The optimized partial reconfiguration bitstream 

for the specific modules are then generated.  Finally, all the 

individual modules are created by Final Assembly based on the 

top-level view and are ready to be downloaded to the FPGA 

device as Configuration Data bitstreams. 

After the initial bitstream is downloaded, the precompiled 

partial bitstream can be monitored by the algorithms in the 

Logic Layer and new modification requests can be generated by 

the user logic in the form of hardware-independent 

representations at runtime.  The necessary operations are 

depicted by the Runtime Flow in Figure 5.  Although the 

boundary of each module is fixed, the physical logic resources 

inside each module can be re-allocated at runtime.  Logic 

function modification requests for each LUT inside the modules 

can be generated based on the user requirements.  Requests 

from the Logic Layer are interpreted at the Translation Layer to 

generate the corresponding configuration data file for use by the 

Reconfiguration Layer. 

B. Frame-based Partial Reconfiguration Flow 

In the basic Module-based flow, all the tasks that need to be 

reconfigured at runtime are required to be precompiled at design 

time and reside originally in non-volatile storage.  However, in 

some instances, hardware tasks may have very similar or even 

identical logic function structures as well as input and output 

signals.  Such scenarios typically can occur in hash, encryption, 

and encoding/decoding applications, such as [25], [30], [35], 

[38], etc.  Figure 6 illustrates this concept with a straightforward 

example and a more sophisticated case study will be developed 

in Section VII.  Both a one-bit full adder and a one-bit full 

subtracter have three one-bit inputs and two one-bit outputs.  

When viewing these two modules as a black box externally, they 

are reconfiguration-compatible.  Specifically, when analyzing 

the logic structure instantiated inside the black box, these two 

modules both use 2 LUTs with identical logic interconnections 

between LUTs and I/O signals.  The only difference between 

them is only one truth table stored inside one LUT, which 

changes from 0xE8 to 0x8E.  There exists a clear overlap 

between the configuration information for these two modules.  

When these two similar tasks need to be interchanged, the use of 

two separate precompiled configuration data files will occupy 

twice the storage space and twice the reconfiguration time.  A 

more advantageous strategy would be to modify the 

corresponding logic content directly at runtime when switching 

between two tasks with similar or even identical logic 

structures, especially when the logic interconnections are 

identical.  This can also potentially be extended to tasks even at 

a fine-grained level [36].  The concept is further demonstrated 

in Section VII for a realistic SHA-1 and MD-5 case study. 

In Xilinx Virtex II/-Pro FPGAs, configuration memory is 

arranged in column-based vertical frames, i.e., one-bit wide 

extending from the top edge of the device to the bottom.  These 

frames are the smallest addressable segments of the FPGA 

configuration memory space.  Hence, all operations must act on 

whole configuration frames.  Even if only one byte inside a 

frame is changed, such as the truth table of one LUT, the full 

frame needs to be rewritten.  Configuration memory frames do 

not directly map to any single piece of hardware; rather, they 

configure a narrow vertical slice consisting of many physical 
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resources.  Therefore, we refer to the direct bit management 

process as a Frame-based Partial Reconfiguration Flow. 

To utilize this flow at runtime, modules have to be 

implemented at the LUT level at design time when following 

Module-based Flow procedures.  Besides the required 

1-dimensional area constraints for the module, all of the logic 

elements that may require partial reconfiguration at run time 

have to be placed at specific physical locations using 2D area 

constraints.  Thus, the representation scheme shown in Figure 2 

is used to describe the module circuit.  Since the primary 

Frame-based Partial Reconfiguration Flow only focuses on the 

logic modification of the modules without considering the 

changes of input/output signals or the logic interconnections, 

there are only two aspects that need to be focused on with the 

module circuit.  The first is the LUT-level functionality and the 

second is the physical location of the LUTs.  

Since there are no logic interconnection changes at runtime, 

the logic elements, i.e. the LUTs, are labeled with a fixed integer 

from 1 to N at design time, where N denotes the total number of 

LUTs used.  After receiving the representation scheme from the 

top tier, the frame address is determined by the translation 

engine.  Based on the calculated address, the corresponding 

logic function data of the frame can be read back.  The mapping 

engine then continues interpreting the new logic information 

and loading into the frame.  After this process, new frame data 

will be merged back into the running bitstream.  The time and 

space saving advantages of this representation strategy will be 

demonstrated in Section VII, which reconfigures the step 

function of hash algorithms in a FPGA implementation case 

study. 

VI. AREA MANAGEMENT AND OPTIMIZATION 

Establishing adequate reconfigurable regions and sufficient 

connectivity at design time is crucial for dynamic partial 

reconfiguration support.  Furthermore, it is necessary to track 

the occupancy of these regions at run-time to maintain correct 

module re-allocation operations.  MRRA area management 

strategies address both of these requirements. 

The area management at module level is carried out at a 

1-dimensional level.  The size of any single occupied 

reconfigurable module is fixed after design time.  Hence these 

modules can only be re-allocated to other same column-sized 

reconfigurable regions, given these regions provide identical 

inter-module interconnections for the external ports of the 

module.  This is a limitation imposed by the module-based flow 

provided by Xilinx [45].  The width ranges from a minimum of 

four slices to a maximum of the full-device width, in four-slice 

increments.  Manipulating the column addresses of a module’s 

bitstream enables a module to be relocated.  When the module 

spreads across multiple CLB columns the first and leftmost 

column must be presented at the beginning, then the new CLB 

column value is automatically incremented internally.  During 

the relocation process, the old column addresses of a module are 

established.  Several FPGA hardware specific parameters are 

then used to generate the new major column addresses.  Hence, 

the old values of the input bitstream are simply replaced by the 

newly calculated values.  Since checksum data may be 

generated in the original reconfiguration data, several extra data 

words may have to be recalculated and updated during the 

process in order to relocate a module to another CLB column. 

Since only the column address of the module is changed, the 

relative position of all the logic resources and routing resources 

are kept intact and can be quickly shifted to other column 

positions.  Hence, this process also requires that the relative 

position of inter-module interconnections for the external ports 

of the module be the same.  A related approach for Virtex 

FPGAs has also been discussed in [16]. 

On the other hand, inside each module, slices can be placed 

and adjusted anywhere inside each module’s reconfigurable 

region.  These arrangements can be carried out at a 

two-dimensional level, only limited to the height and the width 

of the region.  These area modifications are translated at the 

slice level by the mapping engine.  Therefore, this requires that 

the corresponding reconfigurable modules are implemented at 

least at the RTL-level or the more detailed LUT-level.  The 

2-dimensional adjustments can be potentially very useful to 

applications such as fault tolerance or Genetic Algorithms 

(GAs) [13][22][26] that are executed at the top level.  

Additionally, such adjustments also beneficially influence the 

size of configuration bitstream.  

For the Xilinx Virtex II/-Pro family, there are several 

configuration column types, including Global Clock (GCLK), 

Input Output Block (IOB), Input Output Interconnect (IOI), 
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Configuration Logic Block (CLB), Block RAM (BRAM), and 

BlockRAM Interconnect (BMINT).  Each type has a given 

number of frames, where each configuration frame has a unique 

32-bit address.   

Among all these types of columns, the CLB columns control 

the configurable logic blocks, routing, and most interconnect 

resources.  The number of CLB configuration columns matches 

the number of physical CLB columns in the device.  For each 

CLB column, there are two columns of slices.  To denote the 

configuration of these slices, 22 frames are utilized within the 

bitstream for a complete reconfiguration file.  Each frame has a 

fixed size of 424 bytes.  The logic for each CLB column, which 

is stored in the two LUTs of each slice, only occupies two of the 

22 frames.  In particular, the contents for the first slice column 

LUTs – i.e. with an even slice column number starting from ‘0’– 

can be found in the second frame, while those for the second 

slice column – i.e. with an odd slice column number starting 

from ‘1’– are in the third frame.  IOB usage at the top and 

bottom edges of this CLB column are located in the first frame.  

The remainder of the frames are all used to describe the routing 

resources usage of the CLB column. 

For unused CLB frames, a compression technique is used in 

the partial reconfiguration bitstream file.  Instead of writing 106 

instances of the word value of ‘0’, which is a full frame length, 

the Multiple Frame Write Register (MFWR) is employed.  This 

involves setting the corresponding frame address to the FAR 

first, and then writing two padding words to the MFWR 

(normally ‘0’).  Using this padding technique, the full-unused 

frame can be set with a total cost of just ten bytes in the bit file.  

Therefore, for each unused frame, the number of saved bytes is 

414, yielding 97% area savings per frame.   

 More generally, since configuration frames are arranged 

vertically, designs that span the fewest possible configuration 

frames achieve greater compression.  To estimate the 

compression achieved, let the number of unused frames be 

denoted by U on a system that uses B bits per frame.  An 

estimate of the number of saved configuration bits, S, under a 

fixed region F per frame is given by: 

S ≈ U × (B - F).         (1) 

Here B >> F so S is nearly the product of U and B.  Therefore, 

this 2-dimensional area management strategy inside modules 

can achieve high compression rates to minimize the partial 

reconfiguration data file size, which may be crucial for 

embedded applications using dynamic reconfiguration.  

Embedded SOCs often have limited storage capacities and 

real-time transfer timing requirements, and therefore can benefit 

from this bitstream compression strategy. 

As suggested in the previous section, inside each module, the 

2D area management strategy can be incorporated into the 

Design-Time Flow to minimize the partial reconfiguration file 

size.  This additional area management strategy needs to be 

carried out after the synthesis process of the design is complete 

and before the translation, mapping, placing and routing steps.  

Since this strategy deals with the real physical resource 

arrangement, the logic elements are identified at a very fine 

granularity, such as Slices, LUTs and D-flip flops, etc., which 

the Translation Layer can then directly translate and map.  The 

steps involved in this procedure include: 

1.  Region Allocation: Assign an area for the partial 

reconfiguration module, which is large enough to 

accommodate all the external input and output signals at 

either the top or the bottom edge of the designated area.  

With an FPGA model such as the Virtex II Pro VP7 or 

higher, an area with 40 pins or higher along the edge can 

be easily partitioned, which normally will be able to 

satisfy an 8-bit or even 16-bit module design. 

2.  Pin Assignment: Choose either the top or the bottom edge 

and place all the external signals adjacent to each other if 

possible.  When the assigned area contains the left or the 

right edge of the device, these edges may be chosen as 

well.  Place the remainder of the pins on the other side of 

the edge if any unoccupied pins are available.  This step 

tries to eliminate, or at least minimize, any unnecessary 

signals that will span the full height of the device, which 

clearly will occupy more routing resources in different 

frames. 

3.  Column Alignment: Attempt to place all the logic 

elements into a single slice column consecutively or with 

only a short slice row gap, near the edge where the 

external pins were placed.  One and only one frame will 

be used to describe all the LUT logic contents of a full 

column of slices, regardless of the number of LUTs of 

the slice column actually used, as long as it is not zero.  

Thus this step will minimize the number of frames used 

to describe the design logic as well as most of the 

interconnection resources. 

4.  Choke-Point Elimination: If there are any logic elements 

with a fan out greater than 4, place the destination 

elements around its side, including top and bottom of the 

same slice column as well as the adjacent slice column 

side-by-side.  This will typically reduce the routing 

resource usage even more than simply by mandatory 

placing of all logic elements inside a single slice column. 

5.  Repeat: If there are any elements left to be processed after 

finishing one column, repeat steps 3 and 4.  Place the rest 

of the logic elements into the adjacent slice column with 

the same principles until all or at least elements along 

major logic paths are completed.  With an FPGA model 

as Virtex II Pro VP7 or higher, each slice column 

contains 160 or more 16-bit LUTs and the same amount 

of D flip-flops, which normally will be able to contain a 

small to middle size module design in one or two 

columns. 

To summarize, the procedure places the logic elements into 

the least possible number of slice columns.  The logic sequence 

of the elements may also need to be considered when placing 

along the path to achieve the highest possible optimization. 

VII. EXPERIMENTAL RESULTS AND ANALYSIS 

The hardware prototype of the MRRA has been developed 
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for a Xilinx Virtex II Pro VP7 FPGA on an Avnet Virtex II Pro 

development board, with a 2GHz Pentium 4 desktop host with 

512M bytes of RAM.  The onboard hardware component and 

software APIs were initially developed using the Xilinx ISE 6.3 

toolset and EDK 6.3, and later extended to support Xilinx ISE 

9.1i.  WinDriver from Jungo Software is also used to establish 

the communication APIs on the host PC side.  The physical 

resource area management constraints are entered directly into 

User Constraint Files (.ucf) as text input.  Mapping and routing 

are accomplished using the Xilinx toolsets.  The 1D area 

management is implemented using the “area group” constraints 

and the slice-level 2D area management is defined by using the 

“LOC” constrains.  Details about the syntax of the UCF file can 

be found in [49]. 

A. Application Case Study 

Hash algorithms [39], also known as message digest 

algorithms, are frequently used to generate a unique 

fixed-length bit vector H for an arbitrary-length message M.  

The vector H is called the hash or the message digest of M.  

These algorithms are used for encryption in a wide variety of 

security applications.  Here two types of the most commonly 

used hash algorithms, i.e., MD5 [39] and SHA-1 [39], are 

selected for the top-level case study.  Both algorithms are 

frequently employed in real-time embedded data stream 

processing applications. 

The two algorithms have a sufficiently similar structure to be 

amenable to dynamic partial reconfiguration.  In both 

algorithms, 32-bit temporary registers are used to derive H. 

MD5 uses four registers: A, B, C, and D. Meanwhile, SHA-1 

uses an additional fifth register E.  These registers are initialized 

with certain fixed constants.  The message M is first padded with 

‘0’s to a length which is a multiple of 512 bits and then it is 

divided into blocks of 512 bits.  Subsequently, each block is 

processed by a series of steps.  Let i denote the step index.  MD5 

consists of 0 ≤ i ≤ 63 steps, whereas SHA-1 consists of 0 ≤ i·≤ 79 

steps.  Each includes a step function and the re-organization of 

the temporary registers.  For each step there are two 32-bit 

words W and K.  The word W is derived from the block under 

processing based on a message schedule.  The word K is a 

constant defined by i.  There are four possible functions, Fj, and 

each is used in a different round.  After each step, the values of 

the registers of MD5 are re-organized as A←D, B←Smd5, C←B, 

and D←C.  However, for the SHA-1 algorithm, the values of the 

registers are re-organized as A←Ssha, B←A, C←B<<<30, where 

“<<<” means rotate shift left, and D←C and E←D.  When all the 

steps are complete, the current value of each temporary register 

is added to its previous value.  Then, another block is selected 

for processing, and this continues until all blocks are processed.  

In the end, the hash value H of the message M is in the 

temporary registers, which is has a length of 128 bits for MD5 

and 160 bits for SHA-1.  For more detailed information about 

these two algorithms, see [39]. 

After analysis of the similarities and differences of these 

algorithms, the four step functions have been chosen for 

implementation as reconfiguration modules.  Thus, it is possible 

for both algorithms to be implemented in a single top-level 

design so that the required resources are minimized with limited 

partial reconfiguration.  More detailed discussion about 

combining these two algorithms can be found in [25][30] which 

provides a third application case study baseline circuit to which 

partial reconfiguration is applied to below.  

Clearly, the eight step functions in these two hash algorithms 

have the same type of inputs and outputs with identical bit 

widths.  Therefore, this case study represents an example where 

the Frame-based reconfiguration flow offers a more efficient 

option as compared to the Module-based partial reconfiguration 

flow, as mentioned in Section IV.  Table II lists the results and 

compares the resource utilization and power consumption when 

using different implementation strategies.  For each 

implemented algorithm, the first sub-column lists the result of 

the original full step function design as a baseline.  The results 

from the Module-based partial reconfiguration flow 

implementation are listed in the second sub-column.  As shown 

in this sub-column, the resource utilization for each module of 

the design has been reduced to one third or less of the baseline 

design.  As far as the power consumption is concerned, two 

groups of data are listed, including Dynamic Power and Total 

Core Power, where the latter is the sum of the Quiescent Power 

and the Dynamic Power consumption obtained by Xilinx 

XPower average over a test vector of over 2
11

 random inputs.  

As shown in row 2 and row 3 of Table II, the Dynamic Power 

consumption has been reduced to just 8.8%, 15.4%, and 29.2% 

of baseline using the Module-based approach for SHA-1, 

MD-5, and combined circuits, respectively.  The Total Core 

Power has been reduced to 57%, 58.3%, and 63.8% of baseline, 

TABLE II: 

 STEP FUNCTION  RESOURCE UTILIZATION AND POWER EVALUATION 

SHA-1 MD5 Combined 
 

Baseline 
Module 

Based 

Frame 

Based 
Baseline 

Module 

Based 
Frame Based Baseline Module Based Frame Based 

Area (slice) 192 65 (33.9%) 32 881 168 (19.1%) 32 1068 324 (30.3%) 32 

Dynamic 

Power (mW) 
234.35 20.69 (8.8%) N/A 255.20 

39.32 

(15.4%) 
N/A 274.12 

79.98 

(29.18%) 
N/A 

Total Core 

Power (mW) 
496.85 

283.19 

(57.0%) 
N/A 517.70 

301.82 

(58.3%) 
N/A 536.62 

342.28 

(63.8%) 
N/A 
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respectively, as well.  As for the Frame-based design, since all 

step functions take 3 inputs and generate 1 output of 32 bits 

width each, only 32 LUTs are required to be updated during 

partial reconfiguration.  Therefore a minimum of 16 and a 

maximum of 32 slices are needed based on the LUT placement 

strategy.  The truth table representations are stored in the 

top-level flow control code directly with 2×8=16 bytes storage 

consumed.  The new bitstream is generated by the translation 

engine on request.  The XPower tools facilitate estimation of 

power consumption at the design level and the results reported 

are the average values across all slices in the design. The power 

consumption of individual slices cannot be estimated.  

Therefore the power data of Frame-Based design is not 

available. 

B. Area Optimization 

To evaluate the area optimization strategy, several case 

studies have been carried out.  Since MD5 and SHA-1 have the 

same dataflow structure, MD5 results are presented to 

demonstrate a larger design but SHA-1 is similar.  Other case 

studies include four representative small cases, which illustrate 

all of the steps and scenarios mentioned in Section V, and one 

middle-sized case study.   

Each design was implemented as partial reconfiguration 

modules as listed in Table III.  Each of the four small cases has 

its own distinct features including parallel and cascaded LUT 

arrangements, dedicated physical resource usage, and large fan 

out elements.  The first design is a simple quad 4-input 16-bit 

LUTs design with a random combinational logic functions 

specified in the truth table.  The second design is a 9-bit shifter 

with cascaded logic.  The third design is a 4-bit×4-bit multiplier 

with a block multiplier used during synthesis.  Finally, the last 

design is again a 4-bit×4-bit multiplier, but with LUT logic only.  

To increase the accuracy of the comparison, all 4 modules have 

been defined using the same number of external signals.  All 

these signals have been managed to be placed at the top edge of 

the partial reconfiguration region. 

Figure 7 shows the optimized logic element arrangement of 

all 4 small designs using MRRA.  For the elementary 4-LUT 

element design in Case #1, since all LUTs are in the parallel 

logic path with direct input from external signals and connected 

to the output though flip flops, putting them in a single column 

close to the external pins is a straightforward solution.  The 

resource arrangement is shown in Figure 7(a).  Case #2 for the 

shifter is shown in Figure 7(b), since all logic elements are 

logically serially cascaded, from input to output, the simple 

single column solution is again the best choice.   

However, for Case #3 the 4-bit×4-bit multiplier uses the 

dedicated hardware block multiplier resource, which is circled 

in red in Figure 7(c).  The position of the slice column in this 

case needs to be balanced to minimize the routing between the 

path of the block multiplier and the LUTs, and the path of the 

LUTs and the external pins, which leads to an unchanged 

maximum delay value instead of an improvement after the 

optimization.  The extra cost of routing also explains the 

decreased savings in bitstream length compared to the shifter or 

the LUT-based multiplier design, as listed in Table III. 

For Case #4, the 4-bit×4-bit LUT-based multiplier, the high 

fan-out situation mentioned in the previous section needs to be 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Optimized Design Layout using MRRA 

TABLE III 

 OPTIMIZATION RESULTS 

Module name 
# of 

LUT. 

# of 

FF 

# of block 

Multiplier 

# of 

Slices 

Original File 

Size (Byte) 

Original Max. 

Delay (ns) 

Optimized File 

Size (byte) 

Optimized 

Max. Delay (ns) 

Area 

Saving 

4 LUTs 4 16 0 12 64K 1.371 55K 1.347 14% 

Shifter 1 24 0 13 87K 1.377 63K 1.367 28% 

Block Multiplier 8 25 1 17 88K 1.346 66K 1.346 25% 

LUT Multiplier 22 22 0 22 96K 1.367 68K 1.346 29% 

SECDED 93 41 0 74 89K 1.355 60K 1.355 33% 

MD5 292 128 0 168 120K 1.380 84K 1.322 30% 
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TABLE IV: 

RESOURCE UTILIZATION 

Interface 
# of Fixed 

Modules 

# of  Pin of 

Fixed Modules 

Reconfigurable 

module overhead  

Slices for 

Fixed Modules 

BRAM for 

Fixed Modules 

TBUF for 

Fixed Modules 
PPC405  

Comprehensive 

interface 
9 77 7 slices 1472 9 352 Y 

SelectMAP 8 77 7 slices 1352 8 352 Y 

ICAP (with/without 

SRAM controller) 
9 / 8 77 / 4 7 slices 1472 / 932 9 352 / 42 Y 

JTAG 4 25 0 73 0 64 N 

 

dealt with.  The carry chains, marked in brown, red, and blue in 

Figure 7(d), have multiple connections to the LUT logic 

elements in the dark green blocks.  Therefore, these carry chains 

are arranged around the LUT logic blocks instead of in simple 

one column style to achieve the best resource area optimization. 

The comparative optimization results for these case studies 

using MRRA are listed in Table III.  The logic resource usage of 

each of design is also summarized in the table.  Partial 

reconfiguration for designs that comprise as few as four LUTs 

can achieve 14% area reduction saving.  The more complicated 

case study, involving the 4-bit×4-bit LUT-based multiplier, 

demonstrates almost 30% reduction using the presented 

strategy.  While the four small case studies illustrate the 

concept, larger and more involved designs using partial 

reconfiguration design can achieve higher degrees of bitstream 

savings.  Results also show that in most cases, the maximum 

propagation delay has been decreased slightly.  

In order to verify our area optimization strategy further, one 

middle-sized module, a Single Error Correction Double Error 

Detection (SECDED) algorithm and a larger-sized module of 

the MD5 algorithm, are also implemented with the same area 

management strategy as the smaller cases using a similar pin 

arrangement.  A total of 74 and 160 slices were used to 

implement the respective algorithms.  In both cases, the partial 

reconfiguration module occupies 2 or more columns of slices.  

Due to the large number of resources involved, only slices on 

the critical path are constrained during the optimization process.  

The results from the implementation of these modules are listed 

in the last two rows of Table III.  As suggested before, increased 

bitstream savings of 33% and 30% are achieved because these 

are comparatively larger modules.  Overall, with this area 

management strategy, about a one-fourth size reduction or 

higher can be achieved for partial reconfiguration modules.  On 

the other hand, the larger the module is, the more complicated 

and time consuming the process of specifying resource usage 

becomes. 

C. FPGA Resources Utilization 

Five different partial reconfiguration platforms have been 

developed based on the different reconfiguration interface 

requirements, including one with SelectMAP interface only, 

one with JTAG only, one with ICAP only and external SRAM 

controller on chip, one with ICAP and without the SRAM 

controller, and one with all three interfaces.  With these five 

prototypes, complexity and performance tradeoffs for 

embedded SoC applications can be clearly compared and 

contrasted.  Resource utilization is listed in Table IV.  In order 

to establish the bi-directional communication channel, external 

SRAM and on-chip SRAM controller modules are used as data 

buffers for reconfiguration purposes, which occupy a majority 

of the 77 external pins and 352 TBUF resources in the fixed 

region.  In fact, because of the high pin usage dispersed across 

the fixed region, only 15 out of 68 columns of slices remain 

available for the reconfigurable modules.  Therefore the 

resource utilization of the SelectMAP prototype, the ICAP with 

external SRAM prototype, and the multiple interface prototypes 

show very little variation. 

On the other hand, if the ICAP system is built as an SOC 

prototype, with no required external parallel communication 

channel, or using only the standard RS232 port, most of the pin 

utilization drops significantly.  As mentioned earlier, if only a 

JTAG interface is used, commercial tools such as ChipScope 

[48] can be used for validation process, which can eliminate 

most of the on-chip modules in the fixed region, including the 

PowerPC core.  Furthermore, without the OPB bus 

interconnection, the IPIF for each module is also not required.  

Hence the reconfigurable module overhead is reduced from 7 

slices to 0, when compared to other platform versions. 

In summary, when the SelectMAP interface with external 

SRAM is used to establish reconfiguration and testing channels, 

sophisticated hardware logic is involved and excessive pins 

usage is incurred, which consumes a factor of 5 to 18 times more 

logic resources in the fabric than the JTAG-based prototype.  

These costs can limit the size and area placement flexibility of 

the reconfigurable modules.  In this case, large capacity FPGAs, 

such as the Virtex-II Pro X2VP20 or above, are highly 

recommended.  Furthermore, additional effort is also required 

for pin assignments and connections with special bus macros 

thereby resulting in an increase in design complexity. 

 

D. Timing Evaluation 

1) Fundamental Timing Parameters 

Tests have been carried out to measure the performance of 

the fundamental operations of the MRRA prototype.  Table V 

presents the wall clock time for each of these operations. For the 

JTAG and SelectMAP interfaces, the time taken to download 

the full bit file, which has a fixed size of 548 KB for the Virtex II 

Pro XC2VP7, is measured.  The time taken by the ICAP read 

and write operations are measured on a per frame basis, each of 
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TABLE VI 

 TRANSLATION ENGINE EVALUATION 

Test Circuit Oringal Equivalent Gate  Occupied Slices Bit file Size (Byte) Genera-tion Time (V6.2) Generation Time (V9.1) 

MRRA  N/A 1472 548 K 4m 31s N/A 

C17 6 8 66 K 67s   101s   

C1908 603 41 89 K 69s 109s 

B02 28 11 66 K 66s 107s 

B03 160 45 75 K 70s 163s 

MD5 2496 168 120K 71s 111s 

 

which contains 424 bytes of data.  Theoretically, the JTAG 

interface with a parallel cable III can have a download speed of 

300Kbps [47] and SelectMAP with Virtex II/-Pro can work at a 

maximum 66MHz clock speed [46].  In our prototype, the 

measured data transfer rate using JTAG was 216 Kbps.  Due to 

the data-transferring overhead between the host PC and the 

board, the SelectMAP interface requires 536 ms, which roughly 

translates to 1MB/s throughput. Therefore, when downloading 

from the host PC, the observed reconfiguration latency of JTAG 

is 40 times higher than that of the SelectMAP interface, as 

expected.  This indicates the magnitude of benefit achievable by 

using SelectMAP in terms of low reconfiguration latency.  For 

the on-chip reconfiguration operation, the ICAP-based 

technique took 303,425 clock cycles to read a frame and 

304,811 cycles to write a frame.  Since the current PowerPC 

core operates at 100MHz, the timing can be easily transformed 

into milliseconds as listed in Table V.  A single data 

communication processing cycle, starting from host PC sending 

the data out to the PCI to reading the data back from the SRAM 

requires up to 123 ms. This includes the time taken by the 

hardware and PowerPC to finish processing the data.  The time 

taken to generate a new bitstream file with direct bitstream logic 

manipulation APIs has an upper-limit of 30 ms for modification 

of the 32 slices of the hash algorithms on the host PC.   

2)  Translation Engine Evaluation 

The speed of the translation engine for module 

implementation is also evaluated with a series of circuits.  The 

translation engine is required to create the original partial 

reconfiguration bitstream and to reallocate the physical 

resources.  In addition to the original MD5 module, two 

combinational benchmark circuits from the ISCAS’85 

benchmark suite - the C17 and the C1908, which is the 

SECDEC circuit mentioned in the previous section have been 

used in this experiment.  Two sequential benchmark circuits 

B02 and B03 from the ISCAS’99 benchmark are also used to 

gauge performance with sequential circuits.  

Table VI lists the detailed results.  The first row of the table 

lists results for the full MRRA prototype used as a baseline for 

comparison.  Among the 5 benchmark circuits, C17 and C1908 

which are combinational designs were described at the gate 

level.  B02, B03, and MD5 were developed at Register Transfer 

Level instead.  In Table VI, the Original Equivalent Gate 

column lists the number of gate-equivalents reported when these 

benchmarks were instantiated directly using the Xilinx design 

tools.  However to incorporate these circuits into the MRRA 

framework, a standard IPIF has to be added above the standard 

logic to maintain the correct data communication to the OPB 

bus.  This IPIF logic increases the size of the partial 

reconfigurable modules, which can be observed from the 

corresponding Occupied Slices column in Table VI.  The partial 

bitstream file size adequately shows the result of these slice 

utilization differences, which are demonstrated in the fourth 

column.  The last column lists the translation time for partial 

reconfiguration module implementations of the benchmarks.  

For these module implementations, the time is partially 

dependent on their size, although not linearly related.  Although 

a significant improvement in the total time taken by the process 

has been achieved when compared to the full configuration 

bitstream generation, they still require tens of seconds.  The 

partial reconfiguration modules have also been evaluated by 

integrating both ISE 6.3 and the latest version ISE 9.1 within 

MRRA.  The timing results for these two versions of the ISE are 

shown in the last two columns of Table VI.  These figures were 

obtained on a Windows XP environment with a 2.0 GHZ 

Pentium 4 CPU and 512 MB RAM.  Clearly, the ISE 9.1 version 

runs much slower than the ISE 6.3.  Upgrading the development 

TABLE V: 

 BASIC TIMING EVALUATION 

Operation Threotetical Maximum Throughput Measured Throughput Measured Transfer Time 

SelectMAP Reconfiguration  66 MB/s 1MB/s  536ms (per full file)  

JTAG Reconfiguration 300 Kbps 216 Kbps 20.3s (per full file)  

ICAP Read 50 Mbps 1.12 Mbps 3.03ms (per frame)  

ICAP write 50 Mbps 1.11 Mbps 3.04ms (per frame) 

Data Communication N/A N/A 123 ms 

Direct Bitstream Manipulation N/A N/A 30 ms (per 32 slices) 
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hardware will definitely improve the performance significantly.   

However, the translation time will remain greater than ten 

seconds.  Therefore, it is not recommended to call these scripts 

at runtime unless it is essential for relocating the modules.  

Alternatively, the scripts can be pipelined with other running 

tasks efficiently as described below. 

VIII. CONCLUSION 

Demands for runtime partial reconfiguration capability in 

embedded SoC applications can be achieved by providing 

multiple bitstream generation choices, including direct 

bitstream manipulation for logic functions and hybrid 

one-dimensional and two-dimensional physical area relocation 

control.  MRRA utilizes a three-layer paradigm to realize such 

autonomous partial reconfiguration via task-level modularity; 

framework routine encapsulation and API standardization; and 

provision of both design and runtime scenario methods and 

integrated design flow while retaining and demonstrating 

upward compatibility with vendor toolsets.   

Different partial reconfiguration platforms developed 

illustrate a continuum of paradigms for runtime partial 

reconfiguration interfaces and control.  Prototypes for the 

different reconfiguration interfaces based the MRRA concept 

were developed along with the design and refinement of 

appropriate communication and synchronization protocols 

provides a powerful and useful abstraction technique.  

MD5/SHA-1 hash and other circuits have been implemented 

as reconfigurable modules to evaluate the performance of the 

hardware and the logic flow.  The experiments demonstrate the 

range of autonomous and dynamic reconfiguration operations.  

With regards to future work, results indicate that while the 

developed techniques provide measurable benefit in meeting 

the challenges in routing and area management, the vendor 

toolsets for some classes of applications incur a fairly large 

amount of execution time compared to those amenable to the 

direct bitstream manipulation strategies developed herein. 
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