
TVLSI_00454_2006.R1 1

Abstract- A Multilayer Runtime Reconfiguration Architecture

(MRRA) is developed for Autonomous Runtime Partial

Reconfiguration of Field Programmable Gate Array (FPGA)

devices. MRRA operations are partitioned into Logic,

Translation, and Reconfiguration layers along with a standardized

set of Application Programming Interfaces (APIs). At each level,

resource details are encapsulated and managed for efficiency and

portability during operation. In particular, FPGA configurations

can be manipulated at runtime using on-chip resources. A

corresponding logic control flow is developed for a prototype

MRRA system on a Xilinx Virtex II Pro platform. The Virtex II

Pro on-chip PowerPC core and block RAM are employed to

manage control operations while multiple physical interfaces

establish and supplement autonomous reconfiguration

capabilities. Evaluations of these prototypes on a number of

benchmark and hashing algorithm case studies indicate the

enhanced resource utilization and run-time performance of the

developed approaches.

Index Terms— FPGA Runtime Environments, Module-Based

Partial Reconfiguration, Frame-Based Partial Reconfiguration,

FPGA Area Management, Bitstream Manipulation.

I. INTRODUCTION

FPGAs have evolved from simple Programmable Logic

Devices (PLDs) to fully integrated System on Chip (SOC)

architectures containing microprocessors, embedded memory,

and optimized datapaths connected to a high capacity,

dynamically reconfigurable fabric. A unique aspect of

flexibility provided by FPGAs is the capability for dynamic

reconfiguration, which involves altering the programmed

design within an SRAM-based FPGA at run-time [29].

Although FPGA architectures have advanced significantly with

respect to many characteristics, a considerable number of open

research issues remain regarding the dynamic reconfiguration

process flow. Recently, applications benefiting from the use of

a partial reconfiguration paradigm have emerged including

mobile systems [14] [15], operating system frameworks [18]

[19], and artificial intelligence applications [4]. Given the

capability of partial reconfiguration from the device

manufacturers [41] and availability of powerful on-chip CPU

cores, new approaches enabling autonomous reconfiguration,

which automates the partial reconfiguration and/or

testing/verification process, have become feasible.

In this paper, a layered framework named Multilayer Runtime

Reconfiguration Architecture (MRRA) is proposed, which can

utilize the On-Chip PowerPC core and user logic to realize

reconfiguration either combined with an external host PC as a

loosely-coupled structure or even autonomously in a standalone

mode as a SOC structure. A high-level data structure along with

a standardized logic control flow is developed in the MRRA

framework to enable flexible implementation of user

applications and maximize the overall performance. As

described in this paper, direct bit-stream manipulation can also

be extended for certain classes of circuits under MRRA logic

control to achieve further performance optimization. The

layered MRRA design separates hardware details from

high-level application logic considerations. The benefits of this

multi-layered approach include increased design productivity,

portability, and resource utilization. On the other hand,

estimation and compensation techniques are also explored to

deal with the additional hardware and software resource

demands required to provide such advantages.

II. RELATED RESEARCH

With the appearance of partial reconfiguration technology in

recent years, investigations into various tools and environments

for dynamic reconfiguration have been initiated. Currently, the

most widely used FPGA chips with partial reconfiguration

capability are from Xilinx in the Virtex, Virtex II, Virtex Pro,

and Virtex-4 families [44]. Yet, there are no commercially

available sophisticated toolsets supporting many of the diverse

aspects of the partial reconfiguration paradigm. As described

below, JBits [34] provides dynamic reconfiguration

capabilities, but has been made available only as a research tool.

The Xilinx Partial Reconfiguration Toolkit (XPART) [5] has

also been in development, but not fully released. These works

have established the significance of the partial reconfiguration

paradigm and identified fundamental components and methods,

yet significant challenges remain with creating an autonomous

environment for dynamic reconfiguration as described below.

Some representative research approaches are listed in

Table I. Early work by Mesquita et al. developed a set of tools

for remote and partial reconfiguration for Virtex XCV300

devices which identified many needed capabilities and some

possible approaches [11]. However, important steps of the

approach must be carried out manually and the described

technique does not intrinsically support core relocation. Later,

Raghavan and Sutton’s tool called JPG was developed for

Xilinx Virtex devices [1]. The JPG tool is based on the Xilinx

A Multi-layer Framework Supporting

Autonomous Runtime Partial Reconfiguration

Heng Tan and Ronald F. DeMara, Senior Member, IEEE

TVLSI_00454_2006.R1 2

Java-based JBits API to instantiate a component, generate its

corresponding bitstream, and download it to a reconfigurable

device such as a Virtex FPGA. Therefore JPG is able to

generate partial bitstreams for Xilinx Virtex devices based on

data extracted from the standard Xilinx CAD tool flow. Due to

associated Java interpretation overheads, there can be tool

speed and scalability implications. To avoid these issues and

more fully encapsulate the higher layers from low-level device

specifics, a two-layer framework for Virtex II devices had been

separately suggested by Blodget et al., [6] and also Fong et al.

[33]. These systems enable self-reconfiguration under software

control through the reconfiguration hardware interface Internal

Configuration Access Port (ICAP). These reconfiguration

subsystems have a 2-layer hardware and software architecture

that permits a variety of different interfaces. However, because

of the operations of ICAP, the bitstream has to be processed

directly as opposed to processing high-level netlists. Egret [7]

[23] is another related framework proposed by Williams et al.

This framework focuses on a full SOC solution using ICAP and

an embedded Linux system on a Xilinx Virtex II chip. Currently

available CPU core speed and RAM size can impact the

complexity of the high-level applications that can be

implemented into such solutions. Bobda et al also presented a

framework named Erlangen Slot Machine (ESM). In this

platform, each module can access its periphery independent

from its location through a programmable crossbar, which gives

the potential of unrestricted 1-dimensional relocation of

modules on the device. Different inter-module communication

channels, including a bus macro, shared memory,

reconfigurable multiple bus and crossbar have also been

proposed. As a variety of communication channels are

available, multiple external control hardware and boards can be

involved. Communication and control overheads using such

approaches may vary.

 Regarding partial reconfiguration strategy research, Upegui

and Sanchez [3] recently discussed possible methodologies to

generate the partial reconfiguration bitstreams, including the

standard module-based and difference-based flows suggested

by Xilinx, along with techniques for low-level direct bitstream

modification. Sedcole et al. [32] further these by presenting a

new partial reconfiguration flow called the merge partial

reconfiguration method. It prepares modules to be allocated to

arbitrary areas in the FPGA using a custom tool, which is

required for the place and route process. These modules can

then be adapted at run-time thereby supporting partial

reconfiguration. A temporally-driven partitioning strategy is

also demonstrated by Haubelt et al. [10], which explores the

design space at the system-level and uses a slack-based list

scheduler for time-multiplexed architectures. Additional

routing-related issues with partial reconfiguration are addressed

by three types of specially designed communication buses for

partial reconfiguration modules under research performed

independently by Krasteva et al. [37], Bobda et al. [8], and

Huebner et al. [27] to take the place of the bus macro suggested

by Xilinx.

Physical resource relocation is another issue that has been

addressed both at a theoretical level and an implementation

level by using inter-module communication macros [24], [31]

and [37]. A recent framework developed by Kalte et al. [16]

called REPLICA uses the SelectMAP interface to perform

bitstream manipulation to carry out the relocation process. An

elementary block strategy based on a 2-dimensional placement

methodology is also proposed by Huebner et al. [28], which

uses the ICAP interface and a customized routing macro to

perform similar functions as in REPLICA. Other proposed

strategies and tools for the partial reconfiguration flow are

described in [12], [20], [33], and [23] etc.

A more sophisticated partial reconfiguration framework

would be useful to integrate and optimize existing

reprogrammable technologies, as well as refine theories of

operation in light of the feasibility of current and near-term

hardware implementations. Ideally, this approach would

provide a standardized set of APIs and abstracted data

structures for a variety of high-level applications. It would

facilitate algorithm mapping via uniform access to

heterogeneous logic and communication resources. Such an

approach would also improve flexibility and enhance portability

across hardware reconfiguration interfaces requirements, and

enable more sophisticated applications based on autonomous

reconfiguration.

III. DESIGN CONSIDERATIONS

As mentioned in the previous sections, in order to

accommodate the variety of reconfiguration processes required

by different applications, a tiered framework called the

Multilayer Runtime Reconfiguration Architecture (MRRA) has

been designed which aims toward two major goals. The first

goal is the provision of a Hierarchical Framework for the

following design considerations:

• Autonomous Operation: Provide stand-alone

reconfiguration capability on the FPGA device as well as a

bi-directional communication channel with the embedded

host PC to carry out the partial reconfiguration process and

routing without manual intervention.

• Task-level Modularity: Provide support at task-level

TABLE I

 RECENT TOOLS FOR PARTIAL RECONFIGURATIONS

APPROACH
DEVICE

SUPPORTED

ON-CHIP

SYSTEM

BITSTREAM

REUSE

POTENTIAL

CHALLENGES

Mesquita et

al.

Virtex

XCV300
N N

Area

Relocation

Raghavan,

Sutton
Virtex N N

Supporting

CAD flow

Blodget,

McMillan
Virtex II Partial Y

Direct bitstream

reuse

Williams et

al.
Virtex II Y Y

Large User

application

Kalte et al. Virtex E N Y
Dynamic

Routing

Bobda et al. Virtex N N

Communication

and Control

Overhead

TVLSI_00454_2006.R1 3

granularity. A task is defined as an arbitrary function

synthesized to a module that can be dynamically

downloaded into the reconfigurable device.

• Runtime Scenario Support: Provide the ability to

generate and reconfigure task bitstreams at runtime as well

as design-time. Runtime scenarios envisioned at

design-time may not necessarily know in advance which

tasks will arrive nor when they will arrive, and in selected

cases, what some of their specific properties will be.

In addition to the framework, the second element of the MRRA

paradigm is a Logic Control Flow aimed at increasing capability

towards the following attributes:

• Flow Coverage: Both the design phase and the runtime

phase are automated, so that the partitioning, placement,

routing, bitstream generation, and configuration steps can

be accommodated.

• Encapsulation: Control logic of each layer is

self-contained thus exposing only a fixed interface to other

layers, so that modification made at one layer has minimal

influence on other layers. If new control algorithms are

added or the device platform is changed, the system can be

ported more readily.

• Standardization: A standardized set of APIs is provided

for uniform access to heterogeneous logic and

communication resources.

Effective provision of these capabilities in the MRRA design is

able to accelerate reconfiguration speed, reduce resource

inefficiencies, and realize a sophisticated range of applications.

Currently multiple vendors offer devices with various partial

reconfiguration abilities including Altera, Atmel, Lattice, and

Xilinx. The partial reconfiguration capability from Altera

includes certain components such as the divider of its Phase

Locked Loop [41]. The AT40K family from Atmel

demonstrates some general partial reconfiguration performance

with literature describing a 50K maximum gate-equivalent

capacity [42]. In this paper, Xilinx FPGAs, which provide

multi-million gate-equivalent capacity and partial

reconfiguration support, are selected to design and prototype

our architecture. They are one of the widely used commercial

devices for partial reconfiguration. At the same time, due to the

intrinsic advantage of MRRA's layered design, the approach can

be more readily ported to other vendor's platforms whenever the

fundamental hardware requirements for partial reconfiguration

are met.

IV. HIERARCHICAL DESIGN

Figure 1 shows the MRRA layered design used to encapsulate

partial reconfiguration capabilities into three tiers named Logic

Layer, Translation Layer, and Reconfiguration Layer:

A. Logic Layer

The Logic Layer is the upper tier that supports general

user-level applications, carrying out hardware-independent

logic control on the tasks running on the FPGA platform. In this

layer, task routines are available for invocation by user

applications. Reconfiguration requests can be initiated from

this level, based on the requirements of the

hardware-independent user logic. These reconfiguration

requests, including possible new logic function modification

and/or physical resources re-arrangements, are all described in a

general logic format at this layer. These are subsequently

provided to the translation layer to generate the

device-dependent reconfiguration data file.

Figure 2 shows the detailed representation of this logic

format. The representation describes the hardware circuit at the

Look Up Table (LUT) level. For each LUT, the representation

has two parts, the LUT Status Information and the Modification

Request. In the LUT Status Information, the LUT inputs and

output are labeled. The physical row and column position of the

LUT in the FPGA and the logic function inside the LUT are also

recorded. The modification request can be a physical relocation

request or a logic function adjustment or both. Besides the

details of request information, two modification request flags

are also used in this section to advise the translation layer to

interpret the request more efficiently. All of the high level

applications will only use and modify this device-independent

High-Level
Applications

Mapping

Engine

RAM

M
ic

ro
p
ro

ce
ss

o
r

SelectMAP / JTAG / ICAP

MRRA System

Reconfigurable
Units

PC

PowerPC

and / or Logic Layer

Reconfiguration

Layer

Translation

Layer

 Figure 1: Multi-layer Runtime Reconfiguration Architecture (MRRA)

TVLSI_00454_2006.R1 4

data structure to determine their current state and generate new

reconfigurations requests. The reconfiguration requests

containing all the LUT information generated at the Logic Layer

will generate the device-dependent reconfiguration data file at

the Translation Layer. Depending on the complexity of these

high-level applications, these can run either in standalone mode

on the on-chip CPU core inside the FPGA, or on an external

host PC with the on-chip CPU core running simultaneously

using a loosely-coupled structure.

B. Translation Layer

The middle tier is referred to as the Translation Layer. In this

layer, the general logic descriptions for a palette of tasks are

translated into specific physical details as a reconfiguration data

file by a hardware-dependent mapping engine. After the partial

reconfiguration tasks generation request is made by the user

logic from the Logic Layer at runtime, the general information

contained in these requests must be translated into a

hardware-dependent configuration data file. The original list of

partial reconfiguration tasks may include the origin design

netlist, physical area allocation, re-allocation and/or direct logic

modification. This translation enables the Reconfiguration

Layer to execute the reconfiguration requests on the FPGA

device. The Translation Layer contains a mapping engine to

interpret all of the general representations passed from the upper

layer into an actual reconfiguration data file.

Figure 3 shows the details of the translation process. The

Translation Layer always stays in the idle state until a new

request is sent from the Logic Layer. A new request is always

accompanied by an LUT list. Based on the modification request

specified in the contents of each element of the LUT data

structure, the status of each LUT is updated. The modification

request is then cleared and the corresponding translation engine

indicator will be set if necessary. Based on the two translation

engine indicators, the corresponding area and logic translation

engine will be called to map the general information into device

related data. The actions in the dashed boxes in Figure 3 will be

processed only when the corresponding flags or indicators are

set.

Currently, in the prototype Translation Layer, both the

one-dimensional (1D) and two-dimensional (2D) area

management mapping processes still rely on the Xilinx toolset.

The physical resource area management constraints are

generated and modified directly by the upper layer logic, and

then translated into standard text based constraint input by the

translation engine in this layer. After the new constraint file is

generated, the Xilinx tools are invoked by the translation engine

via a shell script. This will automatically run the task in the

background to perform the placement and routing for the

module without manual input.

On the other hand, logic modifications can be translated on

either an available partial reconfiguration file or on the currently

active configuration data in the device directly without

involvement of the Xilinx tools. When the partial

reconfiguration file is processed, the Translation Layer will map

the top-level logic request directly into the file and then send it

to the Reconfiguration Layer to be downloaded to the device.

This decouples the bottom layer’s hardware-specific

considerations from the application’s user logic. It also

incorporates the online run-time spatial management

information into the corresponding partial reconfiguration data

file so that when multiple modules need to be reconfigured, the

physical area can be reorganized and optimized. With the

existence of such a layer, adjustments for changes to the

hardware devices or components can be accomplished by

modifications of the mapping engine in the Translation Layer

without influencing the top-level Logic Layer.

C. Reconfiguration Layer

This layer of the autonomous architecture includes the

hardware platform and the low-level communication APIs. The

typedef struct tagLUTinfo

{

 /* LUT status information */

 unsigned short source[3]; /* The 4 input of the LUT */

 unsigned char iTruthTable[2]; /* Current output truth table */

 unsigned short cRow; /* Current row position */

 unsigned short cColumn; /* Current column position */

 unsigned short destination[255]; /* The output of the LUT */

 char GorFLUT; /* 0=G_LUT; 1=F_LUT */

 /* Modification request */

 unsigned short cFutureRow; /* Future Row */

 unsigned short cFutureColumn; /* Future Column */

 char SwitchLUTFlag; /*0= no change, 1= move

 position between G and F LUT*/

 unsigned char iFutureTable[2]; /* Future Truth Table */

 char PositionFlag; /* 0=no change; 1=update */

 char TableFlag; /* 0=no change; 1=update */

} LUTInfo;

Figure 2: LUT Representation at Logic Layer

Idle

Receive LUT

List

Update Location
Inform ation

LUT 1

LUT 2

.

.

.

LUT N

Read LUT i

Check

Location F lag

Check Logic
F lag

C lear Location

M odification Request

Set Area T ranslation

Indicator

Area Translation

Indicator

Logic Translation
Indicator

Update Logic
Inform ation

C lear Logic

M odification Request

Set Logic Translation

Indicator

Call Location

Translation Engine

Call Logic

Translation Engine

i ++

Figure 3: Translation Process Flow Diagram

TVLSI_00454_2006.R1 5

configuration bitstream is downloaded to the targeted FPGA

reconfigurable units from this layer’s hardware interfaces when

either the initial configuration, or the run-time partial

reconfiguration is carried out. Input and output data for the

FPGA can also be exchanged between the logic control and the

lower-level FPGA reconfigurable units’ areas through this path

for the functional throughput of the task routines during

operation. This layer supports the use of on-chip Block RAMs

or External RAMs to hold configuration data to accelerate the

transfer process through pipelining and buffering. The

Reconfiguration Layer includes the hardware platform and the

low-level communication APIs.

Figure 4 shows the detailed schematic view for the modular

hardware platform of the MRRA architecture designed for

Xilinx Virtex II/-Pro architecture. This platform has been

designed as a full on-chip hardware subsystem. The hardware

subsystem includes two subsets comprised of system resources

and operational resources [17]. The system resources include

an on-chip PowerPC core as the control element, the on-chip

Block RAMs and all the external peripherals such as the SRAM,

which acts as shared memory and can be accessed by both Host

PC and on-chip PowerPC, and the RS232 interface. The

operational resources are the actual FPGA modules instantiated

inside the FPGA. It consists of a fixed resource subset that is

held constant during the entire process and is used to control the

on-chip data communications and on-board peripherals, as well

as a reconfigurable resource subset that is used for the

user-defined partial reconfiguration applications.

There are three reconfiguration interfaces provided in this

platform scheme, which are SelectMAP, JTAG, and ICAP. The

reconfiguration process through the SelectMAP interface will

be carried out through the external SRAM, which is connected

to the host PC via the PCI bus while the JTAG interface is a

dedicated port directly connected to the FPGA device. The

ICAP is an internal reconfiguration interface integrated inside

the FPGA device. Using MRRA routines, the ICAP controller

reads and writes configuration data directly from the device’s

internal configuration memory.

Partial reconfiguration can be carried out using any of the

three interfaces with either a precompiled partial

reconfiguration file or the current active configuration data in

the device. However when the current on-device configuration

data is used, the ICAP interface is preferred due to speed

considerations. After receiving the representation scheme from

the top tier, the data address is determined by the Translation

Engine. Based on the calculated address, ICAP is able to read

back the stored values, which are dedicated to the

corresponding logic. The Mapping Engine continues

interpreting the new logic information and loads it into the

frame. After this process, new data will be merged back into the

running bitstream using ICAP. Only selected positions of the

bitstream that contain the updated user logic request are

modified. Therefore, configuration outside of the dedicated

area is not affected. With the use of ICAP, the bus macro is

eliminated from the design, which can significantly simplify the

design as opposed to the module-based flow. The operation of

the Reconfiguration Layer components will be described in the

context of case studies in Section VII.

V. LOGIC CONTROL FLOW

Figure 5 shows the logic control flow designed for the

MRRA. This control flow has integrated a Module-based Flow

adapted from the standard Xilinx [45] flow with area

management ability and the direct bit management process,

which we named as a Frame-based Flow.

A. Adapted Module-based Partial Reconfiguration Flow

As delineated by the dashed area in Figure 5, the

Module-based Partial Reconfiguration Flow is primarily

utilized at design time. This flow allows different elements

referred to as modules of a design to be independently

developed and later merged into one FPGA design. This allows

the individual reconfiguration and modification of the modules

at run-time. Additionally, it provides the potential for full

autonomy and flexibility using the translation engine from the

lower layer without the need for GUI-based manual input.

. . .

PLB

PowerPC

O
P

B

Reconfigurable

M odule

Reconfigurable

M odule

PCI

FPGA

Host PC

PLB/OPB

Bridge

Block

RAM

UART

SRAM

Controller

ICAP

Controller

External

SRAM

JTAG

ICAP

SelectMAP

On Chip Data Flow

Reconfiguration

 Data Flow

External Data Flow

JTAG / SelectMAP / ICAP

Reconfiguration Interfaces

Figure 4: MRRA Modular Hardware Platform

TVLSI_00454_2006.R1 6

As shown in Figure 5, the full hardware system is designed

with a top to bottom approach and partitioned into modules.

This generates the Top-level Design and Module-level Design.

Meanwhile, One-Dimensional Area Management is performed

on the full physical FPGA device by partitioning it into 1D

column-based rectangles, in which the fixed and reconfigurable

modules will be arranged based on the size of each module and

the specified area constraints. Tools, such as PlanAhead from

Xilinx, are accommodated through this step. Bus Macros [45]

also need to be used to maintain correct connections between

the modules by spanning the boundaries of these rectangular

regions. Next, the modules are implemented and verified

individually to create the Module Implementation. They are

then optimized by additional Two-Dimensional Area Allocation

placements inside each module to minimize the partial

reconfiguration bitstream size. To accelerate the process, the

FloorPlanner from Xilinx can also be utilized for the

arrangement. The optimized partial reconfiguration bitstream

for the specific modules are then generated. Finally, all the

individual modules are created by Final Assembly based on the

top-level view and are ready to be downloaded to the FPGA

device as Configuration Data bitstreams.

After the initial bitstream is downloaded, the precompiled

partial bitstream can be monitored by the algorithms in the

Logic Layer and new modification requests can be generated by

the user logic in the form of hardware-independent

representations at runtime. The necessary operations are

depicted by the Runtime Flow in Figure 5. Although the

boundary of each module is fixed, the physical logic resources

inside each module can be re-allocated at runtime. Logic

function modification requests for each LUT inside the modules

can be generated based on the user requirements. Requests

from the Logic Layer are interpreted at the Translation Layer to

generate the corresponding configuration data file for use by the

Reconfiguration Layer.

B. Frame-based Partial Reconfiguration Flow

In the basic Module-based flow, all the tasks that need to be

reconfigured at runtime are required to be precompiled at design

time and reside originally in non-volatile storage. However, in

some instances, hardware tasks may have very similar or even

identical logic function structures as well as input and output

signals. Such scenarios typically can occur in hash, encryption,

and encoding/decoding applications, such as [25], [30], [35],

[38], etc. Figure 6 illustrates this concept with a straightforward

example and a more sophisticated case study will be developed

in Section VII. Both a one-bit full adder and a one-bit full

subtracter have three one-bit inputs and two one-bit outputs.

When viewing these two modules as a black box externally, they

are reconfiguration-compatible. Specifically, when analyzing

the logic structure instantiated inside the black box, these two

modules both use 2 LUTs with identical logic interconnections

between LUTs and I/O signals. The only difference between

them is only one truth table stored inside one LUT, which

changes from 0xE8 to 0x8E. There exists a clear overlap

between the configuration information for these two modules.

When these two similar tasks need to be interchanged, the use of

two separate precompiled configuration data files will occupy

twice the storage space and twice the reconfiguration time. A

more advantageous strategy would be to modify the

corresponding logic content directly at runtime when switching

between two tasks with similar or even identical logic

structures, especially when the logic interconnections are

identical. This can also potentially be extended to tasks even at

a fine-grained level [36]. The concept is further demonstrated

in Section VII for a realistic SHA-1 and MD-5 case study.

In Xilinx Virtex II/-Pro FPGAs, configuration memory is

arranged in column-based vertical frames, i.e., one-bit wide

extending from the top edge of the device to the bottom. These

frames are the smallest addressable segments of the FPGA

configuration memory space. Hence, all operations must act on

whole configuration frames. Even if only one byte inside a

frame is changed, such as the truth table of one LUT, the full

frame needs to be rewritten. Configuration memory frames do

not directly map to any single piece of hardware; rather, they

configure a narrow vertical slice consisting of many physical

Top-Level
 Design

Module-Level
Design

Module
Implementation

1D Area
Management

2D Area
Allocation

Final Assemble

Configuration
Data

Logic
Management

Design Time
 Flow

Run Time Flow

PlanAhead

FloorPlanner

User Logic

.ngc/.edf

.ngc/.edf

.ucf

.ucf

.bit

.bit .bit

.bit

.bit

Synthesis Tool

Scripts / ISE

Figure 5: Logic Control Flow

TVLSI_00454_2006.R1 7

resources. Therefore, we refer to the direct bit management

process as a Frame-based Partial Reconfiguration Flow.

To utilize this flow at runtime, modules have to be

implemented at the LUT level at design time when following

Module-based Flow procedures. Besides the required

1-dimensional area constraints for the module, all of the logic

elements that may require partial reconfiguration at run time

have to be placed at specific physical locations using 2D area

constraints. Thus, the representation scheme shown in Figure 2

is used to describe the module circuit. Since the primary

Frame-based Partial Reconfiguration Flow only focuses on the

logic modification of the modules without considering the

changes of input/output signals or the logic interconnections,

there are only two aspects that need to be focused on with the

module circuit. The first is the LUT-level functionality and the

second is the physical location of the LUTs.

Since there are no logic interconnection changes at runtime,

the logic elements, i.e. the LUTs, are labeled with a fixed integer

from 1 to N at design time, where N denotes the total number of

LUTs used. After receiving the representation scheme from the

top tier, the frame address is determined by the translation

engine. Based on the calculated address, the corresponding

logic function data of the frame can be read back. The mapping

engine then continues interpreting the new logic information

and loading into the frame. After this process, new frame data

will be merged back into the running bitstream. The time and

space saving advantages of this representation strategy will be

demonstrated in Section VII, which reconfigures the step

function of hash algorithms in a FPGA implementation case

study.

VI. AREA MANAGEMENT AND OPTIMIZATION

Establishing adequate reconfigurable regions and sufficient

connectivity at design time is crucial for dynamic partial

reconfiguration support. Furthermore, it is necessary to track

the occupancy of these regions at run-time to maintain correct

module re-allocation operations. MRRA area management

strategies address both of these requirements.

The area management at module level is carried out at a

1-dimensional level. The size of any single occupied

reconfigurable module is fixed after design time. Hence these

modules can only be re-allocated to other same column-sized

reconfigurable regions, given these regions provide identical

inter-module interconnections for the external ports of the

module. This is a limitation imposed by the module-based flow

provided by Xilinx [45]. The width ranges from a minimum of

four slices to a maximum of the full-device width, in four-slice

increments. Manipulating the column addresses of a module’s

bitstream enables a module to be relocated. When the module

spreads across multiple CLB columns the first and leftmost

column must be presented at the beginning, then the new CLB

column value is automatically incremented internally. During

the relocation process, the old column addresses of a module are

established. Several FPGA hardware specific parameters are

then used to generate the new major column addresses. Hence,

the old values of the input bitstream are simply replaced by the

newly calculated values. Since checksum data may be

generated in the original reconfiguration data, several extra data

words may have to be recalculated and updated during the

process in order to relocate a module to another CLB column.

Since only the column address of the module is changed, the

relative position of all the logic resources and routing resources

are kept intact and can be quickly shifted to other column

positions. Hence, this process also requires that the relative

position of inter-module interconnections for the external ports

of the module be the same. A related approach for Virtex

FPGAs has also been discussed in [16].

On the other hand, inside each module, slices can be placed

and adjusted anywhere inside each module’s reconfigurable

region. These arrangements can be carried out at a

two-dimensional level, only limited to the height and the width

of the region. These area modifications are translated at the

slice level by the mapping engine. Therefore, this requires that

the corresponding reconfigurable modules are implemented at

least at the RTL-level or the more detailed LUT-level. The

2-dimensional adjustments can be potentially very useful to

applications such as fault tolerance or Genetic Algorithms

(GAs) [13][22][26] that are executed at the top level.

Additionally, such adjustments also beneficially influence the

size of configuration bitstream.

For the Xilinx Virtex II/-Pro family, there are several

configuration column types, including Global Clock (GCLK),

Input Output Block (IOB), Input Output Interconnect (IOI),

X Y Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 0 0

 0 1

 0 1

 1 0

 0 1

 1 0

 1 0

 1 1

X Y Bin Bout D

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 0 0

 1 1

 1 1

 1 0

 0 1

 0 0

 0 0

 1 1

96

E8

X

Y S

Cout

Cin

X Y

Cin / BinCout / Bout

S / D

Adder /
Subtracter

96

8E

X

Y D

Bout

Bin
Logic

Switch

(a) 1 Bit Full Adder (b) 1 Bit Full Subtracter

Figure 6: A Simple Logic Modification Example

TVLSI_00454_2006.R1 8

Configuration Logic Block (CLB), Block RAM (BRAM), and

BlockRAM Interconnect (BMINT). Each type has a given

number of frames, where each configuration frame has a unique

32-bit address.

Among all these types of columns, the CLB columns control

the configurable logic blocks, routing, and most interconnect

resources. The number of CLB configuration columns matches

the number of physical CLB columns in the device. For each

CLB column, there are two columns of slices. To denote the

configuration of these slices, 22 frames are utilized within the

bitstream for a complete reconfiguration file. Each frame has a

fixed size of 424 bytes. The logic for each CLB column, which

is stored in the two LUTs of each slice, only occupies two of the

22 frames. In particular, the contents for the first slice column

LUTs – i.e. with an even slice column number starting from ‘0’–

can be found in the second frame, while those for the second

slice column – i.e. with an odd slice column number starting

from ‘1’– are in the third frame. IOB usage at the top and

bottom edges of this CLB column are located in the first frame.

The remainder of the frames are all used to describe the routing

resources usage of the CLB column.

For unused CLB frames, a compression technique is used in

the partial reconfiguration bitstream file. Instead of writing 106

instances of the word value of ‘0’, which is a full frame length,

the Multiple Frame Write Register (MFWR) is employed. This

involves setting the corresponding frame address to the FAR

first, and then writing two padding words to the MFWR

(normally ‘0’). Using this padding technique, the full-unused

frame can be set with a total cost of just ten bytes in the bit file.

Therefore, for each unused frame, the number of saved bytes is

414, yielding 97% area savings per frame.

 More generally, since configuration frames are arranged

vertically, designs that span the fewest possible configuration

frames achieve greater compression. To estimate the

compression achieved, let the number of unused frames be

denoted by U on a system that uses B bits per frame. An

estimate of the number of saved configuration bits, S, under a

fixed region F per frame is given by:

S ≈ U × (B - F). (1)

Here B >> F so S is nearly the product of U and B. Therefore,

this 2-dimensional area management strategy inside modules

can achieve high compression rates to minimize the partial

reconfiguration data file size, which may be crucial for

embedded applications using dynamic reconfiguration.

Embedded SOCs often have limited storage capacities and

real-time transfer timing requirements, and therefore can benefit

from this bitstream compression strategy.

As suggested in the previous section, inside each module, the

2D area management strategy can be incorporated into the

Design-Time Flow to minimize the partial reconfiguration file

size. This additional area management strategy needs to be

carried out after the synthesis process of the design is complete

and before the translation, mapping, placing and routing steps.

Since this strategy deals with the real physical resource

arrangement, the logic elements are identified at a very fine

granularity, such as Slices, LUTs and D-flip flops, etc., which

the Translation Layer can then directly translate and map. The

steps involved in this procedure include:

1. Region Allocation: Assign an area for the partial

reconfiguration module, which is large enough to

accommodate all the external input and output signals at

either the top or the bottom edge of the designated area.

With an FPGA model such as the Virtex II Pro VP7 or

higher, an area with 40 pins or higher along the edge can

be easily partitioned, which normally will be able to

satisfy an 8-bit or even 16-bit module design.

2. Pin Assignment: Choose either the top or the bottom edge

and place all the external signals adjacent to each other if

possible. When the assigned area contains the left or the

right edge of the device, these edges may be chosen as

well. Place the remainder of the pins on the other side of

the edge if any unoccupied pins are available. This step

tries to eliminate, or at least minimize, any unnecessary

signals that will span the full height of the device, which

clearly will occupy more routing resources in different

frames.

3. Column Alignment: Attempt to place all the logic

elements into a single slice column consecutively or with

only a short slice row gap, near the edge where the

external pins were placed. One and only one frame will

be used to describe all the LUT logic contents of a full

column of slices, regardless of the number of LUTs of

the slice column actually used, as long as it is not zero.

Thus this step will minimize the number of frames used

to describe the design logic as well as most of the

interconnection resources.

4. Choke-Point Elimination: If there are any logic elements

with a fan out greater than 4, place the destination

elements around its side, including top and bottom of the

same slice column as well as the adjacent slice column

side-by-side. This will typically reduce the routing

resource usage even more than simply by mandatory

placing of all logic elements inside a single slice column.

5. Repeat: If there are any elements left to be processed after

finishing one column, repeat steps 3 and 4. Place the rest

of the logic elements into the adjacent slice column with

the same principles until all or at least elements along

major logic paths are completed. With an FPGA model

as Virtex II Pro VP7 or higher, each slice column

contains 160 or more 16-bit LUTs and the same amount

of D flip-flops, which normally will be able to contain a

small to middle size module design in one or two

columns.

To summarize, the procedure places the logic elements into

the least possible number of slice columns. The logic sequence

of the elements may also need to be considered when placing

along the path to achieve the highest possible optimization.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

The hardware prototype of the MRRA has been developed

TVLSI_00454_2006.R1 9

for a Xilinx Virtex II Pro VP7 FPGA on an Avnet Virtex II Pro

development board, with a 2GHz Pentium 4 desktop host with

512M bytes of RAM. The onboard hardware component and

software APIs were initially developed using the Xilinx ISE 6.3

toolset and EDK 6.3, and later extended to support Xilinx ISE

9.1i. WinDriver from Jungo Software is also used to establish

the communication APIs on the host PC side. The physical

resource area management constraints are entered directly into

User Constraint Files (.ucf) as text input. Mapping and routing

are accomplished using the Xilinx toolsets. The 1D area

management is implemented using the “area group” constraints

and the slice-level 2D area management is defined by using the

“LOC” constrains. Details about the syntax of the UCF file can

be found in [49].

A. Application Case Study

Hash algorithms [39], also known as message digest

algorithms, are frequently used to generate a unique

fixed-length bit vector H for an arbitrary-length message M.

The vector H is called the hash or the message digest of M.

These algorithms are used for encryption in a wide variety of

security applications. Here two types of the most commonly

used hash algorithms, i.e., MD5 [39] and SHA-1 [39], are

selected for the top-level case study. Both algorithms are

frequently employed in real-time embedded data stream

processing applications.

The two algorithms have a sufficiently similar structure to be

amenable to dynamic partial reconfiguration. In both

algorithms, 32-bit temporary registers are used to derive H.

MD5 uses four registers: A, B, C, and D. Meanwhile, SHA-1

uses an additional fifth register E. These registers are initialized

with certain fixed constants. The message M is first padded with

‘0’s to a length which is a multiple of 512 bits and then it is

divided into blocks of 512 bits. Subsequently, each block is

processed by a series of steps. Let i denote the step index. MD5

consists of 0 ≤ i ≤ 63 steps, whereas SHA-1 consists of 0 ≤ i·≤ 79

steps. Each includes a step function and the re-organization of

the temporary registers. For each step there are two 32-bit

words W and K. The word W is derived from the block under

processing based on a message schedule. The word K is a

constant defined by i. There are four possible functions, Fj, and

each is used in a different round. After each step, the values of

the registers of MD5 are re-organized as A←D, B←Smd5, C←B,

and D←C. However, for the SHA-1 algorithm, the values of the

registers are re-organized as A←Ssha, B←A, C←B<<<30, where

“<<<” means rotate shift left, and D←C and E←D. When all the

steps are complete, the current value of each temporary register

is added to its previous value. Then, another block is selected

for processing, and this continues until all blocks are processed.

In the end, the hash value H of the message M is in the

temporary registers, which is has a length of 128 bits for MD5

and 160 bits for SHA-1. For more detailed information about

these two algorithms, see [39].

After analysis of the similarities and differences of these

algorithms, the four step functions have been chosen for

implementation as reconfiguration modules. Thus, it is possible

for both algorithms to be implemented in a single top-level

design so that the required resources are minimized with limited

partial reconfiguration. More detailed discussion about

combining these two algorithms can be found in [25][30] which

provides a third application case study baseline circuit to which

partial reconfiguration is applied to below.

Clearly, the eight step functions in these two hash algorithms

have the same type of inputs and outputs with identical bit

widths. Therefore, this case study represents an example where

the Frame-based reconfiguration flow offers a more efficient

option as compared to the Module-based partial reconfiguration

flow, as mentioned in Section IV. Table II lists the results and

compares the resource utilization and power consumption when

using different implementation strategies. For each

implemented algorithm, the first sub-column lists the result of

the original full step function design as a baseline. The results

from the Module-based partial reconfiguration flow

implementation are listed in the second sub-column. As shown

in this sub-column, the resource utilization for each module of

the design has been reduced to one third or less of the baseline

design. As far as the power consumption is concerned, two

groups of data are listed, including Dynamic Power and Total

Core Power, where the latter is the sum of the Quiescent Power

and the Dynamic Power consumption obtained by Xilinx

XPower average over a test vector of over 2
11

 random inputs.

As shown in row 2 and row 3 of Table II, the Dynamic Power

consumption has been reduced to just 8.8%, 15.4%, and 29.2%

of baseline using the Module-based approach for SHA-1,

MD-5, and combined circuits, respectively. The Total Core

Power has been reduced to 57%, 58.3%, and 63.8% of baseline,

TABLE II:

 STEP FUNCTION RESOURCE UTILIZATION AND POWER EVALUATION

SHA-1 MD5 Combined

Baseline
Module

Based

Frame

Based
Baseline

Module

Based
Frame Based Baseline Module Based Frame Based

Area (slice) 192 65 (33.9%) 32 881 168 (19.1%) 32 1068 324 (30.3%) 32

Dynamic

Power (mW)
234.35 20.69 (8.8%) N/A 255.20

39.32

(15.4%)
N/A 274.12

79.98

(29.18%)
N/A

Total Core

Power (mW)
496.85

283.19

(57.0%)
N/A 517.70

301.82

(58.3%)
N/A 536.62

342.28

(63.8%)
N/A

TVLSI_00454_2006.R1 10

respectively, as well. As for the Frame-based design, since all

step functions take 3 inputs and generate 1 output of 32 bits

width each, only 32 LUTs are required to be updated during

partial reconfiguration. Therefore a minimum of 16 and a

maximum of 32 slices are needed based on the LUT placement

strategy. The truth table representations are stored in the

top-level flow control code directly with 2×8=16 bytes storage

consumed. The new bitstream is generated by the translation

engine on request. The XPower tools facilitate estimation of

power consumption at the design level and the results reported

are the average values across all slices in the design. The power

consumption of individual slices cannot be estimated.

Therefore the power data of Frame-Based design is not

available.

B. Area Optimization

To evaluate the area optimization strategy, several case

studies have been carried out. Since MD5 and SHA-1 have the

same dataflow structure, MD5 results are presented to

demonstrate a larger design but SHA-1 is similar. Other case

studies include four representative small cases, which illustrate

all of the steps and scenarios mentioned in Section V, and one

middle-sized case study.

Each design was implemented as partial reconfiguration

modules as listed in Table III. Each of the four small cases has

its own distinct features including parallel and cascaded LUT

arrangements, dedicated physical resource usage, and large fan

out elements. The first design is a simple quad 4-input 16-bit

LUTs design with a random combinational logic functions

specified in the truth table. The second design is a 9-bit shifter

with cascaded logic. The third design is a 4-bit×4-bit multiplier

with a block multiplier used during synthesis. Finally, the last

design is again a 4-bit×4-bit multiplier, but with LUT logic only.

To increase the accuracy of the comparison, all 4 modules have

been defined using the same number of external signals. All

these signals have been managed to be placed at the top edge of

the partial reconfiguration region.

Figure 7 shows the optimized logic element arrangement of

all 4 small designs using MRRA. For the elementary 4-LUT

element design in Case #1, since all LUTs are in the parallel

logic path with direct input from external signals and connected

to the output though flip flops, putting them in a single column

close to the external pins is a straightforward solution. The

resource arrangement is shown in Figure 7(a). Case #2 for the

shifter is shown in Figure 7(b), since all logic elements are

logically serially cascaded, from input to output, the simple

single column solution is again the best choice.

However, for Case #3 the 4-bit×4-bit multiplier uses the

dedicated hardware block multiplier resource, which is circled

in red in Figure 7(c). The position of the slice column in this

case needs to be balanced to minimize the routing between the

path of the block multiplier and the LUTs, and the path of the

LUTs and the external pins, which leads to an unchanged

maximum delay value instead of an improvement after the

optimization. The extra cost of routing also explains the

decreased savings in bitstream length compared to the shifter or

the LUT-based multiplier design, as listed in Table III.

For Case #4, the 4-bit×4-bit LUT-based multiplier, the high

fan-out situation mentioned in the previous section needs to be

(a)

(b)

(c)

(d)

Figure 7. Optimized Design Layout using MRRA

TABLE III

 OPTIMIZATION RESULTS

Module name
of

LUT.

of

FF

of block

Multiplier

of

Slices

Original File

Size (Byte)

Original Max.

Delay (ns)

Optimized File

Size (byte)

Optimized

Max. Delay (ns)

Area

Saving

4 LUTs 4 16 0 12 64K 1.371 55K 1.347 14%

Shifter 1 24 0 13 87K 1.377 63K 1.367 28%

Block Multiplier 8 25 1 17 88K 1.346 66K 1.346 25%

LUT Multiplier 22 22 0 22 96K 1.367 68K 1.346 29%

SECDED 93 41 0 74 89K 1.355 60K 1.355 33%

MD5 292 128 0 168 120K 1.380 84K 1.322 30%

TVLSI_00454_2006.R1 11

TABLE IV:

RESOURCE UTILIZATION

Interface
of Fixed

Modules

of Pin of

Fixed Modules

Reconfigurable

module overhead

Slices for

Fixed Modules

BRAM for

Fixed Modules

TBUF for

Fixed Modules
PPC405

Comprehensive

interface
9 77 7 slices 1472 9 352 Y

SelectMAP 8 77 7 slices 1352 8 352 Y

ICAP (with/without

SRAM controller)
9 / 8 77 / 4 7 slices 1472 / 932 9 352 / 42 Y

JTAG 4 25 0 73 0 64 N

dealt with. The carry chains, marked in brown, red, and blue in

Figure 7(d), have multiple connections to the LUT logic

elements in the dark green blocks. Therefore, these carry chains

are arranged around the LUT logic blocks instead of in simple

one column style to achieve the best resource area optimization.

The comparative optimization results for these case studies

using MRRA are listed in Table III. The logic resource usage of

each of design is also summarized in the table. Partial

reconfiguration for designs that comprise as few as four LUTs

can achieve 14% area reduction saving. The more complicated

case study, involving the 4-bit×4-bit LUT-based multiplier,

demonstrates almost 30% reduction using the presented

strategy. While the four small case studies illustrate the

concept, larger and more involved designs using partial

reconfiguration design can achieve higher degrees of bitstream

savings. Results also show that in most cases, the maximum

propagation delay has been decreased slightly.

In order to verify our area optimization strategy further, one

middle-sized module, a Single Error Correction Double Error

Detection (SECDED) algorithm and a larger-sized module of

the MD5 algorithm, are also implemented with the same area

management strategy as the smaller cases using a similar pin

arrangement. A total of 74 and 160 slices were used to

implement the respective algorithms. In both cases, the partial

reconfiguration module occupies 2 or more columns of slices.

Due to the large number of resources involved, only slices on

the critical path are constrained during the optimization process.

The results from the implementation of these modules are listed

in the last two rows of Table III. As suggested before, increased

bitstream savings of 33% and 30% are achieved because these

are comparatively larger modules. Overall, with this area

management strategy, about a one-fourth size reduction or

higher can be achieved for partial reconfiguration modules. On

the other hand, the larger the module is, the more complicated

and time consuming the process of specifying resource usage

becomes.

C. FPGA Resources Utilization

Five different partial reconfiguration platforms have been

developed based on the different reconfiguration interface

requirements, including one with SelectMAP interface only,

one with JTAG only, one with ICAP only and external SRAM

controller on chip, one with ICAP and without the SRAM

controller, and one with all three interfaces. With these five

prototypes, complexity and performance tradeoffs for

embedded SoC applications can be clearly compared and

contrasted. Resource utilization is listed in Table IV. In order

to establish the bi-directional communication channel, external

SRAM and on-chip SRAM controller modules are used as data

buffers for reconfiguration purposes, which occupy a majority

of the 77 external pins and 352 TBUF resources in the fixed

region. In fact, because of the high pin usage dispersed across

the fixed region, only 15 out of 68 columns of slices remain

available for the reconfigurable modules. Therefore the

resource utilization of the SelectMAP prototype, the ICAP with

external SRAM prototype, and the multiple interface prototypes

show very little variation.

On the other hand, if the ICAP system is built as an SOC

prototype, with no required external parallel communication

channel, or using only the standard RS232 port, most of the pin

utilization drops significantly. As mentioned earlier, if only a

JTAG interface is used, commercial tools such as ChipScope

[48] can be used for validation process, which can eliminate

most of the on-chip modules in the fixed region, including the

PowerPC core. Furthermore, without the OPB bus

interconnection, the IPIF for each module is also not required.

Hence the reconfigurable module overhead is reduced from 7

slices to 0, when compared to other platform versions.

In summary, when the SelectMAP interface with external

SRAM is used to establish reconfiguration and testing channels,

sophisticated hardware logic is involved and excessive pins

usage is incurred, which consumes a factor of 5 to 18 times more

logic resources in the fabric than the JTAG-based prototype.

These costs can limit the size and area placement flexibility of

the reconfigurable modules. In this case, large capacity FPGAs,

such as the Virtex-II Pro X2VP20 or above, are highly

recommended. Furthermore, additional effort is also required

for pin assignments and connections with special bus macros

thereby resulting in an increase in design complexity.

D. Timing Evaluation

1) Fundamental Timing Parameters

Tests have been carried out to measure the performance of

the fundamental operations of the MRRA prototype. Table V

presents the wall clock time for each of these operations. For the

JTAG and SelectMAP interfaces, the time taken to download

the full bit file, which has a fixed size of 548 KB for the Virtex II

Pro XC2VP7, is measured. The time taken by the ICAP read

and write operations are measured on a per frame basis, each of

TVLSI_00454_2006.R1 12

TABLE VI

 TRANSLATION ENGINE EVALUATION

Test Circuit Oringal Equivalent Gate Occupied Slices Bit file Size (Byte) Genera-tion Time (V6.2) Generation Time (V9.1)

MRRA N/A 1472 548 K 4m 31s N/A

C17 6 8 66 K 67s 101s

C1908 603 41 89 K 69s 109s

B02 28 11 66 K 66s 107s

B03 160 45 75 K 70s 163s

MD5 2496 168 120K 71s 111s

which contains 424 bytes of data. Theoretically, the JTAG

interface with a parallel cable III can have a download speed of

300Kbps [47] and SelectMAP with Virtex II/-Pro can work at a

maximum 66MHz clock speed [46]. In our prototype, the

measured data transfer rate using JTAG was 216 Kbps. Due to

the data-transferring overhead between the host PC and the

board, the SelectMAP interface requires 536 ms, which roughly

translates to 1MB/s throughput. Therefore, when downloading

from the host PC, the observed reconfiguration latency of JTAG

is 40 times higher than that of the SelectMAP interface, as

expected. This indicates the magnitude of benefit achievable by

using SelectMAP in terms of low reconfiguration latency. For

the on-chip reconfiguration operation, the ICAP-based

technique took 303,425 clock cycles to read a frame and

304,811 cycles to write a frame. Since the current PowerPC

core operates at 100MHz, the timing can be easily transformed

into milliseconds as listed in Table V. A single data

communication processing cycle, starting from host PC sending

the data out to the PCI to reading the data back from the SRAM

requires up to 123 ms. This includes the time taken by the

hardware and PowerPC to finish processing the data. The time

taken to generate a new bitstream file with direct bitstream logic

manipulation APIs has an upper-limit of 30 ms for modification

of the 32 slices of the hash algorithms on the host PC.

2) Translation Engine Evaluation

The speed of the translation engine for module

implementation is also evaluated with a series of circuits. The

translation engine is required to create the original partial

reconfiguration bitstream and to reallocate the physical

resources. In addition to the original MD5 module, two

combinational benchmark circuits from the ISCAS’85

benchmark suite - the C17 and the C1908, which is the

SECDEC circuit mentioned in the previous section have been

used in this experiment. Two sequential benchmark circuits

B02 and B03 from the ISCAS’99 benchmark are also used to

gauge performance with sequential circuits.

Table VI lists the detailed results. The first row of the table

lists results for the full MRRA prototype used as a baseline for

comparison. Among the 5 benchmark circuits, C17 and C1908

which are combinational designs were described at the gate

level. B02, B03, and MD5 were developed at Register Transfer

Level instead. In Table VI, the Original Equivalent Gate

column lists the number of gate-equivalents reported when these

benchmarks were instantiated directly using the Xilinx design

tools. However to incorporate these circuits into the MRRA

framework, a standard IPIF has to be added above the standard

logic to maintain the correct data communication to the OPB

bus. This IPIF logic increases the size of the partial

reconfigurable modules, which can be observed from the

corresponding Occupied Slices column in Table VI. The partial

bitstream file size adequately shows the result of these slice

utilization differences, which are demonstrated in the fourth

column. The last column lists the translation time for partial

reconfiguration module implementations of the benchmarks.

For these module implementations, the time is partially

dependent on their size, although not linearly related. Although

a significant improvement in the total time taken by the process

has been achieved when compared to the full configuration

bitstream generation, they still require tens of seconds. The

partial reconfiguration modules have also been evaluated by

integrating both ISE 6.3 and the latest version ISE 9.1 within

MRRA. The timing results for these two versions of the ISE are

shown in the last two columns of Table VI. These figures were

obtained on a Windows XP environment with a 2.0 GHZ

Pentium 4 CPU and 512 MB RAM. Clearly, the ISE 9.1 version

runs much slower than the ISE 6.3. Upgrading the development

TABLE V:

 BASIC TIMING EVALUATION

Operation Threotetical Maximum Throughput Measured Throughput Measured Transfer Time

SelectMAP Reconfiguration 66 MB/s 1MB/s 536ms (per full file)

JTAG Reconfiguration 300 Kbps 216 Kbps 20.3s (per full file)

ICAP Read 50 Mbps 1.12 Mbps 3.03ms (per frame)

ICAP write 50 Mbps 1.11 Mbps 3.04ms (per frame)

Data Communication N/A N/A 123 ms

Direct Bitstream Manipulation N/A N/A 30 ms (per 32 slices)

TVLSI_00454_2006.R1 13

hardware will definitely improve the performance significantly.

However, the translation time will remain greater than ten

seconds. Therefore, it is not recommended to call these scripts

at runtime unless it is essential for relocating the modules.

Alternatively, the scripts can be pipelined with other running

tasks efficiently as described below.

VIII. CONCLUSION

Demands for runtime partial reconfiguration capability in

embedded SoC applications can be achieved by providing

multiple bitstream generation choices, including direct

bitstream manipulation for logic functions and hybrid

one-dimensional and two-dimensional physical area relocation

control. MRRA utilizes a three-layer paradigm to realize such

autonomous partial reconfiguration via task-level modularity;

framework routine encapsulation and API standardization; and

provision of both design and runtime scenario methods and

integrated design flow while retaining and demonstrating

upward compatibility with vendor toolsets.

Different partial reconfiguration platforms developed

illustrate a continuum of paradigms for runtime partial

reconfiguration interfaces and control. Prototypes for the

different reconfiguration interfaces based the MRRA concept

were developed along with the design and refinement of

appropriate communication and synchronization protocols

provides a powerful and useful abstraction technique.

MD5/SHA-1 hash and other circuits have been implemented

as reconfigurable modules to evaluate the performance of the

hardware and the logic flow. The experiments demonstrate the

range of autonomous and dynamic reconfiguration operations.

With regards to future work, results indicate that while the

developed techniques provide measurable benefit in meeting

the challenges in routing and area management, the vendor

toolsets for some classes of applications incur a fairly large

amount of execution time compared to those amenable to the

direct bitstream manipulation strategies developed herein.

ACKNOWLEDGMENTS

This research was supported in part by NASA Intelligent

Systems NRA Contract NNA04CL07A. The authors would also

like to acknowledge the helpful suggestions of C. A. Sharma

and the reviewers, which improved the paper.

REFERENCES

[1] A.K. Raghavan, and P. Sutton, “JPG - A Partial Bitstream Generation

Tool to Support Partial Reconfiguration in Virtex FPGAs,” in

Proceedings of International Parallel and Distributed Processing

Symposium, (IPDPS’02), Fort Lauderdale, Florida, USA, April 15-19,

2002.

[2] A. Thompson, “An Evolved Circuit, Intrinsic in Silicon, Entwined with

Physics,” Evolvable Systems: From Biology to Hardware, Vol. 1259,

1997, pp. 390-405.

[3] A. Upegui, “Evolving Hardware by Dynamically Reconfiguring Xilinx

FPGAs,” in Proceedings of the ICES 2005 on Evolvable Hardware,

Sitges, Spain, September 12-14, 2005.

[4] A. Upegui, C. A. Peña-Reyes, and E. Sanchez, “An FPGA Platform for

Online Topology Exploration of Spiking Neural Networks,”

Microprocessors and Microsystems, Vol. 29, Issue 5, 1 June 2005, pp.

211-223.

[5] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P.

Sundararajan, “A Self-Reconfiguring Platform,” in Proceedings of

Field-Programmable Logic and Applications 2003, Lisbon, Portugal,

September 1-3, 2003.

[6] B. Blodget, S. McMillan, and P. Lysaght, “A Lightweight Approach for

Embedded Reconfiguration of FPGAs,” in Proceedings of Design,

Automation and Test in Europe Conference and Exhibition, Munich,

Germany, March 03-07, 2003.

[7] N. Bergmann, J. Williams, and P. Waldeck, “Egret: A Flexible Platform

for Real-Time Reconfigurable System-on-Chip,” in Proceedings of

International Conference on Engineering of Reconfigurable Systems and

Algorithms, Las Vegas, Nevada, USA, June 23-26, 2003.

[8] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, “A Dynamic

NoC Approach for Communication in Reconfigurable Devices,” in

Proceedings of International Conference on Field-Programmable Logic

and Applications (FPL’04), Antwerp, Belgium, August 30 - September

01, 2004.

[9] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, A. Linarth and J. Teich,

“The Erlangen Slot Machine: Increasing Flexibility in FPGA-Based

Reconfigurable Platforms,” in Proceedings of IEEE 2005 Conference on

Field-Programmable Technology (FPT'05), Singapore, December

11-14, 2005.

[10] C. Haubelt, S. Otto, C. Grabbe, and J. Teich, “A System-Level Approach

to Hardware Reconfigurable Systems,” in Proceedings of Asia and South

Pacific Design Automation Conference (ASP-DAC'05), Shanghai,

China, January 18-21, 2005

[11] D. Mesquita, F. Moraes, J. Palma, L. Moller, and N. Calazans, "Remote

and Partial Reconfiguration of FPGAs: Tools and Trends,” in

Proceedings of Parallel and Distributed Processing Symposium 2003,
Nice, France, April 22-26, 2003.

[12] E. Horta, J. Lockwood, D. Taylor, and D. Parlour, “Dynamic Hardware

Plugins in an FPGA with Partial Run-time Reconfiguration,” in

Proceedings of Design Automation Conference (DAC’02), New Orleans,

LA, USA, June 10-14, 2002.

[13] G. Tufte, and P. C. Haddow, “Biologically-Inspired: A Rule-Based

Self-Reconfiguration of a Virtex Chip,” in Proceedings of

Computational Science - ICCS 2004, Boston, MA, USA, May 16-21,

2004.

[14] G. J. M. Smit et al., “Dynamic reconfiguration in Mobile System,” in

Proceedings of the 12th International Conference on Field

Programmable Logic and Applications (FPL’02), Montpellier, France,

September 2-4, 2002.

[15] G. Wigley, and D. Kearney, “The Development of an Operating System

for Reconfiguration Computing,” in Proceedings of Design Automation

and Test in Europe (DATE’03), Munich, Germany, March 03-07, 2003.

[16] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “REPLICA: A Bitstream

Manipulation Filter for Module Relocation in Partial Reconfigurable

Systems,” in Proceedings of 19th IEEE International Proceedings of

Parallel and Distributed Processing Symposium, Denver, Colorado,

USA, April 04-08, 2005.

[17] H. Tan, and R. F. DeMara, “A Device-Controlled Dynamic Configuration

Framework Supporting Heterogeneous Resource Management,” in

Proceedings of Engineering of Reconfigurable System and Algorithm

(ERSA’05), Las Vegas, USA, June 27-30, 2005.

[18] H. Walder, and M. Platzner, “Reconfigurable Hardware Operating

Systems: From Design Concepts to Realization,” in Proceedings of

Engineering of Reconfigurable System and Algorithm (ERSA’03), Las

Vegas, Nevada, USA, June 23-26, 2003.

[19] H. Walder, and M. Platzner, “A Runtime Environment for

Reconfigurable Hardware Operating Systems,” in Proceedings of the

14th Field Programmable Logic and Applications (FPL’04), Leuven,

Belgium, August 30-September 1, 2004.

[20] I. Robertson, J. Irvine, P. Lysaght and D. Robinson, “Improved

Functional Simulation of Dynamically Reconfigurable Logic,” in

Proceedings of the 12th International Conference on Field

Programmable Logic and Applications (FPL’02), Montpellier, France,

September 2-4, 2002.

[21] J. F. Miller, P. Thomson, and T. Fogarty, “Designing Electronic Circuits

using Evolutionary Algorithms. Arithmetic Circuits: A Case Study,” in

Genetic Algorithms and Evolution Strategies in Engineering and

TVLSI_00454_2006.R1 14

Computer Science, D. Quagliarella, J. Periaux, C. Poloni and G. Winter,

Eds. UK-Wiley, 1997, pp. 105-131.

[22] J. Lohn, J. Crawford, A. Globus, G. Hornby, W. Kraus, G. Larchev, A.

Pryor, and D. Srivastava, “Evolvable Systems for Space Applications,”

accepted for oral presentation at the International Conference on Space

Mission Challenges for Information Technology (SMC-IT), Pasadena,

CA, USA, July 13 – 16, 2003.

[23] J. Williams, and N. Bergmann, “Embedded Linux as a Platform for

Dynamically Self-Reconfiguring Systems-On-Chip,” in Proceedings of

Engineering of Reconfigurable Systems and Algorithms (ERSA 2004),

Las Vegas, Nevada, USA, 21-24 June, 2004.

[24] J-Y. Mingnolet, V. Noller, P. Coene, D. Verkest, S. Vemalde, and R.

Lauwereins, “Infrastructure for Design and Management of Relocatable

Task in a Heterogeneous Reconfigurable System-on-Chip,” in

Proceeding of Design Automation and Test in Europe (DATE’03),

Munich, Germany, March 3-7 2003.

[25] U. Kimmo, T. Matti, and O. Jorma, “A Compact MD5 and SHA-1

Co-Implementation Utilizing Algorithm Similarities,” in Proceeding of

the International Conference on Engineering of Reconfigurable Systems

and Algorithms (ERSA 2005), Las Vegas, Nevada, USA, June 27 - 30,

2005.

[26] K. Zhang, R. F. DeMara, and C. A. Sharma, “Consensus-based

Evaluation for Fault Isolation and On-line Evolutionary Regeneration,” in

Proceedings of the International Conference in Evolvable Systems

(ICES'05), Barcelona, Spain, September 12 - 14, 2005.

[27] M. Huebner, T. Becker, and J. Becker: "Real-time LUT-based Network

Topologies for dynamic and partial FPGA Self-Reconfiguration," in

Proceedings of SBCCI’04, Porto de Galinhas, Brazil, September 7-11,

2004.

[28] M. Huebner, C. Schuck, J. Becker: "Elementary Block Based

2-Dimensional Dynamic and Partial Reconfiguration for Virtex-II

FPGAs," in Proceedings of RAW2006, Rhodes Island, Greece, April

25-26, 2006.

[29] Michael Barr, “A Reconfigurable Computing Primer,” Multimedia

Systems Design, pp. 44-47, September 1998.

[30] M.Y. Wang, C. P. Su, C. T. Huang, and C. W. Wu, “An HMAC Processor

with Integrated SHA-1 and MD5 Algorithms,” in Proceedings of the Asia

and South Pacific Design Automation Conf. 2004 (ASP-DAC’04),

Yokohama, Japan, January 27 – 30, 2004.

[31] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt,

“Dynamic Scheduling of Tasks on Partially Reconfigurable FPGAs,”

Computers and Digital Techniques, IEE Proceedings-, Volume:

147, Issue: 3, May 2000, pp. 181 – 188.

[32] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker, “Modular

Partial Reconfiguration in Virtex FPGAs,” in Proceedings of 2005

International Conference of Field Programmable Logic and

Applications, Tampere, Finland, August 24-26, 2005.
[33] R.J. Fong, S.J. Harper, and P.M. Athanas, “A Versatile Framework for

FPGA Field Updates: An Application of Partial Self-Reconfiguration,” in

Proceedings of 14th IEEE International Workshop on Rapid Systems

Prototyping, San Diego, CA, USA, June 9-11, 2003.
[34] S. A. Guccione, D. Levi, and P. Sundararajan, “JBits: A Java-based

Interface for Reconfigurable Computing,” in Proceedings of Second

Annual Military and Aerospace Applications of Programmable Devices

and Technologies Conference (MAPLD’99), Laurel, MD, USA,

September 28-30, 1999.
[35] T. Kwok, and Y. Kwok, “On the Design of a Self-Reconfigurable SoPC

Cryptographic Engine,” in Proceedings of 24th International

Conference of the Distributed Computing Systems Workshops, Hachioji,

Tokyo, Japan, March 23-24, 2004.

[36] W. Zhang, N. K. Jha, and L. Shang, "NATURE: A Hybrid

Nanotube/CMOS Dynamically Reconfigurable Architecture," in

Proceedings of IEEE Design Automation Conference (DAC06), San

Francisco, CA, USA, July 24 – 28, 2006.

[37] Y. E. Krasteva et al, “Flexible Core Reallocation for Virtex II Structure,”

in Proceedings of Engineering of Reconfigurable System and Algorithm

(ERSA 05), Las Vegas, Nevada, USA, June 27-30, 2005.

[38] Y.K. Kang, D.W. Kim, T.W. Kwon, and J.R. Choi, “An Efficient

Implementation of Hash Function Processor for IPSEC,” in Proceedings

of the 2002 IEEE Asia-Pacific Conf. on ASIC (AP-ASIC 2002), Taipei,

Taiwan, August 6 – 8, 2002.

[39] Federal Information Processing Standards, “Secure Hash Standard”, FIPS

PUB 180-2, August 1, 2002.

[40] Altera, Inc., “Stratix Device Handbook”, v1-3.4, 2006.

[41] Atmel, Inc., “5K - 50K Gates Coprocessor FPGA with FreeRAM”, July

2006.

[42] Xilinx, Inc., “PlanAhead Methodology Guide”, v8.2, 2006.

[43] Xilinx, Inc., “Virtex-II Pro Platform FPGA User Guide”, August 2004.

[44] Xilinx, Inc., “Virtex-II Platform FPGA User Guide”, February 2004.

[45] Xilinx, Inc., “Two Flows for Partial Reconfiguration: Module Based or

Difference Based”, November 2003.

[46] Xilinx, Inc., “Using a Microprocessor to Configure Xilinx FPGAs via

Slave Serial or SelectMAP Mode”, November 2003.

[47] Xilinx, Inc., “Parallel Cable IV Connects Faster and Better”, Xcell

Journal, Spring 2002.

[48] Xilinx, Inc., “ChipScope Pro Software User Guide”, October 2004.

[49] Xilinx, Inc., “Constraints Guide”, October 2004.

TVLSI_00454_2006.R1 15

This document is an author-formatted work. The definitive version for citation appears as:

Heng Tan,R. F. DeMara, “A Multi-layer Framework Supporting Autonomous Runtime Partial

Reconfiguration,” accepted by IEEE Transactions on Very Large Scale Integration (VLSI) Systems on 17 July

2007.
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained

by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints

invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright

holder."

