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Abstract To deal with susceptibility to aging and
process variation in the deep submicron era, signal
processing systems are sought to maintain quality and

throughput requirements despite the vulnerabilities of
the underlying computational devices. The Priority
Using Resource Escalation (PURE) online resiliency

approach is developed herein to maintain throughput
quality based on the output Peak Signal-to-Noise Ratio
(PSNR) or other health metric. PURE is evaluated

using an H.263 video encoder and shown to maintain
signal processing throughput despite hardware faults.
Its performance is compared to two alternative reconfig-

uration algorithms which prioritize the optimization of
the number of reconfiguration occurrences and the fault
detection latency, respectively. For a typical benchmark

video sequence, PURE is shown to maintain a PSNR
baseline near 32dB. Compared to the alternatives,
PURE maintains a PSNR within a difference of 4.02dB

to 6.67dB from the fault-free baseline by escalating
healthy resources to higher-priority signal processing
functions. The diagnosability, reconfiguration latency,

and resource overhead of each approach is analyzed.
The results indicate the benefits of priority-aware re-
siliency over conventional redundancy in terms of fault-

recovery, power consumption, and resource-area re-
quirements.
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NOTATIONS

G(V,E) An undirected graph, where V is the set of all nodes,
E is the set of edges

C Connectivity matrix

C(t) Connectivity C at time instant t

Ψ Syndrome Matrix

Φ Fitness State Vector

Φ̂ Estimated Fitness State Vector

P Priority Vector

t(G) Diagnosability of G

d(G) Average degree of a node in G

Va Set of active nodes

Vs Set of Reconfigurable Slack (RS) to diagnose the
active nodes by comparison-based diagnosis

Vh Set of healthy nodes

VNMR Set for N-Modular Redundancy checking

M Number of PRRs

N Total number of nodes

Na Number of nodes in the datapath (i.e., |Va|)
Ns Number of Reconfigurable Slacks (i.e., |Vs|)
Nd Number of defectives

r Testing arrangement instance (may involve multiple
reconfigurations)

s Slack update instance (a slack is reconfigured with
some function)

t Time instant

Trecon Reconfiguration Time

Teval Evaluation window period

F Functions assignments vector

F∗ Solution vector F after recovery

Td Latency of fault detection

Tdiag Latency of fault diagnosis

Trec Recovery time

Nr Number of testing arrangement instances before the
diagnosis completes

Nsup Number of slack updates
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1 Introduction

In the domain of Digital Signal Processing (DSP), a

system is said to be resilient if it is capable of handling
failures throughout its lifetime to maintain the desired
signal processing performance within some tolerance.

The threat of diminished component reliability becomes
more critical to maintaining these tolerances due to
process-level variability, as well as escalating thermal

profiles which can accelerate aging effects [1] [2]. Ad-
ditionally, harsh DSP environments such as deep-space
and high-altitude flight can further exacerbate lifetime

reliability concerns. Meanwhile, increasing device den-
sity and system complexity can make the use of design
margins and timing guard-banding techniques more

difficult [3]. All these factors pose renewed challenges to
designing signal processing systems resistant to process
variation and aging-induced malfunction.

Dynamic redundancy techniques based on reconfig-

uration have been widely used to increase reliability [4]
[5]. While traditional fault-handling techniques rely on
pre-allocation of dedicated spare units, more recent

approaches based on dynamic spare pool sharing can
be favorable in terms of reducing area overhead [1] [6].
Resiliency is achieved when a regeneration strategy

allows a system to operate without substantial depre-
ciation throughout its lifetime, even when subjected
to multiple internal or external fault-invoking con-

ditions. Redundancy enables fault-tolerance, however,
how wisely redundancy is employed at runtime deter-
mines the sustainability of the system after exposure

to cumulative failures. Adaptive reconfiguration can
reduce the size of a sustainable spare pool, and it also
enables the novel resiliency strategies developed herein.

Field Programmable Gate Arrays (FPGAs) offer
two important features towards resilient signal pro-

cessing architectures. First, FPGAs have been used
to achieve significant acceleration of DSP applica-
tions over conventional computing platforms [7] [8].

Second, FPGAs provide hardware support for adap-
tive reconfiguration. From a reliability perspective, the
regular structure of an FPGA-fabric is amenable to

reconfiguration-based recovery. A high regularity of
FPGA logic resources allows movement of a compu-
tational function implemented over a defective region

to a fault-free region [9] [10]. This characteristic has
already made FPGAs popular for application in the
space exploration community [11] [12] [13]. On the other

hand, SRAM-based FPGAs are also susceptible to soft
(transient) errors as well as hard (permanent) faults [14]
that can be addressed using the techniques developed

in this paper.

Aggressive scaling of semiconductor technology to

cope with today’s intensive processing demands leads
to seeking new autonomous reliability approaches for
logic devices. In particular, the reliability concern of

VLSI signal processing systems implemented in a sub-
32 nanometer process, caused by soft and hard errors,
is increasing. Therefore, the importance of providing

resiliency is increasing in order to achieve a high level of
integration, throughput performance and quality, and
the classical trends of transistor density per chip.

In this paper, we present a strategy for

autonomously mitigating permanent faults in order to
improve system availability and mission lifetime. The
scheme is advantageous in terms of continuous
operation, power consumption, and area-overhead

while improving reliability. We consider a Functional
Element (FE) which has been decomposed into
various Processing Elements (PEs) for throughput

enhancement. Such a distributed implementation is
also beneficial in terms of fault-tolerance. Some of the
PEs can be used at runtime to perform diagnosis

while others can be configured as operational
resources to compensate for failures and maintain
performance requirements. Without loss of generality,

we term each of these PEs as Reconfigurable Slack
(RS). Each RS region denotes a contiguous
2-dimensional reconfigurable region of FPGA logic

resources used to diagnose the active PEs. An RS has
size and shape which is identical to an active PE in
throughput datapath, yet is not currently configured

to contribute to the throughput. Multiple RS’s are not
required for the techniques herein, but are shown to
decrease the fault diagnosis latency.

A system-level block diagram is shown in Fig. 1

which identifies the roles of the Reconfigurable Logic
Fabric and On-Chip Processor Core of a typical FPGA
device. Within the Reconfigurable Logic Fabric, the

desired processing function such as a Discrete Cosine
Transform (DCT) or Advanced Encryption Standard
(AES) core, is realized by the PEs which comprise

a processing array. These PEs are reconfigurable at
runtime in two ways. First, they can be assigned alter-
native functions. Functional assignment is performed

to leverage priority inherent in the computation to
mitigate performance-impacting phenomena such as
Extrinsic Fault Sources, Aging-induced Degradations,

or manufacturing Process Variations. Second, the input
data can be re-routed among PEs as necessary by
the PURE Reconfiguration Controller. These recon-

figurations are only initiated periodically, for example
when adverse events such as aging-induced failures
occur based on perturbations to the health metric.

The functional re-mapping is performed by fetching
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Fig. 1 A system-level block diagram illustrating the self-
adapting resource escalation of the FPGA device

alternative partial Configuration Bitstreams for the
PEs which are stored in a Compact Flash external

memory device. A Configuration Port, such as the
Internal Configuration Access Port (ICAP) on Xilinx
FPGAs, provides an interface for the Reconfiguration

Controller to instantiate the PEs with the bitstreams
used to perform computational functions in the process-
ing array. The input data used by the PEs, such as input

video frames, resides in a DRAM Data Memory that is
also accessible to the On-chip Processor Core. Together
these components support the data and reconfiguration

flows needed to realize a run-time adaptive approach to
resilient architectures.

Relaxing the requirement of test vectors for fault-
detection can realize a significant reduction in the

testing overhead of previous approaches. To realize
fault-diagnosis and recovery, PURE utilizes runtime
reconfigurability by considering priorities in the under-

lying computation. To re-assign the function executed
by an identified faulty PE, either a design-time spare
is engaged into the active path, or some least-priority

PE is utilized by multiplexing the input-output data.
Functional reassignment is realized by fetching its
function-to-PRR mapping configuration bit file from

external memory into the FPGA configuration logic
memory. In addition, the faulty PE is configured with
a blank bitstream to cease switching activity which

otherwise would incur additional power consumption.

In a broad sense, provision of resilience in recon-
figurable architectures for signal processing can take
advantage of a shift from a conventional precisely-

valued computing model towards a significance-driven

approximate computing model [15], [16], [17]. This

significance-driven model provides inherent support
for a continuum of operational performance which is
compatible with the concepts of signal quality and

noise. In this way, PURE recasts the reliability issues
of contemporary nanoscale logic devices in terms of the
significance associated with these computations.

2 Related Work

Voltage scaling has been an effective approach to reduce
the power consumption in DSP systems due to the
quadratic dependence of power on operating voltage.

However, variations in the fabrication process can man-
ifest soft errors in devices built with deep submicron
technology [2] [18]. The reliability issues of modern

signal processing architectures due to voltage scaling
are being addressed in recent research [19] [20]. Many
of these works take various approaches to leverage the

role of priority in the signal processing computation
to improve resiliency, along with its area and energy
costs. For example, the general concept of asymmetric

reliability is developed in [1] to prioritize the protection
of higher order bits in error resilient architectures
supporting probabilistic applications. Algorithmic level

properties are utilized to realize area efficient replicas of
motion estimation blocks to achieve reliable operation
under energy efficiency constraint in [21]. Likewise, to

minimize the power overhead of error resilience while
maintaining signal quality, the scheme proposed in [2]
exposes only less crucial blocks to process variation and

channel noise.
Fault-handling (FH) systems typically employ a

sequence of resolution phases including Fault Detection,

Fault-Diagnosis, and Fault Recovery. A system can be
considered to be fault-tolerant if it continues operation
in the presence of failures, perhaps in a degraded mode

with partially restored functionality [22]. Reliability
and availability are desirable qualities of a system,
which are measured in terms of service continuity and

operational availability in presence of adverse events,
respectively [23]. In this paper, reliability is attained
by employing the reconfigurable modules in the fault-

handling flow, whereas availability is maintained by
minimum interruption of the main throughput data-
path.

The redundancy based fault detection methods are
popular among fault-tolerant systems community, with
costs of area and power overhead. In the Compar-

ison Diagnosis Model [24] [25], a pair of units is
evaluated subjected to the same inputs and a dis-
crepancy indicates failure. For example, a Concurrent

Error Detection (CED) arrangement utilizes either
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two concurrent replicas of a design [26], or a diverse

duplex design to reduce common mode faults [4]. Its
advantage is a very low fault detection latency. A Triple
Modular Redundancy (TMR) system [27] [28] utilizes

three instances of a datapath module. The outputs
of these three instances become inputs to a majority
voter, which in turn, provides the main output of the

system. In this way, besides fault detection capability,
the system is able to mask its faults in the output
if distinguishable faults occur within one of three

modules. However, this incurs an increased area and
power requirement to accommodate three replicated
datapaths. It will be shown that these overheads can be

significantly reduced by either considering the instanta-
neous PSNR measure obtained within video encoder as
a precipitating indication of faults or periodic checking

of the logic resources.

The Fault Diagnosis phase consists of distinguishing

properly-functioning components from some larger set
of suspect components. Traditionally, in many fault
tolerant digital circuits, the components are diagnosed

by evaluating their behavior under a set of test inputs.
This test vector strategy can isolate faults while re-
quiring only a small area overhead, yet incurs the cost

of evaluating an extensive number of test vectors to
diagnose the functional blocks as they increase expo-
nentially according to the number of inputs. The PURE

active dynamic redundancy approach combines the
benefits of redundancy with a negligible computational
overhead. Static redundancy techniques reserve dedi-

cated spare resources for fault-handling. In contrast,
in the PURE approach, the redundant modules are
continually utilized in the datapath during the normal

mission operation.

While reconfiguration and redundancy are funda-

mental components of a fault recovery process, both
the choice of reconfiguration scheduling policy and the
granularity of recovery affect the availability during

recovery phase and quality of recovery after fault-
handling. Here, it is possible to exploit the algorithm’s
properties so that the reconfiguration strategy is con-

structed taking into account varying priority-levels
associated with required functions.

Reliability of FPGA based designs [29] can be
achieved in various ways. Table. 1 provides a com-
parison of previous approaches towards fault-handling

in FPGA based systems. Passive recovery techniques,
such as TMR, are popular but incur significant area
and power overheads. The TMR technique involves a

triplication of the design where the three copies of
system components are active simultaneously. The fault
recovery capability is limited to the faults within one

instance only. This limitation of TMR can be overcome

using self-repair [30] [31] approaches to increase sustain-

ability, such as refurbishing the failed instance using
jiggling [32]. Other active recovery techniques incorpo-
rate control schemes which realize intelligent actions

to cope with a failure. Evolutionary techniques [33]
avoid the area overhead of pre-designed spares and
can repair the circuit at the granularity of individual

logic blocks, yet lack a guarantee that a recovery would
be obtained within a certain number of generations.
They may require hundreds of Genetic Algorithms

(GA) iterations before finding an optimal solution, thus
undesirably extending the recovery time. On the other
hand, PURE operation is bounded in terms of maxi-

mum number of evaluations required. Many evolvable
hardware techniques have been presented in literature
that rely on modifications in current FPGA device

structure. In addition, a fitness evaluation function
must be defined a-priori to select the best individuals in
a population, which may in turn necessitate knowledge
of the input-output truth table. PURE avoids both of

these complications. Altogether, they allow PURE to
evaluate to the actual inputs, instead of exhaustive or
pseudo-exhaustive test vectors, on any commercial off-

the-shelf FPGA with partial reconfiguration capability.

One approach to reducing overheads associated with
TMR is to employ the Comparison Diagnosis Model
with a pair of units in an adaptable CED arrangement

subjected to the same inputs. For example, the Com-
petitive Runtime Reconfiguration (CRR) [26] scheme
uses an initial population of functionally identical (same

input output behavior), yet physically distinct (alterna-
tive design or place-and-route realization) FPGA con-
figurations which are produced at design time. At run-

time, these individuals compete for selection to a CED
arrangement based on a fitness function favoring fault-
free behavior. Hence, any physical resource exhibiting

an operationally-significant fault decreases the fitness
of those configurations which use it. Through runtime
competition, the presence of the fault becomes occluded

from the visibility of subsequent operations.

Other runtime testing methods, such as online Built-
in Self Test (BIST) techniques [34] offer the advantages
of a roving test, which checks subset of the chip’s

resources while keeping the remaining non-tested re-
sources in operation. Resource testing typically involves
pseudo-exhaustive input-space testing of the FPGA re-

sources to identify faults, while functional testing meth-
ods check the fitness of the datapath functions [35].
In [36], a pair of blocks configured with identical

operating modes are subjected to resource-oriented test
patterns. This Self-Testing AReas (STARs) approach
keeps a relative small area of the device off-line and

being tested, while the rest of the device is online and
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Table 1 Comparison of Fault Tolerance Techniques for SRAM-based FPGAs

Approach
Area
requirement

Basis for
Recovery

Detection
Latency

Number of
Reconfigs

Additional
Components
Required

Granularity
Guarantee
of
improvement

TMR 3 fold

Requires 2
datapaths
are
operational

Negligible
Not Appli-
cable

2 of 3 Major-
ity Voter

Function or
Resource level

100% for sin-
gle fault, 0%
thereafter

Evolutionary Hard-
ware

Not Applica-
ble

Redundancy
and Com-
petitive
Selection

Not Ap-
plicable

Only when
fault is
present;
Non-
deterministic

GA Engine Logic Blocks No

CRR Duplex
Recovery
complexity

Negligible

Only when
fault is
present;
Varies

CRR
controller

Function level No

Online Recovery
(Roving STARs,
Online BIST)

Roving Area
Available
Spares

Significant:
linear in
number
of PLBs

Continuous
reconfigura-
tion

Test vector
generator,
Output
response
analyzer

Logic Blocks Yes

PURE (the
approach proposed
herein)

Uniplex
Priority of
functional-
ity

Negligible

Only when
fault is
present;
Linear in
number of
functions

Reconfig.
Controller

Computational
Functions

Yes

continues its operation. STARs compares the output of
each Programmable Logic Block (PLB) to that of an
identically configured PLB. This utilizes the property
that a discrepancy between the output flags the PLB

as suspect as outlined by Dutt et. al’s Roving Tester
(ROTE) technique [35] and used in Gericota et. al’s
active replication technique [37] which concurrently

creates replicas of Configurable Logic Blocks (CLBs). In
STARs approach, each block-under-test is successively
evaluated in multiple reconfiguration modes, and when

a block is completely tested then the testing area is
advanced to the next block in the device. To facilitate
reconfigurability to relocate the system logic, there is a

provision to temporarily stop the system operation by
controlling the system clock. The recovery in STARs
is achieved by remapping lost functionality to logic and

interconnect resources which were diagnosed as healthy.

In contrast, PURE performs functional testing of

the resources at higher granularity by comparing out-
puts of PEs which execute functions that comprise
a signal processing algorithm. This allows resources

to be tested implicitly within the context of their
use, without requiring an explicit model of each PE’s
function. In PURE, the testing components remain part

of the functional datapath until otherwise demanded
by the fault-handling procedure. Upon fault detection,
these resources are designated for fault diagnosis pur-

poses. Later, upon the completion of fault diagnosis
and recovery, the reconfigurable slacks may then be
recommissioned to perform priority functions in the

throughput path.

3 Fault-Handling Method

Similar to previous approaches, the techniques devel-

oped herein progress through explicit fault-handling
stages of fault detection, fault-diagnosis, and fault re-
covery. Fault-detection can be either performed by

continuously observing a system health metric like
Signal-to-Noise Ratio (SNR), or checking the processing
nodes in an iterative fashion, as will be discussed in

Section 7.2. For example, in the case of a video encoder,
the PSNR of a video sequence provides a health metric
for a uniplex arrangement without redundancy. On the

other hand, in absence of a uniplex health metric such
as PSNR, the designer can tradeoff the use of periodic
temporal CED [38] [39] or spatial CED [4] redundant

computations based on throughput, cost, and reliability
constraints. To illustrate the details of operation under
each phase of fault-handling, two case studies are

developed: a DCT core in a video encoder and a 128-
bit AES core, using PSNR-based and discrepancy-based
CED health metrics, respectively.

In general, the process of identifying faulty nodes in
a system G is called Fault Diagnosis. The maximum

number of faulty nodes which a scheme guarantees
to identify is known as diagnosability of G. Consider
a fully connected topology so that the diagnosis can

be performed between any pair of nodes. Then, after
identifying a faulty node, it can be replaced by any
of the available healthy nodes. Hence in this paper,

the term node applies to both PE and RS regions.
The overall objectives are to maintain the throughput
during the diagnosis phase and rapidly identifying the

faulty PEs.
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Fig. 2 Overview of recovery algorithms evaluated herein and the evaluation approach

Fig. 2 illustrates the scope, approaches, and metrics
of this paper. While the fault detection phase is dis-

cussed later, a diagnosability formulation for identifying
faulty nodes is developed in Section 4 using a syndrome
function. The three diagnosis algorithms of a divide-

and-conquer approach, a latency-sparing approach, and
a throughput-sustaining approach developed are de-
scribed in Sections 5, 6, and 7, respectively. Section 8

reports experimental results for a H.263 video encoder’s
DCT hardware core and an AES encryption engine.
Throughput, fault resilience, and energy duty cycle

results are compared to the baseline TMR approach
which are summarized in the Conclusion in Section 9.

4 Functional diagnosis to record discrepancy
history

The same diagnosis formulation applies to each of the

three algorithms developed and is described first here.
Given an undirected graph G(V,E) of vertex set V
and edges set E, the diagnosis objective is to identify

faulty nodes. The nodes of G correspond to either PEs
or processors in a multiprocessor network connected
through an interconnection network. The diagnosis

process is described in terms of CED comparisons
to identify discrepancies, however, the analysis is not
restricted to a pair-wise comparison. Instead, the fault
diagnosis process can utilize N-Modular Redundancy

(NMR) in accordance with availability of resources.
NMR is a generalization of TMR where N ≥ 2 modules
provide N − 1 redundant instances, which has found

applicability in adaptive fault-handling [19] [40].

An element (u, v) in the edge set E indicates the
feasibility that the output from corresponding PEs can
be compared. Let the actual fitness states of nodes

be represented by vector Φ, and the fitness states

estimated based upon the fault-diagnosis process by
vector Φ̂.

The following assumptions are made in the proposed

fault diagnosis scheme:

1. Faults are of permanent nature.

2. A fault is observable if a faulty node manifests a
discrepant output at least once in a given Evaluation
Window period.

3. The outcome of a comparison is positive if at least
one of the nodes in a CED pair has an observable
fault.

4. The comparator/voter is a golden element which can
be relied upon for fault-free operation.

Let the functions computed by N nodes of a FE
be represented by a vector F where fi is the function

performed by node i. In the recovery solution, we seek
F ∗ which gives optimal assignments of functions in a
fault-scenario. We define the Connectivity Matrix C to
show the comparison performed between two nodes in

G. Thus, an entry cij = 1 denotes that a comparison
between node i and node j is performed. Syndrome
Matrix Ψ indicates the outcome of comparisons. An

entry ψij of this matrix denotes comparison outcome
corresponding to the outputs of node i and node
j. Both of these matrices are symmetric about the

diagonal due to commutativity of pairwise comparison
for discrepancy.

Ψ =


0 ψ12 . . . ψ1N

ψ21 0 . . . ψ2N

...
...

. . .
...

ψN1 ψN2 . . . 0

 (1)

Where ψij = 1 indicates that output from node
i and j is discrepant for the same input, ψij = 0

shows their agreement, while ψij = x stands for the
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case when no comparison has been performed between

the corresponding nodes. A ψii = 0 on the diagonal
corresponds to the comparison outcome for a node i
with itself,

The syndrome matrix Ψ is used to estimate the
fitness states of nodes in G. Thus, faulty nodes are

identified based upon the syndrome matrix values.
After fault detection, all the entries of Ψ except those
on the diagonal are initialized with x implying that the

health of all the PEs is suspect. The following identifies
the condition for healthiness, with the estimated fitness
vector being updated accordingly:

Condition: ψ(i, j) = 0 for any 1 ≤ i ≤ N and 1 ≤ j ≤
N , where i ̸= j and cij = 1

Update: ϕ̂i = 0

Thus, the syndrome matrix is used to update the
fitness of various PEs based upon diagnosis history
information. In case of failure to identify a healthy PE

after multiple reconfigurations, the slack is updated to a
different PE as described by the specific reconfiguration
sequencing algorithms in Section 5, 6, and 7. When a

healthy RS is found in a given slack update iteration
s, it indicates that the previously selected slacks were
faulty.

In the proposed recovery schemes, the priority of
functions is taken into account while recovering from

fault scenarios. For the DCT case, the PE comput-
ing the DC-coefficient is the most important, AC0-
coefficient second most important and so on. Generally,

we represent the computational importance of nodes
by an N × 1 size priority vector P, where pi = 1
for the most important node i and pi = N for

the least important node. For an application with
equally important cores, the priority vector is initialized
with all ones. In this work, we assigned the priorities

at design-time considering the application properties,
e.g., DCT-coefficient computing functions and their
impact on PSNR for various video sequences. An

interesting future work can be to compute the priority
values at runtime. The applications which cannot be
characterized by priorities at design-time, or to better

utilize the input signal characteristics at runtime, such
an approach can be very promising to realize runtime
adaptable architectures. An example is to estimate the

priority of DCT PEs based upon their runtime impact
on PSNR according to the input scene’s characteristics.

Given a network, the objective is to identify faulty
nodes as soon as possible while maintaining throughput
during fault diagnosis phase. For this purpose, the

proposed diagnosis schedule demotes the predicted
fitness of a Node Under Test (NUT) based upon their
discrepancy history. In the following, we describe some

variations of the fault-handling phase starting with a

divide-and-conquer approach. The choice of algorithm

in an application depends upon the designer’s prefer-
ences about diagnosis latency, throughput availability
requirement, and area/power trade-offs.

5 Reconfiguration Algorithm 1:
Divide-and-Conquer Method

Group testing schemes [41] [42] [43] have been success-
fully employed to solve many fault isolation problems
in which the number of defective items is much smaller

than the size of the overall suspect pool. The problem
at hand has an analogy to the group testing paradigm,
yet with some important distinctions. Although, the

task here is to identify defective elements in a pool of
computational resources, we do not pose an assumption
about presence of a known-to-be-healthy functional

output element for testing individual nodes. This asser-
tion makes it infeasible to apply a hierarchical testing
approach in which testing up to the last single item

is performed by a known healthy item. Therefore, the
PURE also relies upon the comparison diagnosis model
or NMR voting model to isolate faulty elements.

We identify two scenarios in which this hierarchical
divide-and-conquer strategy may be more appealing
to be employed than the two algorithms discussed in

further sections:

– If there are no restrictions on throughput or avail-
ability during the fault-handling phase, then halving

of the suspect pool [42] offers logarithmic time
diagnosis latency, or

– If fault confinement is desirable, that is, limiting the
influence of the fault as soon as possible, then it

becomes advantageous to cut off the suspect nodes
from the active throughput path as soon as possible.
Then, those nodes can be used for health checking

of the active nodes. This scenario is pessimistic, and
applies to the case when fault rate is high and a large
number of nodes become defective before the fault-

handling scheme is initiated. A more optimistic
approach is to keep the active nodes in processing
datapath while performing diagnosis process as we

discuss in the next sections.

Fig. 3 illustrates the topologies in the diagnostic
flow at various reconfiguration iterations. The number

of edges in the graph of Fig. 3 corresponds to the total
number of reconfigurations performed for diagnosis
purposes. Various steps of the diagnosis phase using

a divide-and-conquer approach are illustrated in Fig. 4
in which dotted lined boxes correspond to the checking
slacks and solid lined boxes correspond to active PEs.

Algorithm 1 defines the diagnosis process.
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(a) Time varying topologies at various reconfigura-
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56

(b) Graph represented by C after
3 reconfigurations

Fig. 3 Divide-and-conquer method for fault diagnosis

To measure the diagnosability of G obtained by the
divide-and-conquer reconfiguration method, we observe
from Fig. 3(b) that every node has three adjacent nodes.

In the worst case, if all the adjacent nodes of a node i
become faulty, then it is impossible to check the fitness
of node i using a comparison diagnosis model. In that

case, the system is no longer diagnosable. However, if

r=1 r=2 r=3

a
V

s
V

a
V

s
V

Fig. 4 Various reconfiguration instants in the divide-and-
conquer approach

Algorithm 1 Divide-and-conquer Fault Diagnosis
Algorithm (without recovery)
Require:N
Ensure:Φ̂

1: Partition V into two equal-sized disjoint sets Va and Vs
2: Designate the set Va as FE and Vs as RS
3: Perform concurrent comparison to the same inputs for

various edges of the bipartite graph represented by
connectivity matrix C

4: Update the Syndrome Matrix Ψ based upon comparisons
outcome

5: Iterate step-1 to step-4 log(N) times
6: Given Ψ, isolate the faulty nodes:

ϕ̂i ← 0 and ϕ̂j ← 0, if cij = 1, and ψij = 0

ϕ̂i ← 1 if ϕ̂j = 0, cij = 1, and ψij = 1

only two adjacent nodes of a presumed healthy node
j are faulty, then the remaining one node can be used

for checking purposes. Thus, the diagnosability t of a
divide-and-conquer topology is (d(G)−1) where d(G) is
the average degree of a node in G. For example, when

PE4 and PE6 are faulty in a system with 8 PEs, then
after r = 3 iterations of diagnosis, the syndrome matrix
deduced from Fig. 3a is given by:

Ψ =



1 2 3 4 5 6 7 8
1 0 0 0 x 0 x x x
2 0 0 x 1 x 1 x x
3 0 x 0 1 x x 0 x
4 x 1 1 0 x x x 1
5 0 x x x 0 1 0 x
6 x 1 x x 1 0 x 1
7 x x 0 x 0 x 0 0
8 x x x 1 x 1 0 0


(2)

where the entry ψ12 = 0 denotes the healthy nature of
PE1 and PE2 while ψ42 = 1 shows the faulty nature of

at least one of the PEs in the pair under test.



J Sign Process Syst 9

6 Reconfiguration Algorithm 2: FaDReS

Fault Demotion using Reconfigurable Slacks (FaDRes)
achieves dynamic prioritization of available resources

by demoting faulty slacks to the least priority func-
tions [44]. Compared to divide-and-conquer, it attempts
to avoid excessive reconfiguration of the processing

datapath. Namely, whenever a redundant PE is not
available then a lower priority functional module can be
utilized. The output from the vacated RS is compared

against functional modules in the datapath provid-
ing normal throughput. The discrepancy in output of
identical functional modules isolates the permanent or

transient fault. Thus, the FaDRes algorithm iteratively
evaluates the functional modules while keeping them
in the datapath, as well as slack resources used for
checking. In general, the identification of healthy slack

can be formulated as follows: Given a pool of resources
in which the faults are equiprobable in any resource,
then what is the probability that at least a single

RS is identified within r iterations. The probability of
favorable event corresponding to a RS being identified
is given by:

P (X) =
Number of favorable scenarios

Total number of diagnosable fault scenarios

(3)

where X = Number of healthy RS identified. The
Cumulative Proportion of Diagnosable Conditions

(CPDC) is defined as:

CPDC(X ≥ 1) =

N∑
r=1

P (X = r) (4)

For the case of N = 9 total PEs with a single
RS, a total of Na = 8 number of Active PEs form

the throughput datapath of the circuit while number
of slacks is Ns = 1. Since each PE can either be
faulty or healthy, there are 511 unique fault-scenarios in

addition to one case where all are healthy. However, two
special cases in which none or only one PE is healthy,
are non-diagnosable. This yields 10 non-diagnosable

configurations corresponding to 9 when one PE is
healthy plus one when none are healthy. The RS itself
is healthy for a total of 254 of all possible faulty-yet-

diagnosable 511−10 = 501 cases. Thus, the proportion
of diagnosable conditions is 254

501 = 0.5070.
If a healthy RS is not identified in the first testing

iteration, it is marked and not included in the second
testing iteration. Then, given a total number ofN = 9−
1 = 8 PEs yields 127 diagnosable fault-scenarios involv-

ing a healthy RS. Thus, CPDC is given by 254+127
501 =
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Fig. 5 Cumulative Proportion of Diagnosable Conditions
demonstrating diagnosis benefit of additional slacks

0.7605 at the r = 2 iteration. Similarly, a failure to
identify a healthy RS in the second testing iteration
leads to testing another set of configurations in which

N = 7. Here, 63 diagnosable faulty scenarios involve
a healthy RS. Thus, CPDC(r = 3) = 254+127+63

501 =
0.8862, in agreement with Eq. 4.

Fig. 5 demonstrates benefit of employing multiple
slacks during diagnosis procedure. As it can be seen,
the probability of diagnosis completion after the first

instance of testing arrangement is higher in case of
Ns = 2 compared to the case Ns = 1.

6.1 Diagnosis by voting

The algorithm for diagnosis employing dynamic NMR

voting on module level is given in Algorithm 2. Fig. 6
shows various steps in the diagnosis process.

Fault diagnosis latency Tdiag is defined as:

Tdiag = (Teval + TrecNs)

Nr∑
j=1

Ij (5)

where
Nr = Number of testing arrangement iterations during

detection
Ij = Number of times a jth RS is reconfigured
Trec = Reconfiguration Latency (PR time for one PE)

Ns = Number of Reconfigurable Slacks
Teval = Duration of Evaluation Window
By substituting Nr = Na and the worst case

reconfiguration count, the upper bound on the latency
of the fault-diagnosis is obtained as:

Tdiag,max = (Teval + TrecNs)

Na−1∑
j=0

(Na − j) (6)
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Algorithm 2 FaDReS (Greedy Fault Diagnosis with
Subsequent Recovery)
Require:N , Ns, P
Ensure:Φ̂

1: Initialize Φ̂ = [x x x ... x]T , i = 1, Na = N −Ns
2: Arrange elements of V in ascending order of P
3: while ({k|k ∈ Φ̂, k = 0} = ϕ) do

4: Designate vs as checker(s) (Na + 1) ≤ s ≤ (Na +Ns) ;
thus Vs = {vs}

5: while i ≤ Na do
6: Reconfigure RS(s) with the same functionality as vi,

Nsup = Nsup + 1
7: Perform NMR majority voting among NUTs when

Ns > 1, or CED between NUTs when Ns = 1, then
update Connectivity matrix accordingly,
Update the Syndrome matrix Ψ based upon
discrepancy information,
ϕ̂i ← 0 for vi which shows no discrepancy then go to
step-12, ϕ̂i ← x otherwise

8: i← i+ 1
9: end while
10: Move the RS by updating Na = Na−Ns, Nr = Nr +1,

Re-initialize i = 1
11: end while
12: Update the fitness state of the previous RS(s): ϕ̂j ← 1 ;

for (s+ 1) ≤ j ≤ N and ψj. = 1

13: Use a healthy RS to check all other nodes in Va, ϕ̂i ← 0;
if ϕ̂j = 0, cij = 1, and ψij = 0

Va 1 2 3

4, 5 6 7

Vs 8

Va 1 2 3

4, 5 6

Vs 7

Va 1 2 3

4, 5

Vs 6

Fig. 6 Fault Diagnosis in the FaDReS Approach

6.2 Diagnosis by Comparison

A variation of Algorithm 2 is made in which a NUT is

assigned to only one RS for checking; whereas more

than one RS(s) may be allocated to a NUT in the

diagnosis-by-voting case. For example, in diagnosis by
comparison approach with Ns = 2, the first RS is
configured with f1 and the second RS with f2 in the

first iteration. Upon failure of identifying a healthy RS,
these slacks are reconfigured to f3 and f4, respectively
and so on.

In case of Xilinx FPGAs, the ICAP, on-chip mem-
ory called Block-RAM, and Compact Flash external
memory form a memory hierarchy for reconfiguration

functions. The bitstreams which define the functions
configured to various PEs are initially stored in external
memory. We employ a locality constraint to quantify

the distinction between the voting approach and com-
parison approach. If an RS is to be configured with
a function, the corresponding bitstream needs to be

fetched from the external memory for the first time.
However, if another RS needs to be configured with
the same function, a bitstream fetch operation is not

required as the access can be granted from on-chip
memory. Thus, if two RS’s are to be configured with the
same functionality, the reconfiguration penalty is not

2∗Trec but just (1+β)∗Trecon where 0 ≤ β ≤ 1 depends
upon the ratio between internal on-chip memory access
time and external memory access time. On the other

hand, a comparison diagnosis approach requires 2∗Trec
reconfiguration time for two slacks as both need to
be configured as separate functions. The preference

of one method over the other should be based upon
reconfiguration time Trecon, β factor, and evaluation
window period Teval. For devices with fast on-chip

memory access provision, β is a small number and
hence comparison-by-voting can be more advantageous
approach. For Virtex-4 device with external compact-

flash and internal block-RAM, we observed a value of
β = 0.0013 when operating the reconfiguration port at
100MHz clock frequency.

7 Reconfiguration Algorithm 3: PURE

PURE achieves dynamic prioritization of available re-
sources by assigning healthy slacks to the highest
priority functions. The distinction between the PURE

algorithm and FaDReS arises from the fact that after
a healthy RS is identified, PURE configures it for pri-
ority function computation immediately. An identified

healthy RS is used for checking purposes to isolate
all other PEs. Thus, the Algorithm 3 can be used to
prioritize throughput while the FaDReS Algorithm 2

can be used to prioritize fault diagnosis completion.
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Algorithm 3 PURE (Fault Diagnosis with Integrated
Priority-driven Recovery)
Require:N , Ns, P
Ensure:Φ̂, F ∗

1: Initialize Φ̂ = [x x x ... x]T , i = 1, Na = N −Ns

2: Arrange elements of V in ascending order of P
3: while ({k|k ∈ Φ̂, k = x} ̸= ϕ) //Until all suspect nodes

are proven to be healthy do
4: while ({k|k ∈ Φ̂s, k = 0} = ϕ) //Identify at least one

healthy node in Vs do
5: Designate vs as checker(s) (Na +1) ≤ s ≤ (Na +Ns)

; thus Vs = {vs}
6: while i ≤ Na do
7: Reconfigure RS(s) with the same functionality as

vi, Nsup = Nsup + 1
8: Perform NMR majority voting among NUTs

when Ns > 1, or CED between NUTs when Ns =
1, then update Connectivity matrix accordingly,
Update the Syndrome matrix Ψ based upon
discrepancy information,
ϕ̂i ← 0 for vi which shows no discrepancy then go
to step-13, ϕ̂i ← x otherwise

9: i← i+ 1
10: end while
11: Move the RS by updating Na = Na − Ns, Nr =

Nr + 1, Re-initialize i = 1
12: end while
13: Identify the most prioritized function computing node

which is faulty, vpf
14: Use the identified healthy RS to compute a priority

function, F ∗
s ← Fpf thus RS is removed from Vs and

added to Va
15: end while

7.1 Diagnostic Flow

In the PURE approach, the diagnosability of the
system is incrementally improved by reconfiguration.

The diagnosability tr(G) at a reconfiguration instant, r
is defined by the average degree of active nodes in G,
and is given by the equation:

tr(G) = dr(G)− 1 (7)

where dr(G) is the average degree of nodes in the graph

at r. The topology at r = 1 in Fig. 6 is 0-diagnosable
since a faulty RS leaves all other nodes suspect after
comparisons. However, the topology defined by C

at r = 2 which combines diagnosis information of
C(1) and C(2) is 1-diagnosable since a single faulty
node is guaranteed to be identified. In general, the

diagnosability at the completion of algorithm is N − 2
after every possible pair combination is evaluated and
the resultant topology is a fully connected graph. Fig. 7

shows the diagnosability at various reconfiguration
instants for a network of 8 nodes. As it can be seen, an
increase in the number of slacks results in identification

of defective nodes within a few iterations.
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Fig. 7 The diagnosability of a topology with various
reconfiguration iterations

Fig. 8 shows an illustrative example of the fault

diagnosis in the PURE approach. The fitness state
of PEs which are suspect is depicted by rounded-
corner blocks. In this example, PE1 and PE7 are

afflicted with faults. Upon initialization of the fault-
handling algorithm, all PEs are suspect. Then, PE8 is
reconfigured as RS by implementing function f1 and

its output is compared with that of PE1 to check for
any discrepancy. An RS is shown by dashed block. In
this example, PE1 is also faulty; therefore, this first

comparison does not provide any useful information
about the health of PEs and they remain suspect. Next,
PE8 is reconfigured to second priority function f2 and

its discrepancy check is performed with PE2 which
implements f2. An agreement reveals their healthy
nature. In addition, it shows that PE1 was faulty as

it had exhibited discrepancy with a healthy PE (i.e.,
PE8) in the previous step. As soon as a healthy RS is
identified, a faulty PE implementing a priority function

is moved to the RS. Thus, PE1 is configured as blank by
downloading a blank bitstream while PE8 is configured
with function f1 to maintain throughput. Next, PE7 is

chosen as RS whose discrepancy with a healthy PE2

shows its faulty nature. Lastly, a healthy PE6 serving
as RS accomplishes the diagnosis procedure to update

the fitness state of PEs 2 through 5 to healthy. Overall,
the fault recovery is achieved by configuring faulty PEs
by blank and healthy PEs by functions 1 through 6.

Another scenario can be considered for the above
example in which two checker PEs are utilized in the
diagnostic stage. As the intermediate results have to

be written into data buffer as in Fig. 1, so that the
CPU can evaluate for discrepancy check, the data buffer
writing timing would be different than the previous

scenario. In general, for a given faulty-scenario, an
increase inNs can help reducing the latency of diagnosis
completion. On the other hand, to improve the fault-

diagnosis latency, such a choice of larger Ns can incur
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Fig. 8 An example of fault diagnosis in PURE approach

more throughput degradation during the diagnosis

phase. Thus, the choice of Ns should be made according
to maximum tolerable throughput degradation during
the diagnosis phase and the desired latency of fault-

handling.

For a total of N nodes in G, there are N2 − N
possible pairings. As evident by Table 2, our fault-

diagnosis schemes require significantly fewer compar-
isons compared to the exhaustive pair evaluations
where the values are scaled to % of total resources

available during diagnosis. Fig. 9 shows the worst case
scenario for the PURE algorithm in an FE containing
8 PEs. The round corner blocks correspond to faulty

PEs. As shown in Fig. 9, as many as 3 reconfiguration
iterations are required as the first two slacks selected
were faulty.

7.2 Fault Detection Criteria

PURE adapts the configuration of the processing dat-

apath based on the correctness and performance of
recent throughput by incorporating a health metric.

7.2.1 PSNR as a Health Metric

PSNR is well-established metric to assess the relative

quality of video encoding [45]. The PSNR of a M ×M
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Fig. 9 The worst case scenario for the diagnostic phase with
two defective nodes

frame of n pixel-depth is computed based upon the

algebraic difference of the input frame and the image
in the frame buffer in O(M2) steps. In the PURE
technique, the PSNR of each frame is computed in

the background using the On Chip Processor already
embedded in fabric without decreasing the throughput
of the PE array. In the experiments herein, the com-

putation of PSNR was measured to take 4.23msec for
the DCT input image luma resolution 176 × 144, and
thus incurs only 2.79% time utilization of the embedded

PowerPC. Likewise, the power consumption overhead
during PE reconfiguration is 70mW considering ICAP
and RS utilized power [44]. Thus, this approach can be

advantageous in terms of power and area requirements
by detecting anomalies without incurring redundancy
within the PE datapath. Meanwhile, PSNR computa-

tions on the processor proceed concurrently with DCT
computations in the PE array. PSNR computation
is performed as a health metric and is not on the

PE array’s critical path of the DCT core. Thus, the
interval of time between successive calculations of
PSNR can be selected independently to be sufficient for
health assessment without impacting the DCT core’s

throughput.

The occurrence of hardware errors resulting in a
decrease in PSNR has been validated in the litera-
ture [19] [46] [47], [2]. For example, in [19] the authors

developed an alternative resilience approach called Soft
NMR. It used real-time signal difference to compensate
for anomalies exposed by voltage over-scaling, and they

evaluated the resilience of their circuits using PSNR.
In [46] and [2], PSNR is used to quantify the graceful
degradation achieved in a Motion Estimation engine,

DCT application, and an Inverse DCT circuit as the
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Table 2 Latency vs. throughput comparisons for the fault-handling schemes in terms of % resources available during diagnosis

Metric Approach
Testing arrangement instance, r

1 2 3

Na during diagnosis
Algo. 1 (Divide & Conquer) 50% 25% 12.5%

Algo. 2 (FaDReS) 87.5% 75% 62.5%
Algo. 3 (PURE) 87.5% 75% 62.5%

No. of bitstream downloads, Nsup

Algo. 1 (Divide & Conquer) 50% 50% 50%
Algo. 2 (FaDReS) 87.5% 75% 62.5%
Algo. 3 (PURE) 87.5% 75% 62.5%

supply voltage is reduced. Their research investigated
supply voltage reduction from 1.2V to 0.71V causing
errors that decreased PSNR 34.9dB to 24.8dB and

deemed the maintenance of PSNR above 20dB as
achieving acceptable performance. The impact that
faults have on PSNR and the resulting image quality

are also visually apparent. For instance, Fig. 10 depicts
PSNR of 35.27dB, 7.07dB, 29.86dB, and 34.78dB re-
sulting from error-free, PE1 faulty, PE2 faulty, PE7

faulty respectively, for a typical frame from the city

sequence.

While these previous approaches utilize PSNR for

assessing resilient architecture performance, the novelty
of the PURE technique is to escalate resources based on
their impact on PSNR. In particular, the PURE scheme

maintains quality above a certain user-specified toler-
ance by adapting the datapath. Taking a broad view,
a system boundary is defined so that external factors

such as environment, occlusions, or signal transmission
errors reside outside of the signal processing task.
For example within the system boundary of a video

encoding task, PSNR reflects the compression quality
if the input noise is considered to be part of the input
signal. Thus, the PSNR reflects the effectiveness of

the signal processing system in terms of its underlying
hardware resources. However, even in the absence of
faults, PSNR varies depending on the algorithms ability

to perform lossy compression and reconstruction in
accordance with the nature of the scene’s content. For
example in the PURE results shown in Fig. 13 of the

following section, PSNR is seen to decline from 33dB
down to 32dB during frames 1 through 50. When PSNR
drops abruptly at frame 51, due to a hardware fault,

it triggers the Fault Detection phase of the PURE
algorithm.

The PURE algorithm differentiates failure-induced

changes in PSNR from ambient changes in PSNR using
a user-selected maximum tolerable quality degrada-
tion during Fault Detection (FD), denoted as ∆FD.

The quantity ∆FD represents an allowable runtime
percentage change in PSNR which would invoke the
PURE diagnostic flow. A sliding window of recent

PSNR values is used to accommodate differences in

the changing nature of the scene’s content. ∆PSNR is
defined as:

∆PSNR = 100× (PSNRavg − PSNRcurrent)

PSNRavg
(8)

For example, Table 3 and Table 4 indicate the
feasibility of selecting ∆FD = 3% for the city input
sequence with a sliding window of 6 frames. Although

the nominal PSNR value may vary, Table 3 and Table 4
together show how a desirable ∆FD value could trade-
off both false positive and false negative detections.
Finally, selection of the sliding window size can take

into account the product of reconfiguration time and
frame rate yielding ⌈Trecon×Framerate⌉, e.g. ⌈180ms×
30fps⌉ = 6 frames. Table 5 lists the effectiveness of

using these detection parameters with a variety of input
benchmarks.

Table 3 Effect of ∆FD = 3% tolerance using Failure-Free
Resources for city.qcif, QP=5

Frame ∆PSNR Action Interpretation

7 -0.32% no change correct

23 0.26% no change correct

... ... no change correct

47 7.53% reconfiguration triggered false positive†

... ... no change correct

70 2.01% no change correct
† reconfiguration is triggered

Table 4 Effect of ∆FD = 3% tolerance using PEs with 5%
degraded output for city.qcif, QP=5

Faulty PE ∆PSNR Action Interpretation

1 6.63% reconfig. triggered at 51 correct

2 4.07% reconfig. triggered at 51 correct

3 4.76% reconfig. triggered at 52 correct

4 4.63% reconfig. triggered at 52 correct

5 3.99% reconfig. triggered at 53 correct

6 3.01% reconfig. triggered at 55 correct

7 < 3% no change false negative†

8 < 3% no change false negative†

† innocuous fault below threshold, reconfiguration is not triggered.

Table 6 summarizes the combinations of conditions

under which PSNR is a reliable indicator of faults.
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Table 5 Fault detection performance (∆FD = 3%) using PEs with 5% degraded output at frame 51, QP=5

Faulty PE1 Faulty PE2

Sequence Trigger Frame ∆PSNR Interpretation Trigger Frame ∆PSNR Interpretation
Akiyo 51 6.54% correct, latency = 0 frames none - false negative

Carphone 52 4.81% correct, latency = 1 frames 52 3.33% correct, latency = 1 frames
City 51 6.63% correct, latency = 0 frames 51 4.07% correct, latency = 0 frames
Claire 53 3.04% correct, latency = 2 frames 55 3.01% correct, latency = 4 frames

Football 51 41.55% correct, latency = 0 frames 51 16.77% correct, latency = 0 frames

Table 6 Quality-Oriented Fault Diagnosis

Hardware ∆PSNR FD Quality
Faults > ∆FD asserted objective met?

No No No Yes

No Yes Yes → False Positive Yes†

Yes No No → False Negative Yes††

Yes Yes Yes Yes
† Small power overhead involved
†† Innocuous fault

The first row indicates that when no fault is present
and tolerance is not exceeded then fault diagnosis is
not invoked. The last row corresponds to the scenario

whereby fault diagnosis is initiated in response to a
fault detected by exceeding detection tolerance. Both
of these scenarios invoke the expected response to
maintain the quality objective by seeking a repair

only when needed. Conditions corresponding to the
middle two rows of Table 6 also maintain the desired
quality objective, due to the non-intrusive nature of

the PURE reconfiguration process. For instance in
the second row, PURE still minimizes the impact of
inadvertent triggering of reconfiguration by temporarily

deallocating the least priority function or reconfiguring
the RS. In the third row, the failure is an innocuous
fault in the sense that it does not manifest a degra-

dation in signal quality sufficient to necessitate repair.
In summary, PURE allows the designer to specify
the tolerable range of signal degradation by selecting

∆FD to allow fluctuations up to that value without
triggering the diagnostic flow. Finally, even though
PSNR calculation and the Reconfiguration Controller

are not part of the throughput datapath and thus do
not impact signal quality, handling of possible faults
in these PURE components can be addressed using

techniques identified in [48].

7.2.2 Output Discrepancy as a Health Metric

When a health metric such as PSNR is readily available,

it can be used to reduce area and power overheads.
However, for applications where such health metric
is not feasible, PURE can utilize CED and priority

information without loss of generality. Thus, to detect
hardware faults at the local DCT level instead of
an entire encoder level, a periodic checking scheme

is employed. Here a single RS is used which can be

either a design-time spare or the least priority PE.
In either case, an RS is sequentially configured with

active functions of the throughput datapath to serve
as a replica for discrepancy checking. A discrepancy
between an active PE and RS indicates a hardware fault

in one of them, but does not indicate which one. Once
suspect PEs are identified, the same diagnostic flow
can be invoked that was previously described for the

PSNR metric. Afterwards, the PURE diagnostic flow is
initiated to analyze and isolate the faulty PEs.

When using Output Discrepancy as a health metric,
PURE gives precedence to checking the highest priority
PEs. For example, in the case of DCT the PE which

computes the DC coefficient is prioritized first, then
the PE computing the AC0 coefficient, and so on. The
choice of how frequently an RS is configured and the

number of RS utilized, both affect the fault-detection
latency. We will discuss in Section 7.3 how the fault-
handling latency is improved by increasing the number

of utilized RS. Both the above mentioned parameters,
i.e., reconfiguration interval and number of RS, affect
the power consumption. An in-depth discussion of using

output discrepancy as a health metric is presented
in [49] where a low area overhead estimator is used
in lieu of multiple instances of the fully redundant

datapath.

In summary, use of either a PSNR-based or
discrepancy-based health metric can be used to
initiate the PURE diagnostic flow. Nonetheless,
PURE provides the designer with the freedom to

choose the number of RS and the period between
reconfigurations based on area, power, and
fault-detection latency tradeoffs in order to meet the

specific design objectives.

7.3 PURE Functional Testing as Compared to

Physical Resource Testing

There are a number of distinctions between PURE and
physical resource testing techniques. For instance, the
STARs approach mentioned in Section 2 provides a use-

ful and established online BIST approach to diagnosis
of FPGA Logic Resources by Abramovinci, Stroud, and
Emmert [50], [36]. Both techniques focus on providing

fault coverage while maintaining useful throughput.
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(a) Image in frame buffer computed
using healthy PEs, PSNR=35.27dB

(b) Image in frame buffer computed
using DCT with a faulty PE1,
PSNR=7.07dB

(c) Image in frame buffer computed
using DCT with a faulty PE2,
PSNR=29.86dB

(d) Image in frame buffer computed
using DCT with a faulty PE7,
PSNR=34.78dB

Fig. 10 The impact of faults on PSNR and image quality

However, they have significant differences including:

test and recovery granularity, test input vector overhead,
support for heterogeneous resources, detection latency,
and dormant fault coverage.

With respect to test and recovery granularity, the
techniques differ significantly. Both PURE and STARs

can utilize CED for fault detection. STARs uses CED
to compare the outputs of each fine-grained physical
resource individually, whereby every Programmable

Logic Block (PLB) is repeatedly reconfigured for testing
against some other PLB. On the other hand, PURE
employs CED at the coarse-grained application level to

compare functional outputs, whereby each function is
composed of an arbitrarily large number of PLBs. Thus
for signal processing architectures, PURE is able to take

advantage of information from the application-level,
such as pipeline stage organization of the DCT core or
video encoder. In the case of PSNR as a health metric,

PURE provides the advantage of needing to reconfigure
only when a fault is present and observable. In terms
of scalability, in contrast to fine granularity BIST-style

approaches which require reconfigurations proportional
to the number of physical resources, PURE diagnosis
flow executes linearly with respect to the number of

PEs.

With respect to test input vector overhead, PURE

avoids exhaustive test inputs by leveraging the through-
put input data to detect discrepancies, as described
above. STARs, on the other hand, requires additional

inputs which function only as test vectors, but do not
contribute to throughput. It employs a Test Pattern
Generator (TPG) and an Output Response Analyzer

(ORA) to test a block under test. STARs utilizes
pseudo-exhaustive test inputs which configure every
PLB to every possible logic function individually to

verify correctness. While both PURE and STARs re-
quire periodic reconfiguration, PURE reconfiguration
consists of only loading the bitstream for a PE which is

invariant and predefined. STARs reconfigures each PLB
in a vast range of arrangements which must be stored
separately or created dynamically. However, this does

allow STARs to locate and remap the fault at the finest
possible granularity. This conserves resources which
can be recycled, although contemporary reconfigurable

devices have a vast number of resources available.
Nonetheless, this does allow STARs to provide dormant
fault coverage even if the PLB is not active. In PURE,

dormant faults are expunged after the region is config-
ured for comparison by the diagnosis flow.

With respect to support for heterogeneous
resources, PURE’s use of functional testing can be
advantageous. For instance, considering that many

commercial FPGAs provide an abundance of
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dedicated functional units embedded in the fabric such

as hardware multipliers. Since PURE uses functional
performance for both PSNR and CED based fault
detection, testing of the embedded resources such as a

Xilinx DSP48 multiplier become intrinsic in the
technique. On the other hand, resource-oriented tests
must seek out special-purpose pseudo-exhaustive tests

of these heterogeneous resources to avoid
combinatorial explosion of the input space.

With respect to detection latency, exhaustive re-

source testing exhibits a detection latency proportional
to the number of PLBs rather than number of PEs. For
a N×N array of PLBs, the expected value of detection

latency for STARs is N2

2 × tPLB
test where tPLB

test denotes
the testing time of a PLB plus overheads incurred by
stopping the clock to capture the register states. Use

of a hybrid functional CED technique to detect faults
and then STARs to diagnosis and recover from them
has been proposed as an enhanced version [51]. For

PURE, the expected value of detection latency varies
linearly with the number of PEs. More precisely, an
upper bound on the diagnosis time is defined in terms
of the maximum slack-update iterations required to

isolate Nd number of faulty nodes in a network of N
nodes employing a single RS, and is given by:

Nsup,max = 1 +

N−1∑
s=N−Nd

s (9)

For example, given a network of size N = 8 and
Ns = 1, the maximum number of slack updates occur

in the case when PE7 and PE8 are faulty as depicted
in Fig. 9. Thus, Nsup,max = 1 + 7 + 6. The constant
term 1 is added to include the reconfiguration required

to identify a healthy slack. Fig. 11 shows the upper
bound on diagnosis latency using Ns = 1. Fig. 12
shows the diagnosis latency when using two slacks for

a network of size N = 8. Although, an increase in
number of nodes results in increased diagnosis latency
due to the reconfigurations involved, the number of

defective nodes impact the latency more significantly.
To diagnose a single defective node with Ns = 2, as
few as one slack update is required as compared to the

previous case requiring a maximum of 8 slack updates
when only one slack was employed.

Table 7 lists the configuration bitstream sizes for

various PEs in DCT core which can be used to assess
the configuration memory size requirement. The follow-
ing factors are involved in the reconfiguration flow, and

hence add to the overhead of the diagnostic provision
in PURE approach.

PRR Size: For Virtex-4 device, the minimum PRR

height that can be defined is 16 CLBs [52] while
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Fig. 11 Diagnosis latency of the PURE approach for Ns = 1
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Fig. 12 Diagnosis latency of the PURE approach for Ns = 2,
N = 8

Table 7 Configuration bitstream sizes in DCT core

Function PRR Location .bit Size

fDC SLICE X54Y224:SLICE X71Y255 32KB
fAC0 SLICE X54Y192:SLICE X71Y223 35KB
fAC1 SLICE X54Y160:SLICE X71Y191 34KB
fAC2 SLICE X54Y128:SLICE X71Y159 35KB
fAC3 SLICE X54Y96:SLICE X71Y127 34KB
fAC4 SLICE X54Y64:SLICE X71Y95 36KB
fAC5 SLICE X54Y32:SLICE X71Y63 37KB
fAC6 SLICE X54Y0:SLICE X71Y31 34KB

the maximum height can span an entire column in

the chip. To effectively utilize the PRR capacity, the
resource utilization of the mapped function should
also be considered when choosing the PRR size. For

example, each PRR should have a sufficient number of
LUTs, FFs, and DSP multipliers to implement a DCT-
coefficient computation function in the DCT core.

Number of PRRs (M): The total number of re-

configurable partitions defined at design-time depend
upon number of functions, throughput requirements,
fault-handling capacity to multiple failures, and de-

sired diagnostic latency. Fault-detection and diagnosis
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latency can be improved by utilizing more PEs for the

comparison purposes at runtime.

External Reconfiguration Memory Size: Each PRR
can perform the computation of a function while each

function mapping generates a partial reconfiguration
bitstream. To realize full mapping capability at runtime
so that any function can be mapped to any PE, as

many as N × M number of configurations equivalent
memory is needed. Thus, the compact-flash memory
size requirement increases significantly with both N

and M .

On-chip Reconfiguration Memory Size: For a
tractable number of nodes such as 8, the on-chip

configuration memory size requirement can be fulfilled
with today’s FPGAs. However, the on-chip memory of
FPGAs may not scale well for the increased the

number of PEs. In such a scenario, a bitstream
relocation approach [53] [54] can benefit in saving the
memory requirement. In [53], the authors reported a

50% reduction in number of partial bitstreams in a
software defined radio prototype while a 79.4% saving
of the overall bitstream storage size was achieved
in [54] by exploiting the relocatable modules.

8 Experimental Results

To assess the resilience and power consumption of the
PURE algorithm, case studies were evaluated with

various benchmarks, using either PSNR or Output
Discrepancy as a health metric.

8.1 Case Study-1: Prioritized elements of the DCT
core

To demonstrate the effectiveness of the proposed ap-
proach, first consider the case of H.263 video encoder’s

DCT module. The 8 × 8 DCT is computed by 8 PEs.
Each PE performs the 1D-DCT of a row of input pixels
to produce an output coefficient. For example, PE1

computes the DC-coefficient from 8 pixels in a row of
frame memory. In the current prototype to evaluate
PURE approach, the video encoder application is run

on the on-chip processor. All the sub-blocks except
the DCT block are implemented in software, the later
being implemented in hardware. The image data of

video sequences is written by the processor to the
frame buffer. In order to facilitate 2-D DCT operation,
the frame buffer also serves as transposition memory

and is implemented by Virtex-4 dual port Block-RAM.
Upon completion of the DCT operation, it is read
back from the frame buffer to the PowerPC through

the Xilinx General Purpose Input-Output (GPIO) core.
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Fig. 13 PSNR and bit-rate of the encoder employing PURE

By the pipeline design of the DCT core, the effective

throughput of the DCT core is one pixel per clock.
Internally, the PEs utilize DSP48 blocks available in
Virtex-4 FPGAs. A 100MHz core operation can provide

maximum throughput 100M-pixels per second while in
order to meet the real-time throughput requirement for
176 × 144 resolution video frames at 30 frames per

second, the minimum computational rate should be
760K pixels per second. The PSNR computation time
is much longer than that consumed by PEs processing

data stream in parallel, i.e., 0.25msec per frame. It is
worth mentioning, however, that a failure to meet real-
time deadline in PSNR computation due to a slow speed

processor will only impact the fault-detection/handling
latency rather than the computational throughput of
the concurrently operating PEs-array implemented in

a hardware fabric.

The priority of functions is naturally in descend-

ing order as the DC-coefficient contains most content
information of a natural image. These 8 PEs in the
processing throughput datapath are covered by the

proposed resilience scheme. For this purpose, depending
upon area/power margin available, RSs are created
at design-time or generated at runtime considering

the priority of functions. As shown in Fig. 14, fault-
handling is performed at runtime with a small qual-
ity degradation during diagnosis process. The diag-

nosis time of Algorithm 1 is very short, however,
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(c) Fault-handling using Algorithm 3: PURE

Fig. 14 Operational examples of the three algorithms
indicating reduced PSNR degradation for PURE

this greedy approach incurs quality degradation during
fault-handling process. The quality degradation during

fault-handling process is improved in Algorithm 2 at
the cost of some diagnosis latency. Algorithm 3 provides
the best availability of the system during fault-handling

and the PSNR is maintained above 29.5dB. Fig. 13
shows the PSNR and bit-rate of the video stream from
an operational encoder before, during, and after fault-

handling using the PURE approach.

During diagnosis, PURE can achieve higher use-
ful throughput than alternative approaches due to

escalation of healthy resources to the top priority

functional assignments. Fault-handling results with a

video encoder show that average PSNR in PURE’s case
is only 3.09dB below that of a fault-free encoder, com-
pared to a divide-and-conquer approach which incurs

average PSNR loss of 5.12dB during the fault diagnosis
phase. This metric provides a useful indication of
quality during refurbishment. The PURE approach

maintains throughput by retaining viable modules in
the datapath while divide-and-conquer does not take
them into account. Moreover, latency of diagnosis phase

can be reduced by employing multiple dynamic slacks.
For instance, a 90% of diagnosable conditions can be
identified in a single reconfiguration usingNs = 3 slacks

while Ns = 1 slack identifies only 50% diagnosable
conditions. A 90% CPDC is achieved in more than
3 testing arrangement instances when using a single

slack. Compared to a static topology scheme where PEs
arrangement is fixed at design-time, diagnosability can
be increased from a single defective node to six defective
nodes using as few as r = 4 reconfigurations and Ns = 2

slacks. In general, the diagnosability at the completion
of PURE’s algorithm is N − 2 after every possible pair
combination is evaluated since at least one healthy pair

is necessary to eliminate suspect status.

8.2 Case Study-2: Fault Resilience of a Multi-PE
Design

Next, to evaluate the PURE approach to applications
which do not possess a PSNR-like health metric, we
consider AES [55] in the context of the proposed fault-

diagnosis methodology using a verilog core [56]. For this
purpose, the encryption module of 128-bit AES is syn-
thesized and implemented in Xilinx Integrated Software

Environment (ISE) 13.4 development environment for
Virtex-7 xc7v2000t device. Stuck-At faults are injected
in the simulation model of circuit generated by the

Xilinx Xtool flow. We utilized our previously developed
Fault Injection and Analysis Toolkit (FIAT) [57] which
invokes various commands of the Xilinx flow to study

fault behavior. Then, the circuit is evaluated using test
inputs. The test outputs, corresponding actual fault-
free outputs, and the outcome in terms of actual AES

functionality are listed in Table 8. For the given case of
8 inputs, a total of 4 outputs being faulty are observed.

To analyze the latency, area, and power consump-

tion of the fault-resilient architecture of the AES
module, we used Xilinx ISE 9.2i for synthesis and imple-
mentation flow. The utilization summary for the design

implemented on a xc4vfx60-12ff1136 device is listed
in Table 9. For the synthesized design, minimum clock
period is 1.821ns (Maximum Frequency 549.058MHz).

The size of each partial reconfiguration bitstream file
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Table 8 Fault impact in 128 AES Computational FE

Actual Output True Output Test Outcome

66e94bd4ef0a2c3b884cfa59ca342b2e 66e94bd4ef8a2c3b884cfa59ca342b2e incorrect

3ad78e726c1ec02b7ebfe92b23d9ec34 3ad78e726c1ec02b7ebfe92b23d9ec34 correct

45bc707d2968204d88dfba2f0b0cad9b 45bc707d29e8204d88dfba2f0b0cad9b incorrect

161556838018f52805cdbd6202002e3f 161556838018f52805cdbd6202002e3f correct

f5569b3ab626d11efde1bf0a64c6854a f5569b3ab6a6d11efde1bf0a64c6854a incorrect

64e82b50e501fbd7dd4116921159b83e 64e82b50e501fbd7dd4116921159b83e correct

baac12fb613a7de11450375c74034041 baac12fb613a7de11450375c74034041 correct

bcf176a7ea2d8085ebacea362462a281 bcf176a7eaad8085ebacea362462a281 incorrect

Table 9 Utilization summary of the AES design

Utilization
Logic Resource Reconfigurable Capacity

PE PE of a PRR
Number of Slices 416 1021 1024

Number of Slice Flip Flops 625 1778 4096
Number of 4 input LUTs 726 1236 4096

Number of FIFO16/RAMB16s 16 16 16

PE1

PE2 PE8

PowerPC 

Processor

Bus 

Macros

FIFO/RAM

DSP48

Fig. 15 Floorplan of the AES core for Virtex-4 chip

is 112.8KB. Fig. 15 shows the floorplan of AES core.
This allows the PURE approach to occupy only 1

N area

overhead for N PEs.

8.3 Energy Duty Cycle

Time-Dependent Dielectric Breakdown (TDDB) and

Electromigration (EM) are two significant causes of
permanent faults over the device lifetime [58]. To
quantify the survivability of the system employing

the PURE fault-handing flow, the fault detection,
diagnosis, and recovery times are considered here. The
availability is generally defined in terms of Mean-

Time-To-Failure (MTTF) and Mean-Time-To-Repair
(MTTR). The impact of radiation and aging-induced
degradation on reliability of FPGA-based circuits has

been analyzed by authors in [58], [59], [60].

In this analysis, we use the TDDB failure rate of

10% LUT per year and EM failure rate of 0.2% per
year as demonstrated in [58] for MCNC benchmark
circuits simulating their 12-year behavior. Considering

a DCT core, 312 utilized LUTs in a PE spanning
one Partial Reconfiguration Region (PRR) exhibiting
a 10.2% failure rate means 32 LUTs fail per year. If the

failure rate is uniformly distributed over time, then a
worst case scenario would correspond to a MTTF of 11
days between LUT failures.

The MTTR is the sum of times required for fault
detection, diagnosis, and recovery. To assess the fault

detection latency, faults are injected into the DCT
module at frame number 50 of the news.qcif video
sequence [61]. As a result, the PSNR drops at frame

number 59. Thus, the fault detection time is 0.3 seconds
for a 30fps frame rate. For a system of N = 8 PEs, the
latency of fault-diagnosis can be computed by using

eq. 6. Using one slack, the maximum cost is 196 frames
or 6.5 second for a frame rate of 30 fps. Given the
diagnosis data, the time to identify faulty nodes is

negligible as the on-chip processor operating at 100
MHz clock rate can mark faulty nodes in very short time
once the syndrome matrix is computed. Similarly, time

required for 8 reconfigurations during fault recovery is
1.6 seconds. Thus, total time to refurbishment for this
particular example is 8.4 seconds. With these values of

MTTF and MTTR, the PURE’s availability is 99.999%.
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Moreover, significant throughput is maintained during

fault-diagnosis phase as evident by the minimum values
of PSNR in Fig. 14. Thus, the impact on signal quality
even during the period of unavailability is minimal.

Next, we analyze the dynamic power duty cycle of
the proposed scheme. An instance of the simple DCT
module consumes 72mW dynamic power. However,

after adding the fault-resilience overhead, the consumed
dynamic power is 142mW. On the other hand, a TMR
arrangement would consume about 216mW dynamic

power in addition to the voter, during the 12-year
mission-lifetime. By tackling aging-induced degradation
failures in FPGAs, the availability is improved from

6.027% for TMR to 99.999% for PURE given pes-
simistic device failure rates. This average availability
measure for TMR is based upon failure of two TMR

paths without recovery, as a system failure may occur
in the worst case upon incidence of the second fault.
Since conventional TMR provides no repair mechanism,

in the worst case the system becomes unavailable
upon occurrence of a second failure, as the correct
functioning datapath cannot be discerned by majority
voting. Furthermore, the PURE arrangement consumes

only 33% of TMR configuration power for 99.999% of
the mission-period. Meanwhile, it consumes 65.7% of
TMR arrangement for only 0.001% mission. A second

case study with an AES encryption core implemented
on a Xilinx Virtex-4 FPGA indicates detection and
recovery of repeated stuck-at faults using diagnosis-by-

comparison at the module-level while requiring only 1
N

area overhead for N PEs when Ns = 1 slack is used.

9 Conclusions

PURE provides an adaptive dynamic reconfiguration
approach to achieve survivability. Dynamic reconfigu-
ration of redundancy permits autonomous operation

while maintaining a defined quality measure within
area-resource, power, and energy constraints. PURE
achieves these objectives at reduced area and power

overheads compared to static redundancy schemes by
adapting a uniplex instance of the datapath when
aberrant behavior occurs. A uniplex configuration is

shown to be sufficient for applications such as DCT
when a signal-to-noise metric such as PSNR is available.
Yet without loss of generality, PURE is suitable for any

application which possesses a definitive condition iden-
tifying anomalous behavior such as output discrepancy
using diagnosis-by-comparison.

Compared to a divide-and-conquer approach which
incurs peak PSNR loss of 6.67dB during the fault
diagnosis phase, PURE performance of a video encoder

achieves peak PSNR degradation of only 4.02dB, when

subjected to identical video inputs and failure condi-

tions. By tackling aging-induced degradation failures in
FPGAs, the availability is improved to 99.999% even for
pessimistic device failure rates. Future work is to extend

the Resource Escalation approach to accommodate
inter/intra-die process variation and voltage scaling,
which can adaptively achieve reliable computation at

low power consumption.
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