

1

Delay-Insensitive Gate-Level Pipelining

S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson

Keywords: Asynchronous logic design, self-timed circuits, dual-rail encoding, pipelining,

NULL Convention Logic (NCL).

Abstract

 Gate-Level Pipelining (GLP) techniques are developed to design throughput-optimal

delay-insensitive digital systems using NULL Convention Logic (NCL). Pipelined NCL systems

consist of Combinational, Registration, and Completion circuits implemented using threshold

gates equipped with hysteresis behavior. NCL Combinational circuits provide the desired

processing behavior between Asynchronous Registers that regulate wavefront propagation. NCL

Completion logic detects completed DATA or NULL output sets from each register stage. GLP

techniques cascade registration and completion elements to systematically partition a

combinational circuit and allow controlled overlapping of input wavefronts. Both full-word and

bit-wise completion strategies are applied progressively to select the optimal size grouping of

operand and output data bits. To illustrate the methodology, GLP is applied to a case study of a

4-bit by 4-bit unsigned multiplier, yielding a speedup of 2.25 over the non-pipelined version,

while maintaining delay-insensitivity.

1.0 Introduction

 Even though delay-insensitive design methodologies do not utilize clocked control

signals, they are still amenable to significant throughput increases by the pipelining of

wavefronts. The objective of this paper is to develop and illustrate a pipelining methodology for

maximizing throughput of delay-insensitive systems at the gate level. The delay-insensitive

methodology used is NULL Convention Logic (NCL) [1].

2

1.1 Background

Pipelining facilitates temporal parallelism by partitioning a process into stages such that

each stage operates simultaneously on different wavefronts of input operands. If a process that

requires N time units can be partitioned into S identical stages then a steady-state throughput not

to exceed S/N results per time unit may be realized. In practice numerous constraints, such as

registration overhead between computational stages, limit the actual speedup achievable by

pipelining. For instance, throughput limitations may be encountered as clocked Boolean circuits

are partitioned to increasingly finer granularities. In particular, the clock period used to advance

data between stages becomes increasingly dominated by the required design margins, including

accommodations for clock skew. Clearly, asynchronous design methodologies need not provide

design margins to accommodate clock skew. Nonetheless, they do possess their own constraints

governing speedup by pipelining and can benefit substantially from optimized pipeline design

strategies.

One approach to pipelining asynchronous circuits was described in Ivan Sutherland�s

work on micropipelines [2]. This method employs two-phase handshaking supporting

transmission of bundled data. Figure 1 shows a two-phase handshaking protocol. Two control

wires, labeled request and acknowledge, are used to support an arbitrary number of data wires. In

two-phase handshaking, both the rising and falling edges of the request and acknowledge signals

are indicative of circuit behavior. A cycle begins with the sender setting the data lines and

generating a request event by toggling the request line. When the request is received, the data is

latched and the receiver generates an acknowledge event by toggling the acknowledge line. The

cycle terminates when the sender receives the acknowledge signal, at which time the data lines

may be set for the next cycle. The use of bundled data refers to the fact that the data lines and

3

request signal are treated as a bundle. Data bundling implies that the data transmission delay

cannot exceed the delay to transmit the request. Otherwise, the request event might reach the

receiver prior to valid data, causing invalid data to be latched. Subsequent work on

micropipelines [3, 4, 5] suggests that performance may be increased by using four-phase

handshaking protocols. Four-phase handshaking also requires two control wires, request and

acknowledge, along with an arbitrary number of data wires. But, in four-phase handshaking only

one edge, either the rising or falling edge of the request and acknowledge signals, is active. The

four-phase handshaking protocol is shown in Figure 2, using the rising edge as active. A cycle

begins with the sender placing data on the bus and generating a request event by asserting the

request line. When the request is received, the data is latched and the receiver generates an

acknowledge event by asserting the acknowledge line. When the sender receives the

acknowledge signal, the request signal is de-asserted and the data lines may be set for the next

cycle. The cycle concludes with the acknowledge line being de-asserted, as precipitated by the

de-assertion of the request line. Micropipelining techniques such as these are evident in several

processors that have been designed and implemented using bundled data methods [6, 7].

Another approach to pipelining asynchronous circuits is through the use of wave

pipelining. Hauck and Huss [8] describe a technique that allows multiple data wavefronts to

simultaneously propagate between two asynchronous registers by partitioning each

combinational logic block with dynamic latches, controlled only by the request line.

Synchronous wave pipelining and asynchronous micropipelining methods can be combined

using these techniques. However, a potential limitation of eliminating the acknowledge signal is

that delay-insensitive behavior may be compromised, thus making the protocol inelastic. Further

4

work by Park and Chung [9] presents a modification to this approach in which both the number

of latches and the number of delay elements can be reduced, resulting in higher throughput.

A third asynchronous pipelining approach uses delay-insensitive multi-ring structures

[10]. This method employs a four-phase handshaking protocol using dual-rail signals for data

representation and Delay-Insensitive Minterm Synthesis (DIMS) [11] for each functional block.

It also presents a formal method for analyzing the performance of these multi-ring structures,

based on signal transition graphs. Nonetheless, formal methods to design throughput-optimal

multi-ring structures are not directly feasible due to underlying difficulties in partitioning of

DIMS expressions.

In [12] Kim and Beerel present an optimal branch and bound algorithm to partition

asynchronous circuits composed of precharge-logic blocks [13, 14] designed at the transistor

level. The algorithm uses a labeled directed graph to represent the model being pipelined.

However, this method is not directly amenable to pipelining NCL circuits due to the differences

in the fundamental components. In Section 2.5, delay-insensitive design strategies based on NCL

will be shown to be directly amenable to partitioning and will be compared to the alternative

approaches described above, in Section 2.6.

1.2 Paper Outline

 This paper is organized into five sections. An overview of NCL is given in Section 2. In

Section 3, the GLP methodology is developed. This method is demonstrated in Section 4 by

applying GLP to design an optimal 4-bit by 4-bit unsigned multiplier whose throughput is

increased by 125% over the non-pipelined version. Section 5 provides conclusions and outlines

directions for future work.

5

2.0 Overview of NCL

NULL Convention Logic (NCL) provides an asynchronous design methodology

employing dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion Groups

(MEAGs) to incorporate data and control information into one mixed path. In NCL, the control

is inherently present with each datum, so there is no need for worse-case delay analysis and

control path delay matching. NCL follows the so-called �weak conditions� of Seitz�s delay-

insensitive signaling scheme [15]. As with other delay-insensitive logic methods discussed

herein, the NCL paradigm assumes that forks in wires are isochronic [16, 17]. The origins of

various aspects of the paradigm, including the NULL (or spacer) logic state from which NCL

derives its name, can be traced back to Muller�s work on speed-independent circuits in the 1950s

and 1960s [18]. Earlier work by Seitz presents an extensive discussion of self-timed logic,

illustrating its advantages over traditional clocked logic, and includes one approach to designing

such circuits [15]. Some other methods of designing delay-insensitive circuits are detailed in

[19, 20, and 21]. These techniques concentrate on developing circuits from a standardized set of

gates, while other techniques [22, 23] emphasize formal logic methods that directly yield designs

at the transistor-level.

 Various design aspects of NCL were patented by Karl Fant and Scott Brandt in April of

1994 [24]. Acknowledging that clocked circuits unnecessarily restricted execution flow,

consumed power proportional to the operating frequency, occupied significant device area for

the clock tree, and greatly complicated the design process, they sought a clockless design

approach. But eliminating clocks as in traditional asynchronous design presented race conditions

and made timing optimizations like pipelining difficult. By eliminating clocks but retaining

6

control information in the datapath, NCL aims at designing VLSI devices with greater ease, with

a reduced power budget, lower electromagnetic interference effects, and reduced noise margins.

2.1 Delay-Insensitivity

NCL uses symbolic completeness of expression [1] to achieve delay-insensitive behavior.

A symbolically complete expression is defined as an expression that only depends on the

relationships of the symbols present in the expression without a reference to the time of

evaluation. Traditional Boolean logic is not symbolically complete; the output of a Boolean gate

is only valid when referenced with time. For example, assume it takes 1 ns for output Z of an

AND gate to become valid once its inputs X and Y have arrived. As shown in Figure 3, suppose

X = 1, Y = 0, and Z = 0, initially. If Y changes to 1, Z will change to 1 after 1 ns; so Z is not valid

from the time Y changes until 1 ns later. Therefore output Z not only depends on the inputs X and

Y, but time must also be referenced in order to determine the validity of Z. This can be critical

when Z is used as an input to another circuit.

In particular, dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion

Groups (MEAGs) can be used to incorporate data and control information into one mixed signal

path to eliminate time reference [25]. A dual-rail signal, D, consists of two wires, D0 and D1,

which may assume any value from the set {DATA0, DATA1, NULL}. The DATA0 state

(D0 = 1, D1 = 0) corresponds to a Boolean logic 0, the DATA1 state (D0 = 0, D1 = 1) corresponds

to a Boolean logic 1, and the NULL state (D0 = 0, D1 = 0) corresponds to the empty set meaning

that the value of D is not yet available. The two rails are mutually exclusive, so that both rails

can never be asserted simultaneously; this state is defined as an illegal state. A quad-rail signal,

Q, consists of four wires, Q0, Q1, Q2, and Q3, which may assume any value from the set

{DATA0, DATA1, DATA2, DATA3, NULL}. The DATA0 state (Q0 = 1, Q1 = 0, Q2 = 0,

7

Q3 = 0) corresponds to two Boolean logic signals, X and Y, where X = 0 and Y = 0. The DATA1

state (Q0 = 0, Q1 = 1, Q2 = 0, Q3 = 0) corresponds to X = 0 and Y = 1. The DATA2 state (Q0 = 0,

Q1 = 0, Q2 = 1, Q3 = 0) corresponds to X = 1 and Y = 0. The DATA3 state (Q0 = 0, Q1 = 0,

Q2 = 0, Q3 = 1) corresponds to X = 1 and Y = 1, and the NULL state (Q0 = 0, Q1 = 0, Q2 = 0,

Q3 = 0) corresponds to the empty set meaning that the result is not yet available. The four rails of

a quad-rail NCL signal are mutually exclusive, so no two rails can ever be asserted

simultaneously; these states are defined as illegal states. Both dual-rail and quad-rail signals are

space optimal delay-insensitive codes, requiring two wires per bit. Other higher order MEAGs

are not wire count optimal, however they can be more power efficient due to the decreased

number of transitions per cycle.

 Consider the behavior of a symbolically complete AND function using NCL as shown in

Figure 4. Assume it takes 1 ns for output Z of a NCL AND function to become valid once its

inputs X and Y have arrived. Also, initially suppose X is DATA1, Y is DATA0, and Z is DATA0.

Before the next set of inputs can be applied, all inputs must first transition to NULL, which causes

the output to transition to NULL, 1 ns later. Once the output has transitioned to NULL, the next

input set can be applied. If the next input set consists of X = DATA1 and Y = DATA1, Z will

become DATA1 after 1 ns, signaled by Z transitioning from NULL to DATA. Output Z will

remain DATA1 until both inputs, X and Y, transition to NULL, due to the hysteresis behavior

inherent in each threshold gate. Time is never referenced to determine the validity of Z. The 1 ns

delay is an arbitrary gate transition delay and does not affect the validity of Z.

2.2 Logic Gates

 NCL gates are a special case of the logical operators or gates available in digital VLSI

circuit design [26]. Such an operator consists of a set condition and a reset condition that the

8

environment must ensure are not both satisfied at the same time. If neither condition is satisfied

then the operator maintains its current state. NCL uses threshold gates with hysteresis [27] for its

composable logic elements. One type of threshold gate is the THmn gate, where 1 ≤ m ≤ n, as

depicted in Figure 5. A THmn gate corresponds to an operator with at least m signals asserted as

its set condition and all signals de-asserted as its reset condition. THmn gates have n inputs. At

least m of the n inputs must be asserted before the output will become asserted. Because

threshold gates are designed with hysteresis, all asserted inputs must be de-asserted before the

output will be de-asserted. Hysteresis is used to provide a means for monotonic transitions and a

complete transition of multi-rail inputs back to a NULL state before asserting the output

associated with the next wavefront of input data. In a THmn gate, each of the n inputs is

connected to the rounded portion of the gate. The output emanates from the pointed end of the

gate. The gate�s threshold value, m, is written inside of the gate. [27] details various design

implementations (static, semi-static, and dynamic) of THmn gates.

 By employing threshold gates for each logic rail, NCL is able to determine the output

status without referencing time. Inputs are partitioned into two separate wavefronts, the NULL

wavefront and the DATA wavefront. The NULL wavefront consists of all inputs to a circuit

being NULL, while the DATA wavefront refers to all inputs being DATA, some combination of

DATA0 and DATA1. Initially all circuit elements are reset to the NULL state. First, a DATA

wavefront is presented to the circuit. Once all of the outputs of the circuit transition to DATA,

the NULL wavefront is presented to the circuit. Once all of the outputs of the circuit transition to

NULL, the next DATA wavefront is presented to the circuit. This DATA/NULL cycle continues

repeatedly. As soon as all outputs of the circuit are DATA, the circuit�s result is valid. The

NULL wavefront then transitions all of these DATA outputs back to NULL. When they

9

transition back to DATA again, the next output is available. This period is referred to as the

DATA-to-DATA cycle time, denoted as TDD and has an analogous role to the clock period in a

synchronous system.

2.3 Completeness of Input

 The input-completeness criterion [1], which NCL circuits must maintain in order to be

delay-insensitive, requires that:

1. the outputs of a circuit may not transition from NULL to DATA until all inputs have

transitioned from NULL to DATA, and

2. the outputs of a circuit may not transition from DATA to NULL until all inputs have

transitioned from DATA to NULL.

In circuits with multiple outputs, it is acceptable for some of the outputs to transition

without having a complete input set present, as long as all outputs cannot transition before all

inputs arrive. This signaling scheme is equivalent to the �weak conditions� of delay-insensitive

signaling defined by Seitz [15]. Consider the incomplete NCL AND function shown in Figure 6.

The output can change from NULL to DATA0 without both inputs first transitioning to DATA.

For instance, if A = DATA0 and B = NULL then C = DATA0, which breaks the completeness of

input criterion. Figure 7 shows a complete NCL AND function since the output cannot transition

until both inputs have transitioned.

2.4 Observability

There is one more condition that must be met in order for NCL to retain delay-

insensitivity. No orphans may propagate through a gate. An orphan is defined as a wire that

transitions during the current DATA wavefront, but is not used in the determination of the

10

output. Orphans are caused by wire forks and can be neglected through the isochronic fork

assumption, as long as they are not allowed to cross a gate boundary. This observability

condition ensures that every gate transition is observable at the output. Consider an incorrect

version of an XOR function shown in Figure 8, where an orphan is allowed to pass through the

TH12 gate. For instance, when X = DATA0 and Y = DATA0, the TH12 gate is asserted, but does

not take part in the determination of the output, Z = DATA0. This orphan path is shown in

boldface in Figure 8. A correct, fully observable version of the XOR function is given in

Figure 9, where no orphans propagate through any gate. An orphan checker tool, as a Synopsys

shell, is run on each design to ensure observability.

2.5 Pipelining in NCL

As shown in Figure 10, pipelined NCL systems consist of cascaded arrangements of three

main functional blocks, Registration, Completion, and Combinational circuits [1]. The NCL

Register controls the DATA/NULL wavefronts. NCL Completion detects complete DATA and

NULL sets, where all outputs are DATA or all outputs or NULL, respectively, at the output of

every register stage. NCL Combinational circuits provide the desired input/output processing

behavior, as detailed in [28].

The design of the NCL registration stage is discussed first. The single-bit dual-rail NCL

register [1], shown in Figure 11, controls the DATA/NULL wavefronts through its request in and

request out lines, Ki and Ko, respectively. When either Ki or Ko is asserted it is requesting DATA,

denoted rfd; and when either Ki or Ko is de-asserted it is requesting NULL, denoted rfn. Assume

the register output is initially NULL and Ki is initially rfn. Due to the NULL output, Ko will

initially be rfd. A DATA value at the input will not be able to pass to the output of the register

until Ki becomes rfd. Once Ki is rfd, the DATA value at the input passes through the register to

11

the output and causes Ko to become rfn. Likewise, a NULL value at the input will not be able to

pass to the output of the register until Ki becomes rfn, due to the hysteresis functionality of the

TH22 gates. Once Ki is rfn, the NULL value at the input passes through the register to the output

and causes Ko to once again become rfd. The actual register includes reset circuitry not shown in

Figure 11, to reset the output to DATA0, DATA1, or NULL. Single-bit NCL registers can then

be connected as shown in Figure 12 to form a pipeline. This design is representative of a First-In

First-Out (FIFO) buffer.

The previous example only considered single-bit NCL registers. Now consider an N-bit

register stage, comprised of N single-bit NCL registers. Clearly, there will now be N completion

signals required, one for each bit. The NCL Completion component, shown in Figure 13, uses

these N Ko lines to detect complete DATA and NULL sets at the output of every register stage

and request the next NULL and DATA sets, respectively. The single-bit output of the completion

component is connected to all Ki lines of the previous register stage. Since the maximum input

threshold gate currently supported is the TH44 gate, the number of logic levels in the completion

component for an N-bit register is given by Log4 N.

All NCL systems have at least two register stages, one at both the input and output. These

two register stages interact through their Ki and Ko lines to prevent DATA seti from overwriting

DATA seti-1 by ensuring that the two DATA sets are always separated by a NULL set. Even

though these systems are self-timed, it is possible to take advantage of pipelining techniques

when interconnecting NCL registration, completion, and combinational circuits.

2.6 Relation of NCL to Previous Work

For Sutherland�s micropipelines using either two-phase or four-phase handshaking, the

determination of the maximum throughput design for a given combinational circuit is

12

straightforward. Since micropipelines assume bundled data and therefore employ single-rail

signals, there is no completeness of input criterion that must be met when partitioning a circuit,

therefore further partitioning cannot invalidate a design. Furthermore, delay is added in the

control path such that completion detection is unnecessary, therefore further partitioning cannot

decrease throughput. Thus, the design that will yield the maximum throughput is the one

containing only one gate delay per stage. Since micropipelines necessitate the addition of delay

in the control path, they exhibit worse-case performance verses the average-case performance of

NCL systems and are layout and process dependent unlike NCL systems. Micropipelines also

assume bundled data such that synchronicity is required while NCL systems require no

synchronization so that inputs may arrive at any time and in any order, therefore NCL systems

are potentially more independent than micropipelines.

Since the maximum throughput rate for asynchronous wave pipelines is determined by

the difference between the longest and shortest path through the combinational logic, there is

even more timing analysis required than for micropipelines. In asynchronous wave pipelines

throughput will be maximized by designing the shortest and longest path to be nearly equal,

therefore extensive timing analysis is required. Asynchronous wave pipelines are therefore very

susceptible to process dependencies and environmental variations, unlike NCL. These

fundamental differences between NCL and both micropipelines and asynchronous wave

pipelines place NCL in a different class than either and would make direct comparisons difficult.

NCL circuits are in the same class as other delay-insensitive approaches [15, 19, 20, and

21], which were compared to NCL in [28]. The functionality of NCL circuits is the same as those

designed using the approaches presented in [15, 19, 20, and 21]. Thus, the NCL combinational

circuit, as part of the NCL gate-level pipelining framework, could be replaced with an equivalent

13

circuit designed using [15, 19, 20, or 21], and the resulting single-stage system would function

correctly. This is exactly what delay-insensitive multi-ring structures are. Their framework is

equivalent to that of NCL, except for the combinational circuits, which use the approach

described in [11]. But, since all of the basic gates used in the other delay-insensitive approaches,

including delay-insensitive multi-ring structures, do not include hysteresis, their combinational

designs cannot be partitioned, as can NCL combinational circuits. Thus, a given combinational

circuit designed using [15, 19, 20, or 21] can either be used as a non-pipelined design, or if

increased throughput is desired, each stage of the pipeline must be separately redesigned.

Therefore a method that iteratively divides a combinational circuit of a delay-insensitive multi-

ring structure to increase throughput cannot do so easily, as does the method presented herein for

NCL; since after each iteration all combinational blocks that were divided would have to be

redesigned to include input-completeness necessary for delay-insensitivity.

3.0 Methodology Definition

 In [28] it was shown how to design an optimal NCL combinational circuit. So, starting

with an N-level NCL combinational logic design, the design process for optimizing throughput

begins, as depicted in Figure 14. Other criteria such as maximum latency and maximum area

may also be considered during throughput optimization. Several alternate designs are generated

which are then assessed against the optimization criteria, allowing the preferred design to be

selected for implementation.

 It is assumed that if a maximum latency bound is specified then it is at least one stage,

and that if a maximum area bound is specified then it is at least as large as the non-pipelined

design, otherwise the non-pipelined design will be output. If no maximum latency or maximum

area requirements are specified, then both are assumed to be infinity such that they are not

14

considered in determining the optimal design. If more than one design has the same throughput,

the one with the least latency will be chosen. If multiple designs have the same throughput and

latency, the one with the least area will be chosen.

The original combinational circuit with no pipelining will always be input complete since

[28] only yields input complete designs. Thus, starting with the combinational logic design and

adding registration along with corresponding completion logic at the input and output will yield

an initial 1-stage design. Partitioning this initial design, first into 2 stages, then further into as

many as N stages may or may not produce better designs. First, completeness of input must be

ensured at the output of each stage, as discussed in Section 2.3, otherwise the design will not be

delay-insensitive and therefore invalid. After input completeness is ensured, the throughput for

the current design must be calculated and compared to the throughput of the best design. If the

current design�s throughput is greater than that of the best design, it is designated as the best

design, otherwise bit-wise completion is applied to the current design and the throughput is

reevaluated. If the throughput of the current design using bit-wise completion is still not greater

than that of the best design, the best design does not change since the current design doesn�t

increase throughput and has longer latency, otherwise the current design using bit-wise

completion becomes the best design. As mentioned in Section 2.5 the completion delay is

proportional to Log4 N. Thus, if partitioning causes registers of significantly larger width to be

required then the decrease in the combinational delay per stage will be offset by the increase in

the completion delay such that the throughput of the system may not necessarily increase, as

discussed in Section 3.1. If after traversing the loop of Figure 14 (i=0), which generates each

subsequent pipelined design, or if the maximum latency or area requirements have been

exceeded, then if the best design utilizes full-word completion, bit-wise completion is applied to

15

this design to possibly further increase throughput. If throughput is not increased the design with

the least area is chosen since both designs will have the same throughput and latency. This is

because application of bit-wise completion won�t decrease throughput, as explained in

Section 3.2, and doesn�t impact the number of stages. The output of this flowchart will be the

optimal design (best_design) that produces the maximum throughput

(max_throughput), and does not exceed the maximum latency or maximum area

requirements, if any were given.

3.1 Throughput Derivation

Quarter-cycle timing is used to determine the worst-case achievable throughput of a

pipelined NCL system. The name is derived from the fact that the analysis requires each NCL

cycle to be broken into its four sub-cycles. The NCL cycle is comprised of the DATA and NULL

propagation through the combinational circuitry, as well as the generation of the request for

DATA and request for NULL from the completion circuitry. The four sub-cycles that are

contained in the NCL cycle are shown in Figure 15. D denotes the interval when any DATA bits

are propagating through the combinational circuit, N denotes the interval when any NULL bits

are propagating through the combinational circuit, RFD is the request for DATA generation, and

RFN is the request for NULL generation. Assuming Ko = rfd, the cycle starts with DATA

propagation and the sequence of the four sub-cycles is as follows: D, RFN, N, and RFD. The

propagation delays associated with this sequence are labeled as follows: TD, TRFN, TN, and

TRFD, respectively. TD and TN are defined to be the delay experienced by the slowest bit

through their respective sub-cycles. For this paper TD, TRFN, TN, and TRFD are calculated in

terms of gate delays, making the predicted throughput an estimate since different gates do have

16

slightly different delays. When this methodology is automated the actual delay of each gate will

be used to calculate the predicted throughput.

 The NCL cycle is bounded by the current registration stage, denoted as i, and the

previous registration stage, denoted by i-1, as depicted in Figure 16. The calculation resulting in

the maximum cycle time forms a lower bound on the throughput of the ith and i-1th registration

pair. This process of bounding the throughput for registration pairs is repeated for all adjacent

registration pairs in a pipelined configuration. The maximum value calculated over all adjacent

registration pairs determines a lower bound on steady-state throughput for the entire design.

3.1.1 Idealized Completion Circuitry

Consider the idealized case where TRFN and TRFD are assumed to be zero. The discrete

timing chart in Table I identifies the interaction of stagei and stagei-1 under these idealized

conditions. For the initial state, the analysis begins with stagei and stagei-1 both reset to NULL.

At wavefront #1, DATA propagates through the combinational circuitry of stagei-1, while stagei

remains idle. At wavefront #2, NULL propagates through the combinational circuitry of stagei-1,

while DATA propagates through the combinational circuitry of stagei. At wavefront #3, DATA

propagates through the combinational circuitry of stagei-1, while NULL propagates through the

combinational circuitry of stagei. This pattern of NULL propagating through stagei-1, while

DATA propagates through stagei, followed by DATA propagating through stagei-1, while NULL

propagates through stagei, repeats continuously and forms the simplified NCL cycle, shown in

boldface in Table I.

 Using the above terminology, the worst-case DATA-to-DATA cycle time for stagei

using idealized completion is:

TDDi
idealized = MAX (TNi-1, TDi) + MAX (TDi-1, TNi) (eq. 3.1).

17

Interpreting Equation 3.1 as a set of exclusive events implies exactly one of the following

relationships:

 either TDDi
idealized = TNi-1 + TDi-1 (eq. 3.2), or

 TDDi
idealized = TNi-1 + TNi (eq. 3.3), or

 TDDi
idealized = TDi + TDi-1 (eq. 3.4), or

 TDDi
idealized = TDi + TNi (eq. 3.5).

Notice that Equations 3.2 and 3.5 are equivalent except for their stage index. Under the proposed

method of evaluating each stage pair in increasing order to determine the global maximum value,

Equation 3.2 would therefore have been evaluated in the previous registration pair calculations,

so it does not need to be reevaluated in the current registration pair calculations. This is true for

every registration pair except the first pair, stage 1 and stage 2. For the first registration pair,

Equation 3.2 does need to be considered since there is no previous registration pair that

incorporates this calculation.

Equation 3.3 considers the case of adjacent NULL propagation delays. Equation 3.4

considers the case of adjacent DATA propagation delays. Equation 3.5 considers the case of

NULL and DATA propagation delays for a single registration stage. The pseudocode listed in

Algorithm 3.1 calculates the worst-case throughput for an idealized N-stage NCL pipeline.

 max_cycle_time = TD1 + TN1
 for (i = 2 to N) loop
 temp_cycle_time = MAX(TNi-1 + TNi, TDi-1 + TDi, TDi + TNi)
 if (temp_cycle_time > max_cycle_time) then
 max_cycle_time = temp_cycle_time
 end if
 end loop
 worst_case_throughput = 1 / max_cycle_time

Algorithm 3.1: Calculation of worst-case throughput for an idealized N-stage NCL pipeline.

18

Evaluation of the above loop is followed by taking the reciprocal of the maximum adjacent stage

pair delay to obtain a lower bound on the pipeline�s throughput.

3.1.2 Non-Zero Delay Completion Circuitry

 Now the general case will be examined, where TRFN and TRFD are not zero. The

discrete timing chart in Table II shows the interaction of stagei and stagei-1. For the initial state,

assume stagei and stagei-1 are both reset to NULL, so both stages will initially be requesting

DATA. At wavefront #1, DATA propagates through the combinational circuitry of stagei-1,

while stagei remains idle. At wavefront #2, DATA propagates through the combinational

circuitry of stagei, while stagei-1 requests NULL. At wavefront #3, NULL propagates through the

combinational circuitry of stagei-1, while stagei requests NULL. At wavefront #4, NULL

propagates through the combinational circuitry of stagei, while stagei-1 requests DATA. At

wavefront #5, DATA propagates through the combinational circuitry of stagei-1, while stagei

requests DATA. This pattern, from wavefront #2 to wavefront #5, repeats continuously and

forms the generalized NCL cycle, shown in boldface in Table II.

 The worst-case cycle time for the generalized case of stagei is then given by:

TDDi
 = MAX (TDi, TRFNi-1) + MAX (TNi-1, TRFNi) +

 MAX (TNi, TRFDi-1) + MAX (TDi-1, TRFDi) (eq. 3.6).

Interpreting Equation 3.6 as a set of exclusive events implies exactly one of the following

relationships:

 either TDDi
 = TDi + TNi-1 + TNi + TDi-1 (eq. 3.7), or

 TDDi
 = TDi + TNi-1 + TNi + TRFDi (eq. 3.8), or

 TDDi
 = TDi + TNi-1 + TRFDi-1 + TDi-1 (eq. 3.9), or

 TDDi
 = TDi + TNi-1 + TRFDi-1 + TRFDi (eq. 3.10), or

19

 TDDi
 = TDi + TRFNi + TNi + TDi-1 (eq. 3.11), or

 TDDi
 = TDi + TRFNi + TNi + TRFDi (eq. 3.12), or

 TDDi
 = TDi + TRFNi + TRFDi-1 + TDi-1 (eq. 3.13), or

 TDDi
 = TDi + TRFNi + TRFDi-1 + TRFDi (eq. 3.14), or

 TDDi
 = TRFNi-1 + TNi-1 + TNi + TDi-1 (eq. 3.15), or

 TDDi
 = TRFNi-1 + TNi-1 + TNi + TRFDi (eq. 3.16), or

 TDDi
 = TRFNi-1 + TNi-1 + TRFDi-1 + TDi-1 (eq. 3.17), or

 TDDi
 = TRFNi-1 + TNi-1 + TRFDi-1 + TRFDi (eq. 3.18), or

 TDDi
 = TRFNi-1 + TRFNi + TNi + TDi-1 (eq. 3.19), or

 TDDi
 = TRFNi-1 + TRFNi + TNi + TRFDi (eq. 3.20), or

 TDDi
 = TRFNi-1 + TRFNi + TRFDi-1 + TDi-1 (eq. 3.21), or

 TDDi
 = TRFNi-1 + TRFNi + TRFDi-1 + TRFDi (eq. 3.22).

Observe that Equations 3.17 and 3.12 are equivalent except for their stage index, as in the

simplified case. Thus, Equation 3.17 would have been evaluated in the previous registration pair

calculations, so it does not need to be reevaluated in the current registration pair calculations,

except for the first pair, stage 1 and stage 2. Equations 3.7 through 3.11, 3.14, 3.15, and 3.18

through 3.22, inclusive, can also be omitted based on the fact that they contain terms with

overlapping time intervals. For example, consider Equation 3.11 containing TNi, then from

Equation 3.6, TNi > TRFDi-1, which means that RFDi-1 completes before Ni. Since Di-1 can begin

as soon as RFDi-1 completes and RFDi-1 completes before Ni, then the intervals labeled Di-1 and

Ni must at least partially overlap. Thus, Equation 3.11 can be disregarded since it does not take

into account overlap. To remove the overlap, TNi could be replaced with TRFDi-1, which would

20

yield the existing equation, 3.13. Through a similar analysis, three other overlapping terms can

be found. Therefore any equation containing one or more of these overlapping pairs:

TNi and TDi-1, TDi and TNi-1, TRFNi and TRFNi-1, or TRFDi and TRFDi-1 must also be invalid,

leaving only three valid equations, 3.12, 3.13, and 3.16.

In particular, Equation 3.16 considers the case of adjacent NULL propagation delays,

including the request times. Equation 3.13 considers the case of adjacent DATA propagation

delays, including the request times. Equation 3.12 considers the case of NULL and DATA

propagation delays for a single registration stage, including the request times. Based on this

analysis, the pseudocode listed in Algorithm 3.2 can be used to calculate the worst-case

throughput for a generalized N-stage NCL pipeline.

 max_cycle_time = TRFD1 + TD1 + TRFN1 + TN1
 for (i = 2 to N) loop
 temp_cycle_time = MAX(TRFDi + TDi + TRFNi + TNi,

 TRFDi-1 + TDi-1 + TDi + TRFNi,
 TRFNi-1 + TNi-1 + TNi + TRFDi)

 if (temp_cycle_time > max_cycle_time) then
 max_cycle_time = temp_cycle_time
 end if
 end loop
 worst_case_throughput = 1 / max_cycle_time

Algorithm 3.2: Calculation of worst-case throughput for a generalized N-stage NCL pipeline.

Evaluation of the above loop is followed by taking the reciprocal of the maximum delay to

obtain a lower bound on the pipeline�s throughput.

3.2 Bit-Wise Completion

 In addition to minimizing stage delay, throughput may be further increased using

bit-wise completion. Until now only full-word completion has been utilized, where the

completion signal for each bit in registeri is conjoined by the completion component, whose

single-bit output is connected to all Ki lines of registeri-1. On the other hand, bit-wise completion

21

only sends the completion signal from bit b in registeri back to the bits in registeri-1 that took part

in the calculation of bit b. This method may therefore require fewer logic levels than that of full-

word completion, thus increasing throughput. Bit-wise completion will never reduce throughput,

since in the worse case all bits of registeri-1 are used to calculate each bit of registeri, such that the

completion logic and therefore throughput does not change by selecting bit-wise completion

rather than full-word completion. Bit-wise completion may or may not require more logic gates

and therefore transistors than full-word completion, thus bit-wise completion will be used if it

increases throughput, or if throughput is the same as for full-word completion but area is

reduced.

Figure 17 shows full-word completion for a combinational stage of six 2-input AND

functions, using all combinations of the 4-bit input X. Figure 18 shows bit-wise completion for

the same six AND functions. There is only one level of logic in the completion components for

the bit-wise completion approach verses two levels of logic in the completion component for the

full-word completion approach. Also notice that four gates are required for bit-wise completion

verses three gates for full-word completion, a difference of 8 additional transistors. To maximize

throughput in this case, bit-wise completion would be selected in spite of its larger size since it

reduces the completion logic path from two gate delays down to only one gate delay, which

translates to an increase in throughput by the procedure given in Section 3.1.2.

4.0 Application to Unsigned Multiplier

A number of designs based on the 4-bit by 4-bit multiplier shown in Figure 19 have been

evaluated as a case study to assess the impact of GLP methods on throughput. The specifications

for this multiplier were simply to perform an unsigned multiply of the two 4-bit input vectors,

X and Y, and then output their 8-bit product, S. As with all NCL circuits, a full NCL interface

22

with request and acknowledge signals labeled Ki and Ko, respectively, is included for requesting

and acknowledging complete DATA and NULL wavefronts.

The non-pipelined version of the 4x4 multiplier is shown in Figure 20. It consists of

incomplete AND functions, denoted as I and depicted in Figure 6, as well as complete AND

functions, denoted as C and shown in Figure 7. The multiplier also utilizes half-adders, as shown

in Figure 21 and denoted HA, as well as full-adders, as shown in Figure 22 and denoted FA. The

last components of the multiplier include GEN_S7, as shown in Figure 23, and the completion

components, denoted COMP. Remember that the number of gate delays in the completion logic

for an N-bit register is Log4 N, as discussed in Section 2.5.

4.1 Pipelined Multipliers with Full-Word Completion

The throughput for the non-pipelined design is calculated using the pseudocode in

Section 3.1.2, and is determined to be (24 gate delays)-1. Here, TRFD1 = TRFN1 = Log4 8 = 2

gate delays and TN1 = TD1 = 10 gate delays as given by the I, FA, FA, HA, FA, FA, and FA

components along the critical path shown in bold face in Figure 20. Thus,

TDD = TRFD1 + TD1 + TRFN1 + TN1 = 2 + 10 + 2 + 10 = 24. Since the 4x4 multiplier has a

longest path delay of 10 threshold gates, then from the flowchart in Figure 14, the 4x4 multiplier

can be pipelined with either 5, 4, 3, 2, or 1 gate delays per stage, if completeness of input can be

achieved for each such partition.

For a partition of 5 gate delays per stage, 2 stages are required, as shown in Figure 24.

The throughput of this 2-stage design is determined to be (14 gate delays)-1, as all equations from

the pseudocode in Section 3.1.2 yield this same maximum cycle delay. For a partition of 4 gate

delays per stage, 3 stages are required, as shown in Figure 25. The first stage only has 3 gate

delays, while stage 2 and stage 3 both have 4 gate delays. The throughput of this 3-stage design

23

is determined to be (12 gate delays)-1. The equations from the pseudocode in Section 3.1.2 for

stage 2, stage 3, and stages 2 and 3 combined all yield this result. For a partition of 3 gate delays

per stage, 4 stages are required, as shown in Figure 26. The first stage has 3 gate delays, stage 2

only has 2 gate delays, and stage 3 and stage 4 both have 3 gate delays. The throughput of this

4-stage design is determined to be (10 gate delays)-1. The equations from the pseudocode in

Section 3.1.2 for stage 1, stage 3, stage 4, and stages 3 and 4 combined all yield this result. For a

partition of 2 gate delays per stage, 7 stages are required, as shown in Figure 27. The first stage

only has 1 gate delay, while stages 2 through 7 all have 2 gate delays. The throughput of this

7-stage design is determined to be (8 gate delays)-1. The equations from the pseudocode in

Section 3.1.2 all yield this result, excluding those for stage 1 and the combination of

stages 1 and 2.

A partition into a single gate delay per stage cannot be achieved since the completeness

of input criterion is unattainable using only one level of logic with a maximum gate fan-in of

4 inputs. This would require inserting a register between the two levels of logic within both the

full-adder and half-adder, which would violate the completeness of input criterion upon which

they were designed.

4.2 Summary of Multiplier Designs using Full-Word Completion

The maximum throughput when pipelining the 4x4 multiplier using full-word completion

was (8 gate delays)-1 as attained by the 7-stage design. Table III compares the throughputs

attained from Synopsys simulation and shows that the 7-stage design indeed outperforms all

other configurations, as expected by comparing the analytically predicted throughputs. This

design has a 19% increase in throughput over the next highest throughput from the 4-stage

multiplier, and an 83% increase in throughput over the original non-pipelined design. This

24

increase in throughput was achieved at the expense of inserting 6 asynchronous registers along

with corresponding completion logic, as dictated by the flowchart of Figure 14. The simulated

throughput was obtained by averaging the throughputs resulting from all 256 possible

combinations of input pairs.

4.3 Applying Bit-Wise Completion

After traversing the loop of Figure 14 such that i=0, the highest throughput design

utilized full-word completion. Bit-wise completion was applied to this design as specified by the

flowchart. When switching from full-word completion to bit-wise completion the incomplete

AND functions had to be replaced with complete AND functions to satisfy the completeness of

input criterion over the new completion sets. The resulting design, shown in Figure 28, reduced

the completion logic from 2 gate delays to only 1 gate delay for all registers, thus increasing the

throughput from (8 gate delays)-1 to (6 gate delays)-1. From Synopsys simulation throughput was

determined to be 0.257 ns-1, an increase of 21% over the design with an identical number of

stages using full-word completion. Thus, the 7-stage 4x4 multiplier utilizing bit-wise completion

optimizes throughput.

5.0 Conclusion

Since increasingly finer pipelining of the multiplier did not increase the completion

delay, the most finely grained pipelined design was optimal. The non-pipelined design

(Figure 20) required a maximum register width of 8 bits while the 7-stage pipelined design

(Figure 27) required a maximum register width of 16 bits, and Log4 8 = Log4 16 = 2.

However, if the 7-stage design required a maximum register width of 17 bits instead of 16 bits,

the throughput for the 7-stage design using full-word completion would have been the same as

25

for the 4-stage design using full-word completion. Thus, the 4-stage design using full-word

completion would have been preferable over its 7-stage counterpart, since it would have had less

latency. Bit-wise completion would still have had to be performed on the 7-stage design and

possibly the 4-stage design to determine the overall optimal throughput design.

 Since the GLP methodology successively partitions an N-stage NCL combinational logic

design first into 2 stages, then further into as many as N stages, it can produce an optimal

pipelined NCL system with significantly increased throughput over its original non-pipelined

design. The GLP process may also be partially applied to design maximum throughput systems

under the constraints of latency and/or area bounds. The GLP methodology combines both full-

word completion as well as bit-wise completion for designing the optimal system. A case study

of the 4x4 multiplier substantiates the utility and potential for automation of the proposed

methodology, as the throughput of the non-pipelined 4x4 multiplier was increased by 125%. In

this paper GLP was applied to a dual-rail NCL design; but it can also be applied to a quad-rail

NCL design, by inserting quad-rail registers, described in [28], rather than dual-rail registers.

 Moreover, although NCL requires both a DATA wavefront and a NULL wavefront,

which reduces the maximum attainable throughput by approximately half, a technique can be

used to reduce this inherent throughput loss. This NULL Cycle Reduction technique [29] exploits

parallelism by partitioning input wavefronts such that one circuit processes a DATA wavefront,

while its duplicate processes a NULL wavefront. The outputs of the two circuits are then

multiplexed to form a single output stream.

References

[1] Karl M. Fant and Scott A. Brandt, �NULL Convention Logic: A Complete and Consistent
Logic for Asynchronous Digital Circuit Synthesis,� International Conference on
Application Specific Systems, Architectures, and Processors, pp. 261-273, 1996.

26

[2] Ivan E. Sutherland, �Micropipelines,� Communications of the ACM, Vol. 32, No. 6,
pp. 720-738, 1989.

[3] Paul Day and J. Viv. Woods, �Investigation into Micropipeline Latch Design Styles,� IEEE

Transactions on VLSI Systems, Vol. 3, No. 2, pp. 264-272, 1995.

[4] K. Yun, P. Beerel, and J. Arceo, �High-Performance Asynchronous Pipeline Circuits,�

Advanced Research in Asynchronous Circuits and Systems, pp. 17-28, 1996.

[5] Stephen B. Furber and Paul Day, �Four-Phase Micropipeline Latch Control Circuits,� IEEE

Transactions on VLSI Systems, Vol. 4, No. 2, pp. 247-253, 1996.

[6] J. D. Garside, S. B. Furber, and S. H. Chung, �AMULET3 Revealed,� Proc. Async �99,

pp. 51 � 59, 1999.

[7] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien, J. Liu, �A Low-Power, Low
 Noise, Configurable Self-Timed DSP,� Proceedings of International Symposium on
 Advanced Research in Asynchronous Circuits and Systems, pp. 32-42, 1998.

[8] O. Hauck and S. A. Huss, �Asynchronous Wave Pipelines for High Throughput

Datapaths,� IEEE International Conference on Electronics, Circuits, and Systems, Vol. 1,
pp. 283 �286, 1998.

[9] Chansub Park and Duckjin Chung, �Modified Asynchronous Wave-Pipelining,� Electronics

Letters, Vol. 36, No. 4, pp. 295 �297, 2000.

[10] Jens Sparso and Jorgen Stanstrup, �Design and Performance Analysis of Delay Insensitive

Multi-Ring Structures,� Proceedings of the Twenty-Sixth Hawaii International Conference
on System Sciences, Vol.1, pp. 349 �358, 1993.

[11] J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, Design of Delay Insensitive Circuits using

Multi-Ring Structures. Proceedings of the European Design Automation Conference,
pp. 15-20, 1992.

[12] S. Kim and P. A. Beerel, �Pipeline Optimization for Asynchronous Circuits: Complexity

Analysis and an Efficient Optimal Algorithm,� IEEE/ACM International Conference on
Computer Aided Design, pp. 296 �302, 2000.

[13] M. Singh and S. M. Nowick, �High-Throughput Asynchronous Pipelines for Fine-Grain

Dynamic Datapaths,� Proceeding of the Sixth International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 198 �209, 2000.

[14] C. D. Nielsen and A.J. Martin, �Design of a Delay-Insensitive Multiply and Accumulate

Unit,� Proceedings of the Twenty-Sixth Hawaii International Conference on System
Sciences, Vol. 1, pp. 379 �388, 1993.

27

[15] C. L. Seitz, �System Timing,� in Introduction to VLSI Systems, Addison-Wesley,
pp. 218-262, 1980.

[16] A. J. Martin, �Programming in VLSI,� in Development in Concurrency and

Communication, Addison-Wesley, pp. 1 � 64, 1990.

[17] K. Van Berkel, �Beware the Isochronic Fork,� Integration, The VLSI Journal,

Vol. 13, No. 2, pp. 103-128, 1992.

[18] D. E. Muller, �Asynchronous Logics and Application to Information Processing,� in

Switching Theory in Space Technology, Stanford University Press, pp. 289-297, 1963.

[19] N. P. Singh, A Design Methodology for Self-Timed Systems, Master�s Thesis,

MIT/LCS/TR-258, Laboratory for Computer Science, MIT, 1981.

[20] Ilana David, Ran Ginosar, and Michael Yoeli, �An Efficient Implementation of Boolean

Functions as Self-Timed Circuits,� IEEE Transactions on Computers, Vol. 41, No. 1,
pp. 2-10,1992.

[21] T. S. Anantharaman, �A Delay Insensitive Regular Expression Recognizer,� IEEE VLSI

Technology Bulletin, Sept. 1986.

[22] A. J. Martin, �Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,�

Distributed Computing, Vol. 1, No. 4, pp. 226-234, 1986.

[23] C. H. (Kees) van Berkel, Handshake Ciruits: An Intermediary Between Communicating

Processes and VLSI, Ph.D. Thesis, Eindhoven University of Technology, 1992.

[24] Karl M. Fant and Scott A. Brandt, NULL Convention Logic Systems, US patent 5,305,463

April 19, 1994.

[25] T. Verhoeff, �Delay-Insensitive Codes � An Overview,� Distributed Computing, Vol. 3,

pp. 1-8, 1988.

[26] A. Martin, �The Limitations to Delay-lnsensitivity in Asynchronous Circuits,� Advanced

Research in VLSI: Proceedings of the Sixth MIT Conference:
pp. 263-278, 1990.

[27] Gerald E. Sobelman and Karl M. Fant, �CMOS Circuit Design of Threshold Gates with

Hysteresis,� IEEE International Symposium on Circuits and Systems (II), pp. 61-65, 1998.

[28] S. C. Smith, R. F. DeMara, D. Ferguson, and D. Lamb, �Optimization of NULL

Convention Self-Timed Circuits,� submitted to Integration, The VLSI Journal,
August 2001.

28

[29] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, �Speedup of Delay-
Insensitive Digital Systems Using NULL Cycle Reduction,� The 10th International
Workshop on Logic and Synthesis, pp. 185 � 189, 2001.

Figure 1. Two-phase handshaking protocol [2].

Figure 2. Four-phase handshaking protocol [5].

Figure 3. Symbolic incompleteness of a Boolean AND gate.

Figure 4. NCL AND function: Z = X • Y and associated waveforms.

X

Y
Z

X

Y

Z
Valid

Output
Invalid
Output

Valid
Output

1 ns

0
1

0
1
0
1

NCL AND
Function

X0

X1

Y0

Y1

Z0

Z1

Valid
Output

NULL
Output

Valid
Output

0
1

0
1
0
1

X0

X1

Y0

0
1

0
1
0
1

Y1

Z0

Z1

1 ns1 ns

29

Figure 5. THmn threshold gate [27].

Figure 6. Incomplete AND function: Z = X • Y.

Figure 7. Input-complete AND function: Z = X • Y.

Figure 8. Incorrect XOR function: Z = X ⊕ Y
 (orphans may propagate through a gate).

Input 1
Input 2

Input n

Outputm

3

2
X1

Z0

Z1

Y0

Y1

X0

2

1
X0

Z1

Z0

Y1

X1

Y0

2

X0

X1

Y0

Y1

1 3 Z1

2 Z0

30

Figure 9. Correct XOR function: Z = X ⊕ Y
 (orphans may not propagate through any gate).

Registration
Stage 1

Combinational
Circuit

KiKo

In Out

Registration
Stage 2

KiKo

In Out
Input

Ko

Combinational
Circuit

Registration
Stage 3

KiKo

In Out

Completion

Registration
Stage N

KiKo

In Out
Output

KiCompletion

Figure 10. General NCL pipeline [1].

Figure11. Single-bit dual-rail NCL register [1].

2

X0

X1

Y0

Y1

2 2 Z1

2 Z0

2

2

I0

I1

O0

O1

1Ko

Ki

31

Figure12. Single-bit NCL pipeline.

Figure 13. N-bit completion component.

2

2

O0

O1

1

Ki

2

2

1

2

2

I0

I1

1Ko

Register 2 Register NRegister 1

Ko(1)
Ko(2)
Ko(3)
Ko(4)

Ko(N-3)
Ko(N-2)
Ko(N-1)

Ko(N)

4

4

4 4
Ko(N-7)
Ko(N-6)
Ko(N-5)
Ko(N-4)

4

4

Ko(5)
Ko(6)
Ko(7)
Ko(8)

4 Ko

32

Figure 14. GLP methodology design flow.

N-level
combinatorial

design

max_latency,
max_area

max_throughput = calculate
throughput for non-pipelined design

best_design = non-pipelined design

i = N/2

i = 0

current_design = partition combinatorial
logic such that each stage has at
most i gate delays and ensure

completeness of input at the output
of each stage if possible

no

latency of
 current_design

max_latency
≤

area of
 current_design

max_area
≤

yes

completeness of input
achieved for all stages of

current_design

yes

temp_throughput = calculate
throughput for current_design

yes

i = i - 1

no

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

current_design = apply bit-wise
completion to current_design

no

area of
 current_design

max_area
≤

no

no

temp_throughput = calculate
throughput for current_design

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

yes

no

best_design uses
full-word completion no

yes

current_design = apply bit-wise
completion to best_design

area of
 current_design

max_area
≤

temp_throughput = calculate
throughput for current_design

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

yes

area of
current_design <

area of best_design

best_design = current_design

output best_design
and max_throughput

yes

yes

no no

no

no

area of
 current_design

max_area
≤

current_design = apply bit-wise
completion to current_design

yes

no

default = ∞

33

Figure 15. Sub-cycles of the NCL cycle.

Figure 16. Pipeline showing NCL sub-cycle times.

Figure 17. Full-word completion.

DATA
Combinational

Evaluation

DATA
Completion

Acknowledgement

NULL
Completion

Acknowledgement

NULL
Combinational

Evaluation

DATA-to-DATA Cycle

D RFN N RFD

Registration
Stage i-2

Combinational
Circuit

KiKo

In Out

Registration
Stage i-1

KiKo

In Out

Completion

Combinational
Circuit

Registration
Stage i

KiKo

In Out

Completion

Stage i-1 Stage i

TDi, TNi

TRFDi, TRFNi

TDi-1, TNi-1

TRFDi-1, TRFNi-1

NCL Completion

X(3) X(2) X(1) X(0)

NCL
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

NCL
RegisterKi

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

Ki

NCL Completion

Ko Reset

4

4
3

34

Figure 18. Bit-wise completion.

Figure 19. 4x4 multiplier block diagram.

NCL Completion

X(3) X(2) X(1) X(0)

NCL
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

NCL
RegisterKi

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

Ki(5)

Ko(3) Reset

3

NCL Completion NCL CompletionNCL Completion

Ki(4) Ki(3) Ki(2) Ki(1) Ki(0)

Ko(2) Ko(1) Ko(0)

4x4Multiplier

S(7:0)

Ki

X(3:0)

Y(3:0)

Ko

Reset

35

Figure 20. 1-stage 4x4 multiplier using full-word completion.

Figure 21. Half-adder.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

Ko

Ki
Ko

Reset

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

FA
C S

10 gate
delays

2

X0

X1

Y0

Y1

1 3 S1

2 S0

C0

C1

36

Figure 22. Full-adder.

Figure 23. GEN_S7 component.

X0

X1

Co
0

2

2
3

3

Co
1

Ci
0

Ci
1

Y0

Y1

S0

S1

C1
C0

X1
X0

Y1
Y0

Z0

Z1

4

4
1 S1

S0

37

Figure 24. 2-stage 4x4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

Ko

Ki
Ko

Reset

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

12 bit NCL Register

COMP

Stage 1:
5 gate
delays

Stage 2:
5 gate
delays

38

Figure 25. 3-stage 4x4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

12 bit NCL Register

13 bit NCL Register

Ko

Ki

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

Stage 1:
3 gate
delays

Stage 2:
4 gate
delays

Stage 3:
4 gate
delays

39

Figure 26. 4-stage 4x4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

13 bit NCL Register

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

12 bit NCL Register

11 bit NCL Register

Ko

Ki

Ko

Ki

COMP

C CIIIICIIIICIIII

Stage 1:
3 gate
delays

Stage 2:
2 gate
delays

Stage 3:
3 gate
delays

Stage 4:
3 gate
delays

40

Figure 27. 7-stage 4x4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

12 bit NCL Register

13 bit NCL Register

Ko

Ki

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

16 bit NCL Register

12 bit NCL Register

11 bit NCL Register

Ki

COMP
Ko

Ko

Ki

Ko

10 bit NCL Register

COMP

Ko

Ki

Ki

COMP

COMP

IC IIIICIIIICIII C

Stage 1:
1 gate
delay

Stage 2:
2 gate
delays

Stage 3:
2 gate
delays

Stage 4:
2 gate
delays

Stage 5:
2 gate
delays

Stage 6:
2 gate
delays

Stage 7:
2 gate
delays

41

Figure 28. 7-stage 4x4 multiplier using bit-wise completion.

X3 X2 Y3X0X1 Y0Y1Y2 Ko(0)Ko(1)Ko(2)Ko(3)Ko(4)Ko(5)Ko(6)Ko(7)

COMPCOMP COMPCOMP COMPCOMP COMPCOMP

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

CCCCCCCC C C C C C C CC C C C C C C

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

COMP

NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMPCOMPCOMPCOMP

HA
C S

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

FA
C S

HA
C S

HA
C S

HA
C S

COMP COMP COMP COMP COMP

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

HA
C S

COMP

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMP FA
C S

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMP FA
C S

GEN_S7
S

ZYC X

FA
C S

COMP

NCL
RegisterKi

Ko NCL
RegisterKi

Ko

Ki(7) S7 Ki(6) S6 Ki(5) S5 Ki(4) S4 Ki(3) S3 Ki(2) S2 Ki(1) S1 Ki(0) S0

Reset

42

Table I: Discrete timing chart for the idealized NCL cycle.
 Sub- Initial Wavefronts

Stage cycle State 1 2 3 4 5
i-1 Di-1 X X X

 Ni-1 X X X
i Di X X
 Ni X X X

Table II: Discrete timing chart for the general NCL cycle.

 Sub- Initial Wavefronts
Stage cycle State 1 2 3 4 5 6 7 8 9

 Di-1 X X X
i-1 Ni-1 X X X

 RFDi-1 X X X
 RFNi-1 X X
 Di X X
i Ni X X X
 RFDi X X X
 RFNi X X

Table III: Multiplier comparisons.

 Maximum Combinational Maximum Completion Predicted Simulated
Multiplier Delay per Stage Delay per Stage Throughput Throughput
Design (gate delays) (gate delays) (gate delays)-1 (ns)-1
1-stage 10 2 1/24 = 0.042 0.114
2-stage 5 2 1/14 = 0.071 0.150
3-stage 4 2 1/12 = 0.083 0.172
4-stage 3 2 1/10 = 0.100 0.176
7-stage 2 2 1/8 = 0.125 0.209

This document is an author-formatted work. The definitive version for citation appears as:

S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “Delay-Insensitive Gate-level
Pipelining,” Integration, The VLSI Journal, Vol. 30, No. 2, November, 2001, pp. 103 – 131.
doi:10.1016/S0167-9260(01)00013-X

http://dx.doi.org/10.1016/S0167-9260(01)00013-X

